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Abstract
Despite their relevance in mathematical biology, there are, as yet, few general results about
the asymptotic behaviour of measure valued solutions of renewal equations on the basis of
assumptions concerning the kernel. We characterise, via their kernels, a class of renewal
equations whose measure-valued solution can be expressed in terms of the solution of a
scalar renewal equation. The asymptotic behaviour of the solution of the scalar renewal
equation, is studied via Feller’s classical renewal theorem and, from it, the large time be-
haviour of the solution of the original renewal equation is derived.

Keywords Malthusian parameter · Balanced exponential growth · Volterra integral
equations · Laplace transform · Convolution

1 Introduction

Renewal equations are a class of integral equations which, in their simplest form, look as

b(t) =
∫ ∞

0
b(t − a)k(a)da for t > 0. (1.1)

The solution b of a renewal equation evaluated at a certain time t depends on its history, that
is, on all its values up to time t . The dependence on the history is filtered by the kernel k,
which weighs each point in the past. To obtain a unique solution one needs to prescribe b(t)

on (−∞,0].
Consider a population of individuals, characterised by their age and concomitant repro-

ducing ability. Reproductive individuals contribute to the population birth rate according to
the reproduction capacity of their age. The density of individuals of age a depends only
on the population birth rate a time units ago and the probability of surviving up to age a.
We therefore infer that the population birth rate satisfies the renewal equation (1.1) with an
appropriately chosen kernel. Similar considerations lead to the use of more general renewal
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equations (cf. (1.2) below) in a broad variety of structured population models. We find ap-
plications in demography [40], epidemiology [22, 39, 52], models of the immune system
[17], and models of populations of animals and cells [21, 36, 41, 42, 50].

In this work we are interested in a class of linear structured population models, including
a model of cell growth and division and a model of the waning and boosting of immunity, see
Sect. 4. The populations that we study consist of individuals characterised by their individual
state, or i-state for short. The set of all admissible i-states is called the i-state space and is
denoted by �. In all our applications it will be a nonempty subset of Rn. The subset �0 ⊂ �

is the set of all possible states at birth, which in most models is considerably smaller than the
full i-state space �, but might have the cardinality of the continuum. The motivation of the
subscript 0 in �0 is that �0 is the set of the states of individuals of age 0. We shall frequently
abuse language and talk about individuals when we really mean i-states, for instance, in
phrases like “individuals in the set ω ⊂ �”.

The i-level mechanisms that we model are

– Reproduction. Here we have to specify how much offspring an individual with a partic-
ular i-state produces per unit of time and what the states at birth of the offspring are. In
models where an individual may change its i-state through a jump, it is often convenient to
consider this jump as part of the reproduction process: the reappearance of an individual
at a different location in the i-state space is modelled as the birth of a new individual.

– Development of the i-states, for example growth of a cell or waning of the immune level.
– Disappearance of individuals, by death or by a jump to elsewhere in the i-state space.

For general structured population models, we need to incorporate the state-at-birth in the
bookkeeping. In [18] this was elaborated in terms of measures on the product of the time
axis and �0. Here we focus on situations in which individuals give birth at a certain rate,
i.e., with a certain probability per unit of time. In such situations it is natural to work with
rates at the population level as well, as in (1.1). But in the state-at-birth variable we retain
the measure character, as

(i) it allows us to treat the cases of finitely many birth states and a continuum of birth states
in a unified manner

(ii) it prepares for a description of the population state by a measure on � (which is very
natural: the number of individuals with i-state belonging to a certain subset of � is
conceptually easier than a density on �).

So the key variable is b(t,ω) such that
∫

[t1,t2] b(t,ω)dt is the number of individuals born in
the time interval [t1, t2] with state-at-birth in the set ω ⊂ �0.

To formulate the renewal equation for measure valued functions b of time, we introduce
a kernel, i.e., a function k : R+ × �0 × B(�0) → R+ with certain natural properties as
specified in Definition A.8 in the Appendix A, and write

b(t,ω) =
∫ ∞

0

∫
�0

b(t − a, dξ)k(a, ξ,ω)da for t > 0, ω ∈ B(�0). (1.2)

A solution of (1.2) is a function t �→ b(t, ·) from R
∗+ to M(�0), satisfying (1.2) for all

ω ∈ B(�0). The biological interpretation is that b(t,ω) is the rate at which individuals are
born with state at birth in ω ∈ B(�0) at time t , and that k(a, ξ,ω) is the rate at which an
individual, which had i-state ξ at birth, is expected to give birth to offspring with states at
birth in ω, when it is of age a. So an individual that dies before reaching age a contributes
zero to the expected value.
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Models of physiologically structured populations are often formulated in terms of PDEs
describing i-state development and survival together with a description of the reproduction
process [41, 42]. The reproduction process is either modelled as a boundary condition or, if
reproduction amounts to jumps in the i-state space, by nonlocal terms in the PDE.

When dealing with measure-valued solutions of PDEs, finding a good definition of a so-
lution is already a non-trivial problem. In some works weak solutions have been considered,
but in other cases also more complicated types of solutions have been defined [10, 15, 43].
Proving the existence of such solutions requires tools from functional analysis [11].

A first aim of the present paper is to emphasise, in the spirit of [18] and [53], that one
can use the biological interpretation to go directly to an integral equation of variation-of-
constants (or Duhamel) type, viz. (1.2), thus avoiding the need to specify the technical sense
in which one has to interpret the derivatives in the PDE. Secondly, exploiting the positivity
of the kernel k, we demonstrate that the existence and the uniqueness of a solution of (1.2)
can be proven using well-known methods of the theory of Volterra integral equations [31]
or Markov renewal theory [48], even when dealing with measure valued solutions. Thirdly,
restrictive, but biologically motivated assumptions on the kernel k allow us to fairly easily
deduce the asymptotic behaviour of the solution of (1.2): balanced exponential growth, i.e.
b(t) ∼ Certφ is the generic asymptotic large time behaviour of linear renewal equations.
(But there are, as we shall see, interesting exceptions.)

These are the main advantages of working with renewal equations. We shall, however,
also sketch in Appendix B the PDE formulation and the relation between the PDE and the
renewal equation for the models we present in Sect. 4.

Different approaches to the study of the asymptotic behaviour of the solutions of PDEs
on measures with applications to structured population dynamics and growth-fragmentation
processes can be found in, e.g. [2, 9, 12, 26, 29, 46, 57, 59]. There is a rich body of literature
on Volterra integral equations in Banach spaces, see for instance the book [45] by Prüß
and the review article [14] by Corduneanu and the references therein. Most of these works
focus on situations in which the kernel is an unbounded operator and, as a consequence,
already proving existence and uniqueness of solutions can be a formidable task. Moreover,
the techniques presented in these works are not suitable for renewal equations with measure-
valued solutions. Abstract Volterra equations in the context of population dynamics have
been studied, for instance, by Heijmans [36] and Thieme [51].

If �0 has finite cardinality we say that there are finitely many states at birth. If there are
n states at birth, then �0 = {ω1, . . . ,ωn} and b(t, ·) can be represented by a vector b(t) in
R

n, with the kth component equal to b(t,ωk). This vector satisfies the equation

b(t) =
∫ ∞

0
K(a)b(t − a)da, (1.3)

where K is an n×n-matrix-valued function. The asymptotic behaviour of solutions of equa-
tion (1.3) depends crucially on whether the resolvent kernel of K belongs to L1 or not, [31].
Let K̂ denote the Laplace transform of K . The Paley-Wiener Theorem states that the resol-
vent kernel of an L1-kernel K belongs to L1 if and only if the characteristic equation

det
(
I − K̂(λ)

) = 0 (1.4)

has no roots λ with real part greater than or equal to zero. Because it is often easy to locate
the roots of the characteristic equation (1.4) in the complex plane, for instance using pos-
itivity arguments or Nyquist’s criterion [31, p. 61], this result provides a powerful tool for
analysing the asymptotic behaviour of solutions of (1.3).
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If there are infinitely many states at birth, that is, if �0 has infinite cardinality, the equa-
tion (1.2) can still be written as (1.3) with b(t) = b(t, ·), but now K(a) is a linear operator
from the space of measures into itself defined by

K(a)m =
∫

�0

m(dξ)k(a, ξ, ·).

Under biologically justified conditions on the kernel k, the operator K is bounded.
In the paper [30] the result for equations in R

n presented above was extended to equations
in Banach spaces as follows: If K belongs to L1(ρ), a weighted L1-space, the resolvent
kernel of K belongs to L1(ρ) if and only if the operator

I − K̂(λ) (1.5)

is invertible for all λ with real part greater than or equal to ρ. The main difference between
the finite and infinite dimensional cases is that in the infinite dimensional case there is no
characteristic equation and it might be exceedingly difficult to check the invertibility of the
operator (1.5). An assumption that helps to prove the invertibility of (1.5) is that K̂(λ) is
compact. This helps because then we know that every non-zero element of the spectrum
of K̂(λ) is an eigenvalue. Since compactness is an elusive property when working with
measures, see [57, 58], applying the results of [30] is not easy in our case. An additional
complication has to do with the fact that Bochner measurability assumptions are required to
apply the results of [30].

For these reasons we do not follow [30] and, instead, we present a factorisation assump-
tion on the kernel that allows us to reduce the renewal equation (1.2) to a one dimensional
equation. Exploiting this reduction we deduce the behaviour of the solution of (1.2) from
Feller’s Renewal Theorem. Thus we obtain strong results for a restricted class of equations.

The paper is organised as follows. In Sect. 2 we present the kernel factorisation that al-
lows for a reduction to a one dimensional equation. We explain the intuitive reasons why we
expect this factorisation to simplify the study of the asymptotic behaviour of the solutions of
(1.2) and we also motivate the assumption in biological terms. In Sect. 3 we present the main
results of this paper: the existence and uniqueness of a solution for equation (1.2), the reduc-
tion to a one dimensional equation, and the asymptotic behaviour of the solution of (1.2).
Two applications of the results are presented in Sect. 4. The proofs of the main theorems are
presented in Sect. 5 and in Sect. 6 we explain the relation between the renewal equations and
the PDEs via a semigroup formulation. We conclude the paper with a discussion of possible
extensions of the methods presented.

In Appendix A we present the notation we use throughout the paper. Appendix A contains
also important definitions and auxiliary results with proofs. In Appendix B we sketch the
PDE formulation of the models presented in Sect. 4 and briefly discuss the relation between
the PDE and renewal equation approaches.

2 Kernel Factorisation

In this section we introduce the main hypothesis of this work: the factorisation property of
the kernel.

A bounded measure component is a positive function M :R+ × B(�0) →R+ such that

1. for every a ∈R+, M(a, ·) ∈ M+(�0),
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2. for every ω ∈ B(�0) the map a �→ M(a,ω) is measurable,
3. supa∈R+ M(a,�0) < ∞.

A function component is a positive function L :R+ × �0 → R+ such that

1. the map (a, ξ) �→ L(a, ξ) is measurable,
2. sup(a,ξ)∈R+×�0

L(a, ξ) ≤ 1
3. L(·, ξ) is a non-decreasing function for every ξ ∈ �0.

Definition 2.1 (Factorisable kernel) We say that a kernel k is factorisable if there exist two
components, a bounded measure component M , and a function component L, such that, for
every a ∈ R+, ξ ∈ �0 and ω ∈ B(�0)

k(a, ξ,ω) =
∫

[0,a]
μL(dσ, ξ)M(a − σ,ω). (2.1)

Observe that properties 2. and 3. of L together imply that L(·, ξ) ∈ NBV (R+).
In (2.1) μL(·, ξ) denotes the measure associated with the NBV function L(·, ξ), as

explained in Sect. A.2, Definition A.1. Notice that (2.1) is well defined since, for every
ω ∈ B(�0), the function M(·,ω) is Borel measurable and bounded, hence μL(·, ξ) inte-
grable for every ξ ∈ �0, see [38] for more details on Lebesgue-Stieltjes integral. In the
following M and L always denote components as specified in Definition 2.1.

What causes a kernel to be factorisable? The underlying biological interpretation will be
explained in detail by way of examples in Sect. 4, but here we provide a preview. Consider
a size structured population in which the size-at-birth of offspring depends, perhaps in a
stochastic manner, on the size of the mother. If the smallest mother is larger than the biggest
newborn, there is a size that every individual has to pass before it can possibly give birth.
We call such a size a renewal state or point. The life cycle can accordingly be split into
the phase before passing the renewal point and the phase after passing the renewal point.
Mathematically, this is captured by the two components.

The probability of an individual, born with size x, passing the renewal state before it has
reached age σ is L(σ,x). The rate at which an individual, who passed the renewal state τ

time units ago, produces offspring in the set ω is M(τ,ω).
The interpretation of M(τ,ω), then, coincides with the one of k(τ, x,ω) where x is the

renewal point, but k(τ, x,ω) may not be defined as x may not belong to �0. See Fig. 1
for a visual representation of the existence of a renewal point. In the biological examples

Fig. 1 Graphical representation
of the factorisation hypothesis
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we are interested in, the function L(·, ξ) is typically not differentiable, but only of bounded
variation. Indeed, if we consider a model with deterministic movement, no mortality and we
assume that there exists a renewal point, we obtain that L(σ, ξ) := H(σ −h(ξ)), where h(ξ)

corresponds to the travel time from ξ to the renewal point and H is the Heaviside function
(see Appendix A.1).

For more general models, for example including mortality, L will be of the form

L(σ, ξ) := f (ξ)H(σ − h(ξ)) (2.2)

where f and h are suitable functions with 0 ≤ f ≤ 1. The reason for our characterisation of
L as a cumulative quantity is that its derivative is often a measure with a discrete component.

In the remainder of this section we show that for factorisable kernels it is very simple
to determine the basic reproduction number R0 and the Malthusian parameter r (definition
in Sect. A.4). In analogy with Definition A.22 we next introduce the definition of Laplace
components.

One way to think about (2.1) is that the Laplace transform of k (with respect to the
variable a) is the product of the Laplace transforms of L and M and that, accordingly, the
function of ξ and ω decomposes as a product of a function of ξ and a function of ω. Thanks
to the fact that a positive measure is uniquely determined by its Laplace transform, this ob-
servation ‘explains’ many of our results and we encourage our readers to reformulate and/or
reinterpret various results below in terms of Laplace transforms (we thank Horst Thieme for
advocating this point of view in a reaction to an earlier version of the manuscript).

Definition 2.2 (Laplace components) Let z0 ≤ 0. We say that M and L are z0-Laplace
components if the Laplace transform exists in the right half plane {λ ∈C : Reλ ≥ z0}. More
precisely, the conditions read

M̂(z0,�0) :=
∫ ∞

0
e−z0aM(a,�0)da < ∞

and

sup
ξ∈�0

μ̂L(z0, ξ) = sup
ξ∈�0

∫ ∞

0
e−z0aμL(da, ξ) < ∞,

respectively.

We refer to Appendix A, Eqs. (A.1) and (A.2) for the definition of the Laplace transform
of functions and measures, respectively.

If M and L are z0-Laplace components, then we say that the kernel k given by formula
(2.1) is a factorisable z0-kernel.

It is reasonable to assume that the kernel k in (1.2) is a Laplace kernel. We recall that,
by the interpretation of k, an individual born with state x is expected to produce k(a, x,ω)

offspring, with state at birth belonging to ω, per unit of time at age a. (The reason why time
does not appear in the third argument of k is that, by the definition of age, a newborn has
age 0.) The assumption that the kernel k is a Laplace kernel expresses that the expected
offspring production decreases exponentially with age.

We now briefly explain the heuristic reason why the basic reproduction number and the
Malthusian parameter are expected to determine the asymptotic behaviour of the solution of
equation (1.2). From the interpretation of the kernel k, it follows that

∫ ∞
0 k(a, ξ,ω)da is the
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expected number of new individuals with birth state in ω produced by an individual, itself
born with state at birth ξ , during its entire life. If we interpret φ as the distribution of state-at-
birth in a certain generation, Kφ describes the same distribution in the next-generation. The
operator K is called the next-generation operator (see the precise definition in Sect. A.4,
Definition A.23).

The spectral radius of the next generation operator is the basic reproduction number R0.
Assume the spectral radius to be a strictly dominant and algebraically simple eigenvalue.
The corresponding normalised eigenmeasure ν0 is called the stable distribution since, if we
apply the operator K repeatedly, the population distribution converges to ν0 and the per-
generation multiplication number to R0. For this reason we can think of R0 as the expected
number of individuals produced by a newborn individual during its entire life.

Here ‘expected’ refers to both the state-at-birth and the reproduction during life. If, once
the stable distribution is attained, we pick at random an individual from the pool of new-
born individuals in a certain generation, the distribution of its state-at-birth is described by
the measure ν0. The kernel k describes the expected offspring production of an individual,
conditional on its state-at-birth. The integration with respect to age is expressed in words
by ‘during its entire life’. The eigen-relation Kν0 = R0ν0 then translates into ‘the expected
number of offspring equals R0’. For more details see [18, 20, 22, 48].

Because of this interpretation, we expect the population birth rate to decline if R0 < 1, to
increase if R0 > 1 and to remain constant if R0 = 1. In Sect. 3.3, we prove that this is indeed
the case. To see how the Malthusian parameter r enters the picture, substitute as an Ansatz
b(t,ω) = ert ν(ω) into (1.2). This leads to

ν(ω) =
∫

�0

k̂(r, x,ω)ν(dx)

(cf. (A.22) in Definition A.25 in the appendix) as a condition on the combination of r and
ν. More generally we may replace r by a complex parameter λ, but positivity arguments
guarantee that Reλ < r if Imλ �= 0 (with equality in exceptional situations). This is the
reason why the Malthusian parameter is expected to be the population growth rate.

Theorem 2.3 (Spectral radius of the next generation operator) Assume k is a factorisable
z0-kernel with components M and L. The next generation operator (cf. Definition A.23)
K : M+,b(�0) → M+,b(�0), corresponding to the kernel k, has one dimensional range. The
only non-zero eigenvalue of K is

R0 =
∫ ∞

0

∫
�0

M(a,dξ) lim
σ→∞L(σ, ξ)da (2.3)

and it corresponds to the eigenmeasure M̂(0,ω), ω ∈ B(�0).

Proof It is enough to realise that

(Kϕ)(ω) =
∫

�0

ϕ(dξ)

∫ ∞

0

∫ a

0
μL(dσ, ξ)M(a − σ,ω)da

=
∫ ∞

0
M(α,ω)dα

∫
�0

ϕ(dξ)

∫ ∞

0
μL(dσ, ξ). �

We show now that, under the factorisation assumption, the Malthusian parameter r (see
Sect. A.4 for a definition) is the unique solution of a characteristic equation defined in terms
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of the Laplace transform of a scalar measure. At the same time we will show that the fac-
torisation assumption allows us to easily deduce that sign(R0 − 1) = sign(r).

Let us define K :R+ →R+ by

K(τ) :=
∫ τ

0

∫
�0

M(η,dξ)L(τ − η, ξ)dη. (2.4)

Notice that K is well defined since the function

η �→
∫

�0

M(η,dξ)L(τ − η, ξ)

is measurable by Lemma A.10.

Proposition 2.4 Let M and L be Laplace components. The function K , defined by (2.4) is a
non-decreasing and right-continuous function on R

∗+.

Proof K is non-decreasing because L(·, ξ) is non-decreasing for every ξ ∈ �0. By the
monotone convergence theorem K is right-continuous because L(·, ξ) is right-continuous
for every ξ ∈ �0. �

Observe that by combining (2.3) with the definition (2.4) of K it follows that

R0 =
∫ ∞

0
μK(dτ) = lim

t→∞K(t).

Lemma 2.5 Let M,L,K be as in Proposition 2.4. If R0 ≥ 1, then the characteristic equation

μ̂K(z) :=
∫ ∞

0
e−zτμK(dτ) = 1 (2.5)

has a unique real solution r ≥ 0. If R0 < 1 and there exists a z < 0 such that

μ̂K(z) > 1, (2.6)

then (2.5) has a unique real solution r < 0.

Proof Assume R0 ≥ 1 and notice that by the dominated convergence theorem the function
z �→ μ̂K(z) is a strictly monotone continuous function and takes value R0 ≥ 1 when λ = 0.
Moreover, it tends to 0 as λ goes to infinity. Therefore, by the intermediate value theorem
we deduce that there exists a unique non-negative solution of the characteristic equation.

Assume now R0 < 1 and that for some z < 0 inequality (2.6) holds. Then the statement
follows by applying the previous argument. �

When we in the following deal with the case r < 0 we shall tacitly assume that K is such
that existence of r is indeed guaranteed, i.e., that there exists a z < 0 such that (2.6) holds.

Assume k is a factorisable z0-kernel, with components M and L. By the factorisation
assumption the eigenproblem (see (A.22) in Appendix A) reads

ν(ω) =
∫

�0

k̂(r, ξ,ω)ν(dξ) =
∫

�0

μ̂L(r, ξ)ν(dξ)M̂(r,ω). (2.7)

This implies that the eigen-measure is of the form αM̂(r,ω) and the solution of the charac-
teristic equation (2.5) is the Malthusian parameter (Definition A.25 in Appendix A).
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3 Main Results

3.1 Existence and Uniqueness of the Solution of the Renewal Equation

In this section we consider the existence and uniqueness of solutions of the renewal equation
(1.2). To do so we assume that, as an initial condition, b(t, ·) is given on (−∞,0]. We next
split the integral over (0,∞) in (1.2) into two integrals over (0, t] and (t,∞), respectively.
Then (1.2) takes the following form:

b(t,ω) =
∫ t

0

∫
�0

k(t − s, ξ,ω)b(s, dξ)ds + f0(t,ω) t > 0, ω ∈ B(�0) (3.1)

We start by specifying what kind of initial condition we consider and how the initial
condition is reflected in the forcing function f0. We allow the initial condition to be measure
in both variables simply because it does not harm. We introduce a weight exp(−z0σ) to
include initial conditions with constant birth rates.

Definition 3.1 (Initial condition) Let z0 ≤ 0. We say that the measure � on the product σ -
algebra B(R−) × B(�0) is a z0-initial condition if

∫ 0

−∞

∫
�0

e−z0σ �(dσ, dx) < ∞.

Definition 3.2 (Forcing function) Let, for some z0 ≤ 0, k be a z0-kernel and � a z0-
initial condition. The forcing function corresponding to k and � is the function f0 :
R+ × B(�0) →R+ defined by

f0(t,ω) :=
∫ 0

−∞

∫
�0

k(t − σ,x,ω)�(dσ, dx) (3.2)

The interpretation of the forcing function is that f0(t,ω) is the rate at which offspring of
individuals that were themselves born before time 0, are born with state-at-birth in ω ⊂ �0

at time t .

Remark 3.3 Notice that, using the Fubini-Tonelli theorem, we can deduce that

∫ ∞

0
e−z0t f0(t,�0)dt =

∫ ∞

0
e−z0t

∫ 0

−∞

∫
�0

k(t − a, x,�0)�(da, dx)dt

=
∫ ∞

0

∫ 0

−∞

∫
�0

k(t − a, x,�0)e
z0(a−t)e−z0a�(da, dx)dt

≤
∫ 0

−∞

∫
�0

∫ ∞

0
k(t − a, x,�0)e

z0(a−t)dte−z0a�(da, dx)

≤ sup
x∈�0

∫ ∞

0
k(τ, x,�0)e

−z0τ dτ

∫ 0

−∞

∫
�0

e−z0a�(da, dx) < ∞.

The interpretation of these inequalities is that the contribution to the population birth rate
of the individuals born before time 0 tends to zero exponentially as time tends to infinity.
This gives an additional motivation to the weight exp(−z0σ) in Definition 3.1 and in the
definition of the z0-kernels.
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Theorem 3.4 (Existence and uniqueness) Let k be a factorisable kernel and let f0 be a
forcing function. Then the renewal equation (3.1) has a unique solution.

3.2 One Dimensional Representation

In this section we introduce, whenever the kernel is factorisable, a renewal equation such that
its scalar solution B(t) contains all relevant information needed to recover the solution b(t, ·)
of (3.1). We call this one dimensional reduction or representation of (3.1). The renewal
equation (3.5) below is called the reduced equation. This reduction will be crucial for the
proof of the theorems on the asymptotic behaviour of the solutions of (3.1). The solution
B(t) of the reduced equation has, in Sect. 4, the interpretation that it is the (cumulative)
number of individuals that were born after time zero and have passed the renewal point
before time t .

We start by defining the scalar function B with the above mentioned interpretation. Then
we check that it is locally of bounded variation and satisfies a renewal equation.

Definition 3.5 Let k be a factorisable z0-kernel with function component L and let f0 be a
forcing function. The cumulative number of renewal events is, as a function of time, given
by B :R+ →R+ defined by

B(t) :=
∫ t

0

∫
�0

b(t − σ,dξ)L(σ, ξ)dσ, t > 0, (3.3)

B(0) := 0,

where b is the unique solution of (3.1).

Proposition 3.6 The cumulative number of renewal events corresponding to the factorisable
z0-kernel k, with function component L and forcing function f0, belongs to NBVloc(R+).

Proposition 3.7 Let K be the kernel defined by (2.4) and let

z(t) :=
∫ t

0

∫
�0

f0(t − σ,dξ)L(σ, ξ)dσ. (3.4)

The cumulative number B of renewal events is the unique solution of the one dimensional
renewal equation

B(t) =
∫ t

0
μB(dτ)K(t − τ) + z(t) t > 0. (3.5)

The integral in (3.5) is well defined because both K and B are locally of bounded varia-
tion (Propositions 2.4 and 3.6). The function z is also well defined since the function

σ �→
∫

�0

f0(t − σ,dξ)L(σ, ξ)

is measurable thanks to Lemma A.10. If we assume that there exists a renewal point, we can
interpret z(t) as the (cumulative) number of offspring of individuals born before time 0, that
passed the renewal point before time t .

For later reference we now state some properties of the forcing function z and the kernel
K in the reduced renewal equation (3.5).



One Dimensional Reduction of a Renewal Equation for a Measure-Valued. . . Page 11 of 67 12

Lemma 3.8 We have

1. z∞ := limt→∞ z(t) < ∞;
2.

∫ ∞
0 se−wsμK(ds) < ∞ for every w > z0;

3. If z0 < w ≤ 0, then
∫ ∞

0 e−ws(z∞ − z(s))ds < ∞;
4. If w > 0, then ẑ(w) = ∫ ∞

0 z(s)e−wsds < ∞.

We are now ready to state our result on how the population birth rate is represented by
the cumulative number of renewal events.

Theorem 3.9 (One dimensional representation) Let k be a factorisable z0-kernel, with com-
ponents L and M , and let f0 be a forcing function. Let B be the cumulative number of
renewal events, that is, the unique solution of (3.5). Then, the identity

b(t,ω) =
∫ t

0
μB(dσ)M(t − σ,ω) + f0(t,ω), t > 0, ω ∈ B(�0) (3.6)

holds in the following weak sense: for every ω ∈ B(�0) and for every t > 0

∫ t

0
b(σ,ω)dσ =

∫ t

0
B(σ)M(t − σ,ω)dσ +

∫ t

0
f0(σ,ω)dσ. (3.7)

Remark 3.10 We underline that (3.6) can be seen as an equality between measures. Indeed
we can define b̃ ∈ M+(R+ × �0) by

b̃([0, t],ω) :=
∫ t

0
b(σ,ω)dσ t > 0, ω ∈ B(�0).

Equality (3.7) can, consequently, be reinterpreted as

b̃([0, t],ω) =
∫ t

0
B(σ)M(t − σ,ω)dσ + f̃0([0, t],ω) (3.8)

where f̃0 is a measure on the product Borel σ -algebra B(R+) × B(�0) defined by

f̃0([0, t],ω) :=
∫ t

0
f0(σ,ω)dσ.

To understand the intuitive idea behind the theorem it is convenient to assume the exis-
tence of a renewal point. Note that

μB(dτ)M(t − τ,ω)

can be interpreted as the expected number, per unit of time, of newborns in ω produced at
time t by individuals that passed the renewal state at time t − τ , so τ time units ago; and
we condition on τ < t , i.e., on passage after time zero. Integrating over all possible passage
times, we obtain the population birth rate.
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3.3 Asymptotic Behaviour

In this section we state results on the asymptotic behaviour of the cumulative number B(t)

of renewal events, the cumulative population birth rate
∫ t

0 b(τ, ·)dτ and the population birth
rate b(t, ·). The results will be proved in Sect. 5 using Feller’s Renewal Theorem concern-
ing the asymptotic behaviour of solutions of renewal equations. This is a natural approach
because these three functions all satisfy renewal equations. We therefore start by recalling a
definition, taken from Feller’s book [27].

Definition 3.11 (Arithmetic function) We say that a mapping of R+ into R+ is arithmetic if
it is a step function with jump discontinuities at the points α + nh with n varying in N and
with α and h two fixed non-negative numbers.

We now state additional assumptions and specify the notation. These pertain to the rest
of the section and will not be repeated.

Notation 3.12 Let M and L be z0-Laplace components with z0 < 0. We assume that � is
an z0-initial condition. Then,

– k denotes the factorisable z0-kernel given by formula (2.1);
– f0 denotes the forcing function, corresponding to � and k, given by formula (3.2);
– b denotes the solution of equation (3.1) with kernel k and forcing function f0;
– B denotes the cumulative number of renewal events corresponding to L and b as intro-

duced in Definition 3.5 and subsequently characterised in Proposition 3.7;
– K denotes the function defined by (2.4);
– r denotes the Malthusian parameter, i.e., the unique real solution of the characteristic

equation (2.5);
– A hat ˆ denotes the Laplace transform of a function or a measure;
– z denotes the function z :R+ →R+ defined by (3.4) and z∞ := limt→∞ z(t).
– The constants Cr, Kr, D and B∞ are defined as follows:

Cr := ẑ(r)∫ ∞
0 se−rsμK(ds)

,

Kr := z∞/r − ∫ ∞
0 e−rs(z∞ − z(s))ds∫ ∞

0 se−rsμK(ds)
,

D := z∞∫ ∞
0 sμK(ds)

B∞ := lim
t→∞B(t).

Because B is non-decreasing the limit B∞ exists, but it may be equal to infinity.
In the following theorems the symbol ∼ is used to denote setwise asymptotic equivalence

as explained in Sect. A.1, Eq. (A.4).

Theorem 3.13 (Asymptotic behaviour of the cumulative number of renewal events) Let K

be non-arithmetic. The following asymptotics hold for the cumulative number B of renewal
events:

1. If r > 0, then B(t) ∼ Cre
tr as t → ∞;
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2. If z0 < r < 0, then B∞ < ∞ and B(t) ∼ B∞ + etrKr , as t → ∞;
3. If r = 0, then B(t) ∼ tD as t → ∞.

Theorem 3.14 (Setwise asymptotic behaviour of the cumulative population birth rate)
Assume that K is non-arithmetic.

1. If r > 0, then,

∫ t

0
b(τ, ·)dτ ∼ Cre

rt M̂(r, ·) setwise as t → ∞,

2. If z0 < r < 0, then, B∞ < ∞ and

∫ t

0
b(τ, ·)dτ ∼ Kre

rt M̂(r, ·) + B∞M̂(0, ·) +
∫ ∞

0
f0(τ, ·)dτ setwise as t → ∞,

3. If r = 0, then

∫ t

0
b(τ, ·)dτ ∼ tDM̂(0, ·) setwise as t → ∞.

In the following corollary we state the results on asymptotic behaviour in terms of the
total variation norm and the flat norm, respectively (see Definitions A.3, A.4).

Corollary 3.15 (Asymptotic behaviour, in norm, of the cumulative population birth rate)
Let ‖ · ‖ = ‖ · ‖T V or ‖ · ‖ = ‖ · ‖�. Assume that K is non-arithmetic.

1. If r > 0, then

lim
t→∞

∥∥∥∥e−rt

∫ t

0
b(σ, ·)dσ − CrM̂(r, ·)

∥∥∥∥ = 0.

2. If z0 < r < 0, then

lim
t→∞

∥∥∥∥
∫ t

0
b(σ, ·)dσ − ertKrM̂(r, ·) − B∞M̂(0, ·) −

∫ ∞

0
f0(σ, ·)dσ

∥∥∥∥ = 0.

3. If r = 0, then

lim
t→∞

∥∥∥∥1

t

∫ t

0
b(σ, ·)dσ − DM̂(0, ·)

∥∥∥∥ = 0.

We next describe the asymptotic behaviour of the population birth rate b under the fol-
lowing additional assumption.

Assumption 3.16 The functions z and K are absolutely continuous functions and, therefore,
there exist two integrable functions z′ : R+ → R+ and K ′ :R+ →R+ such that

z(t) =
∫ t

0
z′(s)ds and K(t) =

∫ t

0
K ′(s)ds.

Theorem 3.17 (Setwise asymptotic behaviour of the population birth rate) Let K and z

satisfy Assumption 3.16. We have
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1. If r > 0, then

b(t, ·) ∼ rCre
rt M̂(r, ·) setwise as t → ∞.

2. If z0 < r < 0, then

b(t, ·) ∼ rKre
rt M̂(r, ·) setwise as t → ∞.

3. If r = 0, then

b(t, ·) ∼ DM̂(0, ·) setwise as t → ∞.

Corollary 3.18 (Asymptotic behaviour, in norm, of the population birth rate) Let ‖ · ‖ =
‖ · ‖T V or ‖ · ‖ = ‖ · ‖�. Let K and z satisfy Assumption 3.16.

1. If r > 0, then

lim
t→∞

∥∥∥e−rt b(t, ·) − rCrM̂(r, ·)
∥∥∥ = 0;

2. If z0 < r < 0, then

lim
t→∞

∥∥∥b(t, ·) − rertKrM̂(r, ·)
∥∥∥ = 0;

3. If r = 0, then

lim
t→∞

∥∥∥b(t, ·) − DM̂(0, ·)
∥∥∥ = 0.

4 Application to Two Structured Population Models

In this section we apply the results of Sect. 3.3 to two structured population models that
have motivated the current research. The first one concerns a size structured cell population
and the second one a population structured by the immune level of individuals. Although the
two models describe completely different biological phenomena, they both lead to renewal
equations with factorisable z0-kernels and they can thus be treated in a unified way.

In Appendix B we briefly discuss for both examples an alternative modelling approach
based on PDEs for the density n(t, x) of individuals with size or immune level x at time t .

4.1 Cell Growth and Fission

Consider a population of cells reproducing by fission and structured by size. Size could
for instance mean mass, volume, length, etc., the important thing is that the quantity is
conserved at cell fission, that is, the sum of the sizes of the newly born daughter cells equals
the size of the dividing mother cell. We assume that there is a maximum size (normalised to
x = 1) beyond which a cell cannot grow. The individual state space will therefore be the open
interval � = (0,1). We assume that cells grow deterministically with the size dependent
individual growth rate g and denote the size dependent fission and death rates by γ and μ,
respectively. We allow for unequal division and let η(x,ω) denote the expected number of
individuals born with size in the set ω ∈ B(�0) by fission of an individual of size x. Recall
that �0 denotes the set of possible states at birth.
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In the next Assumption 4.1 we collect measurability and smoothness assumptions on
the model ingredients as well as a consistency relation (clearly, γ, η and �0 cannot be
independent) and formalise the requirement that size is conserved at fission.

Assumption 4.1 1. γ : (0,1] → R+ is a measurable function, which is continuous on its
support;

2. μ : � → R+ is a measurable bounded function.
3. g : (0,1] →R

∗+ is a strictly positive continuous bounded function, such that

∫ 1

x

γ (z)

g(z)
dz = ∞ for all x ∈ �. (4.1)

4. η(x, ·) is a Borel measure for every x ∈ �.
5.

�0 :=
⋃

{x∈�:γ (x)>0}
supp(η(x, ·)).

6. η(x,ω) = η(x, ω̃x) for every x ∈ � and every ω ∈ B(�0), where ω̃x is the comple-
mentary set of ω with respect to x defined as ω̃x := {y ∈ �0 : x − y ∈ ω}. Moreover,
η(x,�0) = 2 for any x ∈ �;

7. max�0 =: x < x := inf{x ∈ � : γ (x) > 0}. See Fig. 2 for a graphical representation of
�0.

From the basic model ingredients we now derive compound ingredients that will consti-
tute the kernel of the renewal equation of the cell fission model.

By the definition of individual growth rate, the size X(a, ξ) of an individual that a time
units ago had size ξ and did not divide, is the solution of the initial value problem

dx

da
= g(x) x(0) = ξ. (4.2)

The time τ(x, y) it takes to grow from size x to size y is given by

τ(x, y) :=
∫ y

x

1

g(z)
dz x, y ∈ �. (4.3)

It is convenient to introduce the notation T (x) := τ(x, x).
The probability that an individual that a time units ago had size ξ survives to the current

time (that is, neither dies nor divides during the time interval [t − a, t]) is

F (a, ξ) := e− ∫ a
0 (γ (X(s,ξ))+μ(X(s,ξ))ds).

The probability that an individual that was alive with size x survives at least until reaching
size y is

F̂ (x, y) := F (τ (x, y), x) = exp

(
−

∫ y

x

γ (z) + μ(z)

g(z)
dz

)
x, y ∈ �.

Notice that it follows from (4.1) that the probability that a cell reaches size 1 is zero.
Consider now a cell born with size ξ . With probability F (a, ξ) it will still be alive at age

a and if it is, it will have size X(a, ξ) and divide with probability per unit of time γ (X(a, ξ))
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Fig. 2 Depiction of the i-state space � as the union of the set �0 of states-at-birth, the set [x, x] of points
that can serve as renewal states, and a set of i-states with positive reproduction ability

giving rise to η(X(a, ξ),ω) daughter cells in the set ω. The kernel of the cell fission model
is therefore given by

k(a, ξ,ω) = F (a, ξ)γ (X(a, ξ))η(X(a, ξ),ω) (4.4)

for a ∈R+, ξ ∈ �0 and ω ∈ B(�0). We will now show that this kernel is factorisable.
The key assumption, that allows the reduction, is that the biggest daughter is always

smaller than the smallest mother, i.e. Assumption 4.1 7. Any point between x and x can
serve as a renewal point. We choose x.

We shall prove that the kernel (4.4) is factorisable under two alternative assumptions on
g and γ , which both guarantee that (4.1) holds.

Assumption 4.2 Either

1. g is differentiable in x = 1 with g(1) = 0 and g′(1) �= 0 and γ is continuous on (0,1]
with γ (1) > 0,

or

2. g(1) > 0 and γ is such that (4.1) holds.

In case 1, we have τ(x,1) = +∞ for every x ∈ � and we will therefore refer to this case
as the case of unbounded lifetime. On the other hand, in case 2, we have τ(x,1) < ∞ for
every x ∈ � and we refer to this case as the case of bounded lifetime.

Lemma 4.3 Under Assumptions 4.1 and 4.2 the kernel k given by (4.4) is a factorisable
z0-kernel, with z0 > −γ (1) in the case of unbounded lifetime and any z0 < 0 in the case of
bounded lifetime. In fact,

k(a, ξ,ω) =
∫ a

0
μL(dσ, ξ)M(a − σ,ω)

with

M(t,ω) = F (t, x)γ (X(t, x))η(X(t, x),ω) (4.5)

in the case of unbounded lifetime, and

M(t,ω) =
{

F (t, x)γ (X(t, x))η(X(t, x),ω) if t ≤ T (1)

0 if t > T (1)

if the lifetime is bounded. In both cases we have

L(t, ξ) = F̂ (ξ, x)H(t − τ(ξ, x)). (4.6)

Proposition 4.4 Let the assumptions of Lemma 4.3 hold. Let ‖ · ‖ = ‖ · ‖T V or ‖ · ‖�. If either



One Dimensional Reduction of a Renewal Equation for a Measure-Valued. . . Page 17 of 67 12

1. η(x,ω) = 2δ 1
2 x(ω), g(2x) < 2g(x) for every x ∈ � and every ω ∈ B(�0)

or

2. for every x ∈ � the measure η(x, ·) is absolutely continuous with respect to the Lebesgue
measure and has bounded density d ,

then the solution b of (3.1) corresponding to the kernel (4.4) satisfies

1. if r > 0, then ‖e−rt b(t, ·) − rCrM̂(r, ·)‖ → 0 as t → ∞;
2. if z0 < r < 0, then ‖e−rt b(t, ·) − rKrM̂(r, ·)‖ → 0 as t → ∞;
3. if r = 0, then ‖b(t, ·) − DM̂(0, ·)‖ → 0 as t → ∞.

Thus, if r �= 0 we have balanced exponential growth or decline, with stable distribution
M̂(r, ·) for the population birth rate. On the other hand, if r = 0 the population birth rate
converges to a steady state. This result is in agreement with the one obtained in [23] and
[35], see also [41], but here we allow the population birth rate to be a measure in size.

Because of the sign equivalence sign(R0 − 1) = sign(r) the most convenient way to
decide the sign of r is to compute the basic reproduction number

R0 =
∫ ∞

0

∫
�0

F̂ (ξ, x)F (a, x)γ (X(a, ξ))η(X(a, x), dξ)da. (4.7)

We next give an example of K being arithmetic.

Example 4.5 We show that K is arithmetic if η(x,ω) = 2δ 1
2 x(ω), g(x) = x, � = [1/4,1],

x = 1/2 and �0 = [1/4,1/2). With this choice of g we notice that the time necessary to
develop from size x ∈ � to size 2x ∈ � is constant. Indeed,

τ(x,2x) =
∫ 2x

x

1

z
dz = ln 2, x ∈ �.

The function K :R+ →R+ reduces to

K(s) =
∫ s

0
F (v, x)γ (X(v, x))H

(
s − v − τ

(
1

2
X(v, x), x

))
dv

=
∫ s

0
F (v, x)γ (X(v, x))H

(
s − τ

(
1

2
X(v, x),X(v, x)

))
dv

=
∫ s

0
F (v, x)γ (X(v, x))dvH (s − ln 2)

=
{

0 if s < ln 2,∫ ln 2
0 F (v, x)γ (X(v, x))dv if s ≥ ln 2

and so K is arithmetic. This means that we cannot understand the asymptotic behaviour of
b(·,ω) with the method and results of this paper. We refer to [7, 28, 41] and the references
in there for more details and results on the arithmetic case.

4.2 Waning and Boosting

Consider a population of individuals characterised by the immune level, that changes con-
tinuously due to waning while experiencing (instantaneous) boosting when infection occurs.
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Fig. 3 Graph of the boosting
function f

We assume that the possible immune states belong to the finite interval � := (0, xm]. The
immunity decreases deterministically between boosting events with a rate g depending on
the immunity level. The rate L at which boosting takes place is assumed to be state de-
pendent. In fact, we shall take a step function for L . The immune state right after infection
depends via a function f on the state just before infection.

Here are the assumptions we make on the rates:

Assumption 4.6 1. There exist an x ∈ (0, xm) and a � > 0 such that

L (x) =
{

� if x ∈ (0, x)

0 if x ∈ [x, xm]
2. Let xc = (xm − x)/2. Then f : (0, x) → (0, x) is given by

f (x) =
{

x + 2xc − 2x for 0 < x < xc,

x for xc < x < x.

3. g is a strictly negative continuous function on � with g(0) = 0

Notice that there is no need to define f (x) for x ≥ x because by Assumption 4.6.1. no
boosting occurs at such immune levels. The graph of f is depicted in Fig. 3.

In our bookkeeping we incorporate the jump in the immune level resulting from boosting
as the death of an individual with state x and the simultaneous birth of an individual with
state f (x). Since f ((0, x)) ⊂ [x, xm] the set of possible states at birth is �0 := [x, xm].

Our model is very similar to the one presented in [17] (see also [44]), but it has some
differences. In [17] it is assumed that L (x) = � for any x ∈ �, moreover the boosting
function is more general than the one we have here. In our case, instead, we ‘massage’ the
(assumptions about the) model ingredients such that there exists a renewal point: x.

From the individual level mechanisms we construct the kernel as was done in Sect. 4.1 for
the cell population model. Since waning is deterministic, an individual with immunity level
ξ that escapes boosting in a time interval of length a will have, after time a, immunity level
equal to X(a, ξ) := x(a) where x solves the ODE (4.2), where g is the waning rate. The
survival probability, that is, the probability that an individual with immune level ξ escapes
boosting in the time interval of length a, is

F (a, ξ) = e− ∫ a
0 L (X(s,ξ))ds .

As in Sect. 4.1 we deduce that k is equal to

k(a, ξ,ω) := L (X(a, ξ))F (a, ξ)δf (X(a,ξ))(ω) a ∈R+ × �0 × B(�0); (4.8)
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which is a special case of (4.4) with γ = L and η(x, ·) = δf (x).

Proposition 4.7 The function k defined by (4.8) is a factorisable z0-kernel with z0 = −�. Its
components are

M(t,ω) = �F (t, x)δf (X(t,x))(ω), (4.9)

L(t, ξ) = H(t − τ(ξ, x)). (4.10)

Let ‖ · ‖ = ‖ · ‖T V or ‖ · ‖ = ‖ · ‖�. If 0 < infx∈�

∣∣∣ 1
g(x)

∣∣∣ < ∞, then

‖b(t, ·) − DM̂(0, ·)‖ → 0 as t → ∞

The main difference between the model considered here and the one considered in [3] and
[4] is that we do not explicitly divide the population into infected and susceptible individuals.
As a consequence, we assume that the boosting does not depend on the number of infected
individuals present in the population and we focus only on the dynamics of the immune
levels without investigating the dynamics of the disease in the population.

Moreover, unlike in [13], we consider a continuum set of immunity levels.

5 Proof of the Main and Some Auxiliary Results

To prove the results presented in Sect. 3 we proceed as follows:

1. In Sect. 5.1 we prove that equation (3.1) has a unique solution which can be expressed as
a function of the solution of the one dimensional renewal equation (3.6);

2. In Sect. 5.2 we study the asymptotic behaviour of the solution of the reduced renewal
equation via Feller’s Renewal Theorem;

3. In Sect. 5.3 we combine (3.6) with the results of Sect. 5.2 to deduce the asymptotic
behaviour of the cumulative population birth rate;

4. In Sect. 5.4 we employ an additional regularity assumption to deduce the asymptotic
behaviour of the population birth rate. We conclude the section by presenting a class of
kernel components satisfying the additional regularity assumption.

5.1 Existence of a Unique Measure-Valued Solution of the Renewal Equation
and the Reduction of the Equation

In this section we prove the results stated in Sects. 3.1 and 3.2.
We shall show that (3.1) admits a unique solution by applying Theorem A.21 of the

Appendix. As this theorem requires the kernel to be locally bounded we start by proving
that factorisable z0-Laplace kernels are indeed locally bounded

Proposition 5.1 Let M and L be two z0-Laplace components. Then the corresponding z0-
Laplace kernel defined by

k(a, ξ,ω) :=
∫

[0,a]
μL(dσ, ξ)M(a − σ,ω)

is locally bounded.
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Proof For (a, ξ,ω) ∈R+ × �0 × B(�0) one has

k(a, ξ,ω) =
∫

[0,a]
μL(dσ, ξ)M(a − σ,ω) ≤ sup

t∈R+
M(t,�0)

∫
[0,a]

μL(dσ, ξ)

≤ sup
t∈R+

M(t,�0)L(a, ξ).

By the boundedness property included in the definition of a Laplace function component L

one has

sup
(a,ξ)∈R+×�0

k(a, ξ,ω) < ∞,

for all ω ∈ B(�0). Moreover, the function k(·, ·,ω) is measurable for every ω ∈ B(�0) and

sup
ξ∈�0

∫ ∞

0
e−z0ak(a, ξ,�0)da = sup

ξ∈�0

∫ ∞

0
e−z0σ μL(dσ, ξ)

∫ ∞

0
e−z0αM(α,�0)dα < ∞.

This completes the proof. �

Proof of Theorem 3.4 Since f0(·,�0) is locally bounded and, as shown in Proposition 5.1, k

is a locally bounded kernel, the conclusion follows from Theorem A.21. �

Proof of Proposition 3.6 The cumulative number B of renewal events is a monotonically in-
creasing function of time because L is non-decreasing. Therefore B is locally of bounded
variation. By definition B(0) = 0. We can apply the monotone convergence theorem to prove
that B is right continuous on R

∗+. Indeed, recalling that H is the Heaviside function, we have
that

lim
h→0+ B(t + h) = lim

h→0+

∫ t+h

0

∫
�0

b(σ, dξ)L(t + h − σ, ξ)dσ

= lim
h→0+

∫ ∞

0

∫
�0

b(σ, dξ)L(t + h − σ, ξ)H(t + h − σ)dσ

=
∫ ∞

0

∫
�0

b(σ, dξ) lim
h→0+ L(t + h − σ, ξ)H(t + h − σ)dσ = B(t). �

Proof of Proposition 3.7 That equation (3.5) has a unique solution can be proven by an easy
adaptation of the proof of [31, Theorem 3.1 p. 43] and [27, Theorem 1 pp. 185-186]. We
therefore only need to show that B solves (3.5). By the definition (2.4) of K one has

∫ t

0
μB(ds)K(t − s) =

∫ t

0
μB(ds)

∫ t−s

0

∫
�0

M(v,dξ)L(t − s − v, ξ)dv

=
∫ t

0
μB(ds)

∫ t

s

∫
�0

M(σ − s, dξ)L(t − σ, ξ)dσ

=
∫ t

0

∫ σ

0
μB(ds)

∫
�0

M(σ − s, dξ)L(t − σ, ξ)dσ.

Here the last equality follows from the Fubini-Tonelli theorem, which can be applied be-
cause the function (s, σ ) �→ ∫

�0
M(σ − s, dξ)L(t − σ, ξ) is bounded and measurable. From



One Dimensional Reduction of a Renewal Equation for a Measure-Valued. . . Page 21 of 67 12

equation (3.8) and Theorem 5.2, applied to the functions s �→ B(s) and s �→ M(s,ω), it
follows that

∫ t

0

∫ σ

0
μB(ds)M(σ − s,ω)dσ =

∫ t

0

d

dσ

∫ σ

0
B(s)M(σ − s,ω)dsdσ

=
∫ t

0
B(s)M(t − s,ω)ds = b̃([0, t],ω) − f̃0([0, t],ω).

Therefore, for any Borel set A ∈ B(R+)

∫
A

∫ σ

0
μB(ds)M(σ − s,ω)dσ = b̃(A,ω) − f̃0(A,ω).

Now recall from equation (3.8), that b(·,ω) and f0(·,ω) are, by definition, the densities
corresponding to the measures b̃(·,ω) and f̃0(·,ω). Hence for any rectangle A × C = R ∈
P , with P defined as (A.10), it holds that

∫ t

0

∫ σ

0
μB(ds)

∫
�0

M(σ − s, dξ)χA(t − σ)χC(ξ)dσ

=
∫ t

0

∫
�0

b(σ, dξ)χA(t − σ)χC(ξ)dσ −
∫ t

0

∫
�0

f0(σ, dξ)χA(t − σ)χC(ξ)dσ.

Indeed, denoting At = {v ∈ [0, t] : v = t − a with a ∈ A}, we can write
∫ t

0

∫ σ

0
μB(ds)

∫
�0

M(σ − s, dξ)χA(t − σ)χC(ξ)dσ

=
∫ t

0

∫ σ

0
μB(ds)M(σ − s,C)χAt (σ )dσ

=
∫

At

∫ σ

0
μB(ds)M(σ − s,C)dσ = b̃(At ,C) − f̃0(At ,C)

=
∫ t

0

∫
�0

b(σ, dξ)χA(t − σ)χC(ξ)dσ −
∫ t

0

∫
�0

f0(σ, dξ)χA(t − σ)χC(ξ)dσ.

We aim at proving that
∫ t

0

∫ σ

0
μB(ds)

∫
�0

M(σ − s, dξ)χA(t − σ, ξ)dσ (5.1)

=
∫ t

0

∫
�0

b(σ, dξ)χA(t − σ, ξ)dσ −
∫ t

0

∫
�0

f0(σ, dξ)χA(t − σ, ξ)dσ

holds for any A ∈ B(R+ × �0). We proceed as in the proof of Lemma A.12 and define

E := {A ⊂ R+ × �0 : such that (5.1) holds} .

Notice that any set in P satisfies (5.1) and therefore P ⊂ E . The collection of sets E is a
Dynkin system. Indeed R+ × �0 ∈ E , since

∫ t

0

∫ σ

0
μB(ds)

∫
�0

M(σ − s, dξ)χR+×�0(t − σ, ξ)dσ
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=
∫ t

0

∫ σ

0
μB(ds)M(σ − s,�0)dσ

=
∫ t

0
b(σ,�0)dσ −

∫ t

0
f0(σ,�0)dσ

=
∫ t

0

∫
�0

b(σ, dξ)χR+×�0(t − σ, ξ)dσ −
∫ t

0

∫
�0

f0(σ, dξ)χR+×�0(t − σ, ξ)dσ.

If A ∈ E , then Ac ∈ E thanks to the fact that χAc = 1 − χA. If A = ⋃∞
n=1 An, with {An} ⊂ E

a sequence of pairwise disjoint sets, then A ∈ E thanks to the fact that χA = ∑
n An. Exactly

as in Lemma A.12, since P ⊂ E we conclude by Dynkin’s Lemma that B(R+ × �0) =
B(R+) ⊗ B(�0) ⊂ E and we conclude that (5.1) holds for any A ∈ B(R+ × �0).

Therefore, the functions

ϕn(σ, ξ) =
n∑

i=1

αn
i χCn

i
(σ, ξ), Cn

i ∈ B(R+ × �0), αn
i ≥ 0

approximating M satisfy

∫ t

0

∫ σ

0
μB(ds)

∫
�0

M(σ − s, dξ)ϕn(t − σ, ξ)dσ =
∫ t

0

∫
�0

b(σ, dξ)ϕn(t − σ, ξ)dσ

−
∫ t

0

∫
�0

f0(σ, dξ)ϕn(t − σ, ξ)dσ.

Passing to the limit we obtain

∫ t

0

∫ σ

0
μB(ds)

∫
�0

M(σ − s, dξ)L(t − σ, ξ)dσ =
∫ t

0

∫
�0

b(σ, dξ)L(t − σ, ξ)dσ − z(t)

and the conclusion follows. �

Proof of Lemma 3.8 From (3.4) and the defining properties of the function component L and
the forcing function f0 we find that

z∞ = lim
t→∞

∫ t

0

∫
�0

f0(t − σ,dξ)L(σ, ξ)dσ = lim
t→∞

∫ ∞

0

∫
�0

f0(σ, dξ)L(t − σ, ξ)H(t − σ)dσ

≤
∫ ∞

0
f0(σ,�0)dσ sup

(τ,ξ)∈R+×�0

L(τ, ξ) < ∞.

This proves statement 1.
By the definition (2.4) of K that for any integrable function f one has

∫ ∞

0
f (s)μK(ds) =

∫ ∞

0

∫
�0

M(τ,dξ)

∫ ∞

0
f (τ + η)μL(dη, ξ). (5.2)

The identity (5.2) can be proved by approximating the measurable function f from below
and using the definition of integral with respect to a measure and the dominated convergence
theorem. We omit the details as the proof is similar to the one of Lemma A.14.
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Assume next that w > z0. Then, using (5.2) we get

∫ ∞

0
se−wsμK(ds) =

∫ ∞

0

∫
�0

M(τ,dξ)

∫ ∞

0
(η + τ) e−w(η+τ)μL(dη, ξ)dτ

=
∫ ∞

0

∫
�0

e−wτM(τ, dξ)dτ

∫ ∞

0
ηe−wημL(dη, ξ)

+
∫ ∞

0

∫
�0

τe−wτM(τ, dξ)dτ

∫ ∞

0
e−wημL(dη, ξ)

≤
∫ ∞

0
e−wτM(τ,�0)dτ sup

ξ∈�0

∫ ∞

0
ηe(z0−w)ηe−z0ημL(dη, ξ)

+
∫ ∞

0
τe(z0−w)τ e−z0τM(τ,�0)dτ sup

ξ∈�0

∫ ∞

0
e−wημL(dη, ξ)

≤ 1

w − z0
e−1

(
M̂(z0,�0) + sup

ξ∈�0

μ̂L(z0, ξ)

)
< ∞

and statement 2. is proved.
Assume now that z0 < w ≤ 0. Statement 3. follows because by (3.4)

|z(t) − z∞| ≤
∣∣∣∣
∫ t

0

∫
�0

f0(σ, dξ)L(t − σ, ξ) −
∫ ∞

0

∫
�0

f0(σ, dξ)L(t − σ, ξ)

∣∣∣∣

≤
∫ ∞

t

f0(σ,�0)dσ sup
(s,ξ)∈R+×�0

L(s, ξ)

≤ ez0t

∫ ∞

0
f0(σ,�0)e

−z0σ dσ sup
(s,ξ)∈R+×�0

L(s, ξ).

Finally, if w > 0, statement 4. follows from z∞ < ∞. �

We now turn our attention to the one dimensional representation. The proof of Theorem
3.9 is just an integral manipulation if L(·, ξ) is a differentiable function. Since in our exam-
ples we deal, instead, with a not-necessarily differentiable bounded variation function of the
form (2.2), we use the definition of weak derivative of a NBV function given in Sect. A.2 to
prove Theorem 3.9.

Theorem 5.2 below, which can be found e.g. in the book by Gripenberg & al. [31, Corol-
lary 7.3(ii)], will be very useful when we deal with derivatives of convolution products. To
state it we need some notation.

If a and b are Lebesgue measurable functions on R+ we use the notation a �1 b for

(a �1 b)(t) :=
∫ t

0
a(t − σ)b(σ )dσ.

If b is a Lebesgue measurable function and μ ∈ M(R+) we use the notation μ �2 b for

(μ �2 b)(t) :=
∫ t

0
b(t − σ)μ(dσ).
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Theorem 5.2 Let a ∈ BVloc(R+) and b ∈ L
p

loc(R+) for some p ∈ [1,∞]. Then (a �1 b) is
absolutely continuous and (a �1 b)′ = μ �2 b where μ is the measure induced by the distri-
butional derivative of a. In particular, (a �1 b)′ ∈ L

p

loc(R+).

Proof of Theorem 3.9 Because b satisfies (3.1), we have

∫ t

0
b(τ,ω)dτ =

∫ t

0

(∫ τ

0

∫
�0

b(σ, dξ)k(τ − σ, ξ,ω)dσ + f0(τ,ω)

)
dτ

=
∫ t

0

∫
�0

b(σ, dξ)

∫ t

σ

k(τ − σ, ξ,ω)dτdσ +
∫ t

0
f0(τ,ω)dτ

=
∫ t

0

∫
�0

b(σ, dξ)

∫ t−σ

0
k(v, ξ,ω)dvdσ +

∫ t

0
f0(τ,ω)dτ.

Fix (ξ,ω) ∈ �0 × B(�0) and apply Theorem 5.2 to the maps σ �→ L(σ, ξ) and σ �→
M(σ,ω). This yields

d

dv

(∫ v

0
L(σ, ξ)M(v − σ,ω)dσ

)
=

∫ v

0
μL(dσ, ξ)M(v − σ,ω) = k(v, ξ,ω).

Therefore,

∫ t−σ

0
k(v, ξ,ω)dv =

∫ t−σ

0

d

dv

(∫ v

0
L(s, ξ)M(v − s,ω)ds

)
dv

=
∫ t−σ

0
L(s, ξ)M(t − σ − s,ω)ds.

Consequently,

∫ t

0
b(τ,ω)dτ −

∫ t

0
f0(τ,ω)dτ =

∫ t

0

∫
�0

b(σ, dξ)

∫ t−σ

0
L(s, ξ)M(t − σ − s,ω)dsdσ

=
∫ t

0

∫ t−σ

0

∫
�0

b(σ, dξ)L(s, ξ)M(t − σ − s,ω)dsdσ

=
∫ t

0

∫ t−σ

0

∫
�0

b(σ, dξ)L(t − σ − v, ξ)M(v,ω)dvdσ

=
∫ t

0

∫ t−v

0

∫
�0

b(σ, dξ)L(t − σ − v, ξ)dσM(v,ω)dv

=
∫ t

0
B(t − σ)M(σ,ω)dσ,

where in the last equality we used the definition (3.3) of B . �

5.2 Asymptotic Behaviour of the Reduced Equation

In this section we prove Lemma 3.8 and Theorem 3.13. We shall apply Feller’s Renewal
Theory [27] to (3.5) and we therefore start by introducing the definition of direct integrabil-
ity, which is important for the theory.
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Definition 5.3 (Direct Riemann integrability) A non-negative function f : R+ → R+ is
called directly Riemann integrable if the upper and lower Riemann sums over the partition
0 < h < 2h < · · · < (n − 1)h < nh < · · · are finite and tend to the same limit as h → 0.

Every directly Riemann integrable function is in L1(R) (with respect to Lebesgue mea-
sure) but the converse need not be true (counterexample: an L1-function oscillating between
0 and 1 at infinity). However, the functions we will work with are either monotone func-
tions or products of monotone functions and for them Lebesgue integrability is equivalent
to direct Riemann integrability.

As detailed below, the asymptotic behaviour of the solution of the reduced renewal equa-
tion (3.5) follows from the renewal theorems proven by Feller in [27, Volume 2, Chap. 11,
Sects. 1 and 6]. In the book [27] there are many useful versions of the theorem, below we
summarise the ones that will be used in the proof of Theorem 3.13, viz. Renewal Theorem
(first form) [27, p. 360], Renewal Theorem (alternative form) [27, p. 363] and Theorem 2
[27, p. 376]).

Feller’s renewal theorem is concerned with the asymptotic behaviour of solutions of the
scalar renewal equation

X(t) =
∫ t

0
X(t − s)μG(ds) + y(t), (5.3)

where G ∈ NBV (R+) and y :R+ → R+ is a bounded function.
Let R be the resolvent of G. Recall from the appendix that R is the unique solution of

(A.6) and that the unique solution of (5.3) is given by the formula (A.7).

Theorem 5.4 (Renewal Theorem) Let G ∈ NBV (R+) be non-decreasing and non-
arithmetic, with

∫ ∞
0 sμG(ds) < ∞ and let R be the resolvent of G.

1. If limt→∞ G(t) = ∫ ∞
0 μG(ds) = 1, then for every h > 0

R(t) − R(t − h) → h∫ ∞
0 sμG(ds)

as t → ∞. (5.4)

Let y in (5.3) be directly Riemann integrable. Then the solution X of (5.3) satisfies

X(t) →
∫ ∞

0 y(s)ds∫ ∞
0 sμG(ds)

as t → ∞. (5.5)

2. Assume that the limit y∞ := limt→∞ y(t) exists. If
∫ ∞

0 μG(ds) < 1, if there exists
a number r < 0 such that

∫ ∞
0 e−rsμG(ds) = 1 and if the function y∞ − y(t) +

y∞
∫ ∞

0 μG(ds)−∫ t
0 μG(ds)

1−∫ ∞
0 μG(ds)

is directly Riemann integrable, then

e−rt
(

lim
v→∞X(v) − X(t)

)∫ ∞

0
e−rssμG(ds) → y∞

−r
+

∫ ∞

0
e−rs (y∞ − y(s)) ds (5.6)

as t goes to infinity, provided that
∫ ∞

0 e−rssμG(ds) < ∞.

The proof of Theorem 3.13 is based on the Renewal Theorem 5.4. The main task is there-
fore to check that the assumptions of the Renewal Theorem hold for the renewal equation
(3.5).
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Proof of Theorem 3.13 Equation (3.5) can be written in the form

B(t) =
∫ t

0
B(t − s)μK(ds) + z(t).

Indeed∫ t

0
K(t − s)μB(ds) =

∫ t

0
K̃t (s)μB(ds) = B(t)K(0) − B(0)K(t) −

∫ t

0
B(s)μK̃t

(ds)

= −
∫ t

0
B(s)μK̃t

(ds)

where, K̃t (s) := K(t − s) and the integration by parts for Lebesgue-Stieltjes integrals is
used, see [37] for details. The measure μK̃t

can be seen as the pushforward measure of μK

with respect to the left translation function. Therefore we can apply the change of variables
formula to obtain that

−
∫ t

0
B(s)μK̃t

(ds) =
∫ t

0
B(t − s)μK(ds).

Notice that z(t) is an increasing function, therefore z(t) is not integrable, but thanks to
Lemma 3.8 we know that z∞ < ∞.

Case 1: r > 0.
We shall apply the alternative version of the Renewal Theorem to the rescaled equation

B#(t) =
∫ t

0
B#(t − s)μK#(ds) + z#(t)

with

B#(t) := e−rtB(t), z#(t) := e−rt z(t), K#(t) =
∫ t

0
e−rsμK(ds).

Notice that K#(0) = 0, K# is increasing and right-continuous, on the other hand z# is inte-
grable, indeed

∫ ∞

0
z#(t)dt =

∫ ∞

0
e−rt z(t)dt =

∫ ∞

0
e−rt

∫ t

0

∫
�0

f0(σ, dξ)M(t − σ, ξ)dσdt

≤
∫ ∞

0
e−rt dt

∫ ∞

0
f0(σ,�0)dσ sup

(s,ξ)∈R+×�0

M(s, ξ) < ∞.

Therefore, the hypothesis of Theorem 5.4, point 1, holds and we conclude that

B#(t) →
∫ ∞

0 z(s)e−rsds∫ ∞
0 se−rsμK(ds)

t → ∞.

Since B(t) = ertB#(t), we obtain the statement of the theorem.
Case 2: r < 0.

By Lemma 3.8 we know that z∞ < ∞. It is also true that B∞ < ∞. Indeed, if R denotes the
resolvent of the kernel K ,

B∞ = lim
t→∞B(t) = lim

t→∞

∫ t

0
z(t − s)μR(ds) + z(t) ≤ z∞ sup

t∈R+
R(t) + z∞ < ∞.
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The fact that supt∈R+ R(t) < ∞, follows by the fact that r < 0, and consequently∫ ∞
0 μK(ds) < 1, combined with the definition of the resolvent.

We shall apply Theorem 5.4 point 2. The only hypothesis we need to check is that

z∞ − z(t) + z∞

∫ ∞
t

μK(dt)

1 − ∫ ∞
0 μK(dt)

is integrable. We already know that z∞ − z(t) is integrable, we just need to verify that∫ ∞
t

μK(ds) is integrable. From Lemma 3.8 we deduce that

∫ ∞

0

∫ ∞

t

μK(ds)dt =
∫ ∞

0

∫ s

0
dtμK(ds) =

∫ ∞

0
sμK(ds) < ∞.

Therefore we can apply the Theorem 5.4 and obtain the conclusion.
Case 3: r = 0.

Thanks to Lemma 3.8, the function z(t) − z∞ is integrable. We denote by B̃ the solution of
the renewal equation

B̃(t) =
∫ t

0
B̃(t − s)μK(ds) + z(t) − z∞.

By Theorem 5.4 point 1, we conclude that

B̃(t) →
∫ ∞

0 (z(s) − z∞) ds∫ ∞
0 sdμK(s)

t → ∞.

On the other hand, we notice that the solution of equation (3.5) is given by

B(t) = B̃(t) + B̃∞(t)

where

B̃∞(t) =
∫ t

0
B̃∞(t − s)μK(ds) + z∞.

By the theory of renewal equations we know that

B̃∞(t) =
∫ t

0
z∞μR(ds) + z∞ = z∞R(t) + z∞,

where R is the resolvent of the equation and where we have used

∫ t

0
μR(ds) = R(t) − R(0) = R(t).

We deduce the asymptotic behaviour of the resolvent applying the Renewal Theorem. We
obtain

R(t) ∼ t∫ ∞
0 sμK(ds)

t → ∞.
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From this we deduce

B̃∞(t) ∼ t · z∞∫ ∞
0 sμK(ds)

t → ∞

and, therefore,

B(t) ∼ t · z∞∫ ∞
0 sμK(ds)

t → ∞. �

5.3 Behaviour of the Cumulative Population Birth Rate

The proof of Theorem 3.14 seems complicated at first sight, but it is in fact elementary. The
main idea is to combine (3.6) with Theorem 3.13 and the fact that M is a Laplace component
while f0 is a forcing function.

Proof of Theorem 3.14 Case 1: r > 0.
We prove that, for every ω ∈ B(�0),

∫ t

0
B(τ)M(t − τ,ω)dτ ∼

∫ t

0
erτM(t − τ,ω)dτ for t → ∞.

We notice that, since M is a Laplace component, one has

∫ t

0
erτM(t − τ,ω)dτ =

∫ t

0
e(t−σ)rM(σ,ω)dσ

= etr

∫ t

0
e−σrM(σ,ω)dσ → ∞ as t → ∞.

(5.7)

By Theorem 3.13, we know that B(t) ∼ ertCr for t → ∞, thus for every ε > 0 there exists
a Tε > 0 such that for every t > Tε , we have

∣∣B(t) − Cre
rt
∣∣ < εCre

rt .

Given any ω ∈ B(�0) we can conclude that, for every ε > 0 there exists Tε such that

∫ t

0
|B(τ) − Cre

rτ |M(t − τ,ω)dτ =
∫ Tε

0
|B(τ) − Cre

rτ |M(t − τ,ω)dτ

+
∫ t

Tε

|B(τ) − Cre
rτ |M(t − τ,ω)dτ ≤ max

[0,Tε ]
|B(τ) − Cre

rτ |
∫ Tε

0
M(t − τ,ω)dτ

+ ε

∫ t

Tε

Cre
rτM(t − τ,ω)dτ ≤ max

[0,Tε ]
|B(τ) − Cre

rτ |ez0(t−Tε)

∫ Tε

0
e−z0(t−τ)M(t − τ,ω)dτ

+ εCr

∫ t

0
erτM(t − τ,ω)dτ.

Therefore,
∣∣∣∣∣
∫ t

0 (B(τ) − Cre
rτ )M(t − τ,ω)dτ∫ t

0 CrerτM(t − τ,ω)dτ

∣∣∣∣∣ ≤
∫ t

0 |B(τ) − Cre
rτ |M(t − τ,ω)dτ∫ t

0 CrerτM(t − τ,ω)dτ
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≤ max[0,Tε ] |B(τ) − Cre
rτ |ez0t e−z0Tε

∫ Tε

0 e−z0(t−τ)M(t − τ,ω)dτ∫ t

0 CrerτM(t − τ,ω)dτ
+ ε.

From (5.7) we deduce that there exits a T̃ε > 0 such that for every t > T̃ε

max[0,Tε ] |B(τ) − Cre
rτ |ez0t e−z0Tε

∫ Tε

0 e−z0(t−τ)M(t − τ,ω)dτ∫ t

0 CrerτM(t − τ,ω)dτ
< ε.

Therefore, for every ε > 0, T̃ε is such that, for every t > T̃ε ,

∣∣∣∣∣
∫ t

0 (B(τ) − Cre
rτ )M(t − τ,ω)dτ∫ t

0 CrerτM(t − τ,ω)dτ

∣∣∣∣∣ < 2ε

or equivalently,

∫ t

0
B(τ)M(t − τ, ·)dτ ∼

∫ t

0
erτCrM(t − τ, ·)dτ

setwise as t goes to infinity. Since f0 is a forcing function

∫ ∞

0
f0(τ,�0)dτ < ∞

it follows that for every ω ∈ B(�0),

∫ t

0
b(τ,ω)dτ =

∫ t

0
B(τ)M(t − τ,ω)dσ +

∫ t

0
f0(τ,ω)dσ ∼ ertCr

∫ ∞

0
e−rτM(τ,ω)dτ

as t tends to infinity.
Case 2: z0 < r < 0.

Since M is a Laplace component we have for every ω ∈ B(�0)

∫ t

0
erτM(t − τ,ω)dτ = ert

∫ t

0
e−rσ M(σ,ω)dσ → 0 as t → ∞. (5.8)

With the same argument as above, we obtain that for every ε > 0, there exists a Tε > 0 such
that for every t > Tε ,

∣∣∣∣∣
∫ t

0 (B(τ) − Kre
rτ − B∞)M(t − τ,ω)dτ∫ t

0 (Krerτ + B∞)M(t − τ,ω)dτ

∣∣∣∣∣ ≤
∫ t

0 |B(τ) − Kre
rτ − B∞|M(t − τ,ω)dτ∣∣∣∫ t

0 (Krerτ + B∞)M(t − τ,ω)dτ

∣∣∣
≤

≤ max[0,Tε ] |B(τ) − Kre
rτ − B∞|ez0t e−z0Tε

∫ Tε

0 e−z0(t−τ)M(t − τ,ω)dτ∣∣∣ert
∫ t

0 (Kre−rσ + B∞)M(σ,ω)dσ

∣∣∣
+ ε.

Notice that

0 < lim
t→∞ ert

∫ t

0

∣∣Kre
−rσ + B∞

∣∣M(σ,ω)dσ < ∞.
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This together with (5.8), implies that for every ε > 0 there exists a tε > 0 such that for every
t > tε

∣∣∣∣∣
∫ t

0 (B(τ) − Kre
rτ − B∞)M(t − τ,ω)dτ∫ t

0 (Krerτ + B∞)M(t − τ,ω)dτ

∣∣∣∣∣ < 2ε,

which is equivalent to

∫ t

0
B(τ)M(t −τ, ·)dτ ∼

∫ t

0
erτKrM(t −τ, ·)dτ +B∞M̂(0, ·) setwise as t → ∞. (5.9)

Since
∫ ∞

0
f0(σ,�0)dσ < ∞

it follows that, if z0 < r < 0, then, for every ω ∈ B(�0),

∫ t

0
b(σ,ω)dσ =

∫ t

0
B(σ)M(t − σ,ω)dσ +

∫ t

0
f0(σ,ω)dσ

∼ ertKrM̂(r,ω) + B∞M̂(0,ω) + f̂0(0,ω)

as t tends to infinity.
Case 3: r = 0.

Since B(t) ∼ tD as t → ∞, for every ε > 0, there exists a Tε > 0 such that for every t > Tε

|B(t) − Dt | < εDt.

Therefore, for any ω ∈ B(�0)

∫ t

0 |B(τ) − τD|M(t − τ,ω)dτ

D
∫ t

0 τM(t − τ,ω)dτ

≤
∫ Tε

0 |B(τ) − τD|M(t − τ,ω)dτ

D
∫ t

0 τM(t − τ,ω)dτ
+ ε

∫ t

Tε
τDM(t − τ,ω)dτ

D
∫ t

0 τM(t − τ,ω)dτ

≤ max
[0,Tε ]

|B(τ) − τD| ez0t e−z0Tε

∫ ∞
0 e−z0σ M(σ,ω)dσ

D
∫ t

0 τM(t − τ,ω)dτ
+ ε

Since for every ω ∈ B(�0), we have that
∫ ∞

0 τM(t − τ,ω)dτ → ∞ as t → ∞ and since M

is a z0-Laplace component, we can find T̃ε such that for every t > T̃ε we have

∫ t

0 |B(τ) − τD|M(t − τ,ω)dτ

D
∫ t

0 τM(t − τ,ω)dτ
< 2ε.

This is equivalent to

∫ t

0
B(τ)M(t − τ, ·)dτ ∼

∫ t

0
DτM(t − τ, ·)dτ setwise as t → ∞. (5.10)
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Notice that,

∫ t

0
DτM(t − τ, ·)dτ = Dt

∫ t

0
M(τ, ·)dτ − D

∫ t

0
τM(τ, ·)dτ

Since

Dt

∫ t

0
M(τ, ·)dτ → ∞ and

∫ ∞

0
τM(τ, ·)dτ < ∞

the conclusion follows. �

Proof of Corollary 3.15 Case 1: r > 0.
Thanks to (3.6), we have

∥∥∥∥e−rt

∫ t

0
b(σ, ·)dσ −

∫ ∞

0
Cre

−rσ M(σ, ·)dσ

∥∥∥∥

=
∥∥∥∥e−rt

∫ t

0
b(σ, ·)dσ −

∫ t

0
Cre

−rσ M(σ, ·)dσ −
∫ ∞

t

Cre
−rσ M(σ, ·)dσ

∥∥∥∥

≤
∥∥∥∥e−rt

∫ t

0
b(σ, ·)dσ −

∫ t

0
Cre

−rσ M(σ, ·)dσ

∥∥∥∥ +
∥∥∥∥
∫ ∞

t

Cre
−rσ M(σ, ·)dσ

∥∥∥∥

≤e−rt

∥∥∥∥
∫ t

0
B(σ)M(t − σ, ·)dσ −

∫ t

0
Cre

rτM(t − τ, ·)dτ

∥∥∥∥

+ e−rt

∫ t

0
‖f0(σ, ·)‖dσ +

∫ ∞

t

Cre
−rσ ‖M(σ, ·)‖dσ

≤e−rt

∫ t

0
|B(σ) − Cre

rσ | ‖M(t − σ, ·)‖dσ + e−rt

∫ t

0
‖f0(σ, ·)‖dσ

+
∫ ∞

t

Cre
−rσ ‖M(σ, ·)‖dσ

≤e−rt

∫ t

0
|B(σ) − Cre

rσ |M(t − σ,�0)dσ + e−rt

∫ t

0
f0(σ,�0)dσ

+
∫ ∞

t

Cre
−rσ M(σ,�0)dσ.

We now show that both the terms in the right hand side of the last inequality tend to zero as
time tends to infinity. Notice that

∫ ∞

t

Cre
−rσ M(σ,�0)dσ → 0 as t → ∞

because
∫ ∞

0 M(σ,�0)dσ < ∞. We also know that

e−rt

∫ t

0
f0(σ,�0)dσ → 0 as t → ∞
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because f0(·,�0) is an integrable function. Lastly, we recall that we proved (proof of Theo-
rem 3.14) that

∫ t

0
B(σ)M(t − σ,ω)dσ ∼

∫ t

0
Cre

rσ M(t − σ,ω)dσ as t → ∞

and therefore ∫ t

0 |B(σ) − Cre
rσ |M(t − σ,ω)dσ

ert
∫ t

0 Cre−rvM(v,ω)dv
→ 0 as t → ∞

which implies, since 0 <
∫ ∞

0 M(τ,�0) < ∞, that

e−rt

∫ t

0
|B(σ) − Cre

rσ |M(t − σ,�0)dσ → 0 as t → ∞.

The conclusion follows.
Case 2: r < z0 < 0.

As in Case 1, we have
∥∥∥∥e−rt

∫ t

0
b(σ, ·)dσ −

∫ ∞

0

(
Kre

−rσ + e−rtB∞
)
L(σ, ·)dσ − e−rt

∫ ∞

0
f0(σ, ·)dσ

∥∥∥∥

≤
∥∥∥∥e−rt

∫ t

0
B(σ)M(t − σ, ·)dσ −

∫ t

0

(
Kre

−rσ + e−rtB∞
)
M(σ, ·)dσ

∥∥∥∥

+
∥∥∥∥
∫ ∞

t

(
Kre

−rσ + e−rtB∞
)
M(σ, ·)dσ

∥∥∥∥ +
∥∥∥∥e−rt

∫ ∞

t

f0(σ, ·)dσ

∥∥∥∥

≤
∥∥∥∥e−rt

∫ t

0
(B(σ ) − Kre

rσ − B∞)M(t − σ, ·)dσ

∥∥∥∥

+
∥∥∥∥
∫ ∞

t

(
Kre

−rσ + e−rtB∞
)
M(σ, ·)dσ

∥∥∥∥ +
∥∥∥∥e−rt

∫ ∞

t

f0(σ, ·)dσ

∥∥∥∥

≤e−rt

∫ t

0
|B(σ) − Kre

rσ − B∞|M(t − σ,�0)dσ + e−rt

∫ ∞

t

f0(σ,�0)dσ

+
∫ ∞

t

∣∣Kre
−rσ + B∞

∣∣M(σ,�0)dσ.

The three terms on the right hand side of the last inequality tend to zero as time goes to
infinity. Indeed,

∫ ∞

t

(
Kre

−rσ + e−rtB∞
)
M(σ,�0)dσ → 0 as t → ∞,

and

e−rt

∫ ∞

t

f0(σ,�0)dσ ≤
∫ ∞

t

e−rσ f0(σ,�0)dσ → 0 t → ∞.

Using the fact that M is a z0-Laplace component and (5.9) we obtain that

e−rt

∫ t

0
|B(σ) − Kre

rσ − B∞|M(t − σ,�0)dσ → 0
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as t → ∞.
Case 3: r = 0.

We have
∥∥∥∥1

t

∫ t

0
b(σ, ·) − D

∫ ∞

0
M(σ, ·)dσ

∥∥∥∥ ≤1

t

∫ t

0
|B(σ) − tD|M(t − σ,�0)

+ 1

t

∫ t

0
f0(σ,�0) − D

∫ ∞

t

M(σ,�0).

Notice that

1

t

∫ t

0
f0(σ,�0) → 0,

∫ ∞

t

M(σ,�0) → 0 as t → ∞.

On the other hand, by (5.10) we deduce that

1

t

∫ t

0
|B(σ) − tD|M(t − σ,�0) → 0 as t → ∞ �

5.4 Behaviour of the Population Birth Rate

Lemma 5.5 If Assumption 3.16 holds, then the function t �→ B(t) is absolutely continuous
and therefore there exists b̃ ∈ L1(R+) such that

B(t) =
∫ t

0
b̃(s)ds. (5.11)

Notice that b̃(t) corresponds to the expected number of individuals that pass the renewal
point per unit of time at time t and are offspring of individuals born after time zero.

Proof By Proposition 3.7 B(t) is the solution of the reduced renewal equation (3.5) and
hence it is given by the formula

B(t) =
∫ t

0
μR(ds)z(t − s) + z(t), (5.12)

where R is the resolvent of K (see Appendix A (A.7). Since K is absolutely continuous by
Assumption 3.16, the same is true of its resolvent R. The assertion now follows from (5.12)
because both the convolution and sum of two absolutely continuous functions are absolutely
continuous. See [31] for details. �

Lemma 5.6 If Assumption 3.16 holds, then the function b̃ satisfies the following equation

b̃(t) =
∫ t

0
b̃(t − s)K ′(s)ds + z′(t) a.e. (5.13)

with
∫ t

0
z′(s)ds = z(t).

Proof We obtain this result by differentiating (3.5). �
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The function E from R+ × B(�0) to R+ defined by

E(t,ω) :=
∫ t

0
M(t − s,ω)b̃(s)ds, (5.14)

represents the contribution to the population birth rate by individuals that were born after
time 0, and therefore, have crossed the renewal point after time 0. Similarly, the function Z
from R+ × B(�0) to R+ defined by

Z (t,ω) :=
∫ t

0
M(t − s,ω)z′(s)ds, (5.15)

is the contribution to the population birth rate by individuals that were born before time 0.
The intuitive idea behind renewal equations that those born after time 0 are either direct
offspring or descendants (grandchildren, great-grandchildren, etc.) of someone born before
time 0 suggests that E should satisfy a renewal equation with forcing function Z . The
following lemma shows that this is indeed the case.

Lemma 5.7 Let Assumption 3.16 hold. The function E given by (5.14) is the unique solution
of the renewal equation

E(t,ω) =
∫ t

0
E(t − s,ω)μK(ds) + Z (t,ω), ω ∈ B(�0), (5.16)

with Z defined by (5.15).

Proof The uniqueness stems from the fact that, once ω ∈ B(�0) is fixed, the equation is one
dimensional. The proof of the uniqueness of the solution of this equation can be found in
[27] and[31] (see also Appendix A.2).

To show existence, we integrate both sides of equation (5.13) from 0 to t against M(t −
s,ω) and use (5.16) to obtain

E(t,ω) =
∫ t

0
M(t − s,ω)

(∫ s

0
b̃(s − v)μK(dv) + z′(s)

)
ds.

Notice that
∫ t

0
M(t − s,ω)

∫ s

0
b̃(s − v)μK(dv)ds =

∫ t

0

∫ t

v

M(t − s,ω)b̃(s − v)dsμK(dv)

=
∫ t

0

∫ t−v

0
M(t − σ − v,ω)b̃(σ )dσμK(dv) =

∫ t

0
E(t − v,ω)μK(dv).

This concludes the proof. �

Equation (5.16) formalises the fact that, when we deal with a factorisable kernel k, the
distribution of the state-at-birth of the offspring of an individual depends only on how long
ago the individual passed the reference point.

The following lemma is the mathematical formalisation of the interpretation of E as the
contribution to the population birth rate by individuals that were born after time 0.

Lemma 5.8 If Assumption 3.16 holds, then the function E(t,ω) + f0(t,ω) is the solution of
equation (3.1).
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Proof First of all by the identity (5.2) we have that

∫ t

0
E(t − s,ω)μK(ds)

=
∫ ∞

0

∫
�0

M(r, dξ)

∫ ∞

0
χ[0,t](r + σ)E(t − r − σ,ω)μL(dσ, ξ)dr

=
∫ t

0

∫
�0

M(r, dξ)

∫ t−r

0
E(t − r − σ,ω)μL(dσ, ξ)dr

From this last formula and from (5.14) we obtain that

∫ t

0
E(t − s,ω)μK(ds)

=
∫ t

0

∫
�0

M(r, dξ)

∫ t−r

0

∫ t−r−σ

0
b̃(t − r − σ − s)M(s,ω)dsμL(dσ, ξ)dr

=
∫ t

0

∫
�0

M(r, dξ)

∫ t−r

0

∫ t−r

σ

b̃(t − r − s)M(s − σ,ω)dsμL(dσ, ξ)dr

=
∫ t

0

∫
�0

M(r, dξ)

∫ t−r

0
b̃(t − r − s)

∫ s

0
M(s − σ,ω)μL(dσ, ξ)dsdr

=
∫ t

0

∫
�0

M(r, dξ)

∫ t−r

0
b̃(t − r − s)k(s, ξ,ω)dsdr

=
∫ t

0

∫ t−s

0

∫
�0

M(r, dξ)b̃(t − r − s)drk(s, ξ,ω)ds.

We notice that a formula analogous to (5.2) holds for z′, viz.

∫ ∞

0
f (s)z′(s)ds =

∫ ∞

0

∫
�0

∫ ∞

0
f (s + η)f0(η, dξ)μL(ds, ξ)dη.

This allows us to show that

Z (t,ω) =
∫ t

0
M(t − s,ω)z′(s)ds =

∫ ∞

0

∫
�0

∫ ∞

0
M(t − s − η,ω)χ[0,t](s + η)μL(ds, ξ)dη

=
∫ t

0

∫
�0

∫ t−η

0
M(t − s − η,ω)μL(ds, ξ)f0(η, dξ)dη

=
∫ t

0

∫
�0

f0(η, dξ)k(t − η, ξ,ω)dη

Therefore,

E(t,ω) + f0(t,ω) =
∫ t

0
E(t − s,ω)μK(ds) + Z (t,ω) + f0(t,ω)

=
∫ t

0

∫ t−s

0

∫
�0

M(r, dξ)b̃(t − r − s,ω)drk(s, ξ,ω)ds
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+
∫ t

0

∫
�0

f0(η, dξ)k(t − η, ξ,ω)dη + f0(t,ω)

=
∫ t

0
(E(t − s, dξ) + f0(t − s, dξ)) k(s, ξ,ω)ds + f0(t,ω)

and therefore E(t,ω) + f0(t,ω) = b(t,ω). �

Proof of Theorem 3.17 First of all we notice that for fixed ω ∈ B(�0), equation (5.16) is a
one dimensional renewal equation. Therefore the asymptotic behaviour of its solutions can
be obtained by the Renewal Theorem.

Case 1: r = 0.
For any ω ∈ B(�0) we have

Z (t,ω) ≤
∫ t

0
z′(s) sup

σ∈R+
M(σ,�0) ≤ z(t) sup

σ∈R+
M(σ,�0).

Therefore, for any ω ∈ B(�0), the map t �→ Z (t,ω) is bounded by the directly Riemann
integrable function z, and therefore directly integrable.

We can now apply the alternative version of the Renewal Theorem to conclude that, for
every ω ∈ B(�0)

E(t,ω) ∼
∫ ∞

0

∫ τ

0 M(τ − s,ω)z′(ds)dτ∫ ∞
0 sμK(ds)

as t → ∞.

Since the Laplace transform of a convolution is the product of the Laplace transforms we
have

∫ ∞

0

∫ τ

0
M(τ − s,ω)z′(s)dsdτ = ẑ′(0)M̂(0,ω) = z∞M̂(0,ω),

and the result follows, since f0(·,�0) is bounded.
Case 2: r > 0.

Fix ω ∈ B(�0). Since Z is directly Riemann integrable and e−rt is a monotone decreasing
integrable function we conclude that Z#(t) := e−rtZ (t) is directly Riemann integrable. The
alternative version of the Renewal Theorem applied to the equation

E#(t,ω) =
∫ t

0
E#(t − s,ω)μK#(ds) + Z#(t,ω)

with E#(t,ω) := e−rtE(t,ω), and μK#(t) := e−rtμK(t), yields

E(t,ω) ∼ ert

∫ ∞
0 Z (τ,ω)e−rτ dτ∫ ∞

0 τe−rτμK(dτ)
.

Taking the Laplace transform of (5.15) we obtain

Ẑ (r,ω) = M̂(r,ω)ẑ′(r) = rM̂(r,ω)ẑ(r).

It follows that
∫ ∞

0 Z (τ,ω)e−rτ dτ

τe−rτμK(dτ)
= rCr

∫ ∞

0
e−rτM(τ,ω)dτ,
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and this concludes the proof for this case.
Case 3: r < 0.

Consider the weighted equation

E#(t,ω) =
∫ t

0
E#(t − s,ω)μK#(ds) + Z#(t,ω).

Notice that, for any ω ∈ B(�0),

Z#(t,ω) = e−rtZ (t,ω) ≤ e−z0tZ (t,ω).

We already know that Z is directly Riemann integrable and that the map t �→ e−z0tZ (t,ω)

is integrable. As a consequence we have that Z# is directly Riemann integrable. Applying
the alternative version of the Renewal Theorem we obtain

E(t,ω) ∼ ert

∫ ∞
0 Z (τ,ω)e−rτ dτ∫ ∞

0 τe−rτμK(dτ)
.

Moreover,

rKr = −z∞ +
∫ ∞

0
re−rs(z∞ − z(s))ds =

∫ ∞

0
e−rsz′(s)ds

where the last equality follows from integration by parts and the facts z(0) = 0 and
limt→∞ e−rt (z∞ − z(t)) = 0. �

Proof of Corollary 3.18 Let r > 0 and notice that

∥∥∥e−rt b(t, ·) − rCrM̂(r, ·)
∥∥∥ ≤

∥∥∥∥e−rt

∫ t

0
b̃(t − σ)M(σ, ·)dσ − rCr

∫ t

0
e−rσ M(σ, ·)dσ

∥∥∥∥
+ e−rtf0(t,�0) + rCr

∫ ∞

t

e−rσ M(σ,�0)dσ

Notice that since f0(·,�0) is bounded, then

e−rtf0(t,�0) → 0 as t → ∞.

On the other hand it is also true that, since M is a measure Laplace component, then

∫ ∞

t

e−rσ M(σ,�0)dσ → 0 as t → ∞.

By Theorem (3.17) we also have that

∥∥∥∥e−rt

∫ t

0
b̃(t − σ)M(σ, ·)dσ − rCr

∫ t

0
e−rσ M(σ, ·)dσ

∥∥∥∥ → 0 as t → 0.

With the same argument, the other two statements of the Corollary follow. �

We state a sufficient assumption on the components that guarantees the absolute conti-
nuity of B .
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Assumption 5.9 We assume that L is of the form

L(σ, ξ) := f (ξ)H(σ − h(ξ)) (5.17)

with f : �0 → R+ Lipschitz continuous and bounded by 1, h : �0 → R+ measurable and
such that

sup
ξ∈�0

e−z0h(ξ)f (h(ξ)) < ∞.

Moreover, we assume that the function

t �→
∫ t

0

∫
�0

M(σ,dξ)H(t − σ − τ(ξ))dσ

is Lipschitz continuous with Lipschitz constant c.

Lemma 5.10 Let M and L be z0-Laplace components satisfying Assumption 5.9, then the
functions t �→ K(t) and t �→ z(t) are Lipschitz continuous functions.

Proof Notice that,

K(t) =
∫ t

0

∫
�0

M(σ,dξ)f (ξ)H(t − σ − h(ξ))dσ

is Lipschitz continuous, since f is bounded and

∫ t

0

∫
�0

M(σ,dξ)H(t − σ − h(ξ))dσ

is Lipschitz continuous by hypothesis.
Next note that z can be rewritten, plugging in equation (3.4) the formula for the forcing

function (3.2), as

z(t) =
∫ 0

−∞

∫
�0

∫ t

0

(∫
�0

k(σ − s, x, dξ)H(t − σ − τ(ξ))

)
f (ξ)dσ�(ds, dx).

With a similar argument to the one used to prove that K is Lipschitz continuous we can see
that when the map

t �→
∫ t

0

∫
�0

k(σ − s, x, dξ)H(t − σ − τ(ξ))dσ

is Lipschitz, so is z.
Using the fact that k is a factorisable kernel with kernel components L and M we obtain

that
∫ t

0

∫
�0

k(σ − s, x, dξ)H(t − σ − h(ξ))dσ

=
∫ t

0

∫
�0

∫ σ−s

0
μL(dv, x)M(σ − s − v, dξ)H(t − σ − h(ξ))dσ
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=
∫ t

0

∫
�0

f (x)M(σ − s − h(x), dξ)H(t − σ − h(ξ))dσ.

From Assumption 5.9 and from the fact that f is bounded we conclude that z is Lipschitz.
�

Motivated by the models we present some examples of kernel components that satisfy
Assumption 5.9.

Lemma 5.11 Assume L to have the form (5.17).
If the measure M(t, ·) is absolutely continuous with respect to the Lebesgue measure and

has density d(t, ·), which is a bounded map from R+ × B(�0) to R+, then Assumption 5.9
is satisfied.

If, instead, M(σ,ω) = l(σ )δp(σ)(ω), where l : R+ → R+ is a bounded function and p :
R+ → �0 a measurable function, then Assumption 5.9 is satisfied provided that the map
σ �→ G(σ) := σ + h(p(σ)) is invertible and the inverse is Lipschitz continuous.

In the lemma l represents the probability per unit of time that an individual, that passed
by the renewal point σ time ago, reaches age σ and reproduces. The fact that M(σ,ω) =
l(σ )δp(σ)(ω) means that this individual will give birth to an offspring with state at birth
p(σ).

Proof If M(σ, ·) is absolutely continuous with respect to the Lebesgue measure and has
density d(σ, ·), we have that

∫ t

0

∫
�0

M(σ,dξ)H(t − σ − h(ξ))dσ =
∫

�0

∫ t

0
d(σ, ξ)H(t − σ − h(ξ))dσdξ

=
∫

�0

∫ t−h(ξ)

0
d(σ, ξ)dσdξ.

By the hypothesis on d , we conclude that the map

t �→
∫

�0

∫ t−h(ξ)

0
d(σ, ξ)dσdξ

is Lipschitz continuous and Assumption 5.9 holds.
If M(σ,ω) = l(σ )δp(σ)(ω), then

∫ t

0

∫
�0

M(σ,dξ)H(t − σ − h(ξ))dσ =
∫ t

0

∫
�0

l(σ )δp(σ)(dξ)H(t − σ − h(ξ))dσ

=
∫ t

0
l(σ )H(t − σ − h(p(σ)))dσ =

∫ G−1(t)

0
l(σ )dσ

and therefore, since G−1 is Lipschitz continuous and l is bounded, Assumption 5.9 holds.
�
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5.5 Proofs of the Results of Sect. 4

Proof of Lemma 4.3 First of all, given the assumptions on g, γ , η, and μ we have that k is a
kernel.

Moreover, for ξ less than x and a such that X(a, ξ) > x

F (a, ξ) = exp

(
−

∫ a

0
(γ (X(s, ξ)) + μ(X(s, ξ))) ds

)

= exp

(
−

∫ X(a,ξ)

ξ

γ (z) + μ(z)

g(z)
dz

)

= exp

(
−

∫ x

ξ

γ (z) + μ(z)

g(z)
dz

)
exp

(
−

∫ X(a,ξ)

x

γ (z) + μ(z)

g(z)
dz

)

= F̂ (ξ, x)F (a − τ(ξ, x), x).

Therefore

k(a, ξ,ω) = F (a, ξ)γ (X(a, ξ))η(X(a, ξ),ω)

= F (a − τ(ξ, x), x)γ (X(a − τ(ξ, x), x))η(X(a − τ(ξ, x), x),ω)F (ξ, x)

=
∫ a

0
F (a − σ, x)γ (X(a − σ, x))η(X(a − σ, x),ω)δτ(ξ,x)(dσ )F (ξ, x)

=
∫ a

0
μL(dσ, ξ)M(a − σ,ω).

Notice that, for every ξ ∈ �0 we have that L(·, ξ) ∈ NBV (R+), moreover

sup
(t,ξ)∈R+×�0

L(t, ξ) = sup
(t,ξ)∈R+×�0

F̂ (ξ, x)H(t − τ(ξ, x)) ≤ 1

and

sup
ξ∈�0

∫ ∞

0
e−z0σ μL(dσ, ξ) = sup

ξ∈�0

e−z0τ(ξ,x)F (ξ, x)

= sup
ξ∈�0

e−z0τ(ξ,x)e− ∫ τ (ξ,x)
0 γ (X(s,x))+μ(X(s,x))ds

≤ sup
ξ∈�0

e−z0τ(ξ,x) < ∞.

Next consider the component M . In this case

sup
R+

M(t,�0) ≤ 2e− ∫ t
0 γ (X(s,x))dsγ (X(t, x)).

By assumption (4.1) we have that

lim
t→∞ e− ∫ t

0 γ (X(s,x))dsγ (X(t, x)) = 0,
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implying

sup
t∈R+

M(t,�0) < ∞.

On the other hand, we also have that

∫ ∞

0
e−z0tM(t,�0)dt ≤ 2

∫ ∞

0
e−z0tF (t, x)γ (X(t, x))dt < ∞.

In the case of bounded lifetime this follows directly from the fact that M(t,�0) = 0 if
t > τ(x,1). If, instead g(1) = 0, g′(1) �= 0 and γ (1) > 0, then

e
− ∫ X(t,x)

x
γ (z)
g(z)

dz ∼ e−tγ (1) as t → ∞.

Consequently, since z0 > −γ (1)

∫ ∞

0
e−z0tF (t, x)γ (X(t, x))dt = lim

t→∞ e
−z0t−∫ X(t,x)

x
γ (z)
g(z)

dz + z0

∫ ∞

0
e

−z0t−∫ X(t,x)
x

γ (z)
g(z)

dz
dt < ∞. �

Proof of Proposition 4.4 We first consider the case η(x,ω) = 2δ1/2x(ω) and g(2x) < 2g(x).
We aim at applying Lemma 5.11 to deduce that K is Lipschitz continuous, and hence non-
arithmetic. To this end we consider the function G(s) := τ

(
1
2X(s, x),X(s, x)

)
and notice

that it is a monotonically increasing function and hence invertible. Indeed,

d

ds
G(s) = d

ds

∫ X(s,x)

1
2 X(s,x)

1

g(z)
dz = 1 − g(X(s, x))

2g
(

1
2X(s, x)

) > 0.

Moreover,

|G(s1) − G(s2)| = |s1 − s2| +
∣∣∣∣∣
∫ 1

2 X(s1,x)

1
2 X(s2,x)

1

g(z)
dz

∣∣∣∣∣ ≥ |s1 − s2|

+ 1

2

1

supz∈� g(z)
|X(s2, x) − X(s1, x)| ≥ c |s1 − s2|

for a constant c > 0. Hence G−1 is a Lipschitz function. By Lemma 5.11 we deduce that K

and z are Lipschitz continuous (hence K is not arithmetic) and we can apply Theorem 3.17.
If η(x, ·) is absolutely continuous with respect to the Lebesgue measure and has bounded

density, we can apply the first part of Lemma 5.11 to deduce that K is Lipschitz continuous
and hence non-arithmetic and that z is Lipschitz continuous and we can again apply Theorem
3.17. �

Proof of Proposition 4.7 Because the kernel (4.8) is just a particular case of kernel (4.4) we
can define F̂ (x, y) and τ(x, y) as in the cell fission model and by a small notational adapta-
tion of the proof of Proposition 4.4 we deduce that the kernel k is a factorisable −�-kernel.

For this model the map G in Lemma 5.11 is given by

G(η) :=
{

η if η < τ(xc, x),

τ (f (X(η, x)), x) + η if η ≥ τ(xc, x).
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It is a strictly monotone function and therefore it has an inverse, G−1. Notice also that

τ(f (X(η, x)), x) = −
∫ f (X(η,x))

x

1

g(z)
dz

=
{

0 if η < τ(xc, x)

− ∫ x+2xc−2X(η,x)

x
1

g(z)
dz otherwise

Since 0 < infx∈� |1/g(x)| < ∞, the inverse G−1 is Lipschitz continuous and with the aid
of Lemma 5.11 we deduce that the assumptions of Theorem 3.17 hold. The basic reproduc-
tion number is

R0 = �

∫ ∞

0

∫
�0

F (a, x)δf (X(a,x))(dξ)da = �

∫ ∞

0
e−a�da = 1

and therefore r = 0. We conclude that b(t, ·) converges to a steady state. �

6 A Short Excursion into the Formalism of Perturbed Semigroups of
Operators

In this section we relate the results of the previous sections to the formalism of semigroups
of operators.

The concrete population model we studied in Sect. 4 can be reformulated as an abstract
Cauchy problem of the form

u̇(t) = A0u(t) + Bu(t), t > 0, (6.1)

u(0) = u0 (6.2)

for a function u defined on R+ and taking on values in a Banach space X. In (6.1) the
operator A0 : D(A0) ⊂ X → X is the generator of a strongly continuous semigroup T0 of
bounded linear operators on X and the perturbation B : X → X is a bounded linear operator.
The initial value u0 belongs to X. Our line of reasoning extends to (in particular relatively
bounded) unbounded operators B [25, 54, 55].

The solution u(t) of (6.1) & (6.2) satisfies the following abstract integral equation (vari-
ation-of-constants formula aka Duhamel’s formula)

u(t) = T0(t)u0 +
∫ t

0
T0(t − τ)Bu(τ)dτ. (6.3)

In our context T0 describes development and survival, while B describes reproduction. In
[18] it is explained how (6.3) can be obtained from modeling considerations, therefore we
focus on (6.3). We refer to [25] for various ways of giving a precise meaning to the integral.

Asynchronous (balanced) exponential growth of operator semigroups has been studied
by many authors, for instance in [34, 54, 55, 61].

Here we focus on formula manipulations and we do not state precise assumptions and
rigorous results. Indeed, in the earlier sections we have rigorously treated the concrete pop-
ulation models; when we put these into a semigroup framework, lots of technical issues
have to be taken care of and there would not be additional results. Yet, from the formula
manipulation point of view, the semigroup setting relates our approach based on renewal
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equations, via an abstract renewal equation, to the PDE approach and thus enhances, so we
hope, understanding.

The abstract renewal equation

v(t) = BT0(t)u0 +
∫ t

0
BT0(t − τ)v(τ )dτ (6.4)

is obtained by applying B to (6.3) and replacing Bu(t) by v(t). The standard way of proving
existence and uniqueness of a solution is based on the contraction mapping principle.

Once (6.4) is solved, we define u(t) by

u(t) = T0(t)u0 +
∫ t

0
T0(t − τ)v(τ )dτ.

It requires a bit of formula manipulation to next show that T (t)u0 := u(t) defines a semi-
group of operators, see [25] and the references in there.

For special B or special (B,T0) combinations, (6.4) reduces to a finite dimensional equa-
tion. We refer to [25] for an account of how this works for delay equations. Here we first
provide some simple one-dimensional examples before explaining the situation considered
in the previous sections.

Example 6.1 Assume that, for every φ ∈ X

Bφ = 〈q�, φ〉q with q ∈ X,q� ∈ X∗.

Define

k(t) = 〈q�, T0(t)q〉
and

z0(t) = 〈q�, T0(t)u0〉.
Let z be the solution of

z = z0 + k ∗ z (6.5)

then, v(t) = z(t)q solves (6.4).

Indeed plugging in equation (6.5) the formulas for z0 and k, and multiplying the resulting
equation by q , we obtain equation (6.4).

We denote the dual space of X by X∗ and use duality brackets for the pairing of elements
in X and X∗: 〈x∗, x〉 = x∗(x), x ∈ X, x∗ ∈ X∗.

Example 6.2 Assume that for every φ ∈ X

BT0(t)φ = 〈q�(t), φ〉q with q ∈ X and q�(t) ∈ X∗ for every t > 0.

Define

k(t) = 〈q�(t), q〉
and

z0(t) = 〈q�(t), u0〉.
Let z be the solution of (6.5). Then v(t) = z(t)q solves (6.4).
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Example 6.3 Assume that for every φ ∈ X

BT0(t)φ =
∫ t

0
〈q�(σ ),φ〉q(t − σ)dσ q(t) ∈ X,q�(t) ∈ X∗ for every t > 0.

Define

k(t) =
∫ t

0
〈q�(σ ), q(t − σ)〉dσ

and

z0(t) = 〈q�(t), u0〉.

Let z be the solution of (6.5). Then v(t) = ∫ t

0 z(σ )q(t − σ)dσ solves (6.4).

This follows from the fact that, if v(t) = ∫ t

0 z(σ )q(t − σ)dσ , then

∫ t

0
BT0(t − τ)v(τ )dτ =

∫ t

0
(k ∗ z)(σ )q(t − σ)dσ. (6.6)

Indeed,

∫ t

0
(k ∗ z)(σ )q(t − σ)dσ =

∫ t

0

∫ σ

0
k(σ − s)z(s)dsq(t − σ)dσ

=
∫ t

0

∫ σ

0

∫ σ−s

0
〈q�(r), q(σ − s − r)〉z(s)q(t − σ)drdsdσ

=
∫ t

0

∫ σ

0

∫ σ−r

0
〈q�(r), q(σ − s − r)〉z(s)q(t − σ)dsdrdσ

=
∫ t

0

∫ σ

0
〈q�(r),

∫ σ−r

0
z(s)q(σ − s − r)ds〉q(t − σ)drdσ

=
∫ t

0

∫ σ

0
〈q�(r), v(σ − r)〉q(t − σ)drdσ

=
∫ t

0

∫ t−r

0
〈q�(r), v(τ )〉q(t − τ − r)dτdr

=
∫ t

0

∫ t−τ

0
〈q�(r), v(τ )〉q(t − τ − r)drdτ

=
∫ t

0
BT0(t − τ)v(τ )dτ.

As a consequence of (6.6) we have that (6.4) reduces to

0 =
∫ t

0

(
z(σ ) − 〈q�(σ ), u0〉 − (k ∗ z)(σ )

)
q(t − σ)dσ

and the statement of the example follows.
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In our setting, we assume that there exist functions q : R+ → X and Q� : R+ →
X∗, Q�(0) = 0 such that for every φ belonging to the range of B ,

BT0(t)φ =
∫ t

0
dσ 〈Q�(σ ),φ〉q(t − σ), t > 0. (6.7)

For the integral to make sense, we have to assume that σ �→ 〈Q�(σ ),φ〉 is of bounded
variation. The notation dσ 〈Q�(σ ),φ〉 represents the integration against the measure corre-
sponding to the function 〈Q�(σ ),φ〉.

Remark 6.4 The reason why we assume that formula (6.7) holds only for φ in the range of
B , is that this is what we need for the following integral manipulations. And, in fact, (6.7)
does not hold for all φ ∈ X in the examples presented in Sect. 4.

Lemma 6.5 Assume that identity (6.7) holds, then

∫ t

0
BT0(σ )φdσ =

∫ t

0
〈Q�(σ ),φ〉q(t − σ)dσ,

for every φ in the range of B .

Proof Integrate (6.7). �

Corollary 6.6 Assume that the identity (6.7) holds. Then the integrated version of (6.4):

∫ t

0
v(τ)dτ =

∫ t

0
〈Q�(σ ), u0〉q(t − σ)dσ (6.8)

+
∫ t

0

∫ t−τ

0
〈Q�(σ ), v(τ )〉q(t − σ − τ)dσdτ

holds.

Proof By (6.4) we know that

∫ t

0
v(τ)dτ =

∫ t

0
BT0(τ )u0dτ +

∫ t

0

∫ σ

0
BT0(σ − τ)v(τ )dτdσ.

First of all, by (6.7) we have

∫ t

0
BT0(τ )u0dτ =

∫ t

0
〈Q�(σ ), u0〉q(t − σ)dσ.

Moreover,
∫ t

0

∫ σ

0
BT0(σ − τ)v(τ )dτdσ =

∫ t

0

∫ t

τ

BT0(σ − τ)v(τ )dσdτ

=
∫ t

0

∫ t−τ

0
BT0(r)v(τ )drdτ =

∫ t

0

∫ t−τ

0
〈Q�(r), v(τ )〉q(t − τ − r)drdτ. �

The following corollary represents the one dimensional reduction of the abstract renewal
equation (6.4).
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Corollary 6.7 Assume that Z is a bounded variation function and is the solution of

Z(t) =
∫ t

0
μK(dτ)Z(t − τ) + Z0(t)

with Z(0) = 0 and with

Z0(t) := 〈Q�(t), u0〉 and K(t) :=
∫ t

0
〈Q�(σ ), q(t − σ)〉dσ.

Then v, characterised by

∫ t

0
v(τ)dτ :=

∫ t

0
Z(σ)q(t − σ)dσ, (6.9)

is a solution of (6.8).

Notice that, since Z is of bounded variation and Z(0) = 0, then (6.9) amounts to

v(t) =
∫ t

0
Z(dσ)q(t − σ) a.e. (6.10)

Proof Using (6.9) and the formula for Z0 we can rewrite (6.8) as

∫ t

0
Z(σ)q(t − σ)dσ =

∫ t

0
Z0(σ )q(t − σ)dσ (6.11)

+
∫ t

0

∫ t−τ

0
〈Q�(σ ), v(τ )〉q(t − τ − σ)dσdτ. (6.12)

Notice that
∫ t

0

∫ t−τ

0
〈Q�(σ ), v(τ )〉q(t − τ − σ)dσdτ

=
∫ t

0

∫ t

τ

〈Q�(r − τ), v(τ )〉q(t − r)drdτ

=
∫ t

0

∫ r

0
〈Q�(r − τ),

∫ τ

0
q(τ − s)Z(ds)〉q(t − r)dτdr,

moreover
∫ r

0
〈Q�(r − τ),

∫ τ

0
q(τ − s)Z(ds)〉dτ

=
∫ r

0

∫ τ

0
〈Q�(r − τ), q(τ − s)〉Z(ds)dτ

=
∫ r

0

∫ r−s

0
〈Q�(r − s − σ), q(σ )〉dσZ(ds) =

∫ r

0
K(r − s)Z(ds)

This implies that equation (6.8) can be rewritten as

0 =
∫ t

0

(
Z(σ) − Z0(σ ) −

∫ r

0
Z(r − s)μK(ds)

)
q(t − σ)dσ.
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Fig. 4 Graph of a boosting
function which gives rise to two
renewal points x2 and x3. The
blue dot is an individual with
immune level at birth in [x3, x4]
that crosses the point x3 before
boosting. The red dot is an
individual with immune state at
birth in [x2, x3] that crosses x2
before boosting (Color figure
online)

Fig. 5 Graph of a cell model
with � = [1/8,1] and such that
every cell fragments into two
cells of equal size. In red a cell
born with size in [1/8,1/4] that
fragments after having crossed
1/4 and in blue a cell born with
size in [1/4,1/2] that fragments
after having crossed 1/2. The
renewal points are 1/4 and 1/2
(Color figure online)

Since Z is a solution of this equation the proof is complete. �

7 Extensions and Open Problems

First of all we remark that the results presented in Sect. 3 are valid for any model that can
be written as (1.2) for a factorisable kernel and not only for the models that have a renewal
point. For example, in the simple case where k(a, ξ,ω) factorises as the product of c1(ω)

and c2(a, ξ), see for instance Sect. 8.4 and Exercise 9.5 in [22].
The focus of this work has been on the one dimensional reduction, even if the techniques

can be adapted to a finite number of renewal points. The assumption on the kernel, in that
case, changes into

k(a, ξ,ω) =
n∑

i=1

∫
[0,a]

μMi
(ds, ξ)Li(a − s,ω).

The most straightforward interpretation is that in between being born with state ξ and being
able to produce offspring with state-at-birth in ω, an individual has to pass through one of
n renewal points. But, as indicated in Figs. 4 and 5, the assumption also covers more subtle
situations, where individuals with certain states-at-birth are not ‘counted’ themselves and



12 Page 48 of 67 E. Franco et al.

yet the offspring they produce is ‘counted’. From this assumption it should be possible to
obtain a system of renewal equations of the form (3.5) and, from the asymptotic behaviour
of the solution of that system (see e.g. [47], deduce the one of the solution of (3.1). We stress
that the case of finitely many renewal points is relevant for applications, indeed it allows to
consider a broader class of models. Two examples of models with two renewal points are
indicated in Figs. 4 and 5.

The reduction of the abstract renewal equation works also for time periodic kernels, like
the ones considered in [24] and [51], if the kernels are factorisable. Also in this case the
asymptotic behaviour found for the reduced equation is expected to determine the behaviour
of the solution of the abstract equation, but the details of the “lifting” should be adapted.

It would be interesting to investigate whether the method presented in this work can be
adopted for non-biological applications, such as models of growth and fragmentation of
aerosols.

A natural extension of this work is the study of the non-linear case as in [19]. In particular,
it would be natural to couple equation (3.1) with an equation for the environment, see [53,
Eqs. (3.12), (3.13)] or [21, Eq. (2.11)]. The non-linearity arises, in these cases, from the
feedback loop between the population and the environment. In the examples of the cell
population the environment could represent the food resources as in [21] and [53].

Is the set X (Definition A.17) isomorphic to a linear subspace of the space of measures
on the product σ -algebra B(R+) × B(�0), so that we can characterise the space in which
the solution of the renewal equation (3.1) lives? At the moment we do not have an answer to
this question, but it seems possible to apply the Disintegration Theorem to deduce that X
is (up to an isomorphism) a closed subset, hence a linear subspace, of the space of measures
endowed with the flat norm. We plan to investigate this in detail in a follow-up paper.

We end with another open problem: can the present results be used to understand the
asymptotic behaviour of the solution of equation (3.1), when k is a non factorisable kernel
that can be approximated (in a sense to be specified) with factorisable kernels?

Appendix A: Notation, Definitions, and Auxiliary Results

In this appendix we present the notation that we adopt in the paper and the definitions and
the lemmas that allow us to prove the existence of a unique solution of the renewal equation
(3.1). We follow the approach of [18, 31, 48] and define kernels, the convolution product
between kernels and the resolvent.

A.1 Notation

We specify that R+ := [0,∞) and R
∗+ := (0,∞). We assume �0 ⊂ R

n+ to be a Borel set. We
assume that B(�0) := {ω ∩ �0 : ω ∈ B(Rn)} and that M(�0) denotes the space of all the
signed Borel measures on �0, with M+(�0) the set of all the non-negative Borel measures
on �0 and with M+,b(�0) the set of all the non-negative bounded Borel measures on �0.

NBV (R+) denotes the space of the functions f of bounded variation with f (0) = 0
and with f right-continuous on the open set R∗+ and NBVloc(R+) denotes the set of the
normalised locally bounded variation functions.

H is the Heaviside function, defined as

H(t) :=
{

0 if t = 0

1 if t > 0.
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Notice that H ∈ NBV (R+).

Definition A.1 Given a function G ∈ NBVloc(R+), we say that its distributional derivative
is the measure μG such that

μG([0, t]) := G(t) ∀t ∈R+.

This definition is taken from [31, Chap. 3.7]. It is well known that the map G �→ μG is a
one-to-one map from NBVloc(R+) to the space of the finite Borel measures, see for instance
[63, Theorem 3.29]. Therefore the measure μG is well defined.

Remark A.2 If G ∈ NBVloc(R+) and the function f is integrable with respect to the measure
μG, then, the integral

∫
f (x)μG(dx)

is called the Lebesgue-Stieltjes integral of f with respect to the function G.

When it is well defined, f̂ (λ) denotes the Laplace transform of the function f ,

f̂ (λ) :=
∫ ∞

0
e−λtf (t)dt, (A.1)

and μ̂(λ) denotes the Laplace transform of a measure

μ̂(λ) :=
∫ ∞

0
e−λtμ(dt). (A.2)

Since we are interested in the asymptotic behaviour of functions with values in a space
of measures, we introduce the notion of total variation and flat norm.

Definition A.3 The total variation norm of a measure μ ∈ M(�0) is defined by

‖μ‖T V = sup
�

n∑
i=1

|μ(�i
0)|,

where the supremum is taken over all the finite measurable partitions � := {�1
0, . . . ,�

n
0} of

the set �0.

BL(�0) denotes the space of the real valued bounded Lipschitz functions, endowed with
the norm

‖f ‖BL := sup
x∈�0

|f (x)| + sup
x �=y

|f (x) − f (y)|
|x − y| .

Definition A.4 The flat norm of a measure μ ∈ M(�0) is defined by

‖μ‖� = sup

{∣∣∣∣
∫

�0

f dμ

∣∣∣∣ : f ∈ BL(�0) such that ‖f ‖BL ≤ 1

}
.
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For positive measures μ ∈ M+(�0)

‖μ‖T V = ‖μ‖� = μ(�0).

See [32, Sect. 4, Eq. (4.3] for the above formula and see the appendix of that paper for a
nice overview of different characterisations of the flat norm.

For real-valued functions f and g defined on R we use the well-known symbol ∼ to
denote asymptotic equivalence: f ∼ g as t → ∞ if

lim
t→∞

f (t)

g(t)
= 1. (A.3)

For real-valued functions on R× B(�0) we use the following analogous definition.

Definition A.5 (Setwise asymptotic equivalence) Let f and g be defined on R × B(�0).
We say that f (t, ·) ∼ g(t, ·) setwise as t → ∞ if for every ω ∈ B(�0)

lim
t→∞

f (t,ω)

g(t,ω)
= 1. (A.4)

A.2 Kernel, Convolution Product, Resolvent

The definitions and results presented in this and the following subsection are all variations
of the same theme of algebraic nature.

Definition A.6 Let (A ,∗) be an associative algebra and let k ∈ A . If r ∈ A satisfies the
equation

r = k + k ∗ r = k + r ∗ k,

then r is called the resolvent of k.

The definite article is justified by the following proposition.

Proposition A.7 Let (A ,∗) be an associative algebra. An element k ∈ A has at most one
resolvent.

Let F be a left module over A and let f ∈ F . If k ∈ A has a resolvent r ∈ A , then the
equation

x = f + k ∗ x

has a unique solution x ∈ F and this solution is given by the formula

x = f + r ∗ f.

For details we refer to [31, pp. 233-234]
As an application of Proposition A.7 we consider the scalar renewal equation

X(t) =
∫ t

0
X(t − s)μG(ds) + y(t), (A.5)
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where G : R+ → R is locally of bounded variation and y : R+ → R is locally bounded and
measurable. It is easy to show that G has a resolvent R, that is the unique solution of

R(t) =
∫ t

0
R(t − s)μG(ds) + G(t), (A.6)

and that R is locally of bounded variation. It follows that the unique solution of (A.5) is
given by

X(t) =
∫ t

0
μR(ds)y(t − s) + y(t). (A.7)

Next we consider more complicated kernels related to the renewal equation (1.2) for
unknown measure-valued functions.

Definition A.8 (Kernel) A kernel is a positive function k :R+ ×�0 ×B(�0) →R+ with the
following properties

1. for every (a, ξ) ∈R+ × �0, k(a, ξ, ·) ∈ M+(�0) (space of positive Borel measures)
2. for every ω ∈ B(�0), the function

(a, ξ) �→ k(a, ξ,ω), (a, ξ) ∈R+ × �0

is measurable (with respect to the product Borel σ -algebra).

Our first aim is to show that the convolution product of two kernels is well defined. It is
well known that in the finite dimensional case, (local) integrability of the kernels suffices, see
e.g., [31]. Here we shall employ a local boundedness assumption (we do not know whether
this assumption is necessary, but we have not been able to proceed without it).

Definition A.9 (Locally bounded kernel) A locally bounded kernel is a kernel such that for
any T > 0

sup
(a,ξ)∈[0,T ]×�0

k(a, ξ,�0) < ∞.

Lemma A.10 Let k1 : R+ × �0 × B(�0) → R+ and k2 : R+ × �0 × B(�0) → R+ be two
locally bounded kernels, then, for every a > 0, the map

s �→
∫

�0

k2(a − s, ξ,ω)k1(s, x, dξ), a > s (A.8)

is measurable and locally bounded.

Proof Since, for a fixed ω ∈ B(�0), the map (s, ξ) �→ k2(s, ξ,ω) is measurable and positive,
it can be (pointwise) approximated from below by a non decreasing sequence of simple
functions ϕn

ω [38, Theorem 11.35]. The approximating functions are of the following form

ϕn
ω(s, ξ) :=

n∑
i=1

αn
i (ω)χAn

i
(ω)(s, ξ) s ≥ 0 ξ ∈ �0 (A.9)
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where An
i (ω) ∈ B(R+ × �0). To prove the measurability of

s �→
∫

�0

ϕn
ω(a − s, ξ)k1(s, x, dξ)

for a fixed a > 0, a fixed ω ∈ B(�0) and a fixed x ∈ �0, we first prove the measurability of

s �→
∫

�0

χA(a − s, ξ)k1(s, x, dξ)ds

for every A ∈ B(R+ × �0), every a > 0 and every x ∈ �0. To this end we define the set

Da,x :=
{
A ⊂ R+ × �0 s.t. s �→

∫
�0

χA(a − s, ξ)k1(s, x, dξ) is measurable

}
.

We show now that Da,x is a Dynkin system, which is a collection C of subsets of R+ ×�0

such that

1. R+ × �0 ∈ C ;
2. if A ∈ C , then Ac ∈ C ;
3. if {Ai} is a sequence of pairwise disjoint sets in C , then

⋃∞
i=1 Ai ∈ C .

Here Ac denotes the complement of the set A.
Firstly, we show that R+ × �0 ∈ Da,x . This follows by the fact that

s �→
∫

�0

χR+×�0(a − s, ξ)k1(s, x, dξ) = k1(s, x,�0)

is measurable. If A ∈ Da,x , then, since χAc = 1 − χA we know that

∫
�0

χAc (a − s, ξ)k1(s, x, dξ) = k1(s, x,�0) −
∫

�0

χA(a − s, ξ)k1(s, x, dξ)

and by the fact that R+ × �0 ∈ D and A ∈ Da,x we deduce that Ac ∈ Da,x . Similarly, if
A = ⋃n

i=1 Ai where {Ai} is a countable family of disjoint sets Ai ∈ D , then from the fact
that

χA =
∑

i

χAi
,

it follows that A ∈ D . We conclude that Da,x is a Dynkin system. P denotes the set of all
the rectangular subsets of R+ × �0, namely

P := {A ⊂ R+ × �0 s.t. A = A1 × A2 with A1 ∈ B(R+), A2 ∈ B(�0)} . (A.10)

We first of all notice that P is a π -system [62, definition (a), Lemma 1.6]. Indeed, it is non-
empty and closed under finite intersections. We aim at proving that P ⊂ Da,x . Consider
A ∈ P , since A = Ã × Â with Ã ∈ B(R+) and Â ∈ B(�0), we notice that

∫
�0

χA(a − s, ξ)k1(s, x, dξ) = χÃ(a − s)k1(s, x, Â). (A.11)
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On the other hand, for every a > 0 and x ∈ �0, the map

s �→ χÃ(a − s)k1(s, x, Â)

is measurable because it is the product of the two measurable functions

s �→ k1(s, x, Â),

which is measurable by definition, and

s �→ χÃ(a − s),

which is measurable because χÃ(a − s) = χÃa
(s) where Ãa := {s ∈ R∗ : s = a − v, v ∈ Ã}

is a Borel set because it is the translation of a Borel set. We conclude that P ⊂ Da,x . It
follows from [8, Lemma 6.4.2], that

B(R+ × �0) = B(R+) ⊗ B(�0) (A.12)

where B(R+) ⊗ B(�0) denotes the σ -algebra generated by all the measurable rectangles
(sets of the type R = R1 × R2 with R1 ∈ B(R+) and R2 ∈ B(�0)). By Dynkin’s Lemma
(Lemma A.1.3 in [62]) we deduce that B(R+)⊗B(�0) ⊂ D and from (A.12) that B(R+ ×
�0) ⊂ D . Therefore, for every A ∈ B(R+ × �0), every a > 0 and every x ∈ �0, the map

s �→
∫

�0

χA(a − s, ξ)k1(s, x, dξ)ds

is measurable. As a consequence, the map

s �→
∫

�0

ϕn
ω(a − s, ξ)k1(s, x, dξ)

is measurable for any a > 0, for any x ∈ �0 and any ϕn
ω of the form (A.9) approximating

k2(·, ·,ω). By the dominated convergence theorem and by the fact that the limit of mea-
surable functions is a measurable function we can conclude that, for every ω ∈ B(�0), the
map

s �→
∫

�0

k2(a − s, ξ,ω)k1(s, x, dξ)

is measurable.
The map (A.8) is also locally bounded, indeed for every a > T > 0

sup
s∈[0,T ]

∫
�0

k2(a − s, ξ,ω)k1(s, x, dξ)

≤ sup
(s,x)∈[0,T ]×�0

k1(s, x,�0) sup
(v,ξ)∈[a−T ,a]×�0

k2(v, ξ,�0) < ∞. �

Next we introduce the definition and the properties of the convolution of two kernels. The
definition of convolution that we are going to present is a particular case of the convolution
product between kernels presented in [18].
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Definition A.11 (Convolution product of kernels) We define the convolution product of two
locally bounded kernels k1, k2 :R+ × �0 × B(�0) → R+ as

(k2 ∗ k1)(a, x,ω) :=
∫ a

0

∫
�0

k2(a − s, ξ,ω)k1(s, x, dξ)ds. (A.13)

Now we will prove some properties of the convolution that correspond to the properties
of [18, Theorem 2.2].

Lemma A.12 The convolution product of two locally bounded kernels is a locally bounded
kernel.

Proof We first of all show that for every ω ∈ B(�0), the map

(a, x) �→ (k2 ∗ k1)(a, x,ω)

is measurable.
As explained in the proof of Lemma A.10, since for a fixed ω ∈ B(�0), the map (s, ξ) �→

k2(s, ξ,ω) is measurable and positive, it can be (pointwise) approximated from below by a
non decreasing sequence of simple functions ϕn

ω of the form (A.9).
To prove the measurability of

(a, x) �→
∫ a

0

∫
�0

ϕn
ω(a − s, ξ)k1(s, x, dξ)ds

we first prove the measurability of

(a, x) �→
∫ a

0

∫
�0

χA(a − s, ξ)k1(s, x, dξ)ds

for every A ∈ B(R+ × �0).
To this end we define the set

D :=
{
A ⊂ R+ × �0 s.t. (a, x) �→

∫ a

0

∫
�0

χA(a − s, ξ)k1(s, x, dξ)ds is measurable

}
.

We show now that D is a Dynkin system. Firstly, we show that R+ × �0 ∈ D . This follows
by the fact that

(a, x) �→
∫ a

0
k1(s, x,�0)ds

is measurable since it is a Carathéodory function (see [1, Lemma 4.51]). Indeed, once we
have fixed x ∈ �0, the map

a �→
∫ a

0
k1(s, x,�0)ds

is continuous and the map

x �→
∫ a

0
k1(s, x,�0)ds
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is measurable thanks to a corollary of Tonelli’s Theorem [8, Corollary 3.4.6]. If A ∈ D then,
since χAc = 1 − χA we know that

∫ a

0

∫
�0

χAc(a−s, ξ)k1(s, x, dξ)ds =
∫ a

0
k1(s, x,�0)ds−

∫ a

0

∫
�0

χA(a−s, ξ)k1(s, x, dξ)ds

and by the fact that R+ × �0 ∈ D and A ∈ D we deduce that Ac ∈ D . Similarly, if A =⋃n

i=1 Ai where {Ai} is a countable family of disjoint sets Ai ∈ D , then from the fact that

χA =
∑

i

χAi
,

it follows that A ∈ D . We conclude that D is a Dynkin system.
Let P be defined as (A.10), we aim at proving that P ⊂ D . Consider A ∈ P , with

A = Ã × Â with Ã ∈ B(R+) and Â ∈ B(�0). Thanks to (A.11), we have that for every
fixed x ∈ �0 the map

a �→
∫ a

0

∫
�0

χA(a − s, ξ)k1(s, x, dξ)ds =
∫ a

0
χÃ(a − s)k1(s, x, Â)ds (A.14)

is continuous thanks to the fact that the convolution of bounded functions is continuous [31,
Chap. 2, Theorem 2.2]. On the other hand, the map

(s, x) �→ χÃ(a − s)k1(s, x, Â)

is measurable because it is the product of the two measurable functions

(s, x) �→ k1(s, x, Â),

which is measurable by definition, and

(s, x) �→ χÃ(a − s),

which is measurable because it is a constant in x and χÃ(a − s) = χÃa
(s) where Ãa :=

{s ∈ R∗ : s = a − v, v ∈ Ã} is a Borel set because is the translation of a Borel set. As a
consequence, the map

x �→
∫ a

0

∫
�0

χA(a − s, ξ)k1(s, x, dξ)ds =
∫ a

0
χÃ(a − s)k1(s, x, Â)ds (A.15)

is measurable thanks to [8, Corollary 3.4.6]. Combining the measurability of (A.15) and the
continuity of (A.14), we conclude that if A ∈ P , then

(a, x) �→
∫ a

0

∫
�0

χA(a − s, ξ)k1(s, x, dξ)ds

is a Carathéodory function and is therefore measurable. We conclude that P ⊂ D .
Dynkin’s Lemma and equality (A.12) imply that for every A ∈ B(R+ × �0) the map

(a, x) �→
∫ a

0

∫
�0

χA(a − s, ξ)k1(s, x, dξ)ds
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is measurable.
As a consequence, the map

(a, x) �→
∫ a

0

∫
�0

ϕn
ω(a − s, ξ)k1(s, x, dξ)ds

is measurable for any ϕn
ω of the form (A.9) approximating k2(·, ·,ω).

By the dominated convergence theorem and by the fact that the limit of measurable func-
tions is a measurable function we can conclude that, for every ω ∈ B(�0), the map

(a, x) �→ (k2 ∗ k1)(a, x,ω)

is measurable.
For every ω ∈ B(�0)

sup
(a,x)∈[0,T ]×�0

(k2 ∗ k1)(a, x,ω) ≤ sup
(s,ξ)∈[0,T ]×�0

k2(s, ξ,ω) sup
x∈�0

∫ T

0
k1(s, x,�0)ds < ∞.

Let us check that, for every (a, ξ) ∈R+ ×�0 the map (k2 ∗ k1)(a, ξ, ·) is a measure. Clearly

(k2 ∗ k1)(a, ξ,∅) =
∫ a

0

∫
�0

k2(a − s, ξ,∅)k1(s, x, dξ)ds = 0,

for every ω ∈ B(�0)

(k2 ∗ k1)(a, ξ,ω) ≥ 0

and for every (a, ξ) ∈R+ × �0

(k2 ∗ k1)(a, ξ,�0) < ∞.

Let us check that (k2 ∗ k1)(a, ξ, ·) is countably additive. Consider a countable collection of
disjoint sets {Ei}∞

i=1 in B(�0), then, by the monotone convergence theorem we have that

(k2 ∗ k1)(a, ξ,

∞⋃
i=1

Ei) =
∫ a

0

∫
�0

k2(a − s, ξ,

∞⋃
i=1

Ei)k1(s, x, dξ)ds

=
∫ a

0

∫
�0

∞∑
i=1

k2(a − s, ξ,Ei)k1(s, x, dξ)ds

=
∞∑
i=1

∫ a

0

∫
�0

k2(a − s, ξ,Ei)k1(s, x, dξ)ds

=
∞∑
i=1

∫ a

0

∫
�0

(k2 ∗ k1)(a, ξ,Ei). �

Remark A.13 As already observed above, if we assume that the set �0 is finite, and in par-
ticular that �0 := {ξ1, ξ2, . . . , ξn}, then we can omit the boundedness assumption in Defini-
tion A.11. Indeed, in this case, it is easy to see that the convolution product of kernels is well
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defined. In this case
∫ a

0

∫
�0

k2(a − s, ξ, ξm)k1(s, ξj , dξ)ds =
∫ a

0

∑
i

k
i,m
2 (a − s)k

j,i

1 (s)ds

≤
∑

i

∫ a

0
k

i,m
2 (a − s)k

j,i

1 (s)ds = (k2 ∗ k1)m,j (a), 1 ≤ m,j ≤ n,

where ki,j (a) = k(a, ξj , ξi). Since the convolution product of L1 “functions” is an L1 “func-
tion” (see for instance [31]), we can conclude that k2 ∗ k1 is well defined almost everywhere.

When �0 is not finite it is sufficient to assume the boundedness of the kernel as in Def-
inition A.22 to be able to conclude that the convolution product is well defined. We do not
know if this assumption is necessary, but we have not been able to relax it.

Let h : �0 → R+ be integrable with respect to the measure (k2 ∗ k1)(a, x, ·) and consider
the integral

∫
�0

h(ξ)(k2 ∗ k1)(a, x, dξ) (a, x) ∈R+ × �0. (A.16)

If we substitute in the integral the expression for k2 ∗ k1 we formally obtain that

∫
�0

h(ξ)(k2 ∗ k1)(a, x, dξ) =
∫

�0

∫ a

0

∫
�0

k1(s, x, dη)dsh(ξ)k2(a − s, η, dξ).

The right hand side of the above equation is not well defined, as the meaning of the
expression

∫
�0

k2(a − s, η, dξ)k1(s, x, dη) is not clear. In the following lemma, we show
that this difficulty is only a notational difficulty and, using the definition of integral with
respect to a measure, we find a concrete expression for (A.16).

Lemma A.14 Assume k1, k2 :R+ ×�0 ×B(�0) →R+ are two locally bounded kernels. Let
h : �0 →R be a bounded and measurable function, then

∫
�0

h(ξ)(k2 ∗ k1)(a, x, dξ) =
∫ a

0

(∫
�0

(∫
�0

h(ξ)k2(a − s, η, dξ)

)
k1(s, x, dη)

)
ds.

(A.17)

Proof We first of all show that (A.17) is true for step functions. Let

hn(ξ) :=
n∑

i=1

αiχAi
(ξ) αi ∈ R+, Ai ∈ B(�0)

then

∫
�0

hn(ξ)(k2 ∗ k1)(a, x, dξ) =
∫

�0

n∑
i=1

αiχAi
(ξ)(k2 ∗ k1)(a, x, dξ)

=
n∑

i=1

αi(k2 ∗ k1)(a, x,Ai) =
n∑

i=1

αi

∫ a

0

∫
�0

k2(a − s, η,Ai)k1(s, x, dη)ds
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=
∫ a

0

(∫
�0

(∫
�0

n∑
i=1

αiχAi
(ξ)k2(a − s, η, dξ)

)
k1(s, x, dη)

)
ds

=
∫ a

0

(∫
�0

(∫
�0

hn(ξ)k2(a − s, η, dξ)

)
k1(s, x, dη)

)
ds.

Next assume that h is a non negative measurable function. By the definition of integral with
respect to a measure we have that

∫
�0

h(ξ)(k2 ∗ k1)(a, x, dξ) = lim
n→∞

∫
�0

sn(ξ)(k2 ∗ k1)(a, x, dξ)

where sn is a sequence of step functions that approximate h. Since (A.17) holds for step
functions we conclude that it holds for any non negative measurable function by passing to
the limit.

If h is allowed to take negative values, we can argue in the classical way, writing h =
h+ − h− and applying the above result for the positive functions h+ and h−. �

Lemma A.15 The product ∗ is associative and distributive over +. Let {kn}n be an increasing
sequence of locally bounded kernels pointwise converging to a locally bounded kernel k, and
let l be a locally bounded kernel, then

lim
n→∞ l ∗ kn = l ∗ k. (A.18)

Proof Let us check, using Fubini-Tonelli theorem that (k3 ∗ k2) ∗ k1 = k3 ∗ (k2 ∗ k1):

((k3 ∗ k2) ∗ k1))(a, ξ,ω)

=
∫ a

0

(∫
�0

k1(r, ξ, dη)

∫ a−r

0

(∫
�0

k2(s, η, dx)k3(a − r − s, x,ω)

)
ds

)
dr

=
∫ a

0

∫ a−r

0

(∫
�0

(∫
�0

k3(a − r − s, x,ω)k2(s, η, dx)

)
k1(r, ξ, dη)

)
dsdr

=
∫ a

0

∫ a

r

(∫
�0

(∫
�0

k3(a − v, x,ω)k2(v − r, η, dx)

)
k1(r, ξ, dη)

)
dvdr

=
∫ a

0

∫ v

0

(∫
�0

(∫
�0

k2(v − r, η, dx)k3(a − v, x,ω)

)
k1(r, ξ, dη)

)
drdv

= (k3 ∗ (k2 ∗ k1))(a, ξ,ω)

Notice that for the last equality we have used equation (A.17). In a similar way, it is possible
to check that (k1 + k2) ∗ k3 = k1 ∗ k3 + k2 ∗ k3.

The last property follows from the monotone convergence theorem. �

Let us introduce the following notation,

k∗1 := k

and

k∗(n+1) := k ∗ k∗n for n ≥ 1.
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Lemma A.16 (Resolvent) Let k be a locally bounded kernel. For every t > 0, x ∈ �0, ω ∈
B(�0), the series

r(t, x,ω) :=
∞∑

n=1

k∗n(t, x,ω),

converges in R+. In fact, r is a locally bounded kernel and it is the only solution of the
resolvent equation

r = k + r ∗ k = k + k ∗ r.

We say that r is the resolvent of k.

Proof First of all we notice that the resolvent equation has a unique solution. Indeed, suppose
there exists another solution Q, then

r = k + r ∗ k = k + r ∗ (Q − k ∗ Q) = k + r ∗ Q − r ∗ k ∗ Q = k + (r − r ∗ k) ∗ Q

= k + k ∗ Q = Q.

The convergence of

r(t, x,ω) :=
∞∑

n=1

k∗n(t, x,ω),

in R+ follows from the positivity of k.
The map (t, x) �→ r(t, x,ω) is measurable because it is the pointwise limit of measurable

functions.
Notice also that for any ω ∈ B(�0) and for any T > 0

sup
(t,ξ)∈[0,T ]×�0

r(t, ξ,ω) ≤
∞∑

n=1

sup
(t,x)∈[0,T ]×�0

k∗n(t, x,ω)

≤ sup
(t,ξ)∈[0,T ]×�0

k(t, ξ,ω)

∞∑
n=2

sup
x∈�0

∫ T

0
k∗(n−1)(a, x,�0)da

≤ sup
(t,ξ)∈[0,T ]×�0

k(t, ξ,�0)

∞∑
n=2

(
sup
x∈�0

∫ T

0
k(a, x,�0)da

)n−1

.

Where, for the last inequality we have used the associativity property of the convolution
product. From the above computations we conclude that, if we assume that

sup
x∈�0

∫ T

0
k(a, x,�0)da < 1,

then r is a locally bounded kernel. Moreover, thanks to (A.18) we deduce that rT , the re-
striction of r over [0, T ], solves the resolvent equation

r = k + r ∗ k = k + k ∗ r



12 Page 60 of 67 E. Franco et al.

for every t ∈ [0, T ].
If, instead

sup
x∈�0

∫ T

0
k(a, x,�0)da ≥ 1

we can adapt the above argument. Since k(·, ·,�0) is locally bounded, there exists a λ > 0
such that

sup
x∈�0

∫ T

0
e−λak(a, x,�0)da < 1.

Applying the above argument to kλ(a, x,ω) := e−λak(a, x,ω) we deduce that r(a, x,ω) =
eλarλ(a, x,ω) is a locally bounded kernel and its restriction on [0, T ] is the only solution of
the resolvent equation, for the kernel k, on [0, T ].

We can repeat the above argument for every interval of finite length and, thanks to the
uniqueness of the solution of the resolvent equation we obtain a global solutions by gluing
the local solutions. �

A.3 Existence, Uniqueness and Representation of the Solution of the Renewal
Equation

Definition A.17 X denotes the set of functions f : R+ × B(�0) → R+ such that for every
a ∈ R+, f (a, ·) is a measure, the function f (·,ω) is measurable for every ω ∈ B(�0) and
f (·,�0) is locally integrable.

The set X can be seen as a subset of the space of the measures on the product σ -algebra
B(R+) × B(�0) that have a density in the first variable. A better characterization of this
set, as well as a possible topological structure on it, are not, at the moment, available. These
might be subject of future work.

Lemma A.18 Every locally bounded kernel k : R+ × �0 × B(�0) → R+ induces a linear
operator Lk : X → X defined as

Lk(f )(t,ω) :=
∫ t

0

∫
�0

k(t − σ,x,ω)f (σ, dx)dσ t > 0 ω ∈ B(�0).

Proof Let us first show that, if f ∈ X , then Lk(f ) ∈ X . The fact that for every t ∈ R+
the map Lk(f )(t, ·) is a measure in the second variable follows as in Lemma A.12. The
measurability of Lk(f )(·,ω) can be proven using the measurability of f as in the proof
of Lemma A.12. Notice that, applying Fubini-Tonelli theorem we deduce that for every
ω ∈ B(�0) ∫ T

0
Lk(f )(t,ω)dt =

∫ T

0

∫ t

0

∫
�0

k(t − σ,x,ω)dσf (σ, dx)dt

=
∫ T

0

∫ T

σ

∫
�0

k(t − σ,x,ω)f (σ, dx)dtdσ

≤
∫ T

0

∫
�0

∫ T

0
k(τ, x,ω)dτf (σ, dx)dσ

≤
∫ T

0
f (σ,�0)dσ sup

x∈�0

∫ T

0
k(τ, x,�0)dτ < ∞.
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The linearity of the operator Lk can be checked via a direct computation. �

Remark A.19 Notice that, if k is a locally bounded kernel, then, for every ξ ∈ �0, the map
(a,ω) �→ k(a, ξ,ω) belongs to the set X . Therefore, the convolution of an arbitrary kernel
k1 with a given kernel k2 can be seen as the application of the linear operator Lk2 to k1(·, ξ, ·)
Lemma A.20 If k1, k2 :R+ × �0 × B(�0) →R+ are locally bounded kernels, then

Lk2Lk1 = Lk2∗k1

Proof Let us show that for any f ∈ X , it holds that Lk2(Lk1(f )) = Lk2∗k1(f ).

(Lk2∗k1(f ))(t,ω) =
∫ t

0

∫
�0

(k2 ∗ k1)(t − σ,x,ω)f (σ, dx)dσ

=
∫ t

0

∫ (x)

�0

∫ t−σ

0

∫ (ξ)

�0

k2(s, ξ,ω)k1(t − σ − s, x, dξ)f (σ, dx)dsdσ

=
∫ t

0

∫ t−s

0

∫ (x)

�0

∫ (ξ)

�0

k2(s, ξ,ω)k1(t − σ − s, x, dξ)f (σ, dx)dσds

= Lk2(Lk1f (t,ω)),

where in the last equality we have used (A.17) with h given by ξ �→ k2(s, ξ,ω) and where
we have applied Fubini-Tonelli theorem. �

The following theorem is a special case of [18, Theorem 2.3].

Theorem A.21 Let f0 ∈ X and let k be a locally bounded kernel. The unique solution of the
renewal equation:

b = Lkb + f0 (A.19)

is the function b ∈ X given by

b := f0 + Lrf0 (A.20)

where r is the resolvent of k.

Proof Let b be given by

b(t,ω) = f0(t,ω) + (Lrf0)(t,ω),

it follows that b(t,ω) is a measure in the second variable and b(·,ω) is locally integrable
because Lrf0 is locally integrable and f0(·,ω) is integrable.

The function b solves equation (3.1), indeed

Lkb + f0 = Lk(Lrf0 + f0) + f0 = Lk∗rf0 + Lkf0 + f0 = Lk∗r+kf0 + f0

= Lrf0 + f0 = b.

Notice that every solution of equation (3.1) is of the above form, indeed, let b be a solution
of (3.1), then

f0 = b − Lkb = b − Lr−r∗kb = b − Lrb + Lr∗kb = b − Lr (b − Lkb) = b − Lrf0. �
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A.4 Laplace Kernel, Next Generation Operator, Basic Reproduction Number,
Malthusian Parameter

Following the terminology in [18] we define the Laplace kernels as follows.

Definition A.22 (Laplace kernel) A Laplace kernel is a kernel such that there exists z0 ≤ 0
with

sup
ξ∈�0

∫ ∞

0
e−z0ak(a, ξ,�0)da < ∞.

By the definition of Laplace kernel, for every �λ > z0, with z0 ≤ 0, the Laplace transform
of k is well defined,

k̂(λ, x,ω) :=
∫ ∞

0
e−λak(a, x,ω)da < ∞ and k̂(0, x,ω) =

∫ ∞

0
k(a, x,ω)da < ∞.

Definition A.23 Let k be a Laplace kernel with z0 ≤ 0. The operator K : M+
b (�0) →

M+
b (�0) defined as

(Kϕ)(ω) =
∫

�0

ϕ(dξ)

∫ ∞

0
k(a, ξ,ω)da ω ∈ B(�0), (A.21)

is the next generation operator.

Definition A.24 The basic reproduction number R0 is the spectral radius of the next gener-
ation operator K.

Definition A.25 If the eigenproblem

ν(ω) =
∫

�0

k̂(r, x,ω)ν(dx) (A.22)

has a unique solution (r, ν) ∈ R× M+(�0), then r is called Malthusian parameter.

To prove the existence of R0, of the eigencouple (r, ν) and to prove the classical relation

sign(R0 − 1) = sign(r)

additional assumptions on the kernel k are needed (see for instance [56, 57]. In the main
text of the present paper we elaborate the details under a factorisation assumption on the
kernel k.

Appendix B: The PDE Formulation of Structured Population Models

Historically, models of cell growth and division were first formulated as PDEs with non-
local terms [5, 49, 60]. It was observed by Bell [6] that there is a close relation between
the PDE and a Volterra integral equation (renewal equation). This was later elaborated and
exploited to gain information about the asymptotic behaviour (balanced exponential growth)
in, for instance, [16, 33, 36].
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In the case of cells reproducing by fission into equal parts, the PDE for the size density
n takes the form

∂tn(t, x) + ∂x(g(x)n(t, x)) = − (μ(x) + γ (x))n(t, x) + 4γ (2x)n(t,2x), (B.1)

with 0 < x < 1 and where the term with argument 2x should be interpreted as zero when
2x ≥ 1. Below we consider a more general version of (B.1) allowing for unequal division.

Our results imply that the (weak) solutions of (B.1) converge, under the non-degeneracy
condition g(2x) < 2g(x), to a stable distribution if R0 = 1, while they exhibit balanced
exponential growth or decline if R0 > 1 or R0 < 1, respectively. We plan to explain in detail
how our results allow to deduce the asymptotic behaviour of n in a follow-up paper.

Next we briefly discuss the relation between the PDE and renewal equation formulations.
Assume, for the moment, that the initial condition �(·, ·) is absolutely continuous with
respect to the Lebesgue measure on R

2 and denote its density with ψ(·, ·).
Let n(t, x) be the density of cells with size x at time t . The interpretation of n suggests

that it should be defined as follows: If x ∈ �M := [x,1), then

n(t, x) :=
{

n0(X(−t, x))F̂ (X(−t, x), x)
g(X(−t,x))

g(x)
if t < T (x)

F̂(x,x)

g(x)
b̃(t − T (x)) if t ≥ T (x)

(B.2)

with

n0(x) =
∫

�0

F̂ (ξ, x)

g(x)
ψ(−τ(ξ, x), ξ)dξ, x ∈ �

and b̃ the representative of B ′, which solves the differentiated version of (3.5) (i.e. (5.13)
Sect. 5). If instead x ∈ �0, then

n(t, x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n0(X(−t, x))F̂ (X(−t, x), x)
g(X(−t,x))

g(x)

+ ∫
�M

∫
{ξ∈�0:t>τ(ξ,x)} F̂ (z, x)

γ (y)

g(x)
η(y, dz)·

·n(t − τ(z, x), y)dy if t < T (x)∫
�M

∫
�0

F̂ (z, x)
γ (y)

g(x)
η(y, dz)n(t − τ(z, x), y)dy if t ≥ T (x).

(B.3)

It is possible to prove that the function n given by the formulas (B.2) and (B.3) is the
solution, in the sense of distributions, of

∂tn(t, x) + ∂x(g(x)n(t, x)) = − (μ(x) + γ (x))n(t, x) (B.4)

+ ∂x

∫
�

γ (y)η(y, (0, x])n(t, y)dy.

We postpone the proof to a follow-up paper.
Notice that in case η(x,ω) := 2δx/2(ω) we have that

∂x

∫
�

γ (y)η(y, (0, x])n(t, y)dy = 2∂x

∫ 2x

2 inf�
γ (y)n(t, y)dy = 4γ (2x)n(t,2x)

and the equation (B.4) reduces to (B.1).
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Proposition B.1 Let μ, g, η and γ be as in Assumption 4.1 and, moreover, let γ and g be as
in case 2 of Assumption 4.2. Let one of the two assumptions 1 or 2 of Proposition 4.4 hold
and let us adopt the notation of the Proposition. If R0 given by (4.7) is equal to 1, then the
solution n of (B.4) satisfies

∥∥∥∥∥
n(t, ·)

D
− χ�M

(·)F̂ (x, ·)
g(·) − χ�0(·)

∫
�0

∫
�M

F̂ (z, ·)γ (y)η(y, dz)
F̂ (x, y)

g(y)
dy

∥∥∥∥∥
L1(�)

→ 0

as time goes to infinity.

We postpone the proof of this and similar results for R0 �= 1 to a future work.
Let us now return to the general case in which � is a Radon measure. We first define the

bounded variation function N(t, x) representing the number of cells of size in (0, x] at time
t . As we already pointed out in the introduction, measures and functions giving numbers of
individuals in a set are conceptually easier than densities.

If x ∈ �0, then

N(t, x) =
∫

�0

∫ 0

t−τ(ξ,x)

F (t − s, ξ)�(dξ, ds) (B.5)

+
∫

�0

∫
�M

∫ t

t−τ(z,x)

F (t − s, z)γ (y)η(y, dz)n(s, y)dyds

and if x ∈ �M

N(t, x) =
∫

�0

∫ 0

t−τ(ξ,x)

F (t − s, ξ)�(dξ, ds) +
∫ t

t−τ(x,x)

F (t − s, x)b̃(s)ds (B.6)

+
∫

�0

∫
�M

∫ t

t−τ(z,x)

F (t − s, z)γ (y)η(y, dz)n(s, y)dyds

The function N satisfies the integrated version of (B.4):

∂tN(t, x) = − g(x)∂xN(t, x) −
∫

(0,x]
(μ(y) + γ (y))N(t, dy)

+
∫

�

γ (y)η(y, (0, x])N(t, dy)

and therefore the asymptotic behaviour of N can be analysed in a similar way.
As for the model of waning and boosting we can, if � is absolutely continuous with

respect to Lebesgue measure, write down an expression for the density n(t, x) of individuals
with immune level x at time t as a function of b̃ as we did for the cell fission model.

If the boosting function f is such that f −1 takes only finitely many values, one can
formulate a PDE for the density, like in [17], where f −1 is double valued. When f −1 can
take a continuum of values one needs to consider measures/NBV functions, and work with
the number N(t, x) of individuals with immunity level in (0, x] at time t . We postpone the
elaboration of this to a follow up paper.
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