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S U M M A R Y
A series of terranes were accreted to Eurasia in the region of what is now the Tibetan Plateau,
including the Qaidam-Qilian, the Songpan-Ganzi, the Qiangtang, the Lhasa and the Tethyan
Himalaya terranes. The drift history of the Qiangtang Terrane and the timing of the Lhasa–
Qiangtang collision are controversial. To contribute to this topic, here, we palaeomagnetically
investigate the Middle-Upper Jurassic limestones of the Yanshiping group in the Zaduo area
(32.5◦N, 95.2◦E), in the Estern Qiangtang Terrane. Twelve sites (133 samples) were processed.
A major challenge in palaeomagnetism is the possibility of remagnetization that interferes with
palaeogeographic reconstructions. Both thermal and alternating field demagnetizations were
carried out to isolate the characteristic remanent magnetization (ChRM). Despite the positive
reversals test, rock magnetic information points to a remagnetized ChRM. The ChRM is
residing in stable single-domain (SSD) magnetite grains with cogenetic superparamagnetic
(SP) particles. The co-occurreance of SSD and SP magnetites generates distinct rock-magnetic
properties often refer to as the ‘remagnetized fingerprint’ in limestones. This remagnetization
process is also manifested by the widespread occurrence of gypsum veinlets in the limestones.
The site-mean direction of the 12 sites after tilt-correction is Ds = 30.6◦, Is = 35.6◦, κs = 182.9,
α95 = 3.2◦, corresponding to a palaeolatitude of ∼19.7◦± 2.8◦N for the study area. The
corresponding palaeopole (59.8◦N, 202.7◦E with A95 = 2.8◦) points to an NRM acquired after
the India–Eurasia collision. The original sediments were likely anoxic because of the high
organic carbon fluxes that prevailed during their deposition. After the India–Eurasia collision,
it is envisaged that conditions became more oxic, giving rise to oxidation of iron sulphides
to authigenic magnetite and the CRM acquisition. The Zaduo area in the Eastern Qiangtang
Terrane has experienced ∼15.7◦ ± 3.2◦ (∼1740 ± 350 km) of latitudinal crustal shortening
since the Eocene. In addition, the clockwise rotation responding to the India–Eurasia collision
is also detected in the Zaduo area.

Key words: Magnetic properties; Asia; Palaeomagnetism; Remagnetization; Rock and min-
eral magnetism.

1 . I N T RO D U C T I O N

The Tibetan Plateau is composed of multiple accreted terranes, in-
cluding (from south to north) the Tethyan Himalaya, the Lhasa,

the Qiangtang, the Songpan-Ganzi and the Qaidam-Qilian terranes.
(Fig. 1). These terranes originated from the supercontinent of Gond-
wana, successively drifted northward and accreted to Eurasia from
the Early Palaeozoic to the Late Mesozoic (Dewey et al. 1988; Yin
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Figure 1. (a and b) Simplified tectonic map of the Tibetan Plateau and its adjacent regions (a) modified after van Hinsbergen et al. (2012). The abbreviations
of the tectonic units are SGT: Songpan-Ganzi Terrane; EQT: Eastern Qiangtang Terrane; WQT: Western Qiangtang Terrane; LT: Lhasa Terrane; THT: Tethyan
Himalaya Terrane; AKMS: Ayimaqing-Kunlun-Muztagh Suture Zone; JSSZ: Jinshajiang Suture Zone; LSSZ: Longmu Tso-Shuanghu Suture Zone; BNSZ:
Bangong-Nujiang Suture Zone; IYZSZ: Indus-Yarlung Zangbo Suture Zone. The numbers show the locations of previous palaeomagnetic studies: 1 – Dong et
al. (1991); 2 – Dong et al. (1990); 3 – Ran et al. (2017); 4 – Yan et al. (2016); 5 – Ren et al. (2013); 6 – Cheng et al. (2012); 7 – This study; 8 – Lin & Watts
(1988); 9 – Huang et al. (1992); 10 – Otofuji et al. (1990); 11 – Tong et al. (2015); 12 – Li et al. (2020); 13 – Roperch et al. (2017); 14 – Tong et al. (2017);
15 – Zhang et al. (2018); 16 – Zhang et al. (2020a); 17 – Cogné et al. (1999); 18 – Lippert et al. (2011); 19 – Cao et al. (2019) (see also Table S1). The cyan,
green and yellow symbols represent the previous palaeomagnetic studies of the Jurassic, Cretaceous and Palaeogene, respectively.

& Harrison 2000; Tapponnier et al. 2001; Kapp et al. 2007). Af-
terwards, due to the persistent northward indentation of the Indian
Plate with the Eurasian Plate and the related subduction, the Tibetan
Plateau was established. The Qiangtang Terrane (QT), the target ter-
rane of this study, is a long and narrow major crustal fragment in
the central Tibetan Plateau, generally thought to have separated
from Gondwana in Late Palaeozoic (Yin & Harrison 2000; Met-
calfe 2013; Xu et al. 2015). It collided with the Songpan-Ganzi
Terrane (SGT) during the Late Triassic to the Early Jurassic (Roger
et al. 2010; Song et al. 2015; Yan et al. 2016; Guan et al. 2021). To
the south, the Lhasa Terrane accreted with the Qiangtang terrane
during the Middle or Late Jurassic (Xu et al. 1985; Dewey et al.
1988; Yan et al. 2016; Ma et al. 2017; Li et al. 2019a, b), or the
Early Cretaceous (Kapp et al. 2003, 2007; Zhu et al. 2006, 2011,
2013, 2016; Bian et al. 2017; Meng et al. 2018; Chen et al. 2020),
even the Late Cretaceous (Zhang et al. 2012; Fan et al. 2014, 2015,
2018a, b; Liu et al. 2014). The different methods used to constrain
the collision age are likely the foremost reason for observed dif-
ferences in timing (Ding et al. 2005; Chen et al. 2020). Methods

include ophiolite obduction, faunal migration, peripheral foreland
basin formation and palaeomagnetism. Each delivers the age of dif-
ferent stages in the collision history providing sometimes an upper
or a lower limit (Ding et al. 2017).

To quantify the drift history of the Qiangtang Terrane, many
palaeomagnetic studies have been carried out on its Mesozoic strata
that provided extensive knowledge on its tectonic history (Lin &
Watts 1988; Dong et al. 1990, 1991; Otofuji et al. 1990; Huang et
al. 1992; Chen et al. 1993, 2017; Song et al. 2012, 2015, 2020;
Cheng et al. 2012; Ren et al. 2013; Tong et al. 2015; Yan et al.
2016; Ran et al. 2017; Meng et al. 2018; Cao et al. 2019, 2020;
Zhou et al. 2019; Guan et al. 2021). However, despite this vast
research effort, after consideration of the ‘Van der Voo criteria’ and
the recently established ‘R-criteria’ (Van der Voo 1990; Meert et
al. 2020), robust palaeomagnetic data sets are still rather limited
in number given the size of the terrane. Based on palaeomagnetic
studies from the same Middle-Upper Jurassic marine sedimentary
rock unit (the Yanshiping Group), Cheng et al. (2012), Ren et al.
(2013) and Yan et al. (2016) obtain palaeolatitudes of 20–25◦N for

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/228/3/2073/6381694 by Vakgroep W

iskunde /U
niversity Library U

trecht user on 05 January 2022



Remagnetization of the Jurassic limestones 2075

the Yanshiping area (Fig. 1), while Ran et al. (2017) suggest a syn-
folding remagnetization acquired during the early stage of folding
(about 20 per cent). In the Shuanghu area (∼300 km west of the
Yanshiping area), Cao et al. (2019) report a Jurassic palaeolatitude
of ∼35◦N for their reference site. Because of this palaeolatitudinal
discrepancy for the same Yanshiping Group, we investigate here the
Middle-Upper Jurassic limestones of that group in the Zaduo area
(∼300 km east of the Yanshiping area), in the Eastern Qiangtang
Terrane.

A major challenge in palaeomagnetism studies is that remag-
netization can interfere with palaeogeographic reconstructions, as
is increasingly recognized (Van der Voo & Torsvik 2012). It oc-
curs unpredictably either pre-folding (e.g. Perroud & Van der Voo
1984; Huang et al. 2015; Gao et al. 2018), syn-folding (e.g. Kent &
Opdyke 1985; Ran et al. 2017; Huang et al. 2017a, b) or post-folding
(e.g. Liebke et al. 2013; Huang & Opdyke 2015) rather than being
restricted to a certain period in certain regions. Carbonate rocks are
particularly notorious for being prone to remagnetization (Jackson
& Swanson-Hysell 2012). For instance, widespread remagnetiza-
tion has been reported in the orogenic belts in America and Europe
(Zegers et al. 2003; Zwing et al. 2009; Elmore et al. 2012; Jackson
& Swanson-Hysell 2012; Van der Voo & Torsvik 2012). Certain
studies reveal carbonate remagnetization in the South China Block
(Liu et al. 2013; Huang & Opdyke 2015; Zhang et al. 2020b) and
the Tibetan Plateau (Appel et al. 2012; Liebke et al. 2013; Huang
et al. 2015, 2017a, b, 2019a; Ran et al. 2017; Li et al. 2017b).
It is clear that improper conclusions will be reached when using
remagnetized rocks for classic palaeogeographic reconstruction.

In this paper, we present a palaeomagnetic study on Middle-
Upper Jurassic limestones from the Zaduo region. Their character-
istic remanent magnetization was isolated using both thermal and
alternating field (AF) demagnetization. Field tests and inclination
shallowing correction were carried out. Specifically, we use detailed
rock magnetism experiments and microscope observation to deter-
mine whether or not the rocks had suffered remagnetization. After
confirming the remagnetization, we analyse its timing along with
its geological implications. Finally, we discuss possible acquisition
mechanisms of remagnetization that may have been operating in
this particular setting.

2 . G E O L O G I C A L S E T T I N G A N D
S A M P L I N G

The Qiangtang Terrane is located in the central Tibetan Plateau,
bounded by the Bangong-Nujiang Suture Zone (BNSZ) to the south
with the Lhasa Terrane and by the Jinshajiang Suture Zone (JSSZ)
to the north with the Songpan-Ganzi Terrane (Fig. 1b). The Tri-
assic Longmo Co-Shuanghu suture zone (LSSZ) subdivides the
terrane into the Eastern and Western Qiangtang subterranes (EQT
and WQT, respectively), also known as the Northern and Southern
Qiangtang subterranes (cf. Fig. 1b; ; Yin & Harrison 2000; Pan et al.
2004; QGSI 2005; Li et al. 2009; Metcalfe 2013).

Our sampled section (32.5◦N, 95.2◦E) is located in the eastern
portion of the EQT, about 30 km to the south of the Zaduo County
(Fig. 1b). In the Zaduo area rocks from Palaeozoic to Cenozoic
age are exposed, they are separated by several unconformities, from
old to young: the Lower Carboniferous Zaduo Group, the Upper
Carboniferous Jiamainong Group, the Permian Kaixinling Group
and Gadikao Formation, the Middle Triassic Jielong Formation,
the Upper Triassic Jieza Group, the Middle-Lower Jurassic Yan-
shiping Group, the Cretaceous Fenghuoshan Group, the Palaeocene

Tuotuohe and Luolika Groups and the Eocene Wudaoliang Quguo
Groups (Fig. 2a; QGSI 2005, 2014; Guan et al. 2021). There is
an obvious sedimentary hiatus during the Early Cretaceous (QGSI
2005, 2014). The Jurassic Yanshiping Group is formally defined in
the Yanshiping area and consists of the Quemo Co (J2q), Buqu (J2b),
Xiali (J2-3x), Suowa (J3s) and Xueshan (J3x) Formations from base to
top (QGSI 2005, 2014; Fang et al. 2016; Yan et al. 2016). The Group
is characterized by rhythmic alternations of sandstone and limestone
sequences with an overall coarsening upward pattern (QGSI 2005,
2014; Fang et al. 2016; Yan et al. 2016). All formation contacts are
conformable. However, only the Quemo Co, Buqu and Xiali Forma-
tions are exposed in the Zaduo area, our study target (Figs 2a and
c; QGSI 2005, 2014; Fang et al. 2016; Song et al. 2016; Yan et al.
2016). The Quemo Co Formation consists of alternating purple-red
sandstones to mudstones with a conglomerate layer at the bottom.
The Buqu Formation is mainly white-greyish to dark-greyish oolitic
and bioclastic limestone deposited in shallow littoral sea. The ap-
pearance of massive biolimestones indicates a warm climate at that
time, which was conducive to the growth of organisms, while its bio-
clastic nature reflects the shallow sea depositional conditions (QGSI
2005, 2014). Many bivalve fossils are identified in the Buqu Forma-
tion in the study area, including Camptonectes (Camptochlamys),
yanshipingensis Wen, Camptonectes (Camptonectes) rugosus Wen,
Camptonectes (Camptonectes) cf. lens (Sowerby), Camptonectes
concentrica (Sowerby) and Pholadomya socialis qinghaiensis Wen,
index fossils of the Bajocian and Bathonian Stages of the Jurassic
Epoch (QGSI 2005, 2014), which are similar to those observed
in the Yanshiping region that were magnetostratigraphically dated
to be 165.5–163.3 Ma (Fang et al. 2016). The Xiali Formation
consists of purple-red and yellow-green sandstones, siltstones and
multicoloured (dark red, grey, greyish and light yellow) mudstones
(QGSI 2005, 2014; Fang et al. 2016).

A total of 133 samples from 12 sites were collected from the Buqu
Formation using a portable water-cooled petrol-powered drill. They
were oriented with a magnetic compass and a sun compass when
the weather allowed. All of the sites are located along a monoclinal
section where bedding attitudes only have a slight variation with a
NE dip direction and dips of 23–31◦ (Figs 2b, d and e). Remarkably,
veins are widespread in the Buqu Formation limestones. Most of the
samples were collected from fresh rock away from cracks and veins.

3 . P E T RO G R A P H Y

Veins are very common in the Buqu Formation limestones (Figs 3a–
c). To better understand their mineral composition, texture and po-
tential changes during burial, we microscopically analysed thin sec-
tions of 10 representative samples. Although we collected fresh
samples away from cracks and veins, small gypsum veins can be
observed on the samples (Figs 3d–h). Two different microtextures
are present in these samples (Figs 3i–p). The first type is character-
ized by a bioclastic structure, with micritic and/or sparry calcite as
the dominant groundmass. Bioclastics account for 60 per cent of the
detrital component and interstitial material for the remaining 40 per
cent. Extensive cementation, dissolution, replacement and recrys-
tallization features are recognized. The bioclastics (e.g. crinoids,
algae, crustaceans and foraminifera) are almost completely altered
by calcite. The dissolution pores are filled and cemented with cal-
cite (Figs 3i–l). The rocks were thus not immune to diagenetic fea-
tures. The other type is mainly micritic and/or has a microcrystalline
structure. Calcite is the dominant mineral with a content of about 95
per cent; bioclastics, terrigenous clastic quartz and certain opaque
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2076 Q. Fu et al.

Figure 2. (a) Geological map of the Zaduo section (modified from the 1:250 000 Zaduo County regional geological map [I46C004004] by the Qinghai
Geological Survey Institute (QGSI) 2005). (b) Profile of the sampled section. (c) Lithostratigraphy of the Buqu Formation with the sampling localities
indicated. (d and e) Field photographs of the Buqu Formation.
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Remagnetization of the Jurassic limestones 2077

Figure 3. Results of petrographic analysis of representative samples from the Buqu Formation limestones. (a–c) Widespread veins in the field outcrops; (d–h)
macroscopic gypsum veins on the surface of the samples and (i–j, k–l, m–n and o–p) micrographs in plane-polarized light and cross-polarized light.

minerals account for the remaining 5 per cent. In addition, gypsum
veinlets are visible under the microscope in most of the samples in-
vestigated (Figs 3m–p). These veinlets vary in size, with a thickness
ranging from a few to hundreds of micrometers. In short, the mi-
croscopic observations show widespread recrystallization and the
epigenetic formation of gypsum veinlets. These features suggest hy-
drothermal activity with the likelihood of remagnetization (Parnell
et al. 2000; Elmore et al. 2012; Ran et al. 2017; Huang et al. 2017a).

4 . PA L A E O M A G N E T I S M

Two specimens (diameter 2.5 cm, length 2.2 cm) were obtained from
most of the palaeomagnetic oriented core samples, one for stepwise
AF demagnetization and the other for stepwise thermal demagneti-
zation to isolate the ChRM. Remanent magnetization measurements
were conducted by a superconducting quantum interference device
(SQUID) magnetometer (2G Enterprises) hosted in a magnetically
shielded room (<170 nT). The AF demagnetization was conducted
for 133 specimens up to an AF of 140 mT with intervals of 2–20
mT by a 2G degausser attached to the SQUID magnetometer. 25

sister specimens were progressively thermally demagnetized in 15
steps (100 ◦C, 150 ◦C, 200 ◦C, 300 ◦C, 350 ◦C, 400 ◦C, 425 ◦C, 450
◦C, 475 ◦C, 500 ◦C, 525 ◦C, 550 ◦C, 570 ◦C, 580 ◦C and 590◦C ) in
an ASC TD-48 oven. All of the experiments above were conducted
in the palaeomagnetic laboratory of the Institute of Tibetan Plateau
Research, Chinese Academy of Sciences (ITPCAS, Beijing, China).

4.1. Demagnetization

For the Buqu Formation limestones, AF and thermal demag-
netization data of sister specimens show similar ChRM direc-
tions (Figs 4a–d). The ChRM directions were determined from
at least four successive steps by principal component analysis
(Kirschvink 1980). Specimens with maximum angular deviation
(MAD) >15◦ were rejected for further analysis. Site-mean direc-
tions were calculated using Fisher’s statistics (Fisher 1953). Given
that the thermal demagnetization results were sometimes more er-
ratic and yielded higher MAD values than the AF demagnetization,
we used the latter to calculate the ChRM directions. Most of the
specimens (from 10 of 12 sites) exhibit a single component that is
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2078 Q. Fu et al.

Figure 4. Representative demagnetization diagrams for specimens from the Buqu Formation limestones. All diagrams are displayed after bedding tilt correction.
Solid (open) symbols represent the projections of vector endpoints on the horizontal (vertical) plane; In stereo plots, solid (open) symbols represent positive
(negative) inclination. NRM: natural remanent magnetization.
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decaying toward the origin (Figs 4b–d, f–h). This component was
often isolated below ∼140 mT or ∼450–500 ◦C. The specimens’
magnetic intensity usually drops to 20 per cent of the starting value
below 40 mT or 350 ◦C (Fig. 4). The other specimens show two
components (Figs 4a and e): a viscous low-field (temperature) com-
ponent (LFC) which is removed below 20 mT or 300–350 ◦C and
a high-field (temperature) component (HFC) which is isolated be-
tween 25 and 140 mT or ∼300–500 ◦C. These specimens have a
reverse ChRM, and their magnetic intensity increased as the AF
increased to 20 mT or the temperature rose to ∼350 ◦C (Fig. 4).

4.2. ChRM directions

The mean direction of the LFCs is Dg = 16.4◦, Ig = 45.0◦, κ = 19
and α95 = 7.1◦, n = 22 in geographic coordinates and Ds = 29.1◦,
Is = 28.1◦, κ = 17.9 and α95 = 7.4◦, n = 22 in stratigraphic
coordinates (Fig. 5a). The LFCs are not clustered around the present-
day geomagnetic field (PGF) direction (D = 359.5◦, I = 51.1◦) in
this region. This component is not assigned geological significance,
we thus will not speculate on its origin.

Only a single specimen from each core was palaeomagnetically
processed and therefore named a sample (Butler R.F. 1992). A
total of 123 of 133 specimens/samples yield consistent high AF
ChRM directions that provide 12 site-mean directions containing
ten normal and two reverse polarity sites (Fig. 5b and Table 1). Al-
though the two reverse sites are grouped together stratigraphically
and may not be sufficient in number, reversals test results (McFad-
den & McElhinny 1990) are positive at the 95 per cent confidence
limit with a classification A (average γ = 2.2 < critical γ = 3.7)
for sample-mean directions and a classification B (average γ =
3.6 < critical γ = 9.0) for site-mean directions. A fold test could
not be conducted due to too slight variation of the bedding atti-
tudes. Inclination shallowing is common in the ChRM directions
derived from sedimentary rocks, and it is thought to be due to depo-
sitional processes and/or compaction during burial (Tan et al. 2003;
Tauxe & Kent 2004; Yan et al. 2005; Ren et al. 2013). However,
unlike redbeds and other clastic rocks, it is commonly believed that
limestone has little inclination shallowing, as it barely compacts,
typically 10 times less than redbeds (Cheng et al. 2012). To check
whether there is indeed no inclination shallowing in the present sam-
ple collection, we applied the E/I method of Tauxe & Kent (2004)
on the obtained 123 directions. The corresponding flattening factor
(f = 0.936) provides a mean inclination of 37.4◦ (Figs 5d and e)
with 95 per cent confidence limit bounds of 35–44◦, which is a lit-
tle larger than both of the sample-mean inclination (36.3◦) and the
site-mean inclination (35.6◦), but still well within the confidence
limit. Therefore no inclination bias is present in the Buqu Forma-
tion limestones in the Zaduo area. The site-mean direction of the 12
sites is Dg = 8.2◦, Ig = 48.3◦, κg = 138.3, α95 = 3.7◦ in situ, and
Ds = 30.6◦, Is = 35.6◦, κ s = 182.9, α95 = 3.2◦ after tilt-correction,
corresponding to a palaeopole at 59.8◦N, 202.7◦E with A95 = 2.8◦

and a palaeolatitude of ∼19.7◦ ± 2.8◦N for the study area (Fig. 5c
and Table 1).

5 . RO C K M A G N E T I S M

At least one representative sample from each site was selected for
rock magnetic experiments. The low-field magnetic susceptibility
as function of temperature (κ–T) was measured with a MFK1-
FA Kappabridge instrument with a CS-4 high-temperature furnace
(AGICO, Czech Republic) in an argon atmosphere at a flow rate of

100 ml min–1. The successive peak temperatures were 250, 350, 400
(partially), 450, 550, 620 and 700 ◦C, respectively. These samples
were first heated to 250 ◦C and cooled back to room temperature with
an applied magnetic field of 200 A/m at a frequency of 976 Hz, then
heated to 350 ◦C and cooled back to room temperature. The proce-
dure was completed after repeating this cycle to 700 ◦C. Isothermal
remanent magnetization (IRM) acquisition curves, direct current
back field remagnetization curves, hysteresis loops, and first-order
reversal curves (FORCs) were measured with a Lakeshore 8600
Vibrating Sample Magnetometer (VSM). Stepwise thermal demag-
netization of IRM was conducted with a TD-48 oven and a minispin
magnetometer.

5.1. Thermomagnetic runs of magnetic susceptibility

Stepwise thermomagnetic runs of magnetic susceptibility were car-
ried out for the Buqu Formation limestones (Fig. 6). The samples
show a prominent increase in magnetic susceptibility at ∼330 or
350 ◦C except site ZD 2 (Figs 6a, c and d), which can be attributed
to magnetite formed as high temperature product of iron sulfide
alteration (i.e. pyrite, pyrrhotite and greigite, Huang et al. 2019a).
All of the 250 ◦C and some of the 350 ◦C heating-cooling cycles
are reversible. The cooling curve is above the heating curve for all
the 450 ◦C cycles. When it comes to the higher temperature in-
terval (i.e. the 620 and 700 ◦C runs), some of the heating-cooling
cycles are quasi-reversible. All of the samples show a decrease in
susceptibility at ∼580 ◦C, which is typical for magnetite. A distinct
increase at ∼400–500 ◦C of high temperature interval is likely the
Hopkinson peak, suggesting fine grain size magnetite with a rather
narrow grain size range as expected for magnetite formed during
the experiment itself (Figs 6c and d).

5.2. IRM acquisition and back-field curves, thermal
demagnetization of IRM and IRM component analysis

The IRM acquisition curves of the representative samples show
similar characteristics (Figs 7a, c and d). They present a sharp
increase below 100 mT and acquire ∼80–90 per cent saturation
at that step, with the remanent acquisition coercive force <50 mT,
suggesting that low-coercivity magnetic components (i.e. magnetite
sensu lato) are dominant. Samples from site ZD 2 (Fig. 7b, note the
unit of the vertical axis) are very noisy because of their weak IRM.
In addition, two perpendicular IRMs with fields of 2.5 T and 120
mT were imparted in a single sample and subjected to stepwise
thermal demagnetization along the lines of Lowrie (1990). The soft
and hard components in most of the samples exhibit a maximum
unblocking temperature at ∼500 ◦C (Figs 7e, g and h). This is too
low for the typical SD magnetite, but compatible with the fine-
grained quasi-superparamagnetic magnetite. For the samples from
site ZD 2, the soft component exhibits the same features as in the
others, but the hard component drops to essentially zero at ∼640
◦C, which is interpreted to indicate probably fine-grained hematite
as a carrier (Fig. 7f).

To estimate the magnetic contributions of different magnetic min-
erals, we applied IRM component analysis to a sample of each site
except the reverse polarity sites (Kruiver et al. 2001). Four IRM
components are used to fit the IRM acquisition curves: component
1 with B1/2 [the field at which half of saturation isothermal rema-
nent magnetization (SIRM) is reached] of ∼5 mT and dispersion
parameter DP (width of the distribution) of ∼0.20–0.30 (log units);
component 2 with B1/2 of ∼10–20 mT and DP of ∼0.20–0.30; a
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Figure 5. (a and b) Equal-area projections of the sample-mean directions for LFCs/HFCs before and after tilt correction, respectively; (c) equal-area projections
of the site-mean directions for HFCs before and after tilt correction; (d) plot of elongation versus inclination derived from the TK03. GAD model, the intersection
point indicates the inclination/elongation pairs most consistent with the TK03.GAD model and (e) histogram of 1000 boot-straps, the most frequent inclination
is 37.4◦, and the 95 per cent confidence limits are 35–44◦. Red stars and circles around them in panels (a), (b) and (c) denote the overall mean direction and
the 95 per cent confidence limit. The brown squares in panels (a) and (b) denote the present-day geomagnetic field (PGF) direction of the sampling location.
Solid and open symbols denote the lower and upper hemispheres projections before and after tilt correction, respectively.

harder component 3 with B1/2 of ∼50–70 mT and DP of ∼0.30;
and a much harder component 4 with B1/2 of > 300 mT and DP
of <∼0.20. In general, components 1 and 2 contribute ∼10–20 per
cent to the SIRM and might be the result of thermally activated
component 3 (Egli 2004; Heslop et al. 2004; Huang et al. 2015;
Zhang et al. 2018). Component 3 is the dominant magnetic carrier
in the Buqu Formation limestone and contributes >70 per cent to
the SIRM, which is typically interpreted to be magnetite (Kruiver et
al. 2001). Component 4 has a distinctly B1/2 value and contributes

∼4 per cent to the SIRM, which presumably represents very fine-
grained magnetite close to the SP threshold size, or residual iron
sulfide that remained after oxidation to authigenic magnetite.

5.3. Hysteresis loops, day-plot and FORC diagrams

Hysteresis loops of the Buqu Formation limestone samples can be
divided into two types. Type one is from sampling site ZD 2 and
shows ‘pot-bellied’ features (Fig. 8b). Type two samples are all from
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Remagnetization of the Jurassic limestones 2081

Table 1. High-field component (HFC) directions of the Middle Jurassic limestones in the Zaduo area, Eastern Qiangtang Terrane, Tibetan Plateau.

Sites n/N Dg (◦) Ig (◦) Ds (◦) Is (◦) κ95 α95 (◦)

Zaduo section (32.5◦N, 95.2◦E)
ZD 0 11/12 198.1 − 52.1 213.8 − 37.8 177.1 3.4
ZD 1 12/12 197.2 − 52.1 212.4 − 37.7 945.8 1.5
ZD 2 10/10 9.5 43.9 26.2 31.5 72.7 5.7
ZD 3 7/10 19.4 43.8 29.9 27.3 50.6 7.9
ZD 4 8/11 13.9 42.7 34.4 32.7 42.1 8.6
ZD 5 9/9 10.5 51.9 39.8 35.9 102.3 5.5
ZD 6 12/12 14.2 45.7 35.7 29.7 211.3 3
ZD 7 10/11 1.8 45.6 29.5 33.4 57.1 6.4
ZD 8 11/11 359.7 50.1 28.5 41.1 316 2.6
ZD 9 12/12 357.6 49.2 26.1 41.1 481.3 2
ZD10 11/11 355.8 46.4 23.5 39.5 551.6 1.9
ZD11 10/12 359.8 53 26.2 38.8 208.8 3.4

Note: n/N, number of samples used to calculate mean and measured; Dg, Ig, Ds, Is, declination and inclination in geographic and stratigraphic coordinates,
respectively; κ95, the best estimate of the precision parameter and α95, the radius that the mean direction lies within 95 per cent confidence.

Figure 6. Multicycle high-temperature magnetic susceptibility curves (κ–T) of the representative samples.

most of the sampling sites and are characterized by ‘wasp-waisted’
loops (Figs 8a, c and d). ‘Wasp-waisted’ hysteresis loops are in-
dicative of discrete low-coercivity and high-coercivity phases in a
single sample (e.g. Roberts et al. 1995; Tauxe et al. 1996; Jackson
& Swanson-Hysell 2012; Ge et al. 2017; Shen et al. 2020). This
hysteresis behaviour results from multiple mineralogies or discrete
fractions of ferrimagnetic grains in a largely mono-mineralic popu-
lation (Jackson & Swanson-Hysell 2012). The FORC diagrams for
type one samples are characterized by closed concentric contours
with a substantial vertical spread of the FORC distribution, indicat-
ing an assemblage of interacting SD particles (Roberts et al. 2006,
2014). For type two samples (of normal polarity), FORC diagrams
have a FORC density (ρ) peak (mixed second derivative of the
magnetization data) with closed counters around Bc < 20 mT and a
vertically asymmetrical distribution of about ∼−30–5 mT along the
Bc = ∼0–5 mT line. These characteristics resemble those of SP fer-
rimagnetic grain assemblies (Pike et al. 2001; Roberts et al. 2006,
2014). All the samples fall within the pseudosingle domain (PSD)
field on the Day plot (Dunlop 2002), with Bcr/Bc ratios ranging from
2 to 8 and Mrs/Ms ratios ranging from 0.1 to 0.4 (Fig. 8i). However,
it should be noted that most natural sediment samples fall within the
PSD domain, which makes interpretation rather complicated (e.g.
Qin et al. 2008; Li et al. 2017a; Cao et al. 2019; Guan et al. 2021).
Despite skepticism some people have pertaining to the Day-plot,
remagnetization may be diagnosed with it (Roberts et al. 2018).

6 . D I S C U S S I O N

6.1. Does the Buqu Formation in the Zaduo area carry a
primary NRM?

The limestones of the Buqu Formation in the Yanshiping area were
dated to the Bajocian–Callovian stages based on biostratigraphic
age constraints (QGSI 2005, 2014; Fang et al. 2016; Yan et al.
2016). In this study all of the samples, cq. sites, are from a mon-
oclinal section with only a slightly varying bedding attitude. This
precludes usage of the classic fold test to constrain the timing of
their NRM. While the reversals test is positive which yields some
support for a primary origin of the NRM, we should not exclude
protracted remagnetization which may yield dual polarities (Mei-
jers et al. 2011; Huang & Opdyke 2015; Huang et al. 2019a). In
addition to the classic geometric palaeomagnetic field tests (i.e. the
fold test, conglomerate test, reversals test, and baked contact test),
rock magnetic characterization and microscopic observation pro-
vide valuable information to evaluate the origin and significance of
NRM components.

Authigenic magnetite, dominantly in the SP and SSD size range,
is rather commonly used as a ‘fingerprint’ of remagnetization (Mc-
Cabe & Channell 1994; Jackson & Swanson-Hysell 2012). Our rock
magnetic results show that magnetite is the dominant magnetic car-
rier in the Buqu Formation limestones. Magnetic properties differ
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2082 Q. Fu et al.

Figure 7. (a–d) IRM acquisition curves for representative samples; (e–h) Thermal demagnetization of two perpendicular IRMs; (i–k) IRM component analysis
(Kruiver et al. 2001) of representative samples with ∼80 data points acquired. Squares are measured data points. The components are marked with different
coloured lines. Log10 (B1/2) and DP are in log10 mT. LAP: linear acquisition plot and GAP: gradient acquisition plot.

widely with increasing size within the SP range and across the
SP–SSD threshold: large SP particles more often saturate in low
applied fields, while small SP particles may not saturate at all even
in 2 T fields (e.g. Dekkers & Pietersen 1991; Tauxe et al. 1996;
Gong et al. 2009). In such cases, the ‘wasp-waisted’ hysteresis be-
haviour can be attributed to SP and SSD grain sizes of magnetite. SP
particles are also indicated by the FORC features and low unblock-
ing temperatures (400–500 ◦C). Although the SP particles play no
role in carrying a geologically stable NRM at room temperature,
they are considered to have a similar origin as the cogenetic SSD
particles that do carry the palaeomagnetic information in many re-
magnetized carbonate rocks (e.g. Jackson & Swanson-Hysell 2012;
Huang et al. 2019b). Coercivity (Bcr/Bc) and remanence (Mrs/Ms)
ratios for our Jurassic limestones are close to the ‘remagnetization
trend’ on a Day-plot (Fig. 8i), previously interpreted to be charac-
teristic of chemical remagnetization (e.g. Jackson 1990; McCabe

& Channel 1994; Jackson & Swanson-Hysell 2012). This trend is
distinct from the regions occupied by most other rocks, sediments
and synthetic materials and arguably the biggest success of the Day
plot (Fig. 8i, Roberts et al. 2018). The uncommon magnetic prop-
erties of remagnetized carbonates display an empirically derived
equation of Mrs/Ms ≈ 0.89(Bcr/Bc)–0.6 (Jackson 1990; Jackson et al.
1993). Our data show a trendline similar to this equation, except
that the Mrs/Ms values of our samples are lower than those in Jack-
son’s (1990) study, which can be attributed to partial oxidation of
magnetite, particle shape, or uncertain mixtures of magnetic min-
eral components (Roberts et al. 2018). Our data will fit well if we
would change the trendline equation to Mrs/Ms ≈ 0.89(Bcr/Bc)–1 or
Mrs/Ms ≈ 0.5(Bcr/Bc)–0.6as proposed by Jackson et al. (1993); the
best-fitting equation of our data is Mrs/Ms ≈ 0.61(Bcr/Bc)–0.8 (Fig. 9).

In the study area, veins are widespread in the Buqu Formation
limestones. Evidently, we focused on fresh rocks away from cracks
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Remagnetization of the Jurassic limestones 2083

Figure 8. (a–d) Hysteresis loops of representative samples; the grey and black loops are before and after correcting for the paramagnetic contribution,
respectively; (e–h) FORC diagrams for representative samples; (i) Day plot (Dunlop 2002) of 114 limestone samples. Also plotted are Day-plot of published
hysteresis parameters for remagnetized and non-remagnetized carbonate rocks summarized by Jackson & Swanson-Hysell (2012). Solid dots denote different
sampling sites from the ZD section, green diamonds and red circles denote remagnetized and non-remagnetized carbonate rocks from Jackson & Swanson-Hysell
(2012), respectively.

Figure 9. Hysteresis parameters for the Jurassic limestones in the Zaduo section and empirically derived equation of remagnetized carbonates. The red line
represents the equation from Jackson (1990) and Jackson & Rochette (1993); the magenta short dashed and pink long dashed lines represent the modified
equations Jackson & Rochette (1993); the blue dash–dotted line represents the best-fitting equation of our data.
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and veins to collect samples. However, veins of a few to a dozen mil-
limeters wide can be clearly observed on the surface of some core
samples (Fig. 3). For those core samples whose veins are invisible
by observation with the naked eye, a few to tens of microns wide
veins can be observed under the microscope (Fig. 3). These veins
are mainly composed of gypsum, commonly taken as being indica-
tive of diagenetic fluid migration (Gustavson et al. 1994; Philipp
2008; Bons et al. 2012; Gale et al. 2014), so, quite reasonably as-
sociated with remagnetization of the Buqu Formation limestones in
the study area. Therefore, rock magnetic tests and thin section ob-
servations lead us to conclude that the studied Jurassic limestones
of the Buqu Formation in the Zaduo area were remagnetized. Authi-
genic magnetite grains, dominantly of SSD size, but with cogenetic
fine-grained SP size particles, are responsible for the secondary
magnetizations.

6.2. Timing of the remagnetization and tectonic
implications

Remagnetization can occur in principle any time during geological
history, yet it is generally tied to certain geological events (e.g. di-
agenesis, orogenies, metamorphism, or thermoviscous resetting by
volcanism). Two major events have occurred in the Tibetan Plateau
region after the middle Jurassic: one is the collision between the
Lhasa and Qiangtang Terranes, and the other is the India–Eurasia
collision. The shortest distance from a remagnetization palaeopole
to the reference apparent polar wander path (APWP) can be used
to estimate the age of the remagnetization event in spite of the
rather low precision of this approach (Van der Voo & Torsvik
2012). Here we compare the palaeopole from the present study
with those from the Eastern Qiangtang Terrane. The Jurassic to
Palaeogene palaeopoles of the Eastern Qiangtang Terrane were se-
lected for consideration following the restrictive criteria for high-
quality palaeomagnetic data (Fig. 10a and Table 2). As shown in
Fig. 10(a) and Table 2, the Jurassic palaeopoles (Cheng et al. 2012;
Ren et al. 2013; Yan et al. 2016) are consistent. However, the Cre-
taceous and Palaeogene palaeopoles are more scattered, which is
interpreted as local rotation after the Lhasa–Qiangtang and India–
Eurasia collisions (Tong et al. 2015; Chen et al. 2017). Even in
the presence of different coeval palaeopoles, the palaeopole of this
study (59.8◦N, 202.7◦E, A95 = 2.8◦) is fairly close to the sparsely
available Palaeogene poles (see the supporting information text and
Table S1; Fig. 10a; Van der Voo 1990; Meert et al. 2020). We also
calculated the mean inclinations of the Jurassic, Cretaceous and
Palaeogene, our inclination (35.6◦ ± 4.2◦) is similar to the Jurassic
(34.7◦ ± 5.2◦) and the Palaeogene (39.7◦ ± 7.3◦) inclinations, but
smaller than the Cretaceous inclination (52.8◦ ± 6.1◦).

Alternatively, the timing of remagnetization can be estimated by
comparison of the measured declination, inclination and palaeolat-
itude with the expected ones for different ages in the Qiangtang
Terrane. All the palaeomagnetic directions were converted to our
study site (32.5◦N, 95.2◦E), the new declinations and palaeolatitudes
were then recalculated and are shown in Figs 10(c) and (d). Palaeo-
magnetic declinations indicate that the Qiangtang Terrane relative
to Eurasia experienced ∼20◦ counterclockwise rotation since the
Middle-Late Jurassic, ∼30–40◦ clockwise rotation since the Creta-
ceous (Huang et al. 1992; Tong et al. 2015), and ∼10–30◦ clockwise
rotation since the Palaeogene (Lippert et al. 2011; Tong et al. 2017;
Zhang et al. 2018, 2020a; Li et al. 2020). The fold in our study
area was formed during the late Himalayan period (QGSI 2014).
The ChRM directions after tilt-correction (κ s = 182.9) are more

clustered than in geographic coordinates (κg = 138.3, Figs 5b and
c). It is likely that the remagnetization occurred prior to the fold-
ing. The declination after correction for the bedding attitude in this
study is ∼30◦, which is comparable with either the Cretaceous or
the Palaeogene declination. Notably, the Early Cretaceous intrusive
rock body nearby has an age of ∼126 Ma (QGSI 2014) which is
plausible to account for the remagnetization, considering that ∼126
Ma is fairly close to a N/R polarity transition (in the timescale of
Gale et al. 2020, there is a normal-polarity zone from ∼127.6 to
∼126.5 Ma and a reversed-polarity zone from ∼126.5 to ∼124.7
Ma) which could account for the dual polarities found in this study.
However, upon further analysis, this scenario seems unlikely (see
section 6.3). Furthermore, dual-polarity makes it not likely that the
remagnetization has occurred during the Cretaceous Normal Su-
perchron (CNS), even though a very recent study suggests several
reverse-polarity events or clusters of events within the CNS (Zhang
et al. 2021). Inclination matching and palaeolatitude matching were
used to determine the remagnetization age. The palaeolatitude of
∼31–36◦ N obtained from the Mangkang area is about ∼10–15◦

higher than that of this study (∼20◦N), but with large uncertainty
in their studies (±6.5◦ to ±10.9◦, Huang et al. 1992; Tong et al.
2015). In contrast, the 38.6 ± 0.5 Ma palaeomagnetic data from
the Wulanwulahu area indicate that the Eastern Qiangtang Terrane
was at a palaeolatitude of ∼25◦N at that time (Lippert et al. 2011).
This is consistent with the inclination-shallowing-corrected result
of ∼24◦N during the interval from 56.0 to 43.2 Ma by Tong et al.
(2017). In addition, these palaeolatitudes are similar to the predicted
palaeolatitude of the Eastern Qiangtang Terrane of ∼24–30◦ N, a
prediction based on magnetostratigraphic data of the sedimentary
sequences in the Nangqian and Gongjue basins (Zhang et al. 2020a;
Li et al. 2020). We therefore interpret that the episode of remagne-
tization studied here more likely occurred during the Eocene rather
than the Cretaceous.

The collision between India and Eurasia during the Palaeocene
induced significant latitudinal crustal shortening across southern
Eurasia (Dewey et al. 1989; Yin & Harrison 2000; Dupont-Nivet
et al. 2010a, b; Lippert et al. 2011; van Hinsbergen et al. 2012;
Li et al. 2017c; Tong et al. 2017). The expected palaeolatitude of
the reference point (32.5◦N, 95.2◦E) calculated from the Eocene
reference poles for Eurasia is ∼35◦N, indicating that the Zaduo
area of the Eastern Qiangtang Terrane has experienced ∼15.7◦

± 3.2◦ (∼1740 ± 350 km) of latitudinal crustal shortening since
the Eocene. The large difference in latitudinal crustal shortening
between the Zaduo and Mangkang areas would likely be accommo-
dated by strike-slip faulting. However, strike-slip faulting is non-
existent in the Eastern Qiangtang Terrane, either due to palaeomag-
netic data uncertainty, or alternatively due to clockwise rotations of
the Mangkang area that would yield southward movements of the
region, which indeed have been documented by some studies (e.g.
Huang et al. 1992; Tong et al. 2015). Also, a combination of both
options is possible. Given that the palaeomagnetic data generally
come with statistical uncertainties >4◦, sometimes even >10◦, in
our view, it is less relevant to discuss possible north/south move-
ments of the Qiangtang Terrane for the period involved, because the
data uncertainty is not really justifying that. Our estimates coincide
with latitudinal shortening estimates across Tibet and stable Eurasia
in a number of palaeomagnetic studies (Dupont-Nivet et al. 2010a,
b; Tang et al. 2013; Ma et al. 2014; Li et al. 2017c; Tong et al.
2017). In response to the India–Eurasia collision, the southeastern
part of the Tibetan Plateau underwent a clockwise rotation (Tappon-
nier et al. 1982). The Zaduo area, Nangqian, Xialaxiu, Gongjue and
Mangkang basins are all located in the transition zone where the
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Remagnetization of the Jurassic limestones 2085

Figure 10. (a) Equal-area projection of the reliable Jurassic, Cretaceous and Cenozoic palaeopoles obtained from the Eastern Qiangtang terrane; (b) the
mean inclinations calculated from the Jurassic, Cretaceous and Cenozoic palaeopoles, respectively; (c and d) plots of the mean ChRM directions of previous
palaeomagnetic studies (declination and palaeolatitude, respectively). The solid black line represents the expected declination and palaeolatitude determined
from the APWP curve of Eurasia (Besse & Courtillot. 2002, 2003). All these results have been converted to the reference point (32.5◦N, 95.2◦E). The red
dashed box represents the possible timing of the remagnetization. The orange dashed box represents the time interval of the Cretaceous Normal Superchron
(CNS).
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overall structural trend turns from east–west-oriented in the central
Tibetan Plateau to north–south-oriented in the southeastern edge
of the Tibetan Plateau (Fig. 1). Zhang et al. (2020a) suggest that
the Nangqian Basin has experienced a counterclockwise rotation
of 25.9◦ ± 7.2◦ during ∼52–46 Ma, and an insignificant rotation
during ∼46–41 Ma, followed by a clockwise rotation of 24.4◦ ±
9.7◦ during ∼41–35 Ma. Palaeomagnetic results of the Xialaxiu
Basin volcanic rocks aged ∼49–51 Ma show a consistent declina-
tion as the nearby Nangqian Basin, which indicates similar rotation
histories of these regions (Roperch et al. 2017). In the Gongjue
Basin, a three-stage rotation history since ∼53 Ma is recorded as
well (Zhang et al. 2018; Li et al. 2020). The Mangkang Basin un-
derwent a clockwise rotation of ∼40◦ after the upper Cretaceous
(Otofuji et al. 1990; Tong et al. 2015). Although the rotations vary
with age, they are all clockwise which is noteworthy. Therefore, we
believe that the ∼30◦ clockwise rotation of the Zaduo area is most
likely due to the large-scale tectonic deformation of the eastern Ti-
betan Plateau after the India–Eurasia collision rather than a local
deformation feature.

6.3. Mechanisms for the remagnetization of the Jurassic
limestones

Thermoviscous resetting of existing magnetic minerals (Kent
& Opdyke 1985) and chemical remanent magnetization (CRM)
through magnetic mineral growth associated with orogenic fluids
(e.g. Jackson 1990; Elmore et al. 2006, 2012; Huang et al. 2015,
2017a, b) currently are the most common mechanisms to explain
remagnetization. The maximum burial temperature of the Buqu
Formation was below 150 ◦C (Sun et al. 2020; Wu et al. 2020).
However, the unblocking temperatures of the Jurrasic limestones in
the study area are around 400–500 ◦C, giving a burial temperature
of 150–350 ◦C based on the relaxation time-blocking temperature
relationship for magnetite of Pullaiah et al. (1975). A lower burial
temperature of below ∼200 ◦C would be obtained based on Kent’s
(1985).The remagnetization therefore could not be attributed to
mere heating during burial. In addition, no Cenozoic igneous bod-
ies are found near the section, but just Early Cretaceous intrusive
rocks. Thermoviscous resetting is deemed a less likely mechanism
for the remagnetization: it is hard to envisage that the intrusive rocks
would have thermally reset the Jurassic limestones, but not nearby
Permo-Triassic volcanic rocks (Guan et al. 2021). In fact, the rocks
perhaps have not been heated for a sufficient amount of time at
a sufficiently elevated temperature to make the thermal resetting
feasible.

SSD magnetite with cogenetic SP particles is dominant magnetic
carriers in the studied rocks. This authigenic magnetite may well
be responsible for chemical remagnetization of many carbonate
rocks (Suk et al. 1990a, 1990b; Morris & Robertson 1993; Jackson
& Swanson-Hysell 2012; Huang et al. 2015, 2017a, b; Ran et al.
2017; Zhang et al. 2020b). Authigenic magnetite can be an oxi-
dation product of iron sulfides (i.e. pyrite, pyrrhotite or greigite)
under the influence of orogenic fluids (Reynolds 1990; Suk et al.
1990a; Roberts et al. 2011; Huang et al. 2015). To better understand
this process, we recapitulate how organic matter diagenesis affects
the formation of magnetic minerals that are typically preserved in
carbonates.

Diagenesis involving degradation of organic matter after deposi-
tion is an essential process in the preservation of magnetic minerals
in sedimentary environments. Microbes derive energy through up-
take of oxygen and release of CO2 from the organic matter. In

general, consumption of the organic matter and accompanying res-
piration processes (in parentheses) are: oxic (aerobic respiration),
nitrogenous (nitrate reduction), manganous (manganese reduction),
ferruginous (iron reduction), sulphidic (sulphate reduction) and
methanic (methanogenesis, Froelich et al. 1979; Roberts et al. 2013;
Roberts 2015; Huang et al. 2019a). When one oxidant is used up,
the next one will be used, until either all oxidants or all organic
matter is consumed. This process is accompanied by the increase
of dissolved Mn2+, Fe2+ and HS−. The Buqu Formation limestones
were deposited in a littoral and shallow sea carbonate environment
(Li et al. 2002; Tan et al. 2004; QGSI 2014; Yan et al. 2016; Cao
et al. 2019). The appearance of massive bioclastic layers indicates
that the climate was warm at that time, which was conducive to bi-
ological growth (QGSI 2014). Under those circumstances, organic
carbon fluxes were high and anoxic sulphidic diagenetic environ-
ments were typically formed, in which paramagnetic pyrite would
replace originally present detrital magnetite and hematite. If the
Fe2+ supply rate is higher than the HS– production, intermediate
iron sulphides would be preserved (Kao et al. 2004; Roberts et
al. 2013; Roberts 2015). In brief, the deposited sediments tend to
undergo anoxic diagenesis and iron sulphides appear to be mainly
formed during burial and diagenesis. After the India–Eurasia col-
lision, the Nangqian, Gongjue and Mangkang basins have been
uplifted to a fairly high elevation during Palaeogene (Su et al. 2019;
Xu et al. 2013; Xiong et al. 2020). The diagenetic environment
therefore turned from anoxic to suboxic and/or oxic, giving rise to
oxidation of iron sulphide to authigenic magnetite and the acqui-
sition of CRM (Brothers et al. 1996). This was likely mediated by
the migration of orogenic fluids, fully endorsed by the occurrence
of widespread gypsum veins in the Buqu Formation limestones
(Gustavson et al. 1994; Philipp 2008; Bons et al. 2012; Gale et al.
2014). Two peaks of hydrocarbon generation occurred during the
Early Cretaceous and Palaeogene, respectively (Wu et al. 2020).
Fluids associated with hydrocarbon generation could be another
trigger of remagnetization (e.g. Elmore et al. 2006, 2012), however,
both phenomena probably worked in tandem (they operated at the
same time). The nearby Permo-Triassic volcanic rocks as described
in Guan et al. (2021) have a substantially lower porosity than the
limestones, which avoids the circulation of orogenic fluids amid. In
addition, the absence of organic matter in volcanic rocks does not
drive reactions. Thus, the primary NRM has been retained in those
rocks.

7 . C O N C LU S I O N S

We report new palaeomagnetic results from limestones of the Mid-
dle to Late Callovian Buqu Formation in the Zaduo area, located in
the eastern part of the Qiangtang Terrane. The primary NRM was
overprinted by a CRM after the India–Eurasia collision. Rather un-
common in remagnetized strata, the secondary NRM dating from
the Eocene has a ‘false positive’ reversals test. Due to the high
organic carbon fluxes since the deposition of the Jurassic lime-
stones, the oxygen was used up and the deposited sediments tend
to be anoxic, thus iron sulphides appear to be mainly formed dur-
ing burial and diagenesis. When the limestones were uplifted after
the India–Eurasia collision, the diagenetic environment turned from
anoxic to suboxic and/or oxic, giving rise to the oxidation of the pre-
existing iron sulphides to authigenic magnetite and the acquisition
of CRM. Like in many remagnetized limestones, the authigenic
magnetite grains range from the superparamagnetic up to stable
single-domain size, leading to distinctive rock-magnetic properties.
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The remagnetization process is also manifested by the widespread
occurrence of gypsum veins in the limestones. The secondary rema-
nence reveals that the Zaduo area of the Eastern Qiangtang Terrane
has experienced ∼15.7◦ ± 3.2◦ (∼1740 ± 350 km) of latitudi-
nal crustal shortening since the Eocene. Besides, the ∼20◦ clock-
wise rotation of the Zaduo area relative to Eurasia coincides with
the rotation pattern in the eastern part of the Qiangtang Terrane,
indicating that the clockwise rotation accommodating the India–
Eurasia collision was also prevailing in the Zaduo area.
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