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Abstract. Dynamical symmetries of Born-Infeld theory can be absorbed into the

spacetime geometry, giving rise to relativistic kinematics with an additional invariant

acceleration scale. The standard Poincaré group P is thereby enhanced to its pseudo-

complexified version, which is isomorphic to P × P . We construct the irreducible

representations of this group, which yields the particle spectrum of a relativistic

quantum theory that respects a maximal acceleration. It is found that each standard

relativistic particle is associated with a ’pseudo’-partner of equal spin but generically

different mass. These pseudo-partners act as Pauli-Villars regulators for the other

member of the doublet, as is found from the explicit construction of quantum field

theory on pseudo-complex spacetime. Conversely, a Pauli-Villars regularised quantum

field theory on real spacetime possesses a field phase space with integrable pseudo-

complex structure, which gives rise to a quantum field theory on pseudo-complex

spacetime.

This equivalence between maximal acceleration kinematics, pseudo-complex

quantum field theory, and Pauli-Villars regularisation rigorously establishes a

conjecture on the regularising property of the maximal acceleration principle in

quantum field theory, by Nesterenko, Feoli, Lambiase and Scarpetta.
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1. Introduction

Standard quantum field theory is built on the assumption that fundamental particles

are irreducible representations of the spacetime Poincaré group. The physical rationale

for this is the assumption that the symmetries of Maxwell electrodynamics, associated

with an invariant speed c, are kinematical, i.e., all fundamental theories must possess

them. However, quantum field theory is plagued with divergences, as is Maxwell

electrodynamics of point particles. Indeed, the problem of infinite electric field energy

of a charged point particle led to the formulation of Born-Infeld electrodynamics [1].

The latter parameterises the energy divergence, but preserves Lorentz invariance. This

raises the question of whether replacing the kinematics of Maxwell theory, i.e., special

relativity, by extended kinematics extracted from Born-Infeld theory, might also regulate

the divergences encountered in quantum field theory. In this paper we show that this

indeed is the case.

This result is of particular interest, since Dirac-Born-Infeld theory presents the

electrodynamics on a Dirichlet brane [2] in ten-dimensional superstring theories. In this

context, the maximal acceleration is recognised as the inverse fundamental string length.

Brane world scenarios, e.g. [3], assign to Dirichlet three-branes the rôle of the observed

four-dimensional universe. This implies kinematical consequences for physical observers

in such models, as it was shown in [4, 5] that the kinematisation of the symmetries

associated with the maximal field strength b−1 of Born-Infeld theory,

LBI = det
1

2 (ηµν + bFµν) , (1)

leads to the pseudo-complexified Lorentz group SOP(1, 3) on pseudo-complexified

Minkowski spacetime P1,3, where the commutative ring of pseudo-complex numbers

is defined as

P ≡ {a + Ib|a, b ∈ R, I2 = +1, I 6∈ R}, (2)

as will briefly be reviewed in section 2. Resulting corrections to symmetry-sensitive

calculations in relativity, such as the Thomas precession [6], yield an upper bound [4]

for the Born-Infeld parameter,

b ≤ 10−11CN−1, (3)

or, equivalently, a lower bound

a ≥ 1022ms−2 (4)

on the maximal acceleration of an electrically charged particle coupled to Born-Infeld

theory, in order to be in accordance with data from high precision experiments [7].

The real Lorentz group is a subgroup of SOP(1, 3). Therefore, Born-Infeld kinematics,

encoded in the pseudo-complex Lorentz group, extends special relativity without

deforming Lorentz invariance, in contrast to other approaches to theories with two

fundamental constants [8, 9]. Most importantly, the theory can be consistently extended

to curved spaces [10] and thus allows for the inclusion of gravity [4, 5].
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The first proposals to introduce a maximal acceleration into otherwise relativistic

kinematics were made and pursued by Caianiello and collaborators [11, 12, 13], using

a suitable metric on the tangent bundle of spacetime. Pseudo-complex spacetime

establishes, additionally, a product structure on the tangent bundle, and hence

circumvents the incompatibility of a maximal acceleration and the strong principle of

equivalence [4, 5].

In proposals like [14, 15], the maximal acceleration is enforced by the particular

dynamics of the investigated models. This is analogous to the rôle of the speed of

light in pre-relativistic Maxwell electrodynamics. Before 1905, the boost symmetry of

Maxwell theory was regarded as a dynamical symmetry beyond the kinematical SO(3)

symmetry of the Maxwell Lagrangian. Using this modern parlance, special relativity

can be regarded as the kinematisation SO(3) −→ SO(1, 3) of the dynamical symmetries

of Maxwell theory that are due to the existence of a universal speed appearing in the

dynamics. Analogously, Born-Infeld kinematics [4] absorbs the dynamical symmetries

of Born-Infeld electrodynamics that are associated with the existence of a maximal

electric field strength, into the spacetime geometry, giving rise to the enlargement of the

transformation group SO(1, 3) −→ SOP(1, 3). We review the technical details of this

kinematisation briefly in section 2.

In an earlier attempt [18] to study the effects of a maximal acceleration a in quantum

field theory, Nesterenko, Feoli, Lambiase and Scarpetta quantise a sub-maximally

accelerated classical point particle in Minkowski spacetime,

LNFLS =
m

a

√
a
2 + ẍ2

√
ẋ2, (5)

but only consider its standard Poincaré symmetry. Such an ad hoc introduction of

the maximal acceleration, through modified dynamics, inevitably leads to the higher

order derivatives in (5), so that the transition to the Hamiltonian formulation must be

performed using the Ostrogradski formalism. The authors construct ’field equations’ of

a corresponding second quantised theory by imposing the classical Noether conservation

laws as operator equations on a spacetime function. The Green’s function of the arising

field equation is of sixth order, which leads the authors to the conjecture that a maximal

acceleration principle might possibly regularise quantum field theory. It is recognised,

however, that for the rigorous establishment of such a claim, one needs a field theory

based on maximal acceleration kinematics from the outset. In particular, fields must

belong to well-defined irreducible representations of an appropriate symmetry group.

In this paper, we take the SOP-symmetry inspired from Born-Infeld theory seriously

as the kinematical symmetry of fundamental physics, and thus show the equivalence of

(i) quantum field theory on pseudo-complex spacetime,

(ii) Pauli-Villars regularised quantum field theory on real spacetime, and

(iii) a finite upper bound on admissible particle accelerations.

More precisely, a quantum field theory based on the pseudo-complexified Poincaré

group, gives rise to Pauli-Villars regularised propagators, with a cutoff determined by
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the maximal acceleration parameter a. One understands this result directly from the

representation theory of the pseudo-complex Poincaré group: Each standard particle is

found to have as its ’pseudo-partner’ a Weyl ghost of equal spin, but generically different

mass. Taking the maximal acceleration parameter to infinity (or, equivalently, the

minimal length to zero) after the calculation of field theoretical amplitudes completes the

Pauli-Villars regularisation prescription, removing the unitarity-violating ghosts. The

necessity to take this limit illustrates the fact that quantum field theory is intrinsically

a theory based on the concept of point particles.

The organisation of the paper is as follows. We start by reviewing the pseudo-

complex techniques needed for an understanding of Born-Infeld kinematics in flat

spacetime. In section 3, we find the irreducible representations of the pseudo-complex

Poincaré group, providing a proper definition of quantum mechanical particles with sub-

maximal acceleration. The existence of degenerate representations requires the exclusion

of certain fields from the particle spectrum, which can be achieved by an adaptation

of the action principle for pseudo-complex quantum theories, as explained in section 4.

Dynamics for the free scalar field representation are explicitly constructed in section

5. This leads to a pseudo-complex propagator, whose projection to real spacetime

is shown be Pauli-Villars regularised. Conversely, in section 6, we demonstrate that

the field phase space of a Pauli-Villars regularised theory carries an integrable pseudo-

complex structure, giving rise to a pseudo-complex field theory. Section 7 deals with

the extension of the explicit constructions to spinor and non-abelian vector fields. In

section 8, we summarise and conclude.

2. Pseudo-Complexified Minkowski Space

We briefly review the pseudo-complex formulation of Born-Infeld kinematics, as

developed in [5, 4]. The commutative unit ring of pseudo-complex numbers over the

field F ∈ {R,C},
PF ≡ {Q1 + IQ2 | Q1, Q2 ∈ F} , (6)

where I 6∈ F , I2 = +1, possesses zero divisors

P
0
±
≡ {λ(1± I) | λ ∈ F} , (7)

for which no multiplicative inverses exist in PF . For notational convenience, we use the

shorthand P ≡ PR. The zero divisors will play a crucial rôle later on, and it is often

useful to decompose a pseudo-complex number Q = Q1+ IQ2 ∈ PF into its zero divisor

components

Q± ≡ Q1 ±Q2 ∈ F, (8)

via the multiplicatively acting projectors

σ± ≡ 1

2
(1± I) ∈ P

0
±
, (9)
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so that

Q = σ+Q+ + σ−Q−. (10)

A function f : PF −→ PF is called pseudo-complex differentiable, if it is, understood

as a map f̃ : F 2 −→ F 2, F -differentiable and satisfies the pseudo-Cauchy-Riemann

equations

∂1f̃1 = ∂2f̃2, (11)

∂2f̃1 = ∂1f̃2. (12)

These allow to re-identify Df̃ : F 2 −→ F 2×2 with Df : PF −→ PF , where the pseudo-

complex differential operator D can hence be written

D =
1

2
(∂1 + I∂2). (13)

The pseudo-complexification of a finite-dimensional real vector space M ≡ R1+n,

MP ≡
{

X ≡ x+ Ia−1u|x, u ∈M
}

= P
1+n, (14)

where a will assume the rôle of a fundamental finite upper bound on accelerations later

on, is a (free) module over P. Equipping MP with a metric η of signature (1, n) leads to

a metric module P1,n. A basis {e(µ)} of MP where the metric takes the diagonal form

η(e(µ), e(ν)) = ηµν ≡ diag(1,−1, . . . ,−1), (15)

is called a uniform frame. In such, the symmetry group of (MP, η) is generated by the

pseudo-complexified Lorentz algebra

soP(1, n) ≡ {ωµνM
µν |ωµν ∈ P,Mµν ∈ soR(1, n)} . (16)

Clearly, soR(1, n) ⊂ soP(1, n) is a subalgebra, and hence pseudo-complex Lorentz-

invariant theories do not break Lorentz invariance.

A curve X : R −→ P1,n is called an orbit, if there exists a uniform frame where

Xµ = xµ + Ia−1dx
µ

dτ
, (17)

with dτ 2 ≡ dxµdxµ being the real Minkowskian line element. Such uniform frames are

called inertial frames for the orbit X .

For an orbit X = x+ Ia−1u in an arbitrary uniform frame, the relation u = dx/dτ does

not generally hold, but is seen [5] to be weakened to the orthogonality

η(dx, du) = 0. (18)

Therefore, for an orbit X , the SOP(1, n)-invariant line element dω, defined by

dω2 ≡ dXµ dXµ, (19)

is always real-valued. This allows the following definition: An orbit X is called sub-

maximally accelerated, if

η(dX, dX) > 0. (20)
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For the real spacetime projection x : R −→ R1,n of a sub-maximally accelerated orbit

X = x+ Ia−1u, one finds an upper bound on the scalar acceleration,

− d2xµ

dτ 2
d2xµ
dτ 2

< a
2, (21)

so that x is a spacetime trajectory of Minkowski curvature less than a, justifying the

above terminology.

Note that (21) introduces a Lorentz-scalar acceleration scale a, (or, equivalently, a

length scale a
−1) into the theory, which is manifestly compatible with an undeformed

action of the Lorentz group on spacetime. It is argued in [16, 17] that the introduction of

a universal length scale into relativity enforces a deformation of the Lorentz boosts, due

to the Lorentz-Fitzgerald contraction. The latter, however, only affects directed lengths,

i.e. spatial three-vectors. A (scalar) length scale is a weaker concept, compatible with

standard Lorentz symmetry, as is exemplified by the Lorentz-invariant condition (21).

In particular, the present proposal is very different from the type of frameworks first

proposed in [8].

Using the SOP(1, n)-invariant line element (19), one can combine (18) and (20) into

the single scalar condition

η(
dX

dω
,
dX

dω
) = 1, (22)

for a sub-maximally accelerated orbit X . Thus SOP(1, n) manifestly preserves the

orthogonality (18) and the maximal acceleration scale.

The transformations contained in SOP(1, n) have a clear physical interpretation as

the standard boosts and rotations, and further transformations to uniformly accelerated

and rotating frames. To see this in detail, consider an observer in Minkowski spacetime,

given by a curve ea(τ) in the frame bundle, providing a local orthonormal basis with

η(ea, eb) = ηab at each point of the observer’s worldline x(τ). Arranging for comoving

frames in the standard way, i.e. e0 ≡ dx
dτ
, where dτ is the natural parameter of the curve

x, we obtain the Frenet-Serret formula [19]

d

dτ
ea = θa

beb, (23)

with the antisymmetric Frenet-Serret tensor θab = −θba, whose θ0α components encode

the translational three-acceleration aα of the observer, whereas the θαβ components

describe the angular velocity of the spatial frame in the αβ–plane, with respect to

a Fermi-Walker transported observer. Pseudo-complexified Minkowski spacetime P1,n

possesses pseudo-complexified tangent spaces TxP
1,n ∼= P1,n, which induces a pseudo-

complex frame bundle in turn. Hence, the real frame ea is extended to a pseudo-complex

frame

Ea = γa
b(δcb +

I

a

θb
c)ec, (24)

lifting the orbit definition (17) to the frame bundle. Here, θbc is the Frenet-Serret tensor

of the observer, and γa
b presents a normalisation factor to ensure the normalisation of

the pseudo-complex frames Ea,

η(Ea, Eb) = ηab. (25)
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The matrix-valued γ-factor is, in the pseudo-complex spacetime picture, absorbed into

the definition of the line element (19), such that, as one can easily check,

E0 ≡
dX

dω
. (26)

The pseudo-complexified Lorentz group parameterizes the gauge degrees of freedom

for the normalization condition (25). It contains the Lorentz group as a subgroup,

SO(1, n) ⊂ SOP(1, n). Indeed, any pseudo-complex Lorentz transformation Λ ∈
SOP(1, n) uniquely decomposes into a product

Λa
b = Qa

cLc
b (27)

of a real Lorentz transformation L ∈ SO(1, n), and a pseudo-complex Lorentz

transformation Q with purely pseudo-imaginary parameters ω∗

µν = −ωµν ,

Q = exp(ωµνM
µν). (28)

The real frames (accompanying an inertial observer with θ ≡ 0) provide a perfectly

good basis for the pseudo-complexified tangent spaces TxP
1,n = 〈ea〉P, but the action of

the pseudo-complex Lorentz group will generate a generic pseudo-complex frame,

Ea = Λa
beb. (29)

However, due to the polarisation formula (27), L merely presents a change of inertial

frame, and we can therefore assume, without loss of generality, that L is the identity,

and only study the action of the transformations of type Q. Starting with an inertial

observer, i.e. θ ≡ 0 and γa
b = δba, a boost in spatial β-direction, with purely pseudo-

imaginary parameter Iα, according to (29), effects the change to a frame of uniform

acceleration a tanhα, as one finds

θ0β = −θβ0 = a tanhα, (30)

with all other components vanishing. This clearly respects the maximal acceleration

scale, as −1 < tanhα < 1. The corresponding matrix-valued γ-factor is found to be

γ00 = −γββ = coshα, γαα = −1, α 6= β. (31)

Similarly, a rotation in the αβ–plane with purely pseudo-imaginary parameter Iϕ, acting

on the observer, effects a change to a uniformly rotating frame of angular velocity

a tan(ϕ), as one finds from (29) that

θαβ = −θβα = a tanϕ, (32)

with the γ-factor

γαα = γββ = − cosϕ, γ00 = 1, (33)

and all other diagonal entries equal to −1. In particular, the real Lorentz

transformations L ∈ SO(1, n) act on the velocity, acceleration, and momentum of a

particle exactly as in standard special relativity. This is possible, as detailed above, as an

acceleration or length scale is a weaker concept than a directed length, and is therefore
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not subject to the Lorentz-Fitzgerald contraction, because one can easily formulate

Lorentz-covariant bounds, as in (21).

We conclude that the symmetry group SOP(1, n) contains the real Lorentz

transformations as a subgroup, and further the transformations to uniformly sub-

maximally accelerated and rotating frames. Thus the 12 (real) generators Mµν , IMµν

of SOP(1, n) all possess a clear physical interpretation.

Classical Lagrangian dynamics with SOP(1, n) symmetry give rise to sub-maximally

accelerated orbits [5], which we interpret as classical point particles in n+1 dimensions,

respecting the maximal acceleration. In quantum theory, however, the particle spectrum

is given by all irreducible representations of the underlying symmetry group. Therefore,

we study the representation theory of the pseudo-complexified Poincaré group in the

next section.

3. Representation theory of the Pseudo-complex Poincaré group

We show that in a quantum theory with pseudo-complex Poincaré invariance, the stan-

dard relativistic particle spectrum is doubled, providing each real particle with a pseudo-

partner of generically different mass, but equal spin.

The pseudo-complexified Poincaré algebra PP in 3 + 1 dimensions is generated by

PP ≡
〈

P µ,Mαβ
〉

P
, (34)

where, if acting on spacetime functions, Pµ ≡ iDµ are the generators of translations in

P1,3, and Mαβ ≡ XαDβ − XβDα are the generators of SOP(1, 3). Decomposition into

zero-divisor components (10) immediately yields two decoupled real Poincaré algebras

PP = σ+

〈

P µ
+,M

αβ
+

〉

R

⊕ σ−

〈

P µ
−,M

αβ
−

〉

R

= σ+PR ⊕ σ−PR, (35)

where the sum is direct because σ+σ− = 0. Thus, generically, a pseudo-complex particle

is labelled by two independent real masses and two independent spins or helicities, as

follows from the well-known representation theory of the real Poincaré group.

However, we want to realise the representations by pseudo-complex fields φ =

σ+φ+ + σ−φ−. Clearly, the subalgebras σ±PR act independently on the (real) zero-

divisor components φ±. Hence, φ+ and φ− must belong to real representations of equal

spin, as otherwise the real and pseudo-imaginary parts of φ, i.e., φ+±φ−, would not be

algebraically defined. We will see this constraint at work more explicitly below.

As P 2
±

are Casimir operators of the respective real Poincaré algebras σ±PR, the

pseudo-complex operator

P 2 = σ+P
2
+ + σ−P

2
−

(36)

is a Casimir of PP, and its value M2 ∈ P is called the pseudo-complex mass of the

representation. We further define the pseudo-complex Pauli-Ljubanski vector

Wµ =
1

2
ǫµγαβP

γMαβ , (37)
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whose zero-divisor components

Wµ± =
1

2
ǫµγαβP

γ
±M

αβ
± (38)

present the real Pauli-Ljubanski vectors of the two real Poincaré algebras σ±PR.

Representations of the pseudo-complex Poincaré algebra fall into three different

classes, which we call massive, almost massless, and massless, according to whether the

pseudo-complex mass is no zero-divisor, a zero-divisor, or zero. We now discuss these

cases in turn.

3.1. Massive case (M2 6∈ P0)

As in this case M2
±
> 0, the Casimirs of the respective real Poincaré algebras are given

by the squared Pauli-Ljubanski vectors W 2
±
=M2

±
J2
±
, with J±i ≡ 1

2
ǫijkM

jk
± . Clearly, the

squared pseudo-complex Pauli-Ljubanski vector W 2 is then a Casimir of PP, and one

observes that the pseudo-complex spin operator

S2 ≡ W 2

M2
(39)

can be written

S2 = σ+J
2
+ + σ−J

2
−
, (40)

using the identity

σ±
R

Q
= σ±

R±

Q±

(41)

for R,Q ∈ P and Q 6∈ P0.

For φ = σ+φ+ + σ−φ− to be algebraically defined, we need that J2
+ and J2

−
both yield

the same real spin. Then, we see from (40) that S2, when acting on a pseudo-complex

field representation, is always real, so that for S2 = s(s + 1), the spin eigenvalues are

half-integer,

s ∈ 1

2
N0. (42)

A massive pseudo-complex field therefore gives rise to two real particles of generically

different non-zero masses M±, but equal half-integer spins s,

|M, s〉
P
= |M+, s,+〉

R
⊕ |M−, s,−〉

R
. (43)

We have included, into the labelling of the real representations, the zero divisor branch

on which the real particles take their values. This is necessary, because the pseudo-

imaginary unit I presents a Casimir operator, distinguishing the two real representations

σ±PR, because

Iσ± = ±σ±. (44)

Later, from the explicit construction of a pseudo-complex quantum field theory, we will

see that |+〉 indicates a proper real particle, and |−〉 a Weyl ghost.
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3.2. Almost Massless case (0 6=M2 ∈ P0)

Let, without loss of generality, P 2
+ = M2

+ > 0 and P 2
−
= M2

−
= 0. Then W 2

+ = M2
+J

2
+.

From W 2
−
= P 2

−
= P−W− = 0, it follows that W− = λP− for some helicity λ ∈ R. The

helicity operator can be expressed as

λ = −P−.W−

‖P−‖2
=

P−.J−

‖P−‖
, (45)

boldface symbols denoting the spatial parts of the respective four-vectors. The spin

S2
+ and the helicity λ act separately on φ+ and φ−, respectively. Again, for a pseudo-

complex field φ to be defined, we need that the helicity of φ− equals the spin of φ+.

Thus all physically observed massless particles, possessing half-integer-valued

helicities, can be accommodated in the almost massless pseudo-complex field

representation. In general, an almost massless pseudo-complex particle gives rise to

a real doublet

|M±σ±, s〉P = |M±, s,±〉
R
⊕ |0, λ = s,∓〉

R
. (46)

Again, |−〉 will be seen to indicate a Weyl ghost, and |+〉 a proper particle, according

to the eigenvalue ±1 of I.

3.3. Massless case (M2 = 0)

Here we are left with two continuous real helicities λ± from

W± = λ±P±. (47)

Particles with continuous helicity are not observed in experiment, and we hence exclude

the massless case from the physical particle spectrum.

The representation theory of the pseudo-complex Poincaré algebra has shown that

the experimentally observed physical particles occur as the massive and almost massless

representations. A pseudo-complex particle gives rise to a doublet of real particles of

equal spins, but generically different real masses. From the explicit construction of

pseudo-complex quantum field theory, and its spacetime projection, we will find in the

following sections that the |+〉 particles are proper real particles, for which their |−〉
pseudo-partners act as Pauli-Villars regulators.

4. Trivial Fields

From the decomposition (35) of the pseudo-complex Poincaré algebra, it is clear that

for a field representation φ that takes values only in the zero-divisor branches PF
0
+ or

PF
0
−
, the doublet of real particles collapses to just one real particle. We must exclude

such fields from the particle spectrum, if we do not want to get back standard quantum

field theory on spacetime as a sector of the pseudo-complex theory. The way to render

solutions of a dynamical theory meaningless, is to devise equations of motion that are
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trivially solved by them. Hence, the appropriate formulation of the action principle for

pseudo-complex quantum field theory is

δS ∈ P
0
F , (48)

where S is the action of the pseudo-complex theory at hand. This adaptation is

particularly natural from the algebraic point of view, given that the zero divisors of

a ring play very much the rôle of the zero in a field. However, the avoidance of a

breakdown of the particle doublets into the standard singlets provides the compelling

physical reason for requiring (48).

Note that for purely F -valued field theory, (48) reduces to the standard action

principle δS = 0. We will see that for non-trivial fields, i.e., φ 6∈ PF
0
±
, one can rewrite

(48) as an equation.

5. Pseudo-complex Scalar Field

Now having a clear definition of quantum particles with sub-maximal acceleration at

our disposal, we can formulate dynamical equations for the free field representations.

This is achieved in a standard manner by imposing classical constraints as operator

equations on the appropriate fields.

The massive and almost massless scalar representations of PP have Casimirs

W 2 = 0, (49)

P 2 =M2, M 6= 0. (50)

To devise a field equation, we impose these as constraints on a field φ on pseudo-complex

spacetime. Condition (49) implies that the field is a function

φ : P1,3 −→ PF . (51)

Applying the operator equation (50) to the Fourier transformation φ̃ of the field φ, gives

(P 2 −M2)φ̃ = 0, (52)

where for X ≡ X(1) + IX(2),

φ̃(P ) ≡
∫

d4X(1) d
4X(2) φ(X) exp(−iP µXµ). (53)

Thus, in position space, we find the pseudo-complex Poincaré invariant field equation

(D2 +M2)φ(X) = 0. (54)

However, following our reasoning in section 4, on the exclusion of trivial fields φ ∈ PF
0

from the spectrum of meaningful dynamical solutions, we replace (54) by

(D2 +M2)φ(X) ∈ P
0
F . (55)

The Green’s function G(X − Y ) for the operator D2 +M2 is defined by

(D2 +M2)G(X − Y ) = (2π)8Iδ(8)(X − Y ), (56)
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so that, in momentum space representation,

G̃(P ) =
I

P 2 −M2
. (57)

Observing that Iσ± = ±σ±, and using the identity (41), one gets

G̃(P ) = σ+
1

P 2
+ −M2

+

− σ−
1

P 2
− −M2

−

. (58)

Note that G̃ is generically pseudo-complex valued.

In order to compare this result to standard quantum field theory on real spacetime,

we project the field φ : P1,3 −→ PF to a spacetime field ϕ + Iπ : R1,3 −→ PF . Clearly,

this must be done for an observer in an inertial frame, in order to have a well-defined

vacuum for the projected field theory [20]. Such an inertial projection is obviously given

by mapping the pseudo-imaginary part of the momentum P to zero,

P(2) 7→ 0. (59)

The action of this projection on fields can therefore be implemented straightforwardly

on the Fourier transform

φ̃ : P1,3 −→ PF , (60)

such that the projection to a spacetime field is given by

ϕ̃(P1) + Iπ̃(P1) ≡ φ̃(P1) : R
1,3 −→ PF . (61)

This projection clearly breaks the PP-symmetry down to PR. However, we will see in

section 6 that the pseudo-complex structure survives as the geometry of the field phase

space (ϕ, π) of the projected field

ϕ(x) ≡
∫

d4p ϕ̃(p) exp(ipµxµ). (62)

The projection φ̃ 7→ ϕ̃ is well-defined under real Poincaré transformations, as the

diagram

✲

✲

❄ ❄

Λ ∈ SOR(1, 3)

Λ ∈ SOR(1, 3)

φ̃(Λ−1(p+ If))

ϕ̃(p)

φ̃(p+ If)

ϕ̃(Λ−1p)

commutes.

For non-trivial φ̃, relation (55) can be rewritten as an equation,

[P 2
+ −M2

+][P
2
−
−M2

−
]φ̃(P ) = 0. (63)

Application of the inertial frame projection φ̃ 7→ ϕ̃, with P 7→ P(1), yields

[P 2
(1) −M2

+][P
2
(1) −M2

−
]ϕ̃(P(1)) = 0, (64)
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revealing higher order dynamics for the projected field ϕ. The corresponding real

spacetime propagator reads

g̃(p) =
1

[p2 −M2
+][p

2 −M2
−]
, (65)

writing p ≡ P(1) for short. This can be brought to the form

g̃M(p) ≡ (M2
+ −M2

−
)g̃(p) =

1

p2 −M2
+

− 1

p2 −M2
−

. (66)

In the special relativity limit a −→ ∞, the propagator g̃M(p) must reproduce the

standard Klein-Gordon propagator for a scalar real particle of mass m. Therefore,

we require that

M2
+

a→∞−→ m2, M2
−

a→∞−→ ∞. (67)

In the almost massless case,M ∈ P0
−
, say, this correspondence principle fixes the pseudo-

complex mass, up to field redefinitions, to

M = σ−a, (68)

as a is the only massive parameter available. We therefore adopt, in the massive case

M 6∈ P0, the pseudo-complex mass

M = σ+m+ σ−a, (69)

where m is the mass of the real φ+ particle. With this motivated choice, the propagator

for the projected spacetime field ϕ,

g̃M(p) =
1

p2 −m2
− 1

p2 − a
2
, (70)

is seen to be Pauli-Villars regularised, with the cutoff determined by the maximal ac-

celeration parameter a. In particular, note that the real representation |M+, 0,+〉 is a
proper particle, while |M−, 0,−〉 is a Weyl ghost.

We conclude that quantum field theory on pseudo-complex spacetime gives rise,

after an inertial projection to real spacetime, to a Pauli-Villars regularised quantum

field theory on real spacetime. This proves the implication (i) ⇒ (ii) stated in the

introduction. The next section will show that the converse also holds.

6. Scalar Field Phase Space

It is worthwhile to investigate the symmetries of the projected spacetime theory (64).

To this end, consider Pauli-Villars regularised scalar field theory on real spacetime,

L = − 1

(M2
+ −M2

−)
ϕ(�+M2

+)(�+M2
−
)ϕ, (71)

whereM+ ≪M− are the masses of the particle and the regulator, respectively. De Urries

and Julve [21] developed a Lorentz-covariant version of the Ostrogradski formalism for
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higher-derivative scalar field theories, and proved its equivalence with the standard non-

covariant approach. Defining [[±]] ≡ (�+M2
±
) and 〈+−〉 ≡M2

+ −M2
−
, the Lagrangian

(71) can be cast into the form

L = − 1

〈+−〉ϕ[[+]][[−]]ϕ

∼= − 1

〈+−〉 [[+]]ϕ[[+]]ϕ+ ϕ[[+]]ϕ, (72)

observing that [[−]] = [[+]] − 〈+−〉, and discarding surface terms. Hence, it suffices to

consider derivatives of the form [[+]]ϕ. Defining the canonical momentum density

π ≡ ∂L
∂[[+]]ϕ

, (73)

and solving for [[+]]ϕ in terms of ϕ and π,

[[+]]ϕ = −〈+−〉
2

(π − ϕ), (74)

one obtains the positive definite Hamiltonian density

H1 ≡ π[[+]]ϕ−L(ϕ, [[+]]ϕ(ϕ, π))

= − 〈+−〉
4

(π − ϕ)2. (75)

It is shown in [21] that the evolution in field phase space (ϕ, π) is then governed by the

Hamiltonian equations

[[+]]ϕ =
∂H1

∂π
, (76)

[[+]]π =
∂H1

∂ϕ
, (77)

exhibiting manifestly the almost pseudo-complex structure of the field phase space

of a fourth-order Lagrangian field theory. In case the above pair of equations can

be combined into one single pseudo-complex equation, we speak of a pseudo-complex

structure.

We now identify the necessary and sufficient condition for an almost pseudo-complex

phase space structure (76-77) to be pseudo-complex. Assume that there exists a real-

valued function H2(ϕ, π), such that

H ≡ H1 + IH2 (78)

satisfies the pseudo-Cauchy-Riemann equations (11-12). In this case, we callH a pseudo-

complex extension of H1. Combining the field and its canonical momentum into one

pseudo-complex valued field on real spacetime,

φ : R1,3 −→ P, (79)

φ(x) ≡ ϕ(x) + Iπ(x), (80)

one can write (76-77) as

[[+]]φ = I
DH
Dφ

, (81)
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if, and only if, H is a pseudo-complex extension of H1. This shows that the

field phase space of any fourth order Lagrangian (scalar) theory possesses a pseudo-

complex structure, if, and only if, the corresponding Hamiltonian has a pseudo-complex

extension.

For the particular Hamiltonian (75), describing a Pauli-Villars regularised field,

such extensions exist and are unique up to an arbitrary pseudo-complex constant C,

H = (1− I)H1 + C = −〈+−〉
2

σ−φ
2 + C, (82)

as can be seen directly from the integration of the pseudo-Cauchy-Riemann equations

for (78).

The dynamics of a field theory with pseudo-complex phase space structure can be

captured within the single equation (81), involving only one field degree of freedom.

Therefore, this equation can be obtained from a Lagrangian,

L =
1

2
φ(�+M2

+)φ− IH(φ). (83)

For the special case of a Pauli-Villars regularised spacetime theory, the potential (82) is

a mass term, which can be absorbed into the free Lagrangian,

L =
1

2
φ(x)(�+M2)φ(x), (84)

with a pseudo-complex mass

M = σ+M+ + σ−M−. (85)

Note that (84) describes a pseudo-complex valued field φ defined on real, rather than

pseudo-complex spacetime. However, in an inertial frame, this is equivalent to the fully

pseudo-complex Poincaré invariant dynamics

L =
1

2
φ(X)(D2 +M2)φ(X) (86)

on pseudo-complex spacetime. This is most easily seen starting from the Fourier

transform of (81),

− (p2 −M2
+)φ̃(p) = 〈+−〉σ−φ̃(p), (87)

where we have used (82). In an inertial frame, the pseudo-complex extension p 7→ P =

p+ If does not change this equation, because f = 0, so that

(P 2 −M2)φ̃(P ) = 0. (88)

This is recognised as the Fourier transform (53) of the equation of motion derived from

the manifestly pseudo-complex Poincaré invariant Lagrangian (86).

We conclude that a Pauli-Villars regularised scalar theory on real spacetime gives

rise to a scalar field theory on pseudo-complex spacetime, due to the integrability of

the almost pseudo-complex structure. This proves the implication (ii) ⇒ (i) stated

in the introduction. Together with the results from section 5, we have thus explicitly
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shown the equivalence of quantum field theory on pseudo-complex spacetime and Pauli-

Villars regulated quantum field theory on real spacetime, in the case of a scalar field.

The constructions can be extended to higher tensor and spinor fields, whose pseudo-

complexification we will discuss in the next section.

7. Spinor and Vector Fields

It is straightforward to apply the pseudo-complexification procedure to spinor or higher

tensor fields. The pseudo-complex Dirac Lagrangian for an SOP(1, 3)-spinor ψ reads

ψ̄(iγµDµ −M)ψ, (89)

with pseudo-complex mass M 6= 0, and standard Dirac gamma matrices. An almost

massless, abelian SOP(1, 3)-vector field A
µ is governed by the pseudo-complexified Proca

Lagrangian

− 1

4
F µνFµν +

1

2
M2σ−A

µAµ, (90)

where Fµν ≡ DµAν −DνAµ, and we assume, without loss of generality, M ∈ P0
−
.

Pauli-Villars regularisation of a vector field in standard quantum field theory on real

spacetime requires the introduction of a non-zero regulating mass, which breaks gauge

invariance. We now demonstrate that, in contrast, gauge invariance is fully preserved in

an almost massless pseudo-complex non-abelian gauge theory, and only broken by the

projection (61) to spacetime.

Consider the pseudo-complexified Dirac Lagrangian

L = Ψ̄(iγµDµ −M)Ψ (91)

for an N -multiplet of spinor fields

Ψ : P1,3 −→ PC, (92)

with pseudo-complex mass M 6= 0. Let Ψ belong to an irreducible representation of a

simple compact Lie group G, with generators ta satisfying the algebra

[ta, tb] = ifabctc. (93)

The theory (91) possesses the global gauge symmetry

Ψ 7→ exp(iαata)Ψ. (94)

Now we promote the αa to fields αa : P1,3 −→ P, and require (94) to be a local symmetry.

Define the gauge covariant derivative

∇µ ≡ Dµ − igAa
µt

a, (95)

where the Aa : P1,3 −→ P1,3 are taken to be almost massive vector fields with pseudo-

complex mass N ∈ P0
−
. The free field dynamics for the multiplet A is correspondingly

given by the Proca-Lagrangian

LA = −1

4
F aµνF a

µν +
1

2
N2σ−A

aµAa
µ, (96)
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where F a
µν ≡ DµA

a
ν −DνA

a
µ+ gfabcAb

µA
c
ν . For the covariant derivative to commute with

the gauge transformation,

∇µ(Ψ) 7→ exp(iαata)∇µΨ, (97)

we must require that, for infinitesimal αa,

Aa
µt

a 7→ Aa
µt

a +
1

g
(Dµα

a) ta + iαaAb
µf

abctc (98)

under a local gauge transformation. The full Lagrangian

L = Ψ̄(iγµ∇µ −M)Ψ−LA (99)

is then seen to be gauge invariant if, and only if, we constrain the gauge parameters to

zero-divisor values P0
+,

αa : P1,3 −→ P
0
+
∼= R, (100)

so that the change of Aa
µt

a in (98) is P0
+-valued, and therefore the mass term in (96) is

gauge invariant. Hence, none of the gauge symmetry present in standard non-abelian

gauge theory is lost.

This shows that it is merely the spacetime formulation of standard quantum

field theory that causes the conflict between the gauge principle and Pauli-Villars

regularisation. It is an open question as to what extent one can exploit this symmetry,

e.g., obtain Ward identities, in pseudo-complex quantum field theory. The investigation

of such questions requires a careful analysis of non-trivial interaction effects due to the

existence of zero-divisors. It should be interesting to address these questions in future

research.

8. Conclusion

On Dirichlet branes in ten-dimensional superstring theory, electrically charged particles

can experience an acceleration of at most the order of the inverse string length, as the

electrodynamics are governed by the Born-Infeld action, with its well-known maximal

field strength. Brane world scenarios, assigning to Dirchlet three-branes the rôle of the

observed four-dimensional universe, therefore suggest that there is an upper limit to

accelerations in such models.

As shown in earlier work [4, 5], the kinematics of a relativistic particle with sub-

maximal acceleration can be encoded in the pseudo-complexified Poincaré group. Its

representation theory reveals that a pseudo-complex quantum particle gives rise to a

doublet of real particles, with different real masses but equal spin, if described by a

pseudo-complex field theory. Exactly one of these particles is identified as a Weyl ghost

that acts as a Pauli-Villars regulator of the other, proper particle. Hence, in pseudo-

complex quantum field theory, particles always carry their regulators around.

Removal of the new fundamental acceleration (or, length) scale by means of taking

the appropriate limit after the quantization, then renders the resulting theory unitary.

Thus, it seems that a classical theory with invariant acceleration (length) scale naturally
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gives rise to a better-behaved quantum field theory than standard relativity. This insight

also sheds new light on the necessity to remove the Pauli-Villars regulator at the end

of calculations: this corresponds to taking the string length to zero, thus returning to a

standard quantum field theory of point particles.

The abstract results from the representation theory are confirmed by the explicit

construction of the theory for a scalar field, which is governed by a pseudo-complexified

Klein-Gordon equation. The pseudo-complex denominator of the corresponding scalar

propagator generates a double infinity of poles due to the existence of zero divisors. An

analysis of its projection to a spacetime field confirms that this is equivalent to a Pauli-

Villars regularisation. Remarkably, the pseudo-complex structure of the full theory,

which is broken by the spacetime projection, resurfaces as the geometrical structure

of the phase space for the regularised spacetime field. We find that the Pauli-Villars

regularisation of a real spacetime theory induces a pseudo-complex field theory, and

vice versa. This equivalence between maximal acceleration kinematics, pseudo-complex

quantum field theory, and Pauli-Villars regularisation, rigorously establishes a conjecture

[18] by Nesterenko, Feoli, Lambiase and Scarpetta.

The extension to spinor and vector fields is straightforward. Pseudo-complex gauge

theory features the standard gauge symmetry, although it projects to a Pauli-Villars

regularised theory on spacetime. An in-depth analysis of interacting pseudo-complex

quantum field theory remains to be done in future work, where particular attention

should be paid to non-trivial effects due to the existence of zero divisors in P.
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