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RELAXED REGULARIZATION FOR LINEAR
INVERSE PROBLEMS\ast 

NICK LUIKEN\dagger AND TRISTAN VAN LEEUWEN\dagger 

Abstract. We consider regularized least-squares problems of the form minx
1
2
\| Ax - b\| 22+\scrR (Lx).

Recently, Zheng et al. [IEEE Access, 7 (2019), pp. 1404--1423], proposed an algorithm called Sparse
Relaxed Regularized Regression (SR3) that employs a splitting strategy by introducing an auxiliary
variable y and solves minx,y

1
2
\| Ax - b\| 22+

\kappa 
2
\| Lx - y\| 22+\scrR (x). By minimizing out the variable x, we

obtain an equivalent optimization problem miny
1
2
\| F\kappa y - g\kappa \| 22+\scrR (y). In our work, we view the SR3

method as a way to approximately solve the regularized problem. We analyze the conditioning of the
relaxed problem in general and give an expression for the SVD of F\kappa as a function of \kappa . Furthermore,
we relate the Pareto curve of the original problem to the relaxed problem, and we quantify the error
incurred by relaxation in terms of \kappa . Finally, we propose an efficient iterative method for solving the
relaxed problem with inexact inner iterations. Numerical examples illustrate the approach.

Key words. inverse problems, optimization, machine learning, regularization, sparsity, total
variation

AMS subject classifications. 65F22, 65F10, 15A18, 15A29

DOI. 10.1137/20M1348091

1. Introduction. Inverse problems are problems where a certain quantity of
interest has to be determined from indirect measurements. In medicine, well-known
examples include magnetic resonance imaging (MRI) [44], CT [28], and ultrasound
imaging [6] where the objective is to obtain images of the interior of the human body.
In the geosciences, inverse problems arise in seismic exploration and seismology [42],
where the interest lies in exploring the elastic properties of the different layers of
our planet. Other examples include tomography [3, 5, 33], radar imaging [7], remote
sensing [34, 39], astrophysics [38], and more recently, machine learning [19].

Inverse problems are challenging for a number of reasons. There may be limited
data available, or the data may be corrupted by noise. The data sets are generally
very large, and the underlying model is generally not well defined for retrieving the
quantity of interest. Therefore, inverse problems often have to be regularized, meaning
prior information has to be added. They can be posed in the following way:

(1.1) min
x

1

2
\| Ax - b\| 22 +\scrR (Lx),

where A \in \BbbR m\times n is the linear forward operator, \scrR (\cdot ) is the regularization term, and
L \in \BbbR p\times n the regularization operator. The latter two encode the prior information
about x. In our work, we focus on \scrR (\cdot ) = \lambda \| \cdot \| pp, or, equivalently, \scrR (\cdot ) = \delta \| \cdot \| p\leq \tau (\cdot ),
which is the indicator function of the set \| \cdot \| p \leq \tau . By equivalent we mean that for
every \tau there is a \lambda such that the solutions of the two problems coincide [2]. A direct
solution to the problem above is generally not possible, either because a closed-form
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S270 NICK LUIKEN AND TRISTAN VAN LEEUWEN

solution does not exist or because evaluating the direct solution is too computationally
expensive. Therefore, we have to resort to iterative methods to solve the problem,
with most algorithms being designed for specific choices of p and L.

Traditionally, p = 2, called Tikhonov regularization, is a popular choice, because
the objective function is differentiable and allows for a closed-form expression of the
solution of (1.1) in terms of A,L, and \lambda . For this class of problems, Krylov based
algorithms have been proven very effective [9, 10, 17, 18, 24, 29, 30, 31, 32, 45]. These
methods generally exploit the fact that a closed-form solution exists by constructing
a low dimensional subspace from which an approximate solution is extracted.

The choice p = 1 has gained popularity in recent years because it gives sparse
solutions while still yielding a convex objective. Sparsity is important in a number
of applications, like compressed sensing [11], seismic imaging [27], image restoration
[36], and tomography [25]. However, the objective is no longer differentiable and the
aforementioned Krylov methods do not apply. If L = I, a proximal gradient method
(sometimes referred to as iterative soft tresholding---ISTA) [12] can be applied, iter-
atively updating the solution via

xk+1 = prox\alpha \lambda \| \cdot \| 1

\bigl( 
xk  - \alpha AT(Axk  - b)

\bigr) 
,

where \alpha \in (0, \| A\| 22) is the stepsize and the proximal operator is the soft thresholding
operator, which can be efficiently evaluated. Generally, ISTA achieves a sublinear
rate of convergence of \scrO (1/k) (unless m \geq n and A has full rank, in which case we
have a linear rate of convergence). FISTA (fast iterative soft thresholding algorithm)
[4] is a faster version of ISTA that generally achieves a sublinear rate of \scrO (1/k2).

If L = I the optimization problem is said to be in standard-form and for any
other L the algorithm is in general form. If L is full-rank and has no nullspace,
the optimization problem can be put into standard-form via the change of variables
y = Lx. Instead of the matrix A, we get AL\dagger . In such cases we can apply the (F)ISTA
method directly at the expense of having to evaluate L\dagger . In some applications, we have
L\dagger = LT (e.g., when L is a tight frame). If L has a nontrivial nullspace the algorithm
can still be put in standard-form by the standard-from transformation [15, 25], but
this is nontrivial, because the nullspace has to be accounted for.

If L \not = I and we cannot easily transform the problem to standard form, the
proximal operator is no longer easy to evaluate in general and FISTA may no longer be
attractive. An example of this class of problems is total variation (TV) regularization,
where L is the discretization of the gradient, which gives blocky solutions. A popular
algorithm for this class of problems is the alternating direction method of multipliers,
ADMM [8]. ADMM solves (1.1) by forming the augmented Lagrangian

min
x,y

max
z

1

2
\| Ax - b\| 22 + \lambda \| y\| pp + zT (Lx - y) + \rho 

2
\| Lx - y\| 22

and alternatingly minimizing over the variables x and y, and the Lagrange multiplier
z. The strength of ADMM is that it can closely approximate the solution of any
convex sparse optimization problem. However, convergence can be slow [8].

If p < 1, the emphasis on sparsity of the solution is stronger than for the case
p = 1. However, the objective function is no longer convex which makes it more
difficult to solve.

Recently, a unifying algorithm was proposed that allows the efficient approxima-
tion of the solution of any problem of the form (1.1), called Sparse Relaxed Regularized
Regression (SR3) [43]. This algorithm makes use of a splitting strategy by introducing
an auxiliary variable y and yields
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RELAXED REGULARIZATION FOR LINEAR INVERSE PROBLEMS S271

(1.2) min
x,y

1

2
\| Ax - b\| 22 +

\kappa 

2
\| Lx - y\| 22 +\scrR (y).

By minimizing out x, we obtain a new optimization problem of the form:

(1.3) \=y\kappa = argmin
y

1

2
\| F\kappa y  - g\kappa \| 22 +\scrR (y),

where

F\kappa =

\biggl( 
\kappa 1/2

\bigl( 
I  - \kappa LH - 1

\kappa LT
\bigr) 

\kappa AH - 1
\kappa LT

\biggr) 
and

g\kappa =

\biggl( 
\kappa 1/2LH - 1

\kappa AT b
b - AH - 1

\kappa AT b

\biggr) 
, H\kappa = ATA+ \kappa LTL.

The solution to (1.2) is then given by

(1.4) \=x\kappa = H - 1
\kappa 

\bigl( 
\kappa LT \=y\kappa +AT b

\bigr) 
.

This solution is then used as an approximation of the solution of (1.1). In [43] the
particular case with LTL = I is analyzed. Using the SVD of A, the singular values
of F\kappa were calculated, showing a relation between the condition number of F\kappa and A
depending on \kappa . In short, the result shows that a small \kappa improves the conditioning
of F\kappa and as \kappa \rightarrow \infty the condition numbers are the same, because the original
optimization problem is obtained.

For the implementation of SR3, it is not necessary to form the operator F\kappa , as was
shown in [43]. The authors propose the following algorithm for solving the relaxed
problem

xk+1 \leftarrow 
\bigl( 
ATA+ \kappa LTL

\bigr)  - 1 \bigl( 
AT b+ \kappa LT yk

\bigr) 
,(1.5)

yk+1 \leftarrow prox\alpha \scrR (yk  - \alpha \kappa (yk  - Lxk+1)) ,(1.6)

which for the particular choice \alpha = 1/\kappa simplifies to

xk+1 \leftarrow 
\bigl( 
ATA+ \kappa LTL

\bigr)  - 1 \bigl( 
AT b+ \kappa LT yk

\bigr) 
,(1.7)

yk+1 \leftarrow prox1/\kappa \scrR (Lxk+1) .(1.8)

This method has several advantages when applied to solving inverse problems that
we highlight in the examples below.

1.1. Motivating examples. Below we show some typical examples encountered
in various areas of science to which SR3 can be applied. The problems we tackle are
of the form

(1.9) min
x

1

2
\| Ax - b\| 22 s.t. \| Lx\| 1 \leq \tau .

The main tasks are to solve this for a given value of \tau and to find an appropriate value
of \tau . The latter is achieved by picking the corner of the Pareto curve (sometimes called
the L-curve) \phi (\tau ) = min\| x\| p\leq \tau \| Ax  - b\| 2. Comparing a proximal gradient method
to SR3, we show the residual as a function of \tau , the optimal reconstruction, and
the convergence history in terms of the primal-dual gap. These examples show two
favorable aspects of SR3 over the conventional proximal gradient method: i) SR3
converges (much) faster for any fixed value of \tau and ii) the corners of both Pareto-
curves coincide, allowing us to effectively use SR3 to estimate \tau .
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S272 NICK LUIKEN AND TRISTAN VAN LEEUWEN

Spiky deconvolution (\bfitm = \bfitn , \bfitL = \bfitI ). Consider a deconvolution problem
where A is a Toeplitz matrix that convolves the input with a bandlimited function,

aij = w(ti  - tj),

where w(t) = (1  - (t/\sigma )2)e - (t/\sigma )2 and ti = i \cdot h. We take n = 101, h = 1/n, and
\sigma = 0.05. The results are shown in Figure 1.1.

Compressed sensing (\bfitm < \bfitn , \bfitL = \bfitI ). Here, the goal is to recover a sparse
signal from compressive samples. The forward operator is a random matrix with
independent and identically distributed (i.i.d.) normally distributed entries. We take
n = 101 and m = 20. The results are shown in Figure 1.2.

TV (\bfitm = \bfitn , \bfitL = \bfitD ). Consider a deconvolution problem where A is a Toeplitz
matrix that convolves the input with a bandlimited function,

aij = w(ti  - tj),

where w(t) = e - (t/\sigma )2 and ti = i \cdot h. L is a finite-difference discretization of the
first-order derative with Neumann boundary conditions. We take n = 101, h = 1/n,
and \sigma = 0.05. The results are shown in Figure 1.3.
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Fig. 1.1. Spiky deconvolution example. The left figure shows the Pareto curve, the middle
figure shows the solution, and the right figure shows the primal-dual gap as a function of the number
of iterations. The gray line in the middle figure shows the minimum norm solution.
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Fig. 1.2. Compressed sensing. A signal is reconstructed from very few samples, which requires
sparse regularization. The left figure shows the Pareto curve, the middle figure shows the solution,
and the right figure shows the primal-dual gap as a function of the number of iterations. The gray
line in the middle figure shows the minimum norm solution.
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Fig. 1.3. TV example. Here, the solution has a blocky structure. The left figure shows the
Pareto curve, the middle figure shows the solution, and the right figure shows the primal-dual gap
as a function of the number of iterations. The gray line in the middle figure shows the minimum
norm solution.

1.2. Contributions. In this paper we set out to further analyze the SR3 method
proposed in [43] and analyze in detail the observations made in the above examples.
Our contributions are the following.
Conditioning of F\kappa for general L. We extend the analysis of [43] and derive the

SVD of F\kappa for general L. We show how the singular values and the condition
number of F\kappa are related to the generalized singular values of (A,L). As a by-
product, we show that SR3 implicitly makes a standard-form transformation
[15] of (1.1).

Approximation of the Pareto curve. We show that that the Pareto curve cor-
responding to the relaxed problem (1.2) always underestimates the Pareto
curve of the original problem (1.1) and that the error is of order \scrO (\kappa  - 2). A
by-product of this result is a better understanding of the Pareto curve for
general p and an intuitive explanation of the observation that the corners of
the relaxed original Pareto curves coincide.

Inexact solves. We propose an inexact inner-outer iterative version of the SR3 al-
gorithm where the regularized least-squares problem (1.7) is solved approxi-
mately using a Krylov-subspace method. In particular, we propose an auto-
mated adaptive stopping criterion for the inner iterations.

1.3. Outline. In section 2 we analyze the operator F\kappa . We derive the SVD
of F\kappa and analyze the limiting cases \kappa \rightarrow \infty and \kappa \rightarrow 0. Our main results are a
characterization of the singular values of F\kappa and showing that SR3 implicitly applies
a standard-form transformation. In section 3, we relate the Pareto curve of SR3 to the
Pareto curve of the original problem and derive an error bound in terms of \kappa . Next,
section 4 is concerned with the implementation of SR3. We propose two ingredients
that make SR3 suitable for large-scale applications. In section 5, we conduct our
numerical experiments and verify the theoretical results from section 2. Moreover,
we numerically investigate the influence of \kappa on the convergence rate. Finally, in
section 6, we draw our conclusions.

2. Analysis of SR3. In this section we analyze some of the properties of the
operator F\kappa . We will characterize the singular values of F\kappa for general L and analyze
the limits \kappa \rightarrow 0 and \kappa \rightarrow \infty . First, we will treat some preliminaries needed for
understanding what happens in the limit \kappa \rightarrow \infty .

2.1. The generalized SVD. The central tool in our analysis is the generalized
SVD (GSVD) of (A,L). The definition of the GSVD depends on the size of the
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S274 NICK LUIKEN AND TRISTAN VAN LEEUWEN

matrices and the dimensions of the matrices relative to each other. We use the
definitions for the case A \in \BbbR m\times n and L \in \BbbR p\times n where m \geq n, p < n or m < n,
p > n because this corresponds to the examples we use in our experiments.

Definition 2.1 (GSVD). Let A \in \BbbR m\times n and L \in \BbbR p\times n. The GSVD of (A,L) is
given by A = U\Sigma X, L = V \Gamma X, where

\Sigma =

\left[  \Sigma p 0
0 In - p

0 0

\right]  , \Gamma =
\bigl[ 
\Gamma p 0

\bigr] 
for m \geq n, p \leq n,

and

\Sigma =
\bigl[ 
0 \Sigma m

\bigr] 
, \Gamma =

\left[  In - m 0
0 \Gamma m

0 0

\right]  for m < n, p > n.

The matrices \Sigma r and \Gamma r (where r = p or r = m) are r\times r diagonal matrices satisfying
\Sigma T

r \Sigma r+\Gamma T
r \Gamma r = Ir, X is invertible and U and V are orthonormal. Moreover, we have

the following ordering of the diagonal elements \sigma i of \Sigma and \gamma i of \Gamma :

0 \leq \gamma r \leq \cdot \cdot \cdot \leq \gamma 1 \leq 1,

0 \leq \sigma 1 \leq \cdot \cdot \cdot \leq \sigma r \leq 1.

The decomposition of A and L in the GSVD share similar properties to the SVD.
The number of nonzero entries of \Sigma and \Gamma give the rank of A and L, respectively. If rA
is the rank of A and rL is the rank of L then the last r - rA columns, corresponding to
\Sigma r, of U form a basis for the range of A and the first rL columns, corresponding to \Gamma r,
of V form a basis for the range of L. The first r  - rA columns, corresponding to \Sigma r,
of X - 1 form a basis for the nullspace of A and the last r - rL columns, corresponding
to \Gamma r, of X

 - 1 form a basis for the nullspace of L.

2.2. Standard-form transformation. The standard-form transformation (see,
e.g., [15, 22]) makes a substitution y = Lx such that x = x\scrM + x\scrN , where
(2.1)

\=x\scrM = L\dagger 
A\=y, \=y = argmin

y

1

2
\| AL\dagger 

Ay  - b\| 
2
2 +\scrR (y), L\dagger 

A =
\bigl( 
I  - (A(I  - L\dagger L))\dagger A

\bigr) 
L\dagger 

and

(2.2) \=x\scrN =
\bigl( 
A
\bigl( 
I  - L\dagger L

\bigr) \bigr) \dagger 
b.

The operator L\dagger 
A is called the A-weighted pseudo-inverse. The transformation splits

the solution into two parts: one part in the range of L, L\dagger 
Ay, and one part in the

nullspace of L, x\scrN . The operator L\dagger 
A makes the two parts A-orthogonal. The parts

L\dagger 
Ay and x\scrN are then obtained by two independent optimization problems. If L is

invertible L\dagger 
A = L - 1 and if p > n and L has full rank we have L\dagger 

A = L\dagger . Hence, if
LTL = I, the standard-form is achieved by simply applying LT .

In terms of the GSVD of (A,L), the standard-form transformation has a much

simpler form. The operator L\dagger 
A can be written in terms of the GSVD as

L\dagger 
A = X - 1\Gamma \dagger V T ,
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and hence (2.1) can be written as

(2.3) \=x\scrM = X - 1\Gamma \dagger V T \=y, \=y = argmin
y

1

2
\| U\Sigma \Gamma \dagger V T y  - b\| 22 +\scrR (y).

Similarly, (2.2) can be written in terms of the GSVD as

(2.4) \=x\scrN = X - 1

\biggl[ 
0 0
0 Ip - rL

\biggr] 
UT b.

2.3. The SVD of \bfitF \bfitkappa . In this section we derive the SVD of F\kappa in terms of the
GSVD of (A,L).

Theorem 2.2. Let F\kappa = Y \Lambda ZT be the SVD of F\kappa . Let the GSVD of
\biggl[ 
A
L

\biggr] 
=

\biggl[ 
U\Sigma 
V \Gamma 

\biggr] 
X.

Then

Y =

\Biggl[ 
\kappa 1/2V \widetilde \Sigma 1/2

\kappa ,I \kappa V \widetilde \Sigma  - 1/2
\kappa ,I \Gamma 

\bigl( 
\Sigma T\Sigma + \kappa \Gamma T\Gamma 

\bigr)  - 1
\Sigma T

\kappa U\Sigma 
\bigl( 
\Sigma T\Sigma + \kappa \Gamma T\Gamma 

\bigr)  - 1
\Gamma T \widetilde \Sigma  - 1/2

\kappa ,I  - \kappa  - 1/2U \widetilde \Sigma 1/2
m,\kappa 

\Biggr] 

\Lambda =

\biggl[ \widetilde \Sigma 1/2
\kappa 

0

\biggr] 
Z = V,

where \widetilde \Sigma \kappa = \kappa 
\bigl( 
Ip  - \kappa \Gamma (\Sigma T\Sigma + \kappa \Gamma T\Gamma ) - 1\Gamma T

\bigr) 
, \widetilde \Sigma \kappa ,m =

\biggl[ \widetilde \Sigma \kappa 0
0 Im - p

\biggr] 
if m \geq n \geq p and\widetilde \Sigma \kappa ,m = \widetilde \Sigma \kappa ,I if m < n \leq p, and the square root denotes the entry wise square root. If

p > n the diagonal matrix \widetilde \Sigma \kappa will have zeros on the diagonal. We denote \widetilde \Sigma \kappa ,I to be

the matrix \widetilde \Sigma \kappa where the zeros have been replaced by ones.

Proof. Using the GSVD of (A,L) we have H - 1
\kappa = X - 1(\Sigma T\Sigma +\kappa \Gamma T\Gamma ) - 1X - T , and

hence LH - 1
\kappa LT = V \Gamma (\Sigma T\Sigma + \kappa \Gamma T\Gamma ) - 1\Gamma TV T . Given the fact that V is orthonormal

and \Gamma (\Sigma T\Sigma + \kappa \Gamma T\Gamma ) - 1\Gamma T is a diagonal matrix the above expression is the SVD of
LH - 1

\kappa LT , and we obtain the expressions for \Lambda and Z. To obtain Y , we first partition

Y =
\biggl[ 
Y11 Y12

Y21 Y22

\biggr] 
. We have

F\kappa F
T
\kappa = Y \Lambda \Lambda TY T

\Leftarrow \Rightarrow 
\biggl[ 

\kappa 
\bigl( 
I  - \kappa LH - 1

\kappa LT
\bigr) 2

\kappa 
\surd 
\kappa 
\bigl( 
I  - \kappa LH - 1

\kappa LT
\bigr) 
LH - 1

\kappa AT

\kappa 
\surd 
\kappa AH - 1

\kappa LT
\bigl( 
I  - \kappa LH - 1

\kappa LT
\bigr) 

\kappa 2AH - 1
\kappa LLTH - 1

\kappa AT

\biggr] 
=

\biggl[ 
Y11 Y12
Y21 Y22

\biggr] \biggl[ \widetilde \Sigma \kappa 0
0 0

\biggr] \biggl[ 
Y T
11 Y T

21

Y T
12 Y T

22

\biggr] 
=

\Biggl[ 
Y11\widetilde \Sigma \kappa Y

T
11 Y11\widetilde \Sigma \kappa Y

T
21

Y21\widetilde \Sigma \kappa Y
T
11 Y21\widetilde \Sigma \kappa Y

T
21,

\Biggr] 
.

Plugging in the GSVD gives

F\kappa F
T
\kappa 

=

\Biggl[ 
\kappa  - 1V \widetilde \Sigma 2

\kappa V
T \surd 

\kappa V \widetilde \Sigma \kappa \Gamma (\Sigma T\Sigma + \kappa \Gamma T\Gamma ) - 1\Sigma TUT

\surd 
\kappa U\Sigma (\Sigma T\Sigma + \kappa \Gamma T\Gamma ) - 1\Gamma T \widetilde \Sigma \kappa V T \kappa 2U\Sigma (\Sigma T\Sigma + \kappa \Gamma T\Gamma ) - 1\Gamma T\Gamma (\Sigma T\Sigma + \kappa \Gamma T\Gamma ) - 1\Sigma TUT

\Biggr] 
.

Solving for Y11 gives

Y11 = \kappa  - 1/2V \widetilde \Sigma 1/2
\kappa ,I .

Using this in the upper right part gives

Y21 = \kappa U\Sigma (\Sigma T\Sigma + \kappa \Gamma T\Gamma ) - 1\Gamma T \widetilde \Sigma  - 1/2
\kappa ,I .
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To solve for Y12 and Y22, we use

Y Y T =

\biggl[ 
Y11Y

T
11 + Y12Y

T
12 Y11Y

T
21 + Y12Y

T
22

Y21Y
T
11 + Y22Y

T
12 Y21Y

T
21 + Y22Y

T
22

\biggr] 
=

\biggl[ 
Ip 0
0 Im

\biggr] 
.

The upper left part yields

Y12 = \kappa V \widetilde \Sigma  - 1/2
\kappa ,I \Gamma 

\bigl( 
\Sigma T\Sigma + \kappa \Gamma T\Gamma 

\bigr)  - 1
\Sigma T .

The upper right part yields

Y22 =  - \kappa  - 1/2U \widetilde \Sigma 1/2
\kappa ,m.

Note that the singular values are ordered in ascending order. We have the following
corollary.

Corollary 2.3. If m \geq n and p < n the singular values of F\kappa are given by

\psi i(F\kappa ) =

\sqrt{} 
\sigma 2
n - i+1

\sigma 2
n - i+1/\kappa + \gamma 2n - i+1

.

If m < n and p > n the singular values of F\kappa are given by

\psi i(F\kappa ) =

\left\{           

\surd 
\kappa if i \leq p - rL,\sqrt{} 

\sigma 2
m - i+1

\sigma 2
m - i+1/\kappa + \gamma 2m - i+1

if p - rL < i \leq p - rL + rA,

0 if i > p - rL + rA.

The question arises whether there is a direct relation between the singular values of
A and the \sigma i. The answer is no, but we do, however, have the following result from
[20].

Theorem 2.4 ([20, Thm. 2.4]). Let \psi i(A) and \psi i(L) denote the singular values
of A and L, respectively, and let \sigma i and \gamma i denote the nonzero entries of the matrices
\Sigma and \Gamma , respectively. Then for all \sigma i, \gamma i \not = 0\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\biggl[ 
A
L

\biggr] \dagger \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
 - 1

2

\leq \psi r - i+1(A)

\sigma i
\leq 

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ AL
\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 

2

,

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl[ 
A
L

\biggr] \dagger \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
 - 1

2

\leq \psi i(L)

\gamma i
\leq 

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ AL
\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 

2

.

Remark 2.5. This result shows that, if the operator A has quickly decaying sin-
gular values, the \sigma i will have the same behavior; see also [22, p. 24]. This is an
important result because it shows how the ill-conditioning of A transfers over to F\kappa .
Note that if \sigma i \approx 0 we have \gamma i \approx 1 and the singular values of

\psi i(F\kappa ) =

\sqrt{} 
\sigma r - i+1

\sigma r - i+1/\kappa + \gamma r - i+1
\approx 

\sqrt{} 
\sigma r - i+1

\sigma r - i+1/\kappa + 1
\approx 0.

Hence, if the operator A is severely ill-posed, this ill-posedness is inherited by the
operator F\kappa .
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2.4. Limiting cases.

2.4.1. The limit \bfitkappa \rightarrow \infty if \bfitp < \bfitn . If L = I the limit \kappa \rightarrow \infty yields the
original optimization problem. However, if L \not = I, it is not immediately clear what
happens in the limit \kappa \rightarrow \infty due to the presence of the operator L. In this section we
derive this limit using the GSVD of (A,L). We will show that the in the limit \kappa \rightarrow \infty 
SR3 applies a standard-form transformation. We will proceed as follows. Recall that
the variable x in SR3 is given by

(2.5) \=x\kappa = H - 1
\kappa 

\bigl( 
\kappa LT \=y\kappa +AT b

\bigr) 
= \kappa H - 1

\kappa LT \=y\kappa +H - 1
\kappa AT b := x1 + x2,

consisting of the two parts x1 and x2. We will now show that, in the limit \kappa \rightarrow \infty ,
SR3 applies a standard-form transformation, by showing that x1 and x2 defined in
(2.5) satisfy

(2.6) x1 = \=x\scrM , x2 = \=x\scrN ,

where x\scrM and x\scrN are determined by the standard-form transformation, given by
(2.3) and (2.4), respectively.

Given the GSVD of (A,L), the matrix F\kappa and the vector g\kappa are given by

(2.7) F\kappa =

\Biggl[ \surd 
\kappa V

\Bigl( 
Ip  - \kappa \Gamma 

\bigl( 
\Sigma T\Sigma + \kappa \Gamma T\Gamma 

\bigr)  - 1
\Gamma T

\Bigr) 
V T

\kappa U\Sigma 
\bigl( 
\Sigma T\Sigma + \kappa \Gamma T\Gamma 

\bigr)  - 1
\Gamma TV T

\Biggr] 
,

and

(2.8) g\kappa =

\Biggl[ \surd 
\kappa V \Gamma (\Sigma T\Sigma + \kappa \Gamma T\Gamma ) - 1\Sigma TUT b

U
\Bigl( 
Im  - \Sigma 

\bigl( 
\Sigma T\Sigma + \kappa \Gamma T\Gamma 

\bigr)  - 1
\Sigma T

\Bigr) 
UT b

\Biggr] 
.

As \kappa \rightarrow \infty we have

F\kappa \rightarrow 
\biggl[ 

0
U\Sigma \Gamma \dagger V T

\biggr] 
and g\kappa \rightarrow 

\biggl[ 
0
b

\biggr] 
.

Hence, as \kappa \rightarrow \infty , we obtain

(2.9) \=y\kappa = argmin
y

1

2
\| U\Sigma \Gamma \dagger V T y  - b\| 22 +\scrR (y).

Using the GSVD, we have

H - 1
\kappa = X - 1

\bigl( 
\Sigma T\Sigma + \kappa \Gamma T\Gamma 

\bigr)  - 1
X - T ,

and hence as \kappa \rightarrow \infty we have\bigl( 
\Sigma T\Sigma + \kappa \Gamma T\Gamma 

\bigr)  - 1 \rightarrow 
\biggl[ 
0 0
0 Ip - rL

\biggr] 
.

Hence,

(2.10) H - 1
\kappa \rightarrow X - 1

\biggl[ 
0 0
0 Ip - rL

\biggr] 
X - T .

Recall that the last columns of X are a basis for the nullspace of L and hence H\kappa 

projects onto the nullspace of L. Using the GSVD of (A,L) we see that

lim
\kappa \rightarrow \infty 

x1 := lim
\kappa \rightarrow \infty 

H - 1
\kappa AT b = X - 1

\biggl[ 
0 0
0 Ip - rL

\biggr] 
UT b,

which is equivalent to the nullspace component from (2.4).
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S278 NICK LUIKEN AND TRISTAN VAN LEEUWEN

We now show that x1 corresponds to the part in the range of L. We have

x1 := \kappa H - 1
\kappa LT \=y = \kappa X - 1

\bigl( 
\Sigma T\Sigma + \kappa \Gamma T\Gamma 

\bigr)  - 1
\Gamma TV T \=y.

The elements of the diagonal matrix \kappa 
\bigl( 
\Sigma T\Sigma + \kappa \Gamma T\Gamma 

\bigr)  - 1
\Gamma T are

\gamma i
\sigma 2
i /\kappa + \gamma 2i

if i \leq rL,

0 if i > rL,

and as \kappa \rightarrow \infty 
1

\gamma i
if i \leq rL,

0 if i > rL.

Hence, as \kappa \rightarrow \infty 
\kappa 
\bigl( 
\Sigma T\Sigma + \kappa \Gamma T\Gamma 

\bigr)  - 1
\Gamma T \rightarrow \Gamma \dagger ,

and thus
\kappa H - 1

\kappa LT \rightarrow X - 1\Gamma \dagger V T = L\dagger 
A.

The limit for the component x1 is now given by

lim
\kappa \rightarrow \infty 

x1 = X - 1\Gamma \dagger V T \=y\kappa = L\dagger 
A\=y\kappa ,

where \=y\kappa solves

\=y\kappa = argmin
y

1

2
\| U\Sigma \Gamma \dagger V T y  - b\| 22 +\scrR (y),

which is equivalent to (2.3).

2.4.2. The limit \bfitkappa \rightarrow \infty if \bfitp > \bfitn . If p > n, the limit \kappa \rightarrow \infty is a bit more
subtle. For large \kappa , we have

(2.11) F\kappa \sim 

\left[  V \biggl[ 
0rL\times rL 0

0
\surd 
\kappa Ip - rL

\biggr] 
V T

U\Sigma \Gamma \dagger V T

\right]  , and g\kappa \sim 
\biggl[ 
0p\times 1

b

\biggr] 
.

Hence, for large \kappa , SR3 solves a system of the form\biggl[ \surd 
\kappa Vp - rLV

T
p - rL

U\Sigma \Gamma \dagger V T

\biggr] 
y =

\biggl[ 
0p\times 1

b

\biggr] 
,

where Vp - rL are the last p - rL columns of V , which means that Vp - rLV
T
p - rL = \scrP \scrN (LT ).

Because Vp - rLV
T
p - rLy = 0, the solution has no parts in \scrN (LT ) and is restricted to

the subspace \scrR (L). The bottom part of F\kappa is equal to the case p < n and hence

corresponds to matrix AL\dagger 
A. Let \=ystd be the solution to the standard-form transformed

system. Then, as \kappa \rightarrow \infty , the minimizer \=y\kappa of SR3 satisfies

(2.12) \=ystd = \scrP \scrR (L)\=y\kappa .

However, looking at the original formulation in (1.2), we see that as \kappa \rightarrow \infty we have

y = Lx,

which means that y \in \scrR (L). Hence, condition (2.12) is immediately satisfied, and the
solutions are the same.
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2.5. The limit \bfitkappa \rightarrow 0. The limit \kappa \rightarrow 0 is much easier to derive. Recall that

\=x\kappa = H - 1
\kappa 

\bigl( 
AT b+ \kappa LT \=y\kappa 

\bigr) 
.

As \kappa \rightarrow 0 we have \kappa H - 1
\kappa LT \=y\kappa \rightarrow 0 and H\kappa \rightarrow (ATA) - 1. Hence lim\kappa \rightarrow 0 x\kappa =

(ATA) - 1AT b which is the unregularized minimum norm solution.

2.6. Relation to the standard-form transformation.

2.6.1. The case \bfitp \leq \bfitn . We have shown that as \kappa \rightarrow \infty SR3 implicitly applies
a standard-form transformation and that as \kappa \rightarrow 0 the system is unregularized. The
question arises what happens for finite \kappa > 0. To show what happens, we rewrite the
singular values of F\kappa as

\psi i(F\kappa ) =

\sqrt{} 
\sigma 2
r - i+1

\sigma 2
r - i+1/\kappa + \gamma 2r - i+1

=

\sqrt{}    \sigma 2
r - i+1/\gamma 

2
r - i+1

\sigma 2
r - i+1/\gamma 

2
r - i+1

\kappa + 1
=

\sqrt{}     \psi 2
i

\Bigl( 
AL\dagger 

A

\Bigr) 
\psi 2
i

\Bigl( 
AL\dagger 

A

\Bigr) 
/\kappa + 1

.

This is equivalent to equation 9 in [43], where it was shown that if LTL = I,

\psi i(F\kappa ) =
\psi 2
i (A)

\psi 2
i (A)/\kappa + 1

.

This shows that SR3 is applied to the matrix AL\dagger 
A. This leads to the following

theorem.

Theorem 2.6. Let p \leq n. The following diagram commutes.

minx
1
2\| Ax - b\| 

2
2 + \lambda \scrR (Lx) \=y\kappa = argminy

1
2\| F\kappa y  - g\kappa \| 22 + \lambda \scrR (y)

\=x\kappa = H - 1
\kappa (\kappa LT \=y\kappa +AT b)

\=z\kappa = argminz
1
2\| AL

\dagger 
Az  - b\| 22 + \lambda \scrR (z)

\=x\kappa = L\dagger 
A\=z\kappa + x\scrN 

\=y\kappa = argminy
1
2\| F\kappa y  - g\kappa \| 22 + \lambda \scrR (y)

\=z\kappa = H - 1
\kappa (\kappa \=y\kappa + (AL\dagger 

A)
T b)

\=x\kappa = L\dagger 
A\=z\kappa + x\scrN 

SR3

SR3

2.6.2. The case \bfitp > \bfitn . If p > n the situation is different. Recall that the
singular values of F\kappa are given by

\psi i(F\kappa ) =

\left\{               

\surd 
\kappa if i \leq p - rL,\sqrt{}     \psi 2

i

\Bigl( 
AL\dagger 

A

\Bigr) 
\psi 2
i

\Bigl( 
AL\dagger 

A

\Bigr) 
/\kappa + 1

. if p - rL < i \leq p - rL + rA,

0 if i > p - rL + rA.

The singular values for F\kappa when SR3 is applied to AL\dagger 
A are given by

\psi i(F\kappa ) =

\left\{         
\sqrt{}     \psi 2

i

\Bigl( 
AL\dagger 

A

\Bigr) 
\psi 2
i

\Bigl( 
AL\dagger 

A

\Bigr) 
/\kappa + 1

. if i \leq rA,

0 if i > rA.
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Hence, there are extra singular values
\surd 
\kappa when SR3 is applied to the general-form

system as opposed to the standard-form system. The difference may be seen from the
expression (2.7). We have

\kappa \Gamma 
\bigl( 
\Sigma T\Sigma + \kappa \Gamma T\Gamma 

\bigr) 
\Gamma T =

\left\{               

\left[   In - rA 0 0

0 \kappa \Gamma m(\Sigma T\Sigma + \kappa \Gamma T
m\Gamma m)\Gamma T

m 0

0 0 0

\right]   if p > n,

\Biggl[ 
Ip - rA 0

0 \kappa \Gamma m(\Sigma T\Sigma + \kappa \Gamma T
m\Gamma m)\Gamma T

m

\Biggr] 
if p \leq n.

Hence, the top part of F\kappa is different. Before we state our theorem let us introduce
some notation. For the general-form problem, let the function \varphi be defined as the
spectral cut-off function that makes the first p - rL singular values of F\kappa zero. Sim-
ilarly, for the standard-form transformed problem, let \varrho be defined as the function
that makes p  - rL singular values that are 0 equal to

\surd 
\kappa and accordingly permutes

the SVD. We then have \varphi \circ \varrho = Id. We have the following theorem.

Theorem 2.7. Let p > n. The following diagram commutes.

minx
1
2\| Ax - b\| 

2
2 + \lambda \scrR (Lx) \=y\kappa = argminy

1
2\| F\kappa y  - g\kappa \| 22 + \lambda \scrR (y)

\=x\kappa = H - 1
\kappa (\kappa LT \=y\kappa +AT b)

\=z\kappa = argminz
1
2\| AL

\dagger 
Az  - b\| 22 + \lambda \scrR (y)

\=x\kappa = L\dagger 
A\=z\kappa + x\scrN 

\~\=y\kappa = argminy
1
2\| \~F\kappa y  - g\kappa \| 22 + \lambda \scrR (y)

\~\=z\kappa = H - 1
\kappa (\kappa \~\=y\kappa + (AL\dagger 

A)
T b)

\~\=x\kappa = L\dagger 
A\=z\kappa + x\scrN 

SR3

\varphi 

SR3

\varrho 

3. Approximating the value function. In this section we quantify the dis-
tance between the Pareto curve of the original problem and the Pareto curve of the
relaxed problem in terms of \kappa . We first describe the value function of the problem
and then present our theorem.

The value function of an optimization problem expresses the value of the objec-
tive at the solution as a function of the other parameters. Using the standard-form
transformation, we can, without loss of generality, consider the standard-form value
function:

\phi \kappa (\tau ) = min
y
\| F\kappa y  - g\kappa \| 2 s.t. \| y\| p \leq \tau .

3.1. Value function for \bfitkappa \rightarrow \infty . We have seen that for \kappa \rightarrow \infty , we retrieve
the unrelaxed problem with value function

\phi \infty (\tau ) = min
y
\| Ay  - b\| 2 s.t. \| y\| p \leq \tau .

Following [40] we obtain the following (computable) upper and lower bounds for the
value function

bT \widetilde r  - \tau \| AT \widetilde r\| q \leq \phi \infty (\tau ) \leq \| \widetilde r\| 2,
where \widetilde y is any feasible point (i.e., \| \widetilde y\| p \leq \tau ), and \widetilde r = b  - A\widetilde y is the corresponding
residual and p - 1 + q - 1 = 1. Moreover, by [40, Col. 2.2] the derivative of the value
function is given by

\phi \prime \infty (\tau ) =  - \| AT r\| q/\| r\| 2,
with r = b - Ay and y = argmin\| y\| p\leq \tau \| Ay  - b\| 2.
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To gain some insight in the behavior of the value function, we consider \phi \infty and
\phi \prime \infty at \tau = 0 and \tau = \tau \ast = \| A\dagger b\| p:

\phi \infty (0) = \| b\| 2, \phi \prime \infty (0) =  - \| AT b\| q/\| b\| 2,

\phi \infty (\tau \ast ) = \| (I  - AA\dagger )b\| 2, \phi \prime \infty (\tau \ast ) = 0.

This immediately suggests that \phi \infty decreases linearly near \tau = 0 (the zero solution)
and flattens of near \tau = \tau \ast (the unconstrained minimizer). Since \phi \infty is known to
be convex, its second derivative is always positive and will gradually bend the curve
from decreasing to flat. How fast this happens and whether one can expect the typical
L-shape depends on how fast the curve decreases initially. We can bound \phi \prime \infty (0) as
follows. We let b = Ay and find

\| AT b\| q = \| ATAy\| q \geq Cq\| ATAy\| 2 \geq Cq\| A\dagger \| 2\| y\| 2,

where Cq is a constant that exists due to the equivalence of norms. Furthermore,

\| b\| 2 = \| Ay\| 2 \leq \| A\| 2\| y\| 2.

From this we get

\phi \prime \infty (0) \leq  - Cq\kappa 2(A)\| A\dagger \| 2,

with \kappa 2(A) = \| A\| 2\| A\dagger \| 2 the condition number of A. We thus expect a steep slope
for ill-conditioned problems, giving rise for the characteristic L-shape of the curve.
While this behavior is well-established for p = 2 where it can be analyzed using
the SVD of A [22], this analysis gives us new insight in the behavior of the Pareto
curve for ill-posed problems for general p. An example for p = 1, L = I is shown in
Figure 3.1.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

0
(

)

Fig. 3.1. Pareto curve for an ill-posed problem; the matrix A is diagonal with elements
e - (i - 1)/2 for i = 1, 2, . . . , 10; b = Ax with x = (1, 1, . . . , 1). The tangent lines at \tau = 0 and
\tau = \tau \ast are shown in black.
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3.2. Relaxed value function. We now present our theorem on the distance
between the Pareto curve of the original problem and the Pareto curve of the relaxed
problem.

Theorem 3.1. The distance between the Pareto curve of the original problem and
the Pareto curve of the relaxed problem is given by

(\phi \kappa (\tau ))
2  - (\phi \infty (\tau ))

2
=  - \kappa  - 1\| AT (b - Ay\kappa )\| 22 +\scrO 

\bigl( 
\kappa  - 2

\bigr) 
,

where y\kappa is the solution of the relaxed problem. In particular, we have

\phi \kappa (\tau ) \leq \phi \infty (\tau ).

Proof. Let \epsilon = \kappa  - 1. The relaxed value function can be expressed as

\phi \epsilon (\tau ) = min
y
\| F\epsilon y  - g\epsilon \| 2 s.t. \| y\| p \leq \tau .

For \epsilon < \| A\| 22 we can expand H - 1
\epsilon = \epsilon I  - \epsilon 2ATA+\scrO (\epsilon 3) and get

F\epsilon =

\biggl( 
A - \epsilon AATA+\scrO (\epsilon 2)
\epsilon 1/2ATA+\scrO (\epsilon 3/2)

\biggr) 
, g\epsilon =

\biggl( 
b - \epsilon AT b+\scrO (\epsilon 2)
\epsilon  - 1/2AT b+\scrO (\epsilon 3/2)

\biggr) 
.

Introduce

f(\epsilon ) = (\phi \epsilon (\tau ))
2
= min

x,y
\| Ax - b\| 22 + \epsilon  - 1\| x - y\| 22 s.t. \| y\| p \leq \tau .

We have f(0) = min\| y\| p\leq \tau \| Ay  - b\| 22 = (\phi 0(\tau ))
2
. Furthermore

f \prime (\epsilon ) =  - \epsilon  - 2\| x\epsilon  - y\epsilon \| 22,

where x\epsilon = H - 1
\epsilon (AT b+ \epsilon  - 1y\epsilon ) and y\epsilon is the optimal y. With this we find

(3.1) (\phi \epsilon (\tau ))
2  - (\phi 0(\tau ))

2
= \epsilon f \prime (\eta ) =  - \epsilon \eta  - 2\| x\eta  - y\eta \| 22.

We conclude that \phi \epsilon (\tau ) \leq \phi 0(\tau ). Alternatively, we can express

(3.2) (\phi \epsilon (\tau ))
2  - (\phi 0(\tau ))

2
=  - \epsilon  - 1\| x\epsilon  - y\epsilon \| 22 +\scrO (\epsilon 2).

For small \epsilon we get

f \prime (\epsilon ) =  - \| AT (b - Ay\epsilon )\| 22 +\scrO (\epsilon ).

Plugging this expression into (3.2) gives the desired result.

Remark 3.2. Theorem 3.1 can be used to explain the behavior of the Pareto curves
observed in the examples in section 1.1:

\bullet The error gets smaller for large \tau . For an unconstrained problem we have
\| AT (b - Ay\kappa )\| 2 = 0 as \kappa \rightarrow \infty . An example is shown in Figure 3.2.

\bullet The elbow of the Pareto curves coincide; \phi \infty decreases fast initially for ill-
posed problems (cf. Figure 3.1) while \phi \kappa decreases less fast due to the implicit
regularizating effect of the relaxation. Since 0 \leq \phi \kappa \leq \phi \infty , the relaxed Pareto
curve is pushed down and is therefore likely to have the elbow at the same
location as \phi \infty .
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Fig. 3.2. Pareto curve for an ill-posed problem; the matrix A is diagonal with elements
e - (i - 1)/2 for i = 1, 2, . . . , 10; b = Ax with x = (1, 1, . . . , 1). The approximations for various
values of \epsilon are shown as well.

4. Implementation. Recall from the introduction that we implement SR3 as
follows:

xk+1 \leftarrow 
\bigl( 
ATA+ \kappa LTL

\bigr)  - 1 \bigl( 
AT b+ \kappa LT yk

\bigr) 
,(4.1)

yk+1 \leftarrow prox1/\kappa \scrR (Lxk) .(4.2)

The last equation shows that for the choice \scrR (\cdot ) = \lambda \| \cdot \| pp there is a relation between
the parameters \kappa and \lambda . More specifically, \lambda depends on \kappa , and hence we write \lambda (\kappa ).
Given the optimal \lambda  \star , we have \lambda (\kappa ) = \lambda  \star \cdot \kappa . Note that if we use the constrained
formulation (1.9), the dependence on the stepsize is lost because the proximal operator
is the indicator function, and there is no relation between \tau and \kappa .

The computational bottleneck is in the first step, which is the solution to the
large-scale linear system

(4.3)
\bigl( 
ATA+ \kappa LTL

\bigr) 
xk = AT b+ \kappa LT yk - 1.

To avoid explicitly forming ATA and LTL, we instead solve the following minimization
problem

(4.4) min
x

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ A\surd 
\kappa L

\biggr] 
x - 

\biggl[ 
b\surd 

\kappa yk - 1

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
2

,

with LSQR.
We will numerically investigate how only partially solving (4.4) affects the conver-

gence of SR3. This has been investigated for ADMM in [13, 14, 1]. The convergence
of FISTA with an inexact gradient has been analyzed in [37]. The key message is that
the error has to go down as the iterations increase.

In our implementation, we propose two extra ingredients to make SR3 suitable
for large-scale problems: warm starts and inexact solves of (4.4). Both ingredients are
also used in the implementation of ADMM [8]. However, we propose a new stopping
criterion for the inexact solves of (4.4).
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A warm start is a technique used in inner-outer schemes, where the solution of
the previous inner iteration serves as an initial guess to the new inner iteration. That
is, we solve

(4.5) min
x

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ A\surd 
\kappa L

\biggr] 
x - 

\biggl( \biggl[ 
b\surd 

\kappa yk - 1

\biggr] 
 - 

\biggl[ 
A\surd 
\kappa L

\biggr] 
xk - 1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
2

.

By inexact solves we mean finding an approximate solution to (4.5). The level of
inexactness is determined by the difference between the true solution and the inexact
solution. There are various ways in which one can solve the optimization problem
inexactly. One way is to simply determine a maximum number of iterations. However,
the number of iterations to solve (4.4) can vary strongly per outer iteration. Moreover,
we may not want to solve the inner system with high precision in the first few outer
iterations, because this does not result in significant improvement in the next outer
iteration. Recently, the authors in [41] proposed a criterion to determine the amount
of inexactness for inner-outer schemes. The idea is to stop the inner iteration once the
difference in the resulting outer iterate becomes stagnant. Let xk denote the current
inner iterate and yk = prox1/\kappa \scrR (Lxk) the resulting outer iterate by applying the
proximal operator. Then the authors in [41] propose to stop the inner iterations if

(4.6) \| xk+1  - xk\| < \rho \| yk+1  - yk\| 

for some user defined constant \rho . We propose a similar criterion, namely, to stop if

(4.7)
\| yk+1  - yk\| 
\| yk\| 

< \epsilon 

for some user defined threshold \epsilon . The index k refers to the iteration of the iterative
method applied to the inner iteration. This yields the proposed implementation of
SR3, shown in Algorithm 4.1. Note that in line 4 of the algorithm we use the LSQR
algorithm, and we build on the Krylov subspace from the previous step.

Algorithm 4.1 Implementation of SR3

Require: Operators A and L, the data b, and the parameters \kappa , \lambda and \epsilon .
Ensure: Approximate solution xk.
1: while \| xk+1  - xk\| > \delta do
2: l = 0.

3: while
\| \~yl+1  - \~yl\| 
\| \~yl\| 

> \epsilon do  \triangleleft Run LSQR. We do not restart LSQR every

iteration!

4: xl = argmin
x\in \scrK l

\biggl( \Bigl[ 
A\surd 
\kappa L

\Bigr] 
,

\biggl[ 
b - Axk\surd 

\kappa (y0 - Lxk)

\biggr] \biggr) \bigm\| \bigm\| \bigm\| \bigm\| \biggl[ A\surd 
\kappa L

\biggr] 
x

5:  - 
\biggl( \biggl[ 

b\surd 
\kappa yk

\biggr] 
 - 
\biggl[ 
A\surd 
\kappa L

\biggr] 
xk

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
2

.

6: \~yl+1 = prox1/\kappa \scrR (Lxl).  \triangleleft Prospective update
7: l = l + 1.
8: end while
9: yk = \~yl.

10: k = k + 1.
11: end while
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It is important to note that the influence of \kappa on the outer iteration is different
from the influence of \kappa on the inner iteration. The improved conditioning of the
matrix F\kappa pertains to the convergence of the outer iteration. The convergence of the
inner iteration is completely determined by the properties of the matrix H - 1

\kappa . It is
important to note that using the GSVD of (A,L) we get

H\kappa = ATA+ \kappa LTL = XT
\bigl( 
\Sigma T\Sigma + \kappa \Gamma T\Gamma 

\bigr) 
X,

but this is not the SVD of H\kappa , because X is not orthonormal. Therefore, the matrix
\Sigma T\Sigma +\kappa \Gamma T\Gamma does not tell us anything about the convergence rate when solving linear
systems involving H\kappa .

5. Numerical experiments. In this section we verify the results from section 2
numerically. Furthermore, we implement Algorithm 4.1 and test it on two examples.
We use two examples that are regularized by TV regularization, which we solve in its
constrained form, i.e.,

min
x
\| Ax - b\| 22 s.t. \| Lx\| 1 \leq \tau .

5.1. Examples. We will use two examples that are very different in nature in
terms of their singular values. For both examples, we will show how their spectra are
changed as a function of \kappa by applying SR3 and how this relates to the inner and
outer iterations. After that, we will show how our inexact SR3 greatly reduces the
total number of iterations. We do not add noise to the data.

Gravity surveying. The first example is the gravity example from the regu
toolbox [23, 21]. This example models gravity surveying. An unknown mass distri-
bution that generates a gravity field is located in the subsurface, and the measured
data is related to the gravity field via a Fredholm integral of the first kind, i.e.,

b(s) =

\int 
\Omega 

k(s, t)x(t)dt.

The variable x(t) is the mass density at the location t in the subsurface, and b(s) is
the gravity field at location s at the surface. The kernel is given by

k(s, t) = d(d2 + (s - t)2) - 3/2,

where d is the depth. The integral is discretized using the midpoint quadrature rule
and yields a symmetric Toeplitz matrix A that is square and severely ill-posed. We
have chosen an x(t) that is piecewise constant, and hence we regularize the prob-
lem with TV regularization. The operator L = D, where D is the first-order finite
difference discretization, i.e.,

D =

\left[    - 1 1
. . .

. . .

 - 1 1

\right]   \in \BbbR (n - 1)\times n.

The operator is underdetermined and its nullspace has dimension 1. We choose n =
512. The true gravity profile is shown in Figure 5.1.
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Tomography. Our second example is the tomography example PRtomo from
the IR Tools toolbox [16] (see also [26]), which models parallel tomography. It models
x-ray attenuation tomography, often referred to as computerized tomography (CT).
Parallel rays at different angles penetrate an object. The rays are attenuated at a
rate proportional to the length of the ray and the density of the object. The ith ray
can be modeled as

bi =
\sum 
j\in \scrS i

aijxj .

The set \scrS denotes the set of pixels that are penetrated, aij denotes the length of the
ith ray through the jth pixel and xj is the attenuation coefficient. This is a two-
dimensional (2D) example where the matrix A is underdetermined and the singular
values decay mildly. Again, we use TV regularization for the reconstruction. For 2D

regularization, the operator L =
\biggl[ 
I \otimes D
D \otimes I

\biggr] 
. Hence, the operator L is overdetermined

and has a nullspace of dimension 1. We choose 18 angles between 0 and 180 degrees
and discretize the image on a 128\times 128 pixel grid. This means that A \in \BbbR 3258\times 16384.
Our experiments are on the Shepp--Logan phantom, shown in Figure 5.1.

Parameters. For our experiments, we have adapted the implementation of the
accelerated proximal gradient algorithm from [35] for SR3 and use the same stopping
criterion for the proximal gradient algorithm. For the inexact stopping criterion for
the inner iteration we choose \epsilon = 10 - 6. For the exact SR3 method, we let LSQR run
to convergence with the standard tolerance of 10 - 6. For \tau , we choose the optimal
value \tau = \| Lxtrue\| 1.

5.2. Singular values of \bfitF \bfitkappa . In this section we show the singular values of
F\kappa for the gravity and the tomography example. For the tomography example, the
generalized singular values are calculated on a 64\times 64 grid to reduce computational
time, instead of the 128 \times 128 grid for our experiments. We show the generalized
singular values, i.e., the singular values of AL\dagger 

A, and the singular values of F\kappa for
different values of \kappa for the gravity example in Figure 5.2.

Note that irrespective of the value of \kappa , the matrix F\kappa remains severely ill-posed.
For the tomography exmaple, A is not severely ill-posed. The singular values decay
only mildly and the situation is different. In this case, for small \kappa ,

\psi i (F\kappa ) =

\sqrt{} 
\sigma 2
r - i+1

\sigma 2
r - i+1/\kappa + \gamma 2r - i+1

\approx 

\sqrt{} 
\sigma 2
r - i+1

\sigma 2
r - i+1/\kappa 

=
\surd 
\kappa .

0 0.2 0.4 0.6 0.8 1
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Gravity profile Shepp--Logan phantom

Fig. 5.1.
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Singular values of F\kappa and AL\dagger 
A. Singular values of H\kappa .

Fig. 5.2. Spectral properties of F\kappa and H\kappa for the gravity example. Left figure: We show the

singular values of AL\dagger 
A and the singular values of F\kappa for different values of \kappa . Note that the singular

values of F\kappa have a very similar structure to the singular values of AL\dagger 
A. Right figure: The singular

values of the matrix H\kappa .
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Singular values of F\kappa .
a Singular values of H\kappa .

aThe matrix is numerically rank deficient and we have truncated the SVD.

Fig. 5.3. Spectral properties of F\kappa and H\kappa for the tomography example. The left figure shows
the singular values of F\kappa . Recall that the first p - rL singular values of F\kappa are

\surd 
\kappa . The right figure

shows the singular values of H\kappa . There is an inverse relation between the condition number of H\kappa 

and F\kappa as a function of \kappa .

Hence, for small \kappa the singular values of F\kappa \approx 
\surd 
\kappa and the condition number is 1. As

\kappa \rightarrow \infty we have seen that \psi i(F\kappa )\rightarrow \sigma r - i+1/\gamma r - i+1. We show the singular values, the
generalized singular values, and the singular values of F\kappa in Figure 5.3. Note that for
this example, the conditioning of the matrix F\kappa is improved.

5.3. The Pareto curves. In Figure 5.4 we show the Pareto curves for the
original problem and SR3 for both our examples.

As we explained in section section 3, the corner of the Pareto of the original
problem and SR3 is likely to be in the same place. This is confirmed by Figure 5.4.

5.4. The influence of \bfitkappa on the number of iterations. To investigate the
influence of \kappa , we show the amount of inner and outer iterations for varying values
of \kappa and the total number of iterations. The results are shown in Figure 5.5 and
Figure 5.6. As we have stated before, the improved convergence rate due to an
improved conditioning of \kappa pertains to the outer iterations. The effect of \kappa on the
convergence of the inner iteration may be completely opposite.

For the gravity example, we see that the amount of inner iterations varies very
little as \kappa increases and even goes up a little bit. This is not unexpected, because

D
ow

nl
oa

de
d 

12
/2

4/
21

 to
 1

31
.2

11
.1

2.
11

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S288 NICK LUIKEN AND TRISTAN VAN LEEUWEN

3.5 4 4.5 5 5.5

0

0.5

1

1.5

2

2.5

 = 

 = 10
-2

 = 10
-1

 = 10
0

 = 10
1

 = 10
2

380 380.5 381 381.5 382 382.5 383

0

0.05

0.1

0.15

0.2

 = 

 = 10
-2

 = 10
-1

 = 10
0

 = 10
1

 = 10
2

Pareto curves for the gravity example. Pareto curves for the tomography example.

Fig. 5.4. The left figure shows the Pareto curves for the gravity example. The right figure
shows the Pareto curves for the tomography example. The x-axis is \tau and the y-axis is \| A\=x\kappa  - b\| 2.
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Fig. 5.5. The left figure shows the inner and outer iterations for varying \kappa for the gravity
example. The right figure shows the total number of iterations.
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Fig. 5.6. The left figure shows the inner and outer iterations for varying \kappa for the tomography
example. The right figure shows the total number of iterations.

the decay of the singular values changes very little as \kappa increases; see Figure 5.2.
The amount of outer iterations goes down rapidly as \kappa decreases, something that
is not expected from the distribution of the singular values. This shows that the
distribution of the singular values is not the sole property explaining the convergence
behavior.

For the tomography example we see a clear trade-off between inner and outer
iterations. From Figure 5.3 we clearly see that as the condition number of F\kappa 
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decreases, the condition number of H\kappa increases. This explains that, as the amount
of inner iterations goes down with increasing \kappa , the amount of outer iterations goes
down.

5.5. Inexact SR3. In this section we compare the error and the total number
of iterations for SR3 and inexact SR3 as a function of \kappa . The results are shown in
Figure 5.7.

We see that the total number of iterations needed is greatly reduced by imple-
menting the automated stopping criterion. Another important contribution is that
the stopping criterion seems to mitigate the influence of \kappa on the total amount
of iterations. Figure 5.8 and Figure 5.9 show some reconstructions for different
values of \kappa .
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Fig. 5.7. Comparison of the total number of iterations for SR3 and inexact SR3 as a function
of \kappa . Note that the axes are on a log-log scale.
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\kappa = 102. Standard-form transformation.

Fig. 5.8. Solution to the gravity example for different \kappa . We have chosen \lambda by hand to yield
the best reconstruction. We show both \=x\kappa and \=y\kappa .
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\kappa = 10 - 8. \kappa = 10 - 2.

\kappa = 100. Standard-form transformation.

Fig. 5.9. Solution to the tomography example for different \kappa . We have chosen \lambda by hand to
yield the best reconstruction.

6. Conclusion and outlook. In this paper we have analyzed the method SR3
which was introduced in [43]. We have extended Theorem 1 from [43] about the
singular values of F\kappa to the general form case. We have shown that SR3, as \kappa \rightarrow \infty ,
implicitly applies a standard-form transformation, and that for finite \kappa > 0, the
singular values of F\kappa are related to the standard-form transformed operator.

In section 3 we have shown that the distance between the Pareto curve of the
original problem and the Pareto curve of the relaxed problem is of \scrO (1/\kappa 2) plus the
norm of the gradient, which depends on \kappa .

In section 4 we have presented our implementation of the inexact SR3 algorithm,
where we have proposed an automated stopping criterion for the inner iterations.

In our numerical experiments in section 5 we have compared the SR3 algorithm
for two example problems with very different spectra. The gravity example is a
severely ill-posed problem, and we have shown numerically that the convergence of
inner iterations is not affected much by \kappa , but the convergence of the outer itera-
tion is. For the tomography example we saw a trade-off: As \kappa decreases the outer
iterations converge rapidly, but the number of inner iterations is large. We have
shown that our automated stopping criterion greatly reduces the number of iterations
needed.

For future research it would be interesting to further investigate the relation
between the Pareto curve of the original problem and of the relaxed problem. Specifi-
cally, it would be great if we could prove that the corner of the curves are in the same
place, something that we have only been able to show qualitatively through Theo-
rem 3.1. This would lead to automatic selection of the regularization parameter \lambda .

Another interesting topic of research is the selection of \kappa . As we have seen in
our experiments, the choice of \kappa strongly influences the number of iterations needed
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for SR3, although this is largely mitigated by the inexact stopping criterion. The
relation between the tolerance for the stopping criterion and \kappa should also be further
investigated.
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