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Abstract

Diagnosis of microbial disease etiology in community-acquired pneumonia (CAP) remains

challenging. We undertook a large-scale metabolomics study of serum samples in hospital-

ized CAP patients to determine if host-response associated metabolites can enable diagno-

sis of microbial etiology, with a specific focus on discrimination between the major CAP

pathogen groups S. pneumoniae, atypical bacteria, and respiratory viruses. Targeted meta-

bolomic profiling of serum samples was performed for three groups of hospitalized CAP

patients with confirmed microbial etiologies: S. pneumoniae (n = 48), atypical bacteria (n =

47), or viral infections (n = 30). A wide range of 347 metabolites was targeted, including

amines, acylcarnitines, organic acids, and lipids. Single discriminating metabolites were

selected using Student’s T-test and their predictive performance was analyzed using logistic

regression. Elastic net regression models were employed to discover metabolite signatures

with predictive value for discrimination between pathogen groups. Metabolites to discrimi-

nate S. pneumoniae or viral pathogens from the other groups showed poor predictive capa-

bility, whereas discrimination of atypical pathogens from the other groups was found to be

possible. Classification of atypical pathogens using elastic net regression models was asso-

ciated with a predictive performance of 61% sensitivity, 86% specificity, and an AUC of

0.81. Targeted profiling of the host metabolic response revealed metabolites that can sup-

port diagnosis of microbial etiology in CAP patients with atypical bacterial pathogens com-

pared to patients with S. pneumoniae or viral infections.
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Introduction

Community-acquired pneumonia (CAP) is a commonly occurring respiratory tract infection

caused by bacterial or viral pathogens that can lead to severe disease, especially in elderly

patients [1]. The predominant pathogens found in hospitalized CAP patients are Streptococcus
pneumoniae and to a lesser extent, Haemophilus influenzae, Legionella pneumophila, and respi-

ratory viruses [2, 3]. Patients hospitalized with severe CAP typically receive empirical antibi-

otic treatment with broad-spectrum antibiotics until the microbial etiology is determined [4,

5]. Current standard diagnostic methods for microbial identification are pathogen-targeted

and include culturing, antigen testing, and molecular diagnostics such as PCR [5]. In over 60%

of CAP patients, no causative pathogen can be identified with these pathogen-targeted diag-

nostic techniques [2, 6]. As a consequence, broad-spectrum antibiotics are over-used, which

facilitates the emergence of antimicrobial resistance [7, 8]. To this end, a need exists to explore

innovative methods to enhance the diagnostic performance for the detection of microbial

pathogens in CAP.

Evaluation of differences in the host-response to CAP-associated pathogens may be an

alternative approach to improve diagnosis [9]. There is growing evidence that the host, i.e. the

patient, metabolic response to infections can be a relevant source of novel host immune

response biomarkers to infections [10, 11]. Several small studies have reported differences in

metabolite profiles in blood and urine samples in patients with different types of infections (S1

Table) [12–18]. For instance, studies comparing metabolomic changes in CAP and tuberculo-

sis (TB) patients show increased levels of plasma lipids and decreased levels of metabolites

involved in cholesterol synthesis [12, 15]. A study comparing viral and bacterial respiratory

tract infections showed that plasma metabolite profiles of patients with influenza A and bacte-

rial pneumonia differed significantly [17]. In another study, urine samples of patients with a

respiratory syncytial virus (RSV) or a bacterial respiratory tract infection showed differences

in metabolite levels as well [18]. An important limitation of these studies is that the compari-

sons made cannot yet support the etiological diagnosis of CAP but merely focus on differences

between diseases such as TB versus CAP. The studies that compared viral and bacterial causa-

tive pathogen groups of CAP used an untargeted metabolomics approach. While an untargeted

approach is especially useful for the discovery of new features and hypothesis-free analysis, a

targeted approach that can be fully quantified to clinical laboratory standards may be prefera-

ble for clinical implementation. Furthermore, these studies have the limitation that they focus

on the comparison of pediatric patients while most hospitalized CAP patients are adults. No

studies have evaluated differences in metabolite profiles of CAP patients comparing different

microbial etiologies relevant for treatment of CAP, i.e. S. pneumoniae, atypical pathogens, and

viral infections.

In the current study, we performed extensive targeted metabolomic profiling for three

groups of hospitalized CAP patients with confirmed microbial etiologies of S. pneumoniae,
atypical bacteria, or viral infections. We aimed to determine whether host-response associated

metabolites can enable diagnosis of microbial etiology, focusing on discrimination between

the pathogen groups S. pneumoniae, atypical bacteria, and respiratory viruses in patients hos-

pitalized with CAP.

Materials and methods

Study population

Serum samples were taken from 505 patients that were diagnosed with CAP in two previously

conducted clinical studies that were executed between October 2004 and September 2010 [2,
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3]. The samples were taken from CAP patients within 24 hours after hospital admission. In

57% of these patient samples, the causative pathogen could be identified using conventional

diagnostic methods such as culturing, PCR, and urinary antigen tests. The most commonly

found causative pathogen in these patients was S. pneumoniae, followed by atypical bacterial

and viral pathogens. A minority of patients was diagnosed with other bacteria.

From the selection of patients in which a causative pathogen was identified, we excluded

patients with mixed infections. Furthermore, we constructed three distinctive groups of

patients with Streptococcus pneumoniae, atypical (Coxiella burnetii, Chlamydophila psittaci,
Legionella pneumophila or Mycoplasma pneumoniae), or viral (influenza virus, herpes simplex

virus (HSV), respiratory syncytial virus (RSV), parainfluenza virus, or another respiratory

virus) infections. The number of available samples for the patient group with confirmed viral

CAP infection was limited (n = 31). The patients included in the S. pneumoniae and atypical

bacterial groups were randomly drawn from the remaining study population in an iterating

fashion until the bacterial groups were composed in such a way that three groups showed com-

parable means for sex and pneumonia severity index scores. This resulted in a group of 49

patients with S. pneumoniae and a group of 50 patients with atypical infections (Fig 1). No

matching of individual samples was performed. An overview of patient characteristics is pro-

vided in Table 1 and S2 Table. Patient characteristics that might be considered as possible

covariates were: age, sex, nursing home resident, renal disease, congestive heart failure, CNS

disease, malignancy, COPD, diabetes, altered mental status, respiratory rate, systolic blood

pressure, temperature, pulse, pH, BUN, sodium, glucose, hematocrit, partial pressure of oxy-

gen, pleural effusion on x-ray, duration of symptoms before admission, antibiotic treatment

Fig 1. Flow chart of the formation of the three studied patient groups.

https://doi.org/10.1371/journal.pone.0252378.g001
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Table 1. Patient characteristics per pathogen group.

S. pneumonia (n = 48) Atypical (n = 47) Viral (n = 30) P-value

Age (years)

Mean (SD) 62.2 (18.9) 54.7 (14.6) 70.1 (16.4) <0.01

Median [Min, Max] 63.5 [18.0, 98.0] 52.0 [26.0, 81.0] 74.0 [29.0, 95.0]

Sex

Male 22 (45.8%) 34 (72.3%) 21 (70.0%) 0.12

PSI score

< 50 9 (18.8%) 9 (19.1%) 2 (6.7%) 0.33

51–70 7 (14.6%) 13 (27.7%) 6 (20.0%)

71–90 5 (10.4%) 10 (21.3%) 7 (23.3%)

91–130 23 (47.9%) 12 (25.5%) 11 (36.7%)

> 131 4 (8.3%) 3 (6.4%) 4 (13.3%)

Liver disease

No 48 (100%) 47 (100%) 30 (100%) -

Kidney disease

Yes 3 (6.2%) 1 (2.1%) 4 (13.3%) 0.30

Cardiovascular disease

Yes 6 (12.5%) 5 (10.6%) 3 (10.0%) 0.93

CNS disease

No 46 (95.8%) 44 (93.6%) 28 (93.3%) 0.66

Yes 1 (2.1%) 3 (6.4%) 2 (6.7%)

Missing 1 (2.1%) 0 (0%) 0 (0%)

Malignancy

No 44 (91.7%) 46 (97.9%) 28 (93.3%) 0.66

Yes 3 (6.2%) 1 (2.1%) 2 (6.7%)

Missing 1 (2.1%) 0 (0%) 0 (0%)

COPD

No 24 (50.0%) 44 (93.6%) 25 (83.3%) 0.16

Yes 9 (18.8%) 3 (6.4%) 5 (16.7%)

Missing 15 (31.2%) 0 (0%) 0 (0%)

Diabetes

No 26 (54.2%) 45 (95.7%) 26 (86.7%) 0.17

Yes 7 (14.6%) 2 (4.3%) 4 (13.3%)

Missing 15 (31.2%) 0 (0%) 0 (0%)

Duration of symptoms before admission (days)

Mean (SD) 4.06 (3.03) 5.83 (5.65) 4.70 (3.21) 0.33

Median [Min, Max] 3.50 [1.00, 14.0] 5.00 [1.00, 42.0] 4.00 [0.00, 14.0]

Missing 16 (33.3%) 0 (0%) 0 (0%)

Antibiotic treatment before admission

No 27 (56.2%) 29 (61.7%) 23 (76.7%) 0.17

Yes 5 (10.4%) 18 (38.3%) 7 (23.3%)

Missing 16 (33.3%) 0 (0%) 0 (0%)

Corticosteroid use before admission

No 29 (60.4%) 46 (97.9%) 29 (96.7%) 0.67

Yes 2 (4.2%) 1 (2.1%) 1 (3.3%)

Missing 17 (35.4%) 0 (0%) 0 (0%)

Data are presented as number (%) or mean (SD). Abbreviations: PSI: pneumonia severity index; CNS: central nervous system; COPD: chronic obstructive pulmonary
disease.

https://doi.org/10.1371/journal.pone.0252378.t001
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before admission. The analyses performed in this study were executed conform the informed

consent given by the patients. The clinical data was anonymized before use.

Bioanalytical procedures

Serum samples were analyzed with five liquid chromatography methods and one gas chroma-

tography, mass spectrometry-based, targeted, metabolomics method. The metabolomics pro-

filing covered 596 metabolite targets from 25 metabolite classes, including amino acids,

biogenic amines, acylcarnitines, organic acids, and multiple classes of lipids (S3 Table). Levels

of 374 unique metabolites were detected in the samples. The metabolomic profiling was per-

formed within the Biomedical Metabolomics Facility of Leiden University in Leiden, The

Netherlands. Details of the metabolomic analysis methods used are provided in S1 Method.

Data analysis

The data resulting from the metabolomic profiling was cleaned by removing patient samples

with more than 10 missing metabolite values, for example, if results from one measurement

platform were missing because of too low sample volumes, and by removing metabolites with

missing patient samples, for example, because of a sample preparation error. The clean dataset

consisted of 347 metabolite levels (S4 Table) for 125 patients diagnosed with the microbial eti-

ology S. pneumoniae (n = 48), atypical (n = 47), or viral (n = 30). The pathogens identified in

each group are shown in Table 2. The resulting metabolite levels were preprocessed by apply-

ing log transformation and standardized to correct for heteroscedasticity. The preprocessed

metabolomics dataset was visually inspected using a principal component analysis.

Data imputation was performed for patient characteristics that were to be evaluated as

covariates in the statistical analysis and showed missingness in the data. Five times repeated

imputation using predictive mean matching was performed with the ‘mice’ package for R to

impute the patient data for the covariates with less than 25% missing data. Predictive mean

matching is suitable for both numeric and binary covariates. Patient characteristics with>25%

missing data were excluded from further analysis.

We performed logistic regression and elastic net regression modeling to determine if

patients in one pathogen group could be discriminated from patients in the remaining two

groups. Also, we aimed to determine which metabolites were important for prediction of the

causative pathogen. In both methods, five-fold cross-validation was used to make the most effi-

cient use of the available data for estimation of the predictive performance of the models and

Table 2. Distribution of causative microbial agents per pathogen group for statistical data analysis.

Causative pathogen S. pneumonia (n = 48) Atypical bacterial (n = 47) Viral (n = 30)

S. pneumonia 48 (100%) 0 (0%) 0 (0%)

Legionella pneumophila 0 (0%) 18 (38.3%) 0 (0%)

Coxiella burnetii 0 (0%) 17 (36.2%) 0 (0%)

Chlamydophila psittaci 0 (0%) 7 (14.9%) 0 (0%)

Mycoplasma pneumoniae 0 (0%) 5 (10.6%) 0 (0%)

Influenza virus 0 (0%) 0 (0%) 11 (36.7%)

HSV 0 (0%) 0 (0%) 6 (20.0%)

RSV 0 (0%) 0 (0%) 4 (13.3%)

Parainfluenza virus 0 (0%) 0 (0%) 3 (10.0%)

Other viruses 0 (0%) 0 (0%) 6 (20.0%)

Data are presented as number (%). Abbreviations: S. pneumoniae: Streptococcus pneumoniae; HSV: herpes simplex virus; RSV: respiratory syncytial virus.

https://doi.org/10.1371/journal.pone.0252378.t002
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its associated metabolites [19]. Furthermore, the model generation was repeated 100 times to

obtain robust estimates of the predictive performance of the models.

To identify single discriminative metabolites, Student’s T-tests with false discovery rate (FDR)

multiple testing corrections were performed (p< 0.05). Then, significant metabolites and a com-

bination of significant metabolites were modeled using logistic regression. Also, models contain-

ing covariates age and sex and all covariates were generated. The predictive logistic regression

models were analyzed by comparison of their area under the curve (AUC), sensitivity, specificity,

balanced error rate (BER), and receiver operating characteristic (ROC) curve.

Elastic net regression was performed to test if the predictive power of the metabolite data

could be increased by including correlations between metabolites in addition to evaluating sin-

gle metabolites. In elastic net regression, metabolites that have no explanatory power can be

set to zero, as in a lasso regression, and metabolites that explain the same amount of variance

can all be included with balanced coefficient sizes, as in a ridge regression [20].

To obtain robust estimates of the predictive performance of the elastic net model, hyper-

parameters were optimized in a five-fold nested-cross validation, where the hyperparameters

were selected truly independent of the calculation of the predictive performance, as is schemat-

ically shown in Fig 2 [21]. In the inner cross-validation loop, the model optimization loop,

optimal values for model hyperparameters α and λ were determined. In the outer cross-valida-

tion loop, the model performance loop, the optimal model for the training fold was built on

the set hyperparameters α and λ (S1 Fig). Hyperparameter selection was performed using the

balanced error rate (BER), which can be calculated from the true- and false positive (TP, FP),

and true- and false-negative rates (TN, FN, Eq 1). The BER accounts for different group sizes

per model and therefore gives an accurate picture of the performance of models in the model

optimization and model performance loop.

BER ¼ 0:5 �
FP

TNþ FP
þ

FN
FNþ TP

� �

ð1Þ

Fig 2. Schematic representation of stratified nested cross-validation for elastic net regression model optimization and performance [21]. Abbreviations:

CV: cross-validation.

https://doi.org/10.1371/journal.pone.0252378.g002
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The overall predictive diagnostic performance was evaluated using sensitivity and specific-

ity performance measures, generated from the confusion matrix that represents the number of

samples falling into each possible outcome (Eq 2–3). The average sensitivity and specificity of

all 500 generated models and its standard deviation were used to compare the assay perfor-

mance to currently used methods.

Sensitivity ¼
TP

TPþ FN
ð2Þ

Specif icity ¼
TN

TNþ FP
ð3Þ

The relative contribution of metabolites to provide predictions of the expected pathogen

group were quantified using the variable importance in prediction (VIP) score, expressed as a

percentage. The VIP score was calculated per metabolite per fold or repeat as follows:

VIP %ð Þ ¼
bj

Pp
i¼0
jbij
� 100% ð4Þ

where βj is the regression coefficient for fold j over the sum of all regression coefficient values

in the model. Metabolites were arranged based on their mean VIP score over all folds and

repeats. Metabolites with an absolute VIP > 1% were considered to be most important. Fur-

thermore, to determine the need to include age and sex, or all covariates in the models we

compared the BER for models with and without age and sex, or all covariates included. Finally,

mean AUC values and ROC curves were calculated and generated to compare the performance

of the elastic net models to the logistic regression models.

The scripts used for the statistical analyses were deposited in Github at http://github.com/

vanhasseltlab/MetabolomicsEtiologyCAP.

Results

Metabolomics profiling and exploratory analysis of metabolomics data

Metabolomics profiling was performed for 130 patients and 596 metabolite targets. Prepro-

cessing of the metabolomics dataset resulted in a reduced dataset including 125 patients and

347 metabolites (Fig 1). The patient characteristics of these 125 patients are displayed in

Table 1. The patients were diagnosed with the microbial etiology S. pneumoniae (n = 48), atyp-

ical bacteria (n = 47), or respiratory virus (n = 30) (Table 2). A list of all targeted and detected

metabolites and their identifiers can be found in S4 Table. Unsupervised principal component

analysis showed no clear separation between pathogen groups (S2 Fig).

Single discriminating metabolites for pathogen groups

Three significant metabolites were found for the discrimination of atypical pathogens from S.

pneumoniae and viral pathogens using a Student’s T-test with FDR multiple testing correction

(p< 0.05): glycylglycine, symmetric dimethylarginine (SDMA), and lysophosphatidylinositol

(18:1) (LPI (18:1)). For the other comparisons, no significantly discriminating metabolites

were found.

The significantly differentiating metabolites were included in logistic regression models to

differentiate patients with atypical pathogens from patients suffering from CAP caused by S.

pneumoniae or viral pathogens. The logistic regression models were evaluated based on their

AUC, sensitivity, specificity, BER, and ROC curve after fivefold cross-validation with 100
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repeats (Table 3, Fig 3). They show that logistic regression models of the individual metabolites

glycylglycine, SDMA, and LPI(18:1) can differentiate atypical pathogens from S. pneumoniae
and viral pathogens with AUCs between 0.70–0.72, sensitivities between 0.32–0.36, sensitivities

between 0.83–0.85, and BERs of 0.39–0.41. A logistic regression model including all three sig-

nificantly discriminating metabolites yields a more successful separation with an AUC of 0.78,

sensitivity of 0.57, specificity of 0.83, and BER of 0.30. Addition of the covariates age and sex to

the three metabolite model, slightly improved the predictive performance of the model result-

ing in a sensitivity of 0.63 and a specificity of 0.84. This model also showed the highest AUC

(0.79) and lowest BER (0.26) of the tested logistic regression models. The addition of other

covariates to the logistic regression model resulted in lower performance, probably due to

overfitting of the model. The ROC curves emphasize the increased model performance upon

the addition of more discriminating metabolites to the logistic regression model (Fig 3).

Predictive metabolites for diagnosis of CAP-associated pathogens

Elastic net models including multiple metabolites were fit to discriminate S. pneumoniae, atyp-

ical bacterial, and viral pathogens from the remaining two groups (e.g., S. pneumoniae versus

atypical bacterial and viral pathogens). Elastic net models separating patients with atypical

Table 3. Results from the logistic regression and elastic net regression models that were tested in a fivefold cross-validation with 100 repeats.

Model Variables AUC Sensitivity Specificity BER

Atypical–(S. pneumoniae + viral)
Logistic Regression Glycylglycine 0.72 (0.094) 0.36 (0.14) 0.83 (0.110) 0.40 (0.084)

Logistic Regression SDMA 0.72 (0.093) 0.36 (0.15) 0.86 (0.100) 0.39 (0.082)

Logistic Regression LPI.18.1. 0.70 (0.099) 0.32 (0.14) 0.85 (0.100) 0.41 (0.082)

Logistic Regression Age + sex 0.71 (0.097) 0.39 (0.15) 0.85 (0.090) 0.38 (0.071)

Logistic Regression All covariates 0.65 (0.098) 0.52 (0.15) 0.68 (0.120) 0.40 (0.087)

Logistic Regression Glycylglycine + SDMA + LPI.18.1. 0.78 (0.094) 0.57 (0.16) 0.83 (0.100) 0.30 (0.090)

Logistic Regression Glycylglycine + SDMA + LPI.18.1. + age + sex 0.79 (0.089) 0.63 (0.16) 0.84 (0.095) 0.26 (0.085)

Logistic Regression Glycylglycine + SDMA + LPI.18.1. + all covariates 0.75 (0.097) 0.60 (0.16) 0.78 (0.110) 0.31 (0.093)

Elastic net regression 100 (82) 0.81 (0.087) 0.61 (0.18) 0.86 (0.092) 0.27 (0.094)

Elastic net regression 110 (91) incl. age & sex 0.80 (0.094) 0.61 (0.17) 0.84 (0.096) 0.28 (0.090)

Elastic net regression 270 (140) incl. all covariates 0.69 (0.100) 0.58 (0.17) 0.70 (0.120) 0.36 (0.098)

S. pneumoniae–(atypical + viral)
Elastic net regression 210 (120) 0.74 (0.091) 0.83 (0.10) 0.50 (0.160) 0.33 (0.087)

Elastic net regression 240 (130) incl. age & sex 0.74 (0.095) 0.80 (0.10) 0.52 (0.160) 0.34 (0.084)

Elastic net regression 290 (120) incl. all covariates 0.63 (0.110) 0.69 (0.13) 0.51 (0.17) 0.40 (0.098)

Viral–(S. pneumoniae + atypical)
Elastic net regression 170 (140) 0.54 (0.120) 0.88 (0.11) 0.16 (0.170) 0.48 (0.075)

Elastic net regression 130 (130) incl. age & sex 0.63 (0.130) 0.89 (0.08) 0.23 (0.160) 0.44 (0.082)

Elastic net regression 180 (160) incl. all covariates 0.56 (0.130) 0.79 (0.11) 0.31 (0.190) 0.45 (0.099)

The table displays the performance of the models for the three comparisons: atypical versus S. pneumoniae and viral pathogens; S. pneumoniae pathogens versus atypical

and viral pathogens; and viral versus S. pneumoniae and atypical pathogens. Logistic regression is only included for the comparison of atypical versus S. pneumoniae

and viral pathogens because no significant single metabolites were found for the other comparisons. The performance is evaluated using the mean area under the curve

(AUC), the mean sensitivity, the mean specificity, and the mean balanced error rate (BER) over all folds and repeats. All performances result from the test sets within the

cross-validation. The best performing model per comparison and evaluation measure is displayed in bold and underlined.

Data are presented as mean (SD). Variables are presented as variable names or as the number of variables that are included in the model. Abbreviations: SDMA: symmetric
dimethylarginine, LPI (18:1): lysophosphatidylinositol (18:1), AUC: area under the curve, BER: balanced error rate.

https://doi.org/10.1371/journal.pone.0252378.t003
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bacterial pathogens from patients with S. pneumoniae and viral infections resulted in a mean

AUC of 0.81, a sensitivity of 0.61, a specificity of 0.86, and a BER of 0.26. Prediction of S. pneu-
moniae or viral infection etiologies showed lower predictive capabilities with AUC’s of 0.74

and 0.63, high sensitivities of 0.83 and 0.89, but low specificities of 0.5 and 0.23, and BER’s of

0.33 and 0.44, respectively (Table 3).

We included the covariates age and sex, and all covariates in the elastic net models to

account for potential confounding effects. The addition of these covariates showed no

improved performance of the elastic net models for differentiation of atypical pathogens or S.

pneumoniae from the other groups. For the differentiation of viral pathogens from the other

two pathogen groups, a slight performance improvement was seen upon the addition of the

covariates age and sex resulting in an AUC of 0.63, a sensitivity of 0.89, a specificity of 0.23,

and a BER of 0.44 (Table 3).

The ROC curves for the separation of atypical pathogens from S. pneumoniae and viral

pathogens show that elastic net models perform better than the logistic regression models for

single metabolites. However, the logistic regression model including the three significant

metabolites and the covariates age and sex shows similar performance as the elastic net regres-

sion which included 100 metabolites on average (Fig 3).

Metabolite classes predictive for atypical bacterial pathogens

Focusing on the metabolites that have shown to be predictive for atypical bacterial pathogens,

i.e., the only comparison with clinically relevant predictive performance, we identified 26

metabolites with an absolute VIP> 1% using elastic net regression (Fig 4). The metabolites

originated from multiple metabolite classes. However, the classes of biogenic amines and lyso-

phospholipids were well represented (4–5 metabolites per class), compared to the other classes.

The number of metabolites included in the models varied across folds without a clear correla-

tion to the BER. Commonly, models including all metabolites were favored, followed by mod-

els including 20–100 metabolites (S3 Fig). We visualized the separation of the different

pathogens in the atypical pathogen group using an unsupervised PCA analysis including all

Fig 3. ROC curves of the results from logistic regression and elastic net regression models that were tested in five-fold cross-validation

with 100 repeats for the comparisons: atypical versus S. pneumoniae and viral pathogens; S. pneumoniae pathogens versus atypical and

viral pathogens; and viral versus S. pneumoniae and atypical pathogens. Abbreviations: LR: logistic regression, EN: elastic net regression,

SDMA: symmetric dimethylarginine, LPI (18:1): lysophosphatidylinositol (18:1).

https://doi.org/10.1371/journal.pone.0252378.g003
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metabolites. The PCA plot indicated that no clear sub-group is present within the atypical

group that would prominently drive the separation from the S. pneumoniae and viral infec-

tions (S4 Fig).

Discussion

Targeted profiling of the host metabolic response revealed metabolites that can support the

diagnosis of microbial etiology in CAP patients with atypical bacterial pathogens compared to

patients with S. pneumoniae or viral infections. CAP patients suffering from S. pneumoniae
and viral infection could not be as successfully discriminated from the other groups based on

the metabolic host-response.

The currently used clinical assays still outperform the metabolomics host-response assays

developed in this study. For atypical pathogens, the sensitivity of 63% and specificity of 86%

reported in this study are lower than the current urinary antigen tests for detection of Legio-
nella pneumophila which shows a sensitivity of approximately 70% and a specificity up to 96%

[22]. For detection of S. pneumoniae, the 83% sensitivity reached with the metabolomics-based

assay outperforms the current antigen tests that show 70% sensitivity. However, the specificity

of the metabolomics-based assay is only 50% while antigen tests reach specificity up to 96%

[23, 24]. PCR assays of nasopharyngeal swabs for viral pathogens show sensitivities of up to

96% for influenza viruses A and B [25]. Our viral metabolomics-based assay shows a good sen-

sitivity of 89% as well. However, the specificity of this assay is with 23% very low. The expected

clinical utility of the studied metabolite classes as host-response biomarkers for etiological

diagnosis of CAP may therefore be considered limited.

The combination of the metabolites glycylglycine, SDMA, and LPI (18:1) and the covariates

age and sex showed predictive capacities similar to elastic net models including 100

Fig 4. Variable importance of metabolites for the prediction of an atypical bacterial infection versus S. pneumoniae and viral infections. Only metabolites with an

absolute mean percentage of influence> 1% are visualized.

https://doi.org/10.1371/journal.pone.0252378.g004
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metabolites in the comparison of atypical pathogens versus S. pneumoniae and viral pathogens.

This result suggests that a simple model might perform as well as a more complex elastic net

model, which is an important finding when considering the use of these biomarkers for clinical

diagnostic applications, e.g., where a limited set of 3 metabolites is preferable.

Glycylglycine, a biogenic amine, showed to be significantly contributing to the differentia-

tion of atypical pathogens from the other pathogens, but was not often included in elastic net

models. In contrast, SDMA and LPI (18:1) were often included in the elastic net models as was

shown in the overview of the 26 most influential metabolites. Metabolites of the classes bio-

genic amines and lysophospholipids, to which SDMA and LPI (18:1) have been assigned, were

most represented in the 26 most influential metabolites compared to other metabolite classes

in the comparison of atypical versus S. pneumoniae and viral pathogens. A comparison of the

most influential metabolites in this study to metabolites of interest reported in previous studies

of metabolomics in CAP patients shows limited overlap. Major reasons for this could be that

(i) not all studies measured the same set of metabolic classes; (ii) some other studies poorly

controlled patient comparator groups; and (iii) difference in bioanalytical methodologies, e.g.

the use of NMR or MS as analytical method with their respective (dis)advantages might pro-

vide different results [26]. For example, most lipids found to be predictive in this study have

not been reported previously, most likely because the applied bioanalytical methodologies did

not allow their detection. However, some overlap was found between the most influential

metabolites for the comparison of atypical versus S. pneumoniae and viral pathogens in this

study, and the metabolites of interest from other metabolomics studies involving CAP patients.

The amino acid alanine was found in multiple studies [14, 16, 17]. Ceramide (d18:1/16:0), two

diacyl-phosphatidylcholines, and diacyl-phosphatidylethanolamine (38:2) were found in other

studies as well, the latter in the form of choline and ethanolamine [15, 16, 18]. Lactic acid was

identified by several other metabolomics studies to respiratory bacterial and viral infections

[12, 14, 17]. Lactic acid levels are also known to rise in case of severe disease. However, because

the three pathogen groups were balanced in terms of disease severity and, for example, did not

show significant differences in pH levels, we hypothesize that the differences in lactate levels

are, in this case, an effect of the pathogen-specific host-response to infection. The result

showed that models including disease severity covariates do not perform better than models

without these confounders, thus supporting this hypothesis. Finally, 3-hydroxyisovaleric acid

and betaine have been reported in a previous study comparing viral and bacterial pneumonia

[18]. The overlap in these findings may provide insights into common metabolic responses to

pathogens involved in CAP.

Multiple biological processes besides infection can influence metabolic processes in

patients. Inclusion of age and sex in the models did not improve the predictive performance of

the elastic net models for atypical bacteria and S. pneumoniae but did improve the model for

viral pathogens. The average age in the viral pathogen group was higher than in the other

groups, which could explain this result. For the other comparisons, we see that a model includ-

ing age and sex or more covariates does not outperform models without these possible con-

founders. This doesn’t imply there is no metabolomic effect of age in the bacterial pathogen

groups but implies that the separation between bacterial pathogen groups is more dependent

on the metabolomic host-response to the infection than on the age-related metabolomic

changes. In this study, we included patients with mild to severe CAP, reflecting the target

patient population for which improvements in a diagnostic assay are required. However, the

combination of samples from patients with different disease severities may negatively influ-

ence the predictive capabilities of the model because the effect from the causative pathogen on

the host-metabolism may be less pronounced for less severe disease [27]. However, separating

the patients into groups with comparable disease severity scores would decrease the power for
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statistical analysis. Furthermore, no standardization of sampling times and conditions was

applied, e.g., patients had not fasted before blood sampling, which may influence the metabo-

lite patterns found. Since variations in sampling conditions were unknown, we were unable to

consider these in our analyses. However, we expect that the impact of not standardizing and

correcting for these factors is limited because the noise in metabolite levels introduced by

these factors is expected to be random with regard to the pathogen groups compared in this

study. A standardized sampling approach could improve the sensitivity of the models to detect

predictive metabolites because some noise is reduced. However, the specificity of the models

with respect to the prediction of specific pathogens would be unchanged, since no correlation

with pathogen groups is likely.

The sample size of this study (n = 125) was relatively large compared to studies researching

metabolomic differences between causative pathogens of CAP that included approximately 70

patients [17, 18]. The compared groups S. pneumoniae, atypical bacteria, and viruses were

chosen because antibiotic treatment strategies differ between these three groups. Ideally, we

would have further investigated differences within studied groups, e.g. to identify metabolic

responses to specific pathogens within the atypical pathogens and viral infection groups. For

example, it would be of interest to study Legionella species more in-depth because their intra-

cellular growth might result in a differentiated host-response. However, this was considered

not feasible in this study due to sample size restrictions. The heterogeneous pathogen popula-

tion in the atypical bacterial and viral pathogen groups might have lowered the predictive per-

formance of the metabolomic analysis. Studying the individual pathogens in bigger sample

sizes might reveal more characteristic metabolite signatures. In this study, no control group

was included because the goal of the study was to provide a faster and optimal diagnostic

method and a guide for antibiotic treatment in hospitalized CAP patients. In further studies, it

would be preferable to include patients with all causes of CAP, including the remaining micro-

organisms, which were excluded in the current study because of their low frequency, to enable

a more comprehensive comparison with current clinical assays. In this study, CAP patients

with unknown pathogens were excluded. In a follow-up study, the metabolite pattern of the

patients with unknown causative pathogens could be compared to the metabolite patterns of

the distinguished pathogen groups to gain more information about the metabolomic resem-

blance of the samples in which pathogens could and could not be identified using the conven-

tional diagnostic techniques.

Metabolomics analysis resulted in some missing data because of sample preparation errors

or the limited volume of the samples. Because the measurement platforms covered multiple

metabolites within one pathway, metabolites with missing data could be removed without

influencing the final results. Some patient samples had to be removed because of multiple

missing metabolite levels, for example, if the results from a whole metabolomics platform were

missing. Data imputation was not performed for the metabolomics data, because the wide

range of patients included in the dataset did, in our opinion, not provide enough information

for accurate data imputation.

In summary, this comprehensive analysis of the host metabolic response across multiple

metabolic classes and based on a well-balanced study cohort of CAP patients has shown the

possibility to identify atypical pathogens in CAP and limited utility of predicting S. pneumo-
niae and viral infection disease etiologies.
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