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A B S T R A C T   

Understanding how distinct processes operate in mediating community assembly is a long-standing theme in 
(microbial) ecology. Particularly in soil microbial communities, we still lack a fundamental appreciation of how 
assembly processes structure communities at the fine-scale level of soil aggregates. In this study, samples from a 
long-term agricultural field subjected to different fertilization regimes were used to quantify the relative in
fluences of stochastic and deterministic processes on soil bacterial community assembly. First, we found bacterial 
communities to be more phylogenetically clustered in larger soil aggregates comparatively to small aggregates 
(Spearman’s r = − 0.366, P < 0.05). Second, we found the overall relative influence of selection to gradually 
decrease with an increase of aggregate size (Mantel r = 0.161, P < 0.01). By partitioning aggregate sizes and 
fertilization regimes, we found that sites subjected to fertilization (including chemical, organic, and bio-organic 
fertilizers) displayed a stronger relaxation of selection and an increased influence of stochasticity with an in
crease in aggregate size; a pattern not significantly observed at the control (unfertilized) treatment. Collectively, 
our results highlight the importance of evaluating community assembly at the fine-scale levels of soil aggregates 
and illustrate how regional level disturbances (i.e., agricultural management) exert an influence on the dynamic 
interplay of stochastic and deterministic processes.   

1. Introduction 

Disentangling the relative influences of ecological processes medi
ating the assembly of microbial communities is a major challenge in 
microbial ecology (Nemergut et al., 2013). Currently, it is broadly 
recognized that local community assemblages are influenced by two 
classes of ecological processes – deterministic and stochastic processes 
(Stegen et al., 2012; Tripathi et al., 2018). The niche-based theory states 
that deterministic process is mediated by differences in species traits, 
interspecies interactions (e.g., competition, predation, mutualisms, and 
trade-offs), and environmental filtering (e.g., pH, temperature, salt, and 
moisture) (Tripathi et al., 2018; Chesson, 2000). On the other hand, the 
neutral theory suggests that community assembly can be seen by a dy
namic balance of stochastic processes, i.e., random birth and death 
events, dispersal and diversification (Hubbell, 2001; Chave, 2004; 

Linquist et al., 2015). Recently, it has been broadly recognized that both 
deterministic and stochastic processes simultaneously mediate the as
sembly of local communities. The challenge relies on advancing 
knowledge on the mechanisms underpinning their relative influences 
structuring communities at distinct spatiotemporal scales and across 
divergent systems (Zhou, 2017). In particular, spatial and temporal 
scales have been shown to directly reflect on the outcome of how these 
distinct processes operate, the so-called ‘scale-dependence’ (Dini- 
Andreote et al., 2015; Chase et al., 2018). 

Soils are highly heterogeneous and encompass diverse spatially 
structured micro-habitats that are defined at the scale of soil aggregates 
and pore structure. Resource availability (Briar et al., 2011; Chenu and 
Stotzky, 2002) and physicochemical conditions (Vos et al., 2013) are 
known to vary with aggregate size and to support different microbial 
communities (Bach et al., 2018; Trivedi et al., 2017). Several studies 
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have addressed the extent to which deterministic and stochastic pro
cesses influence the assembly of bacterial communities in soils (Huber 
et al., 2020; Tripathi et al., 2018); however, we still lack a detailed 
assessment of whether these processes interplay at the fine-scale level of 
soil aggregates. Besides, at a regional scale, it has been shown that 
different fertilization regimes exert a major influence on the stability 
and distribution of soil aggregates (Li et al., 2019). Thus, in this study, 
we sought to investigate the balance between stochastic and determin
istic processes structuring soil ‘aggregate-level’ bacterial communities, 
and examined whether distinct fertilization regimes influence the dy
namics by which these processes operate. We hypothesized that fertil
ization treatments will result in a different interplay of stochastic and 
deterministic processes between soil aggregates due to the different 
stability of soil aggregates. We also expected that the input of chemical 
fertilizer will cause more stochasticity because of the overall disturbance 
to bacterial community, while organic fertilization would induce more 
determinism because of the selection of nutrient resources. 

To study the impact of distinct fertilization treatments on the pro
cesses structuring bacterial communities at distinct soil aggregate sizes, 
we examined datasets of samples collected from a long-term agricultural 
experimental field in Nanjing, China (Dong et al., 2020). The experi
mental sites have been subjected to different types of fertilization 
treatments (including a control site, not fertilized) for seven consecutive 
seasons. Soil samples were separated into four classes (based on size) of 
soil aggregates using a wet-sieving method (Dong et al., 2020). Bacterial 
community structure at each class of soil aggregate per sample was 
determined by profiling the bacterial 16S rRNA gene using an Illumina 
Miseq platform. The relative influences of stochastic and deterministic 
processes were quantified using a phylogenetic null modelling analysis 
(Stegen et al., 2012; Dini-Andreote et al., 2015). 

2. Methods 

2.1. Datasets 

We examined datasets of samples collected from a long-term agri
cultural experimental field in Nanjing, China (Dong et al., 2020). These 
field sites were located at a subtropical monsoon climate with an 
average annual temperature of 17 ◦C (5.5–38.5 ◦C). The soil pH values 
ranged from 7.21 to 7.64. These field sites were regularly irrigated 
during tomato cultivation. Soil samples were collected at triplicated 
plots across the following treatments: no fertilizer input (CK), chemical 
fertilization (CF), organic fertilization (OF), and bio-organic fertilization 
(BF). Chemical fertilization consisted of predefined amounts of urea 
(225 kg N/ha), calcium superphosphate (65 kg P/ha), and potassium 
sulphate (150 kg K/ha) amendments. The organic fertilizer (i.e., 
compost) was obtained by the fermentative process of a mixture of 
rapeseed meal and chicken manure. The bio-organic fertilizer was pro
duced by adding Bacillus amyloliquefaciens T-5 to the organic fertilizer 
before the fermentative process (Tan et al., 2013). In every season, fields 
were tilled before the planting of tomato. 

Soils were sampled 1 month after tomato harvesting at the end of the 
7th season. Nine parts of soil cores (7.4 cm diameter and 10 cm deep) 
were collected from each field plot and mixed as one composite sample. 
All soil samples were transported to the laboratory in aluminum boxes 
with ice and stored at 4 ◦C. Samples were processed by separating the 
soil aggregates into 4 size classes: large macro-aggregates >2 mm (LMa); 
medium macro-aggregates 1–2 mm (MMa); small macro-aggregates 
0.25–1 mm (SMa), and micro-aggregates <0.25 mm (Mi); using spe
cific modifications of the wet-sieving method. In brief, soils were not air- 
dried before sieving to minimize the impact of this disturbance on mi
crobial communities (Elliott, 1986; Davinic et al., 2012). A total of 100 g 
of soil were put on a column of sieves and immersed in sterilized water 
for 5 min. The sieves were gently shaken by hand at a frequency of ca. 50 
times per minute. Each aggregate fraction remaining on the respective 
sieve meshes was stored at − 80 ◦C for DNA extraction. Soil DNA was 

extracted from 0.25 g of dry-weight soil using the PowerSoil DNA 
Isolation Kit (Mobio Laboratories Inc., Carlsbad, USA). The bacterial 
community composition at each class of soil aggregate per sample was 
determined using an Illumina MiSeq platform (i.e., the bacterial 16S 
rRNA gene V4 region, primer set 520F-802R (Claesson et al., 2009)) at 
Personal Biotechnology Co., Ltd. (Shanghai, China). For additional de
tails on the field experiment, sample collection and processing, and the 
Illumina Miseq sequencing, see Dong et al. (2020). 

2.2. Data analysis 

Raw paired-end reads were processed using QIIME2-2019.7 (Bolyen 
et al., 2019) with the “dada2 denoise-paired” function to determine 
amplicon sequence variants (ASV). A total of 1,074,416 high-quality and 
non-chimeric sequences were obtained from a total of 48 samples, with a 
median of 22,930 (range from 11,028 to 30,263), clustered into 9759 
bacterial ASVs. 

Sequences of each ASVs were aligned and a phylogenetic tree was 
constructed using the “align-to-tree-mafft-fasttree” function in QIIME2. 
To test for phylogenetic signal, soil aggregate sizes optima for each ASVs 
(mean diameter) were calculated according to Stegen et al. (2012), as 
follows: the relative abundance-weighted mean value of each ASV was 
calculated across soil aggregates sizes taking into account the soil pH 
value (i.e., ASV relative abundance × pH value). Further, Euclidean 
distances were calculated and the Mantel correlograms tests were per
formed to measure the correlation coefficients between differences in 
soil aggregates size optima and the phylogenetic distances. The signifi
cance of these correlations was determined using 999 permutations with 
Bonferroni correction. 

To evaluate the community phylogenetic community structure, we 
calculated the standardized effect size measure of the mean nearest 
taxon distance (SES.MNTD) using the “ses.mntd” function (null.mode =
“taxa.labes”, runs = 999) in the “picante” package in R 3.6.1. Lower 
values of SES.MNTD indicate phylogenetic clustering, while higher 
values indicate phylogenetic overdispersion. To evaluate the relation
ship between the soil aggregate size and SES.MNTD, we applied 
Spearman’s correlation test using the “cor.test” function of “stats” 
package in R 3.6.1. The pairwise phylogenetic turnover between com
munities was calculated by the mean nearest taxon distance metric 
(βMNTD) using the “comdistnt” function (abundance.weighted = TRUE) 
in “picante”. The difference between observed βMNTD and the mean of 
the null distribution was measured in units of standard deviations (of the 
null distribution), using the convention to β-Nearest Taxon Index (βNTI) 
(Stegen et al., 2013). To assess the relative influences of stochastic and 
deterministic processes, we tested for all possible pairwise comparisons 
between βNTI values within each soil aggregate size. βNTI values (which 
are derived from pairwise comparisons) were regressed against 
Euclidean distance matrices of soil aggregates sizes. To evaluate the 
relationship between phylogenetic turnover and soil aggregates, we 
performed Mantel tests using 999 permutations. To calculate the relative 
influences of stochastic and deterministic processes, pairwise compari
sons of βNTI values between the same soil aggregate class were extrac
ted. In brief, βNTI < − 2 or >+2 indicates that βMNTDobs deviates from 
the mean βMNTDnull by more than two standard deviations. Thus, the 
model considers βNTI < − 2 or >+2 to indicate significantly less than or 
greater than expected phylogenetic turnover, respectively, for a given 
pairwise comparison. In this case, βNTI < − 2 indicates the dominance of 
deterministic processes and low turnover (i.e., homogeneous selection); 
βNTI > 2 indicates the dominance of deterministic processes and high 
turnover (i.e., variable selection); and − 2 < βNTI <2 indicates the lack 
of deviation and the dominance of stochastic processes (Stegen et al., 
2012; Dini-Andreote et al., 2015). In addition, we calculated the 
Bray–Curtis-based Raup–Crick metric (RCbray) as described by Stegen 
et al. (2013, 2015) to further partition the relative influences of non- 
selection processes, i.e.., dispersal limitation (RCbray > 0.95), homoge
nizing dispersal (RCbray < − 0.95) and undominated processes (− 0.95 >
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RCbray > 0.95). Dispersal limitation constrains the movement of species 
and led to higher levels of community dissimilarity; on the contrary, 
homogenizing dispersal, defined as high levels of species movement, led 
to a decrease in community dissimilarities (Zhou, 2017). 

3. Results 

Significant phylogenetic signals were found across short phyloge
netic distances in all datasets (Supplementary Fig. S1). Therefore, we 
calculated the standardized effect sizes of the mean nearest taxon dis
tance (SES.MNTD) and the β-nearest taxon indexes (βNTI), as both of 
these metrics are indicated when significant phylogenetic signals occur 
at short phylogenetic distances (Stegen et al., 2012; Tripathi et al., 
2018). Taking all samples together, values of SES.MNTD were found to 
be negatively correlated with soil aggregate sizes (r = − 0.366, P < 0.05, 
Spearman’s correlation test, Fig. 1). This result shows that larger 
aggregate sizes have more phylogenetically clustered bacterial com
munities comparatively to small aggregates. 

We further evaluated the relationship between βNTI values and 
aggregate sizes in order to quantify the relative influences of stochastic 
and deterministic processes mediating community assembly. Pairwise 
comparisons of βNTI values between all samples were significantly 
correlated with the difference in aggregate sizes (Mantel test, r = 0.161, 
P < 0.01) (Fig. 2a). When calculating βNTI values in samples partitioned 
by the different fertilization treatments (Fig. 2b), pairwise comparisons 
of βNTI in CF, OF and BF were all significantly correlated (P < 0.05) with 
aggregate sizes. Interestingly this pattern was not found to be significant 
in the ‘control’ (CK) treatment (P = 0.085). Collectively, these results 
indicate an overall effect of fertilization regimes on the dynamic inter
play of stochastic and deterministic processes operating on bacterial 
community assembly at the fine-scale levels of soil aggregates. 

We found homogeneous selection (βNTI<− 2) to be the dominant 
process structuring bacterial communities across all soil aggregate sizes. 
Interestingly, the relative influence of homogeneous selection was found 
to gradually decrease (i.e., ‘selection relaxation’) with an increase in 
aggregate size (Mantel r = 0.161, P < 0.01; MMa fraction = 93.9%, SMa 
= 81.8, Mi = 78.8%, and LMa = 71.2%) (Fig. 3). The relative influence 
of stochasticity was mostly associated with dispersal limitation, also 
displaying some variation according to aggregate size (Fig. 3). Last, the 
fertilization treatment also exerted an impact on the dynamics by which 
these assembly processes operate (Supplementary Materials Fig. S2). In 
brief, homogeneous selection appeared to exert a higher influence in 
sites subjected to organic fertilization (i.e., 95.5% and 90.9% at OF and 
BF, respectively); whereas stochastic processes (mostly due to dispersal 

limitation) exerted a relatively higher influence in sites subjected to 
chemical fertilization (13.6% at CF). 

4. Discussion 

In the present study, we initially showed that larger soil aggregates 
support more phylogenetic clustered bacterial communities (Fig. 1). 
This finding is somehow counter-intuitive, given that greater surface 
area is expected to support more diverse (and thus, phylogenetically 
‘dispersed’) community types. Second, we found the interplay of 
deterministic and stochastic processes to differ in structuring bacterial 
communities in soil aggregates of distinct sizes. This finding provides 
new insight into the scale dependency of how these mechanisms oper
ate, as supported by previous studies in microbiology and macro- 
organism ecology (Dini-Andreote et al., 2015; Chase et al., 2018). Be
sides, taken together these results open up new avenues to investigate 
whether similar patterns may occur across distinct soil types and at 
different systems (agricultural and natural). Third, we showed that 
fertilization treatments also exerted an influence on how dynamically 
these processes operate. Interestingly, we found that pairwise compar
isons of βNTI significantly correlated with changes in soil aggregate sizes 
across all fertilization treatments (CF, OF, BF); however, this correlation 
was not found to be significant in the control (CK, not fertilized) treat
ment (Fig. 2). This indicates that fertilization significantly and differ
entially affects the balance between community assembly processes and 
that such effects occur at different relative influences at soil aggregates 
of different sizes. Our findings also integrate knowledge from previous 
studies showing that soil microbial community structures differ across 
soil aggregates collected within the same soil site, and that differences 
can be found across sites subjected to distinct nutrient amendments 
(Wang et al., 2017). Worth mentioning, similar findings were also re
ported by the short- and long-term application of organic fertilizer, in 
which microbial communities showed different responses according to 
soil aggregate sizes in sites subjected to fertilization (Li et al., 2019). 
Thus, the results obtained in our study advance knowledge on explain
ing these differences by showing that these observed differences in 
community structure are modulated by a dynamic interplay of ecolog
ical assembly processes. 

We found the relative influence of deterministic processes (i.e., ho
mogeneous selection) to largely modulate the structure of bacterial 
communities in soil aggregates of all sizes (Fig. 3). Most interestingly, 
we identify a relaxation of selection as aggregate sizes increase (from 
MMa 1–2 mm to LMa >2 mm). This may likely support the idea that 
small aggregates are under stronger selective pressure and might be less 
subjected to stochastic processes caused by either random dispersal or 
ecological/environmental disturbance. Another line of reasoning would 
argue that these differences might also be a result of differences in 
aggregate physicochemical properties, such as the availability of nutri
ents and pH (Wang et al., 2015). 

To a lowered extent, stochastic processes also exerted an influence on 
bacterial community assembly. This was found to increase in impor
tance at larger aggregate sizes and at sites subjected to fertilization 
treatments. By partitioning the influence of non-selective processes, we 
found dispersal limitation to be the major mechanism accounting for 
stochasticity. This might likely be linked to the fact that aggregates may 
work as ‘incubators’ of soil microbial communities (sensu Rillig et al., 
2017; Vos et al., 2013). The effect of fertilization can be explained by 
envisioning fertilization amendment as a ‘disturbance’ to the system, 
which temporarily disrupts environmental selection, and, as such, in
crease stochasticity. This is supported by the fact a that lower influence 
of stochasticity was quantified in the control (CK, not fertilized) 
treatment. 

Despite we could not technically determine potential differences in 
physicochemical properties within and across distinct soil aggregate 
sizes, it is tempting to speculate that these observed dynamic interplay 
of ecological processes are mechanistically underpinned by differences 
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Fig. 1. Relationship between soil aggregate sizes and standardized effect size 
measures of the mean nearest taxon distance (SES.MNTD). Low and high values 
of SES.MNTD indicate phylogenetic clustering and overdispersion, respectively. 
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in aggregates’ physical (e.g. pore space, O2 tension, volatiles) (Rillig 
et al., 2017) and chemical properties (e.g., water content, organic 
matter, pH) (Bronick and Lal, 2005; Six and Paustian, 2014; Wang et al., 
2015). These physicochemical gradients within aggregates will likely 
provide different niches for distinct microbial populations to establish, 
thus resulting in a strong deterministic (selection) assembly. However, a 
more holistic view would also consider that at least part of these pop
ulations will likely fluctuate over time due to random stochastic pro
cesses of dispersal and drift, both of which will be affected by aggregate 
size. Together, these nicely illustrate and explain our findings in this 
study. 

The further development of technology to detect soil physical and 
chemical properties in situ at the level of soil aggregates, in particular 
the determination of pH and oxygen gradients, as well as the composi
tion of organic matter fractions will likely assist a better explanation of 

the extent of which stochastic and deterministic processes operate. 
Overall, our study corroborates the overarching idea that processes and 
mechanisms operating on soil microbiome assembly are dynamic and 
scale-dependent (Dini-Andreote et al., 2015). The last holds true even 
when the spatial scale is miniaturized at the level of differences in soil 
aggregate sizes. We advocate that proper management of soil biodi
versity (i.e., applied soil ecology) can more effectively be achieved in 
light of a better understanding of how ecological processes operates in a 
system, and by identifying the mechanisms modulating their relative 
influences. 

This study highlights the importance of evaluating community as
sembly at the fine-scale levels of soil aggregates. Bacterial communities 
are more phylogenetically clustered in larger soil aggregates. The het
erogeneity of soil aggregates significantly mediated the balance of sto
chastic and deterministic processes in fertilized fields, resulting in a 
dominated deterministic assembly process in soil aggregates. These 
deterministic processes all belong to homogeneous selection, and have 
different contributions among soil aggregates. Regional level distur
bance (fertilization in this study) also showed influence on the dynamic 
interplay of stochastic and deterministic processes. 
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