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The existence of Abelian gauge symmetries in four-dimensional F-theory compactifications depends on

the global geometry of the internal Calabi-Yau four-fold and has important phenomenological conse-

quences. We study conceptual and phenomenological aspects of suchUð1Þ symmetries along the Coulomb

and the Higgs branch. As one application we examine Abelian gauge factors arising after a certain global

restriction of the Tate model that goes beyond a local spectral cover analysis. In SUð5Þ grand unified

theory (GUT) models this mechanism enforces a global Uð1ÞX symmetry that prevents dimension-4

proton decay and allows for an identification of candidate right-handed neutrinos. We invoke a detailed

account of the singularities of Calabi-Yau four-folds and their mirror duals starting from an underlying E8

and E7 � Uð1Þ enhanced Tate model. The global resolutions and deformations of these singularities can

be used as the appropriate framework to analyze F-theory GUT models.
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I. INTRODUCTION

The prospects of F-theory for the construction of real-
istic grand unified theory (GUT) models [1–4] have re-
cently revived interest also in more formal aspects of
F-theory compactifications on Calabi-Yau four-folds.
While many phenomenological challenges of GUT model
building can be and have been addressed already at the
level of local models,1 important issues remain which defy
a treatment without reference to the global properties of the
compactification. Among these are most notably almost all
questions pertinent to Abelian gauge symmetries. Already
the GUT breaking mechanismwith the help of hypercharge
flux, which is one of the characteristics of the F-theory
GUT models advanced in [1–4], is sensitive to global
compactification data because such flux can only be turned
on along two-cycles that are trivial in the homology of the
full Calabi-Yau four-fold. More fundamentally, the very
definition of Abelian gauge symmetries hinges upon global
information. This phenomenon is well-known already in
the context of perturbative type II or heterotic string vacua,
where Stückelberg couplings to axionic fields can degrade
gauge symmetries to merely global selection rules below
the mass scale of the gauge boson.

The global data of an elliptic Calabi-Yau four-fold are in
general encoded in the Weierstrass model. In this paper we
focus on elliptic fibrations that can be written globally in
Tate form. The localized gauge degrees of freedom can be
read off from the singularities of the elliptic fiber as
reviewed in Sec. II A. In constructing global examples it
is important to have a method to explicitly resolve the

singularities. This is crucial not only to control the topol-
ogy of the compactification and to reliably compute the
Euler characteristic, but also to determine the physical
spectrum such as the number of Uð1Þ bosons below the
Kaluza-Klein scale. Such an explicit construction of a class
of singular Calabi-Yau four-folds and their resolution has
been achieved in Refs. [18,19] in terms of toric geometry,
extending the program of global toric type IIB orientifold
GUT model building advanced in [20]. See [21–23] for
F-theory models on a different singular Calabi-Yau four-
fold. Very recently, a similar approach as in [18,19] to the
explicit construction and resolution of Calabi-Yau four-
folds has been taken in [24]. The manifolds of [18,21]
appear also in the models [25].
What has made the construction of three-generation

SUð5Þ GUT [18,19,21–23] and flipped SUð5Þ GUT
[24,25] models possible is, in addition, the description of
gauge flux with the help of the spectral cover construction
[1,4,7,26]. The latter can be thought of as the restriction of
the Tate model to the vicinity of the SUð5Þ GUT brane and
as such necessarily discards some of the global information
of the model. To decide in concrete global examples
whether the spectral cover nonetheless captures the main
aspects of the geometry correctly requires further tests. For
the examples of [18,19] a spectral cover based formula for
the Euler characteristic has been compared to the value
computed independently via toric geometry and a match
was found. This was taken as an indication that the spectral
cover methods are applicable in these cases. Let us stress,
however, that the spectral cover formula of [18] was not
meant as an unambiguous method to compute the Euler
characteristic in examples where independent computa-
tions are not available, but rather as a check on the appli-
cability of the spectral cover methods to these Calabi-Yau
manifolds. An even stronger indicator will be given in
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Sec. IVof the present article via mirror symmetry, which in
suitable examples exchanges the gauge group and spectral
cover group.

As a special class of constructions, the so-called split
spectral cover was discussed in [21,22] (and applied
therein and in [18,19]) as a method to implement Abelian
selection rules in the gauge theory of the GUT, e.g. Uð1ÞX
in the decomposition SOð10Þ ! SUð5Þ �Uð1ÞX. These
can forbid unwelcome couplings such as the dangerous
dimension-4 proton decay operators. Given the global
nature of Abelian gauge symmetries, however, it has con-
tinued to be an open question whether these selection rules
are unbroken also in the full global model. Besides, the
nature of SUð5Þ gauge singlets playing the role of right-
handed neutrinos has remained elusive in the spectral cover
picture because these states are not localized on the GUT
brane and are thus beyond the actual scope of the spectral
cover.

In fact, the result of the analysis put forward in the
present paper is that questions such as the existence of
(massive) Uð1Þ gauge symmetries cannot be answered in a
satisfactory manner from a spectral cover perspective.
Rather, we find a method to ensure the presence of
Abelian symmetries and thus to remove dangerous
dimension-4 proton decay operators by considering
special limits of the Tate model of the compact Calabi-
Yau four-fold itself. We call the resulting construction
Uð1Þ-restricted Tate models. Note that quite recently, it
has been argued in [27] from the perspective of the mono-
dromies of the F-theory model that Uð1ÞX is generically
broken in split spectral cover models. Our approach has
been independent of these findings and offers a compli-
mentary view on the breaking ofUð1ÞX. We also describe a
way to ensure that Uð1ÞX is preserved as a—possibly
massive—symmetry below the Kaluza-Klein scale in
global models. Implementing this construction in concrete
examples is of phenomenological importance not only in
order to guarantee the existence of Abelian selection rules
advertised in the split spectral cover context; rather, the
very computation of individual chiral matter indices in split
spectral cover constructions can be invalidated if the Uð1Þ
symmetries are Higgsed at a global level. Determining
whether this is the case requires a global analysis of the
type put forward in a sequel paper.

In Sec. II we start from a Tate model with gauge group
enhanced to E8 along the divisor S. The final model with
gauge group G � E8 appears as a deformation thereof. In
Sec. II B we study the CartanUð1Þs within E8 by moving to
the Coulomb branch via direct resolution and identifying
the extended Dynkin diagram within the resolved fiber. We
argue that the deformation of the Tate model to gauge
group G generically Higgses all Uð1Þ symmetries within
H ¼ E8=G. In nongeneric cases, however, some Uð1Þ
symmetries remain. The gauge flux associated with the
Cartan generators of H are most conveniently studied

along the Coulomb branch. After the deformation they
describe data of a truly non-Abelian H-bundle. A special
role is played by the extended node in the extended Dynkin
diagram. In Sec. II C we argue that this node carries
information about massive Uð1Þ gauge symmetries that
have acquired a Kaluza-Klein scale mass via the
F-theoretic analogue of the type II Stückelberg mecha-
nism. This clarifies the F-theory fate of the ubiquitous
type II Uð1Þs.
We then specialize to the Uð1ÞX symmetry in SUð5Þ

GUT models. In Sec. III A we recall its local description
in terms of an S½Uð4Þ �Uð1ÞX� spectral cover. We argue
that generically this symmetry is Higgsed by VEVs of
Uð1ÞX charged SUð5Þ GUT singlets localized away from
the GUT brane and invisible to the spectral cover analysis.
In this case effective dimension-4 proton violating cou-
plings may ruin the model in a way inaccessible from the
spectral cover perspective. We then resolve the problem of
dimension-4 proton decay in Sec. III B by promoting the
split of the spectral cover to a global restriction of the
sections appearing in the Tate model.2 This gives an un-
ambiguous way to determine the presence of Uð1ÞX by
detection of a curve of SUð2Þ enhancement on the I1
divisor of the discriminant. We identify this curve as the
proper localization curve of the states charged only under
Uð1ÞX which have the correct quantum numbers to play the
role of right-handed neutrinos. This resolves also the
puzzle of the localization of neutrinos in the spectral cover
context [18,22]. The appearance of an extra Abelian gauge
symmetry is further confirmed in Sec. III C, where we
resolve the singular curve. In the spirit of M=F-duality
the resulting increase in h1;1 indicates a Uð1Þ boson which
is massless in the absence of gauge flux. The latter can
render the Abelian symmetry massive, which then survives
only as a global symmetry valid below the Kaluza-Klein
scale. For applications such as the engineering of Uð1ÞX
this is exactly what one is interested in for model building.
We furthermore show that the underlying gauge symmetry
in the Tate model is E7 �Uð1Þ, as opposed to the previ-
ously described E8 for the generic Tate model. A drawback
of the Uð1Þ restriction, however, is seen to be a significant
decrease in the Euler characteristic of the four-fold. This
challenges the construction of models satisfying the
D3-tadpole constraint. Finally, in Sec. III D we describe
how the appearance of Uð1ÞX can be further understood in
analogy with type IIB orientifolds, where the restricted
Tate model describes brane-image brane splitting.
In Sec. IV we study in greater detail the deformation of

the underlying E8 Tate model to a compactification with
G � E8, thereby putting the logic of the local spectral
cover approach into perspective with global models.

2Note that six-dimensional F-theory compactifications with a
restricted Tate model and additional Uð1Þ factors have been
studied from the perspective of heterotic/F-theory duality in
Refs. [28–30].
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This section fills in the technical details for some of the
claims in Sec. II and stresses the use of mirror symmetry to
study the deformations. In Sec. IVA we work out the
natural appearance of the underlying E8 structure for a
certain class of F-theory models based on a P1;2;3½6� Tate
model. In fact the breaking of E8 to G along a divisor via a
bundle with structure group H ¼ E8=G is recovered
entirely in terms of the Tate model. These observations
are independent of a local gauge theory perspective or a
heterotic dual. This picture is corroborated further in
Sec. IVB with the help of an analysis of the mirror dual
Calabi-Yau four-folds and their gauge enhancements. It is
found that in the mirror dual precisely those gauge groups
appear which are responsible for the unfolding of E8 to the
various codimension loci of singularity enhancement.
Finally in Sec. IVC this logic is applied to the mirror
dual of the restricted Tate model corresponding to a split
spectral cover based on an underlying E7 �Uð1Þ.

II. COMPACT CALABI-YAU FOUR-FOLDS AND
ABELIAN GAUGE SYMMETRIES

A. Complete-intersecting four-folds and the Tate form

To set the stage we introduce the Calabi-Yau four-folds
on which we compactify F-theory. The class of four-folds
we consider is rather general so as to cover the geometries
which have been recently used in the study of F-theory
GUT models in Refs. [18,19,24]. We explicitly realize the
Calabi-Yau four-fold Y via two hypersurface constraints

PbaseðyiÞ ¼ 0; PTðx; y; z; yiÞ ¼ 0 (2.1)

in a six-dimensional projective or toric ambient space.
Here Pbase is the constraint of the base B which is inde-
pendent of the coordinates ðx; y; zÞ of the elliptic fiber. This
more general setting also includes hypersurfaces encoded
by a single constraint PT ¼ 0 if Pbase is chosen to be trivial.
PT ¼ 0 is the constraint that describes the structure of the
elliptic fibration. We consider fibrations that can be given
in Tate form,

PT ¼ x3 � y2 þ xyza1 þ x2z2a2 þ yz3a3 þ xz4a4 þ z6a6

¼ 0; (2.2)

where ðx; y; zÞ are coordinates of the torus fiber. In a sequel
we will often be working with the inhomogeneous Tate
form by setting z ¼ 1. The anðyiÞ depend on the complex
coordinates yi of the base B and have to transform as
sections of K�n

B , with KB being the canonical bundle of
the base B. Setting all an ¼ 1 one finds that (2.2) reduces to
the elliptic fiber P1;2;3½6�. A fibration based on a represen-

tation of the elliptic curve as P1;2;3½6� is called E8 fibration

for reasons that will be become clearer in Sec. IVA.
To put the ansatz (2.2) into perspective we recall that

most generally every elliptic four-fold with a section ad-
mits a description as a Weierstrass model

PW ¼ x3 � y2 þ fxz4 þ gz6 ¼ 0: (2.3)

Clearly, every Tate model (2.2) can be brought into this
form via the relation

f ¼ � 1

48
ð�2

2 � 24�4Þ;

g ¼ � 1

864
ð��3

2 þ 36�2�4 � 216�6Þ;
(2.4)

where

�2 ¼ a21 þ 4a2; �4 ¼ a1a3 þ 2a4; �6 ¼ a23 þ 4a6:

(2.5)

In turn the Tate model is a specialization of the Weierstrass
model (2.3), which emerges naturally in toric elliptic fibra-
tions. We will focus on this class of elliptic fibrations.
The sections an encode the discriminant� of the elliptic

fibration given by

� ¼ � 1

4
�2

2ð�2�6 � �2
4Þ � 8�3

4 � 27�2
6 þ 9�2�4�6:

(2.6)

The discriminant locus � may factorize with each factor
describing the location of a 7-brane on a divisor Dk in B.
The precise gauge group along Dk is encoded in the
vanishing degree �ðDkÞ of � and the vanishing degrees
�nðDkÞ of the an,

a1 ¼ b5w
�1 ; a2 ¼ b4w

�2 ; a3 ¼ b3w
�3 ;

a4 ¼ b2w
�4 ; a6 ¼ b0w

�6 ; � ¼ �0w�;
(2.7)

as classified in Table 2 of Ref. [31]. For example, for an
SUð5Þ gauge group along the divisor S: w ¼ 0, where w is
one of the base coordinates yi, the �n are given by

ð�1; �2; �3; �4; �6Þ ¼ ð0; 1; 2; 3; 5Þ: (2.8)

The sections bn generically depend on all coordinates
ðyi; wÞ of the base B but do not contain an overall factor
of w. Note that in an SUð5Þ GUT model the bn identify the
so-called matter curves along which zero modes charged
under the SUð5Þ gauge group are localized. The matter
curves for the 10 and 5 representations,

P10: z ¼ w ¼ 0 \ b5 ¼ 0;

P5: z ¼ w ¼ 0 \ b23b4 � b2b3b5 þ b0b
2
5 ¼ 0;

(2.9)

are the curves of singularity enhancement to SOð10Þ and,
respectively, SUð6Þ. Note that for a generic choice of
sections bi the P5-curve does not factorize so that all
matter in the fundamental representation, both �5M and
the Higgs 5H þ �5H is localized on the same curve. It will
be a crucial task of Sec. III to identify a class of compact
Calabi-Yau four-folds for which the P5-curve splits into
two curves hosting �5M and 5H þ �5H, respectively.
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It is important to stress that in the case of such a higher
degeneration, not only the elliptic fibration will be singular,
but rather the Calabi-Yau four-fold itself. We will call this
singular four-fold YG. The singularities of gauge group G
can be resolved into a nonsingular Calabi-Yau four-fold
�YG. This has been demonstrated explicitly for the SUð5Þ
GUT examples in Refs. [18,19]. The existence of such a
resolved space is crucial to determine the topological data,
as e.g. required for tadpole cancellation. �YG is also plays a
vital role in the study of Cartan symmetries and hence will
be discussed more thoroughly in the next section.

B. Cartan Uð1Þs and underlying E8 structure

In this section we study the connection between the
Cartan Uð1Þ potentials and fluxes for the gauge theory on
the brane S and the geometry of YG. Note that the globally
varying dilaton profile makes it hard to obtain the spectrum
and effective action of an F-theory compactification on a
singular YG. What rescues us is the duality of F-theory to
an M-theory reduction, which leads to an identification of
Uð1Þ symmetries in geometric terms. Our strategy is to use
the fact that in the M-theory reduction one can access the
Coulomb branch of the gauge theory in which G is broken

to Uð1ÞrkðGÞ, where rk is the rank ofG. In fact this branch is
attained upon resolving YG into �YG as follows.

The singular fiber of YG over the discriminant � con-
tains a tree of zero-volume P1s, which intersect as the
nodes of the extended Dynkin diagram of G in the fiber
of the four-fold. Resolution corresponds to blowing-up the
P1s to nonzero volume. More precisely, one can resolve the
generic G singularity over S by introducing rkðGÞ blow-up
divisorsDi, i ¼ 1; . . . ; rkðGÞ, which are P1 bundles over S.
The extended node of the affine Dynkin diagram is
obtained as the linear combination

D0 ¼ Ŝ�X

i

aiDi; (2.10)

where the divisor Ŝ in �YG is the elliptic fibration over S, and
ai are the Dynkin numbers of the Dynkin node associated
with Di (see e.g. [32]). Explicit constructions of these Di

are known for various compact Calabi-Yau manifolds
[31,33,34], including Calabi-Yau four-folds relevant
for GUT model building [18,19]. Let us denote by !i,
i ¼ 0; . . . ; rkðGÞ the elements of H2ð �YG;ZÞ which are
Poincaré dual to D0 and the blow-up divisors Di. The
intersections of the fiber P1s are captured by the identify

Z
�YG

!i ^!j ^ ~! ¼ �Cij

Z

S
~!; (2.11)

where ~! is a four-form on the base B and Cij is the

extended Cartan matrix of G. The appearance of Cij links

the group theory of G with the intersection theory on the
resolved four-fold �YG. The two-forms !i are thus in direct
relation with the simple roots of the gauge group G. Note
that the integral (2.11) localizes onto S in agreement with

the assertion that all non-Abelian gauge dynamics localizes
onto S.
The connection between the gauge theory and geometry

can be exploited further by noting that for a Tate model of
the form (2.2) the gauge enhancements follow a structure
inherited from an underlying E8 symmetry into which G
can be embedded. This E8 structure emerges naturally in
the context of the globally realized Tate models in projec-
tive or toric ambient spaces in which it is possible to
enhance the gauge symmetry to E8 along the divisor S by
a suitable choice of sections ai. This leads to a singular
four-fold YE8

. For the examples relevant to this work

one can show explicitly that YE8
can be resolved into a

Calabi-Yau manifold �YE8
. The original four-fold YG is a

deformation of YE8
such that along S the underlying E8 is

broken to G ¼ E8=H, where G is the commutant of E8

with the group H. Physically this corresponds to a recom-
bination of the 7-branes. The details of this E8 enhance-
ment and the deformations to G � E8 are described in
Sec. IVA. We hasten to add, though, that more general
examples of Weierstrass models with higher rank gauge
groups that cannot be embedded into E8 are known (see
e.g. the recent [35,36]). It would be important to under-
stand the generalization of the E8 construction to these
more general situations.
In order to not directly work with singular geometries,

one can also attempt to interpret the transition between the
two resolved Calabi-Yau four-folds �YE8

and �YG. As for YG

one moves to the Coulomb branch of E8 via resolution of

YE8
into �YE8

by introducing the resolution divisors D
E8

i ,

i ¼ 0; . . . ; 8. On �YE8
the group theory of E8 is realized via

global four-fold intersections as in (2.11), now for the dual

two-forms !E8

i . One can divide the resolution divisors DE8

i

into two sets DG
i and DH

i such that the dual two-forms

intersect as the respective Dynkin diagrams of the two
commuting E8 subgroups G and H in E8 ! G�H.
This makes the Cartan generators of the commutant H of
G � E8 visible in terms of the two-forms !H

i with dual

divisors DH
i .

One may think of the transition from �YE8
to �YG as

follows: The deformation introduces monodromies3 for
the individual P1 fibers of the DH

i . Generically this
Higgses H along S completely. The P1 fibers of DH

i have

been pulled off S so as to lie in the fiber over the remaining
I1 locus which intersects S along the curves. Because of the
monodromies these P1s are no longer independent,
corresponding to the Higgsing of the Cartan group H.
The change from �YE8

to �YG is thus captured by a

geometric transition, in which the resolving Kähler vol-
umes are replaced by complex structure deformations.
Schematically one can summarize this as

3The role of monodromies in local F-theory models has been
discussed in [7,8,22,27].
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In Sec. IVB we will show that starting from a reference
geometry �YE8

the dual group H and its splittings can be

studied using mirror symmetry for �YG.
Having collected some geometric properties of �YG and

�YE8
we now turn to the discussion of Cartan Uð1Þs and

gauge fluxes. InM-theory the gauge fields Ai in the Cartan
algebra of G arise by reduction of C3 along the two-forms
!G

i , i ¼ 0; . . . ; rkðGÞ. Note that only rkðGÞ of these two-
forms are cohomologically independent so that the expan-
sion reads

C3 ¼
XrkðGÞ

i¼1

Ai ^!G
i þ � � � : (2.13)

In order to find the actual Cartan Uð1Þs one first has to
introduce the linear combinations of !G

i representing the
Cartan generators of G. Recall that the !G

i correspond to
the simple roots and intersect as in (2.11).

For the most generic deformation to �YG, the Cartan
Uð1Þs of H are Higgsed completely in the course of the
recombination process of (2.12). This corresponds to the
maximal possible monodromy group acting on the P1

fibers of DH
i . However, some of the Cartan elements of

H may survive as massless Uð1Þ gauge symmetries in the
full compactification if the Higgsing is incomplete. One of
the results of our analysis is to identify in Sec. III B such a
nongeneric deformation of YE8

to YG which does leave a

certain Uð1Þ unHiggsed.
Since it will become relevant in that context, we now

recall how to identify Uð1Þ factors in a full Weierstrass
model. This gives an unambiguous way to determine the
total rank of the brane gauge groups. It is sufficient to count
the number of Uð1Þ factors along the Coulomb branch �YG.
The existence of an Abelian gauge group below the
Kaluza-Klein scale then hinges upon the availability of
harmonic two-forms on the resolved Calabi-Yau four-fold
�Y along which the M-theory three-form can be reduced.4

Not all these two-forms will correspond to four-
dimensional Uð1Þ gauge bosons. First, there are h1;1ðBÞ
elements ofH2ðB;ZÞwhich lead to chiral Kähler moduli of
the F-theory compactification. Second, there is one ele-
ment in H2ð �YG;ZÞ which corresponds to the class of the
elliptic fiber and captures the extra metric degrees of free-
dom in the lift of a three-dimensional M-theory compacti-
fication to a four-dimensional F-theory compactification.

In summary, the number of Abelian brane gauge symme-
tries in the Coulomb branch is now given by

nv ¼ h1;1ð �YGÞ � h1;1ðBÞ � 1: (2.14)

Note that if YG gives rise to the non-Abelian gauge sym-
metry G, then the number of extra Uð1Þ factors that are not
Cartan elements of G is given by ~nv ¼ nv � rkðGÞ.
To end this section, let us note that the construction of

�YE8
allows us to think about the description of gauge flux as

follows: On �YE8
a subclass of gauge flux derives from the

Cartan generators of E8. The gauge flux within that class
leaving G intact is of the form

G4 ¼ FðiÞ
2 ^!H

i þ � � � ; (2.15)

where !H
i are the two-forms dual to the divisors DH

i

introduced above. This can be made concrete when con-
sidering, for example, an SUð5Þ GUT model on S. To
defineG4 on YE8

one first introduces a basis of fundamental

weights of H ¼ SUð5Þ? as

�i ¼
Xi

k¼1

!5�k; i ¼ 1; . . . 5; (2.16)

where the !i correspond to the simple roots of E8 with
intersection (2.11), including the extended node !0. For
the definition of the flux G4 it is convenient to also in-
troduce a ‘‘dual’’ basis of two-forms ��

i corresponding to
the dual weights as linear combinations of the !i. One
demands that these satisfy

Z
�YE8

�j ^ ��
i ^ ~! ¼ �j

i

Z

S
~!: (2.17)

The four-form flux G4 can then be defined as

G4 ¼
X5

i¼1

FðiÞ
2 ^ ��

i : (2.18)

To determine the analogous flux for YG one therefore has
to trace back (2.15) under the geometric transition from
�YE8

to �YG. For the most generic deformation to �YG which

Higgses H completely, the formerly Abelian fluxes be-
come data of a genuinely non-AbelianH-bundle. A precise
study of these transitions is beyond the scope of this work,
and will be presented elsewhere [37]. After the deforma-
tion the G4 flux is no longer of the simple form (2.15)
because it will in general not be a sum of four-forms that
can be written as a product of two two-forms. However, in
the transition from �YE8

to �YG the number of four-forms in

H2;2ð �YGÞ increases significantly. These new four-forms
indeed cannot be represented as a wedge of two nontrivial
two-forms on �YG. Fluxes of this type are known to appear
in the superpotential rather then the D term (see Ref. [38]
for a recent discussion). This is in agreement with the fact
that after the deformation the Cartan Uð1Þs of H are
Higgsed so that no field-dependent Fayet-Iliopoulos term

4In addition, the reduction along harmonic (2, 1)-forms of the
base B of Y leads to so-called bulk Uð1Þs which are the
equivalent of the Ramond-Ramond (RR) Uð1Þs obtained in a
type IIB reduction of C4.
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can arise from the fluxes. If on the other hand a certain
Uð1Þ � H survives, there exists Abelian gauge flux asso-
ciated with that Uð1Þ on YG, and we will argue in Sec. III C
for the presence of an associated Fayet-Iliopoulos term.

C. Massive Uð1Þs and the extended node

In the previous section we discussed the appearance of

the Cartan Uð1Þs in the breaking of G to Uð1ÞrkðGÞ. In the
Kaluza-Klein expansion we have used rkðGÞ independent
forms !G

i . However, the local geometry sees an additional
two-form associated with the extended node of the Dynkin
diagram (2.10). This extra form does not extend to an
element of H2ð �YG;ZÞ. In the language of resolving P1

fibers one thus finds a homological relation among the
nodes ei of the extended Dynkin diagram and the elliptic
fiber e. Geometrically this means that there exists a three-
chain C with boundary @C given by

@C ¼ ê; ê ¼ e� XrkðGÞ

i¼0

aiei; (2.19)

where a0 ¼ 1 for the P1 e0 associated with the extended
node. One can now attempt to include an additional two-
form !̂ in the reduction of C3 which is nonclosed and
precisely captures the relation (2.19) as

d!̂ ¼ �;
Z

C
� ¼

Z

ê
!̂ ¼ 1: (2.20)

It is possible to systematically include such nonclosed and
exact forms in the dimensional reduction.5 This leads to
compactification on non-Calabi-Yau manifolds. To under-
stand this in our context we first consider the M-theory
compactification on an elliptic fibration that features !̂ and
later take the F-theory limit of vanishing fiber. In particular
we also include !̂ in the expansion of a globally defined
two-form J ¼ v̂ !̂þ� � � . This implies that dJ does not
vanish and one would interpret this as an M-theory com-
pactification on a non-Kähler manifold. Moreover, !̂ and
� also appear in the expansion of C3 as

C3 ¼ Â ^ !̂þ c�þ � � � ; (2.21)

where Â is a vector and c is a scalar in the noncompact
dimensions. The condition (2.20) directly leads to the

appearance of the covariant derivative Dc ¼ dcþ Â in
the field strength F4 of C3 as

F4 ¼ Dc ^�þ F̂ ^ !̂þ � � � : (2.22)

This is the M=F-theory analogue of a Stückelberg term
known in weakly coupled type II theories and implies that
the Uð1Þ field can be rendered massive by absorbing the

scalar c with a gauge transformation. Now we take the
limit of vanishing fiber in the lift from M-theory to
F-theory. The non-Kähler-ness disappears in the limit
v̂ ! 0 while the extra Uð1Þ fields remain as massive fields
at the Kaluza-Klein scale. Hence, one expects that these
massive Uð1Þ factors play a prominent role in an F-theory
compactification.
A clean interpretation of the geometrically massive

Uð1Þs in (2.22) is provided in F-theory compactifications
with an SUðNÞ gauge group which admit a well-defined
orientifold limit. In the orientifold picture one actually
starts from a D7-brane construction with a UðNÞ ¼
SUðNÞ �Uð1Þ gauge group. Such examples arise if a stack
of N D7-branes is identified with an image stack in the
Calabi-Yau three-fold double cover Z of B. If these two
stacks wrap four-cycles in different homology classes, the
Uð1Þ in the decomposition ofUðNÞ becomes massive since
a scalar appearing in the expansion of the RR two-form C2

is gauged [43]. This can be inferred from the Stückelberg
term of the D7-brane Chern-Simons action

SCS �
Z

F̂ ^ C6; (2.23)

where C6 is the RR six-form dual to C2, and F̂ is the field
strength of the brane Uð1Þ. The associated mass term is
purely geometric and independent of any fluxes. Hence, the
massive Uð1Þ is not directly visible in an F-theory
compactification with only harmonic forms, since in the
absence of fluxes all gaugings and D-terms disappear.
However, the gauging induced by (2.23) precisely maps
to the gauging (2.22) and hence identifies the correct
massive Uð1Þ in F-theory. Clearly also the scalar c in
(2.21) is identified with the scalar arising in the RR two-
form C2. Note that this mechanism clarifies why in a
type IIB compactification a stack of N branes not invariant
under the orientifold action gives rise to gauge groupUðNÞ,
while in F-theory one generically sees only the SUðNÞ:
The perturbative Stückelberg mechanism due to (2.23) is
built into the geometry automatically and thus does not
allow us to disentangle the massive Uð1Þ boson from the
other Kaluza-Klein states. However, linear combinations F
of such Uð1Þs may remain massless as far as the geometric
Stückelberg is concerned, both in IIB and in F-theory. In
the presence of internal gauge flux hFi these remaining
Uð1Þ potentials may still receive a mass term from the
independent coupling

SCS �
Z

F ^ hFi ^ C4 (2.24)

in IIB language. For a clean distinction between the two
Stückelberg terms (2.23) and (2.24) in the recent type IIB
literature see [44]. TheM=F-theory analogue is the Chern-
Simons coupling

S ¼
Z

C3 ^ F4 ^G4; (2.25)

5See Refs. [39–41] for initial discussions ofN ¼ 2 andN ¼
1 non-Calabi-Yau reductions. The Uð1Þ sector of type II com-
pactifications on non-Kähler manifolds has also been studied in
detail in Ref. [42].
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where we distinguish the fluxG4 notationally from the field
strength F4 as defined in (2.22). Only the combinations F
of gauge fields that lie also in the kernel of the mass matrix
resulting from (2.24) remain as true gauge symmetries.
Unlike the geometric mass terms due to couplings of the
form (2.23) the flux-induced mass term turns out to lie
below the Kaluza-Klein scale in F-theory. More details
will be provided in [37].

III. Uð1Þ-RESTRICTED TATE MODELS AND
DIMENSION-4 PROTON DECAY

A. Split spectral covers and dimension-4 proton decay

The structure outlined in the previous section on the
basis of the global Tate model is captured locally by the
spectral cover construction. While eventually we aim at
going beyond this local picture, we now recall its basic
features. This makes contact with the F-theory GUTmodel
building literature and allows us to analyze potential limi-
tations of this technology.

The spectral cover approach to F-theory model building
[1,4,7,26] can be applied in situations with non-Abelian
gauge symmetry along just a single divisor S: w ¼ 0. Its
essence is to focus on the local neighborhood of S within Y
by discarding all terms of higher power in the normal
coordinatew that appear in the sections bn. The restrictions
of bn to the GUT divisor,

bn ¼ bnj!¼0; (3.1)

are therefore sections entirely on S. In this local picture, the
GUT brane is described as the base of the bundle KS ! S,
given by s ¼ 0. The neighborhood of S is then modeled by
a spectral surface viewed as a divisor of the total space of
KS. In the sequel we will concentrate on the Tate model for
an SUð5Þ GUT symmetry along S with associated spectral
surface

C ð5Þ: b0s5 þ b2s
3 þ b3s

2 þ b4sþ b5 ¼ 0: (3.2)

One can think of Cð5Þ as encoding the information about the
discriminant locus in the local vicinity of S. In particular,

the intersections of Cð5Þ and S determine the matter curves
(2.9) on S. It is also clear from the relation (3.1), though,
that all the information in bn contained in terms higher inw
is lost in the spectral cover approach.

In agreement with our previous remarks, the gauge
groupG along S arises by breaking an underlying E8 gauge
symmetry via a Higgs bundle of structure group H ¼
E8=G. For G ¼ SUð5ÞGUT this means that H ¼ SUð5Þ?.
Note that this interpretation of the gauge group G was
motivated in [1,26] by the unfolding of an E8 symmetry
that underlies the local gauge theory on S (see also [2,3])
and the spectral cover construction is a geometrization of
this local gauge theory. As anticipated in Sec. II B we will
argue in Sec. IVA that the interpretation of the gauge group
G along S as the compliment of the spectral cover groupH

in E8 arises naturally from the geometric Tate model. Our
interpretation of the spectral cover makes no reference to a
local gauge theory description let alone to a heterotic dual.

If Cð5Þ splits into two or more divisors, the structure
group H factorizes accordingly. As a result, the gauge
group G ¼ E8=H is expected to increase. For example,
let us specify to the situation of a factorized divisor [22]

C ð5Þ ¼ Cð4Þ � Cð1Þ: (3.3)

This split corresponds to the factorization of (3.2) into

ðc0s4 þ c1s
3 þ c2s

2 þ c3sþ c4Þðd0sþ d1Þ ¼ 0: (3.4)

By comparison of (3.4) with (3.2) one can express the
sections bn as

b5 ¼ c4; b4 ¼ c3 þ c4d0; b3 ¼ c2 þ c3d0;

b2 ¼ c1 þ c2d0; b0 ¼ �c1d
2
0; (3.5)

where we have restricted to c0 ¼ �c1d0 such that the term
proportional to s4 vanishes in (3.4). All bn, cn are appro-
priate sections on S such that the Tate sections an (2.7) are
elements of H0ðB;K�n

B Þ, and d1 is taken as a constant in
order to avoid unwanted 10-matter curves; see [22] for
details.
Since under this split H ¼ SUð4Þ �Uð1ÞX, the gauge

group G is expected to enhance to SUð5Þ �Uð1ÞX and the
massless SUð5ÞGUT matter picks up the following Uð1ÞX
charges:

10 1; 10�4; ð�5mÞ�3; ð5HÞ�2 þ ð�5HÞ2; (3.6)

where the exotic 10�4 is absent for the choice (3.5). The
different Uð1ÞX charges of the 5 representations reflect
the split of the 5-matter curves on S which is induced by
the factorization of the spectral cover.
The charge assignments in the S½Uð4Þ �Uð1ÞX� follow

group theoretically from the decomposition of SUð5Þ? !
S½Uð4Þ? �Uð1ÞX� by identifying the generator of Uð1ÞX
as the SUð5Þ Cartan generator T ¼ diagð1; 1; 1; 1;�4Þ.
Correspondingly, the representations of SUð5Þ? in the
decomposition of the 248 of E8 into SUð5Þ � SUð5Þ?,
248 � ð24;1Þþ ð1;24Þþ ½ð10;5Þþ ð�5;10ÞþH:c:�; (3.7)

become

5 ! 41 þ 1�4; 10 ! 62 þ 4�3

240 ! 150 þ 1þ 45 þ �4�5:
(3.8)

At the level of roots and weights this can be phrased as
follows: The nodes !i of the extended Dynkin diagram of
E8 are partitioned into the simple roots !G

i and !H
i with

G ¼ SUð5ÞGUT and H ¼ SUð5Þ?. The fundamental
weights �i, i ¼ 1; . . . ; 5 of SUð5Þ? have the well-known
representation in terms of !i given in (2.16). The elements
of the Cartan subalgebra of H are identified with the dual
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elements ��
i , introduced in (2.17). In particular, the gen-

erator TX corresponds to the combination

��
1 þ ��

2 þ ��
3 þ ��

4 � 4��
5: (3.9)

This guarantees the correct Uð1ÞX charges for the above
states. E.g. the representation ð1; 45Þ under SUð5ÞGUT �
S½Uð4Þ �Uð1ÞX� that descends from ð1; 24Þ corresponds to
the weight �i � �5, i ¼ 1; . . . ; 5, and thus has Uð1ÞX
charge 1� ð�4Þ ¼ 5. Treating all �i independent as above
is the local version of the Coulomb branch for �YE8

advo-

cated in Sec. II B. The spectral cover analogue of the
deformation to �YSUð5Þ corresponds to the introduction

of monodromies acting on the roots within H [7,8,22,27].
In the split spectral cover of the type (3.4), the monodro-
mies act not on the full SUð5Þ? by permutation of all �i,
i ¼ 1; . . . ; 5, but only on an SUð4Þ subgroup of SUð5Þ? by
identifying �i, i ¼ 1; . . . ; 4. This implies that the Uð1ÞX
associated with the generator TX might have a chance to
survive the Higgsing/deformation.

If the Uð1ÞX factor really survives globally it leads to
phenomenologically appealing selection rules for the
Yukawa couplings of the GUT. In particular split spectral
covers are used in the compact models of [18,19,21,23] as
a method to avoid dimension-4 proton decay operators
because couplings of the type 10�5m �5m are forbidden while
the desirable Yukawa coupling 10�5m �5H is allowed by
Uð1ÞX.

Another virtue of the spectral cover construction is that
it yields a description also of gauge flux [1,4,26]. For a
split spectral cover of the type (3.4) one can express a
certain class of gauge flux in terms of an S½Uð4Þ �
Uð1ÞX� bundleW [18] on S. This is a spectral cover bundle

for which the spectral sheaf factorizes intoN ð4Þ andN ð1Þ

defined, respectively, on Cð4Þ and Cð1Þ. Its description in-

volves an element � � H2ðS;ZÞ such that ��
4N

ð4Þ ¼ � ¼
���

1N
ð1Þ, where �i is the projection CðiÞ ! S. Following

the logic of heterotic spectral cover constructions with
S½UðNÞ �Uð1Þ� bundles [45,46] it is natural to assume a
D-term potential for Uð1ÞX of the standard form

X

i

qij�ij2 þ � ¼ 0; � /
Z

S
J ^ �: (3.10)

Here �i denotes charged matter under Uð1ÞX and we have
also displayed the Fayet-Iliopoulos D-term for the gauge
bundle. Associated with this D-term is a Stückelberg-type
mass term for the Uð1ÞX boson induced by nonzero gauge
flux. The fact that the Uð1ÞX boson acquires a Stückelberg
mass is well-known not to affect its relevance as a global
symmetry constraining the Yukawas.

However, an important caveat concerning the existence
of Uð1ÞX as a gauge symmetry, albeit a massive one, is that
the local split of the spectral cover is by construction
insensitive to information away from the GUT brane S.
In particular there can be matter states localized away from

S which are uncharged under the non-Abelian part of the
GUT group G, but charged under Uð1ÞX. In fact in
SUð5ÞGUT models based on split spectral covers of the type
(3.4) the role of right-handed neutrinos is played by states

Nc
R: 15: (3.11)

These are the states commented on after (3.9). They have
the correct Uð1ÞX quantum numbers to participate in the
Dirac Yukawa coupling �5m5HN

c
R. Since these states arise

away from the GUT brane S, their precise location is hard
to determine in the spectral cover approach; see [18,23] for
proposals.
Now, the problem is that the local split of the spectral

cover does not guarantee that matter of the type (3.11) does
not acquire a nonzero vacuum expectation value (VEV)
such as to Higgs Uð1ÞX. In fact, from a field theory per-
spective any VEVof such recombination moduli in agree-
ment with the D-term condition (3.10) is compatible with
the local split (3.4), which only takes into account the
vicinity of S. Turning tables around, the unambiguous
appearance of localized massless matter away from S can
be taken as an indication that Uð1ÞX is un-Higgsed. To
really determine the presence of such massless matter one
has to go beyond the spectral cover approximation and
consider the full Tate model. The matter in question must
then be localized on a curve C on the I1 part of the
discriminant over which the singularity type of the fiber
enhances from I1 to I2. This corresponds to an enhance-
ment to A1 ’ SUð2Þ and extra matter will appear from the
decomposition of the adjoint 3 of SUð2Þ under the branch-
ing SUð2Þ ! Uð1Þ.
To appreciate the consequences of a Higgsing of Uð1ÞX

for proton decay let us assume that indeed a recombination
modulus� localized away from S has acquired a VEV that
would not be detected from the local split of the spectral
cover. Such a field could have the quantum numbers of Nc

R

with Uð1ÞX charge þ5 or of its conjugate with charge �5.
In the first case � could participate in a dimension-5
coupling W � 1

M 10�5m �5m�, where M is a mass scale.

Clearly a VEV for � induces a dimension-4 proton decay
operator

h�i
M

10�5m �5m: (3.12)

If, on the other hand, it is the field ~� with charge �5 that
acquires a VEV this way of generating dangerous Uð1ÞX
violating couplings does not occur. Which of the two
scenarios arises depends on an interplay of the sign of
the Fayet-Iliopoulos term and of further F-terms constrain-

ing the VEVs of � and ~�. For a discussion of similar
effects in the heterotic context, see [47–49].
A related danger for models with Higgsed Uð1ÞX con-

cerns the precise counting of massless matter. As stressed
in this context in [18] (see also [9]) a VEV of the recom-
bination moduli is identical to a deformation of the
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S½Uð4Þ �Uð1ÞX� bundle W into a proper SUð5Þ bundle.
Loosely speaking this can be thought of as forming a
nonsplit extension from a direct sum of bundles, even
though in this context W is actually not a direct sum of
two independently defined vector bundles. In any case,
while in this process the total chirality of the model is
unaffected, the chirality of individual matter species might
change. Concretely if the recombination modulus � with
chargeþ5 couples to �5m and 5H asW � �5H �5 a VEV for
� produces also a mass term of the form h�i5H �5m.
Therefore in general the computation of the individual
chiralities of models with factorized spectral cover is guar-
anteed to be valid only if Uð1ÞX is un-Higgsed.

B. Uð1Þ-restricted Tate models and un-Higgsed Uð1ÞX
In this section we will introduce the geometries which

guarantee the existence of an un-HiggsedUð1ÞX. In fact we
will see that the existence of the desired Uð1ÞX symmetry
can be ensured provided one extends the factorization of
the spectral cover to a global restriction of the full Tate
model. In the following wewill refer to these geometries as
Uð1Þ-restricted Tate models. Let us promote the split (3.4)
to a global modification of the sections bn as

b 5 ¼ c4; b4 ¼ c3 þ c4d0; b3 ¼ c2 þ c3d0; (3.13)

b 2 ¼ c1 þ c2d0; b0 ¼ �c1d
2
0; (3.14)

where bn, cn now depend on all coordinates of the base B.
With this form of the sections inserted into the Tate form
(2.2), the coordinate transformation

x ! ~xþ w2d20; y ! ~y� w3d30 (3.15)

brings the Tate model polynomial into the form

PT ¼ ~x3 � ~y2 þ ~x ~y ~a1 þ ~x2~a2 þ ~y~a3 þ ~x~a4 ¼ 0 (3.16)

with

~a1 ¼ ~b5 ¼ c4;

~a2 ¼ ~b4w¼ ðc3 þ c4d0 þ 3wd20Þw;
~a3 ¼ ~b3w

2 ¼ ðc2 þ c3d0 þ c4d
2
0 þ 2d30wÞw2;

~a4 ¼ ~b2w
3 ¼ ðc1 þ c2d0 þ 2c3d

2
0 þ c4d

3
0 þ 3wd40Þw3:

(3.17)

Crucially one notes that ~a6 ¼ ~b0 ¼ 0 and that the coeffi-

cients ~bn are generic since the cn are generic. We denote the
resulting singular four-fold by XSUð5Þ or, for more general

gauge groups over S, by XG. Note that on XSUð5Þ the 5 curve
given in (2.9) now splits as

~P 5 ¼ ~b3ð~b4 � ~b2
~b5Þ ¼ 0; (3.18)

which allows for the localization 5m and 5H þ �5H on
different curves. Moreover, the discriminant of XSUð5Þ is
now of the form

� ¼ w5ð~b2~b3~b5½~b45 þ 8~b4
~b25wþ 16w2ð~b24 � 6~b2wÞ�

þ ~b33
~b5wð~b25 þ 36~b4wÞ � ~b23½~b4~b45 þ 8~b24

~b25w

þ 2ð8~b34 þ 15~b2
~b25Þw2 � 72~b2

~b4w
3� þ ~b22w½~b45

þ 8~b4
~b25wþ 16w2ð~b24 � 4~b2wÞ� � 27~b43w

3Þ: (3.19)

This implies that the elliptic fibration is singular over the
curve

C: ~b2 ¼ 0; ~b3 ¼ 0 (3.20)

in the base B. Application of Tate’s algorithm confirms an
SUð2Þ enhancement with ~an weights (0, 0, 1, 1, 2) and
�-weight 2 along C. This singular curve describes the self-
intersection locus of the I1 part of the discriminant appear-
ing in the brackets. Here extra massless degrees of freedom
appear in the singular limit according to the decomposition
of the adjoint of SUð2Þ. The Uð1ÞX charge of the massless
states along C derive from the specific embedding into E8

and will be scrutinized further in the next section. We thus
interpret the specialization to (3.17) as the un-Higgsing of
the Uð1ÞX gauge symmetry, signalled by the appearance of
massless charged matter. These charged massless degrees
of freedom play the role of the recombination moduli
whose VEV in turn smoothens out the singularity away
from the locus (3.17). This intuitive picture will be corro-
borated further below for a simple F-theory model with
orientifold limit. Note that despite the appearance of a
singular self-intersection curve C the full I1 piece does
not factorize. However, this is not required for the exis-
tence of the Abelian Uð1ÞX gauge boson.
Note that this analysis generalizes to other gauge groups

G localized on the divisor S, as long asG � E7. Because of
the additional Uð1Þ factor the maximal gauge group E8 is
no longer attainable along a divisor. This does not mean,
though, that higher codimension E8 enhancements along
curves or points are forbidden. In fact, points of E8

enhancement have been argued to lead to a favorable flavor
structure in [50].

C. Abelian gauge bosons from resolution
and connection to E7 fibers

So far we have motivated the existence of an un-Higgsed
Uð1ÞX by slightly indirect methods. A direct argument is
via the logic described in Sec. II B, where we described
how in M-theory on a Calabi-Yau four-fold one can study
Uð1Þ gauge factors by moving to the Coulomb branch of
the gauge theory.
Applying the general relation (2.14) to the Tate model

(3.16) one first encounters four Uð1Þ factors which corre-
spond to the Cartan generators of G ¼ SUð5ÞGUT and
which arise from blow-up divisors DG

i with Poincaré dual
two-forms !G

i . These have been explicitly constructed for
GUT models in Refs. [18,19]. Crucially, here we will
encounter an additional Uð1ÞX, since Y also contains the
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singular curve C, given in (3.20), away from the GUT
brane S. The singular curve can be canonically resolved

into a divisor D̂C by introducing a new coordinate s and

replacing ~y ! ~ys, ~x ! ~xs. D̂C is then given by s ¼ 0 and
increases the number h1;1ð �YÞ in (2.14) by one. We denote
the Poincaré dual two-form by !C. One checks that �Y is
indeed nonsingular after appropriately introducing scaling
relations for s. Because of the extra element in H1;1ð �Y;ZÞ
there must exist a harmonic two-form !X which is related
to !C and which encodes the surviving Uð1ÞX factor.
Simple examples show that a candidate for !X is

!X ¼ !C �!B þ ��c1ðBÞ; (3.21)

where � is the map from XG to its base B. Using this two-
form the expansion for C3 reads

C3 ¼ AX ^!X þX

i

Ai ^!G
i þ � � � ; (3.22)

where AX is the Uð1ÞX potential and the Ai correspond to
the CartanUð1Þs in the non-Abelian gauge group. Note that
one again has to define linear combinations of the Ai and
the !G

i , associated with the simple roots, to obtain the
Cartan Uð1Þs. Moving to the singular YG, the Ai will
become part of the non-Abelian gauge group over S.
However, because Y away from the GUT brane did not
become singular over a divisor, but over a curve C, there is
no non-Abelian gauge enhancement involving the AX fac-
tor, and the Uð1ÞX remains untouched. This establishes the
appearance of the Uð1ÞX gauge boson.

Let us now resolve the SUð2Þ singularity along C ex-
plicitly. For simplicity we will only concentrate on C and
refer for resolution of the SUð5Þ singularity along the GUT
brane S to Refs. [18,19]. The resolved Tate form is given by

PT ¼ ~x3s2 � ~y2sþ ~x ~y ~z a1 þ s~x2~z2a2 þ ~y~z3a3 þ ~x~z4a4

¼ 0: (3.23)

The new Calabi-Yau �XG manifold has two fibers: Setting
~an ¼ 1 ¼ s we recover the original P1;2;3½6� fiber, while
for ~an ¼ 1 ¼ ~x one finds a so-called E7 fiber. The latter is
given by the hypersurface P1;1;2½4� in the ambient space

ð~y; ~z; sÞ ffi ð�y; �z; �2sÞ. This fiber has two sections. Note
that the section z ¼ 0 is shared by the newP1;1;2½4� fiber as
well as the original P1;2;3½6� fiber, and yields the base B. In
six-dimensional F-theory compactifications such geome-
tries have been studied in the context of heterotic/F-theory
duality in Refs. [29,30]. Note that the resolution (3.23) can
be performed for all gauge groups G � E7 on S. It turns
out that enhancement to a gauge group E8 is no longer
possible on the divisor S. Clearly, this fits with the group
theory interpretation presented at the end of Sec. III B,
since E7 �Uð1Þ is of maximal rank in E8. In other words
the diagram (2.12) gets now replaced by

where we have included the Uð1Þ factor to stress the
difference with the geometries in (2.12). In Sec. IVC we
will show that the split spectral cover group and its split-
tings can be studied by using mirror symmetry for �XG and a
reference geometry �XE7

.

Since the underlying gauge group for theUð1Þ-restricted
Tate model is not E8, but rather E7 �Uð1Þ, it is natural to
ask how the Abelian gauge group in the final model
embeds into E8. To demonstrate this let us specialize to
G ¼ SUð5Þ. In this case we expect the surviving Abelian
group to be given by Uð1ÞX from the breaking E8 !
SUð5Þ � SUð4Þ �Uð1ÞX. That this is indeed the case can
be seen as follows: The Abelian gauge group visible in the
underlying XE7

is the up-to-normalization unique Cartan

Uð1Þ within E8 responsible for the branching

E8 ! E7 �Uð1Þa;
248 ! 1330 þ 561 þ �56�1 þ 12 þ 1�2:

The deformation to XSUð5Þ can be understood via the

branching E7 ! SUð5Þ � SUð3Þ? �Uð1Þb. The full
branching rules to SUð5Þ � SUð3Þ? �Uð1Þa �Uð1Þb are

1330 ! ð1; 8Þ0;0 þ ð24; 1Þ0;0 þ ð1; 1Þ0;0 þ ½ð5; 1Þ0;6
þ ð5; 3Þ0;�4 þ ð10; 3Þ0;2 þ c:c:�;

561 ! ð1; 3Þ1;�5 þ ð5; 3Þ1;1 þ ð10; 1Þ1;�3 þ c:c:;

12 ! 12;0; (3.25)

with the subscripts denoting the charges ðqa; qbÞ. The
deformation to the Uð1Þ-restricted, but otherwise most
generic Tate model (3.13) Higgses SUð3Þ? and one linear
combination of Uð1Þa and Uð1Þb. The remaining Uð1Þ
symmetry can be determined by noting that the model
contains only one matter curve on which an SUð5Þ singlet
localizes. Recall that this is precisely the curveC appearing
in (3.20). Indeed the up-to-rescaling unique combination of
Uð1Þa and Uð1Þb compatible with this is

Uð1ÞX ¼ 1

2
ð�5Uð1Þa þUð1ÞbÞ; (3.26)

which results in the anticipated Uð1ÞX charges displayed in
(3.6). Note that the surviving Uð1ÞX generator embeds
indirectly into E8 via the branchings and Higgsing de-
scribed above.
The Uð1Þ restriction of the Tate model has another im-

portant effect: The Euler characteristic of the resolved four-
fold �XG decreases considerably compared to the original
fibration. This can be traced back to the fact that the Uð1Þ
restriction (3.16) and (3.23) forces us to fix many complex
structure moduli to restrict the I1-locus. The change in the
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Euler characteristic can be given as a closed expression if
one restricts to the case of a smooth Tate model Y with no
non-Abelian enhancement. The Euler characteristic of the
four-fold can be computed as [51,52]

	ðYÞ ¼ 12
Z

B
c1ðBÞc2ðBÞ þ 360

Z

B
c31ðBÞ: (3.27)

After theUð1Þ restriction and resolution the Euler character-
istic is reduced as

	ð �XÞ ¼ 	ðYÞ � 216
Z

B
c31ðBÞ; (3.28)

which corresponds to the value obtained for an E7 fibration.
This can be checked explicitly in examples with the help of
toric geometry. Using the general formula 	 ¼ 6ð8þ
h1;1 þ h3;1 � h2;1Þ one determines straightforwardly the
number of complex structure moduli which have to be fixed
in order to ensure the presence of the additionUð1Þ. For the
phenomenologically interesting cases of SUð5Þ GUT mod-
els the effect of the Uð1Þ restriction has to be computed by
direct resolution. For instance, consider the 3-generation
model in the main text of [19]: The Tate model correspond-
ing to the nonsplit SUð5Þ? spectral cover (3.2) gives rise to
	 ¼ 5718. Once we implement the global Uð1Þ restriction
(3.13) we find instead 	 ¼ 2556 after resolution. On the
other hand, if one computes the value of 	 based just on the
split spectral cover (3.5) as opposed to the globally
Uð1Þ-restricted Tate model (3.13), one finds 	 ¼ 5424 us-
ing the formula of [18]. This shows that promoting the split
spectral cover to a global Uð1Þ-restricted Tate model de-
creases the value of 	 significantly. Note that this affects all
previous models [18,19,21,22] based on split spectral cov-
ers in the literature and makes a reevaluation of the
D3-tadpole condition necessary if one wants to promote
the split globally to save the Uð1Þ selection rules. This
demonstrates once more the entanglement of global prop-
erties of the model and the appearance of Abelian symmetry
and selection rules.

We conclude this section with some remarks on the
description of Uð1ÞX gauge flux in Uð1Þ-restricted Tate
models of type (3.16). Recall from Sec. II B that for a
generic deformation from �YE8

to �YG the Cartan flux asso-

ciated with H ¼ E8=G turns into data describing a non-
Abelian H-bundle. Such flux is represented by elements of
H2;2ð �YGÞwhich cannot be written as the wedge of two two-
forms. This is in agreement with the absence of a Fayet-
Iliopoulos D-term because for generic deformations all
Uð1Þ symmetries are Higgsed. For the Uð1Þ restricted
Tate model, by contrast, due to the appearance of an un-
Higgsed Uð1ÞX potential we do expect the presence of a
Fayet-Iliopoulos term. There must therefore exist a special
type of Uð1ÞX flux which involves a truly Abelian compo-
nent. This is the global analogue of the extra Uð1ÞX flux
described by the class � 2 H2ðS;ZÞ within the split
spectral cover approach, see the discussion around (3.10).

In M-theory the D-terms arise from the Chern-Simons
coupling

SCS ¼ � 1

12

Z
C3 ^G4 ^G4: (3.29)

In terms of the element !X associated with the Uð1ÞX
generator the Fayet-Iliopoulos term is

� /
Z

!X ^ J ^G4: (3.30)

This is the global version of the expected Uð1ÞX Fayet-
Iliopoulos term in the split spectral cover picture. We leave
it for future work to study the concrete description of this
type of Abelian gauge flux [37].

D. Connection to brane recombination in orientifolds

We would like to end this discussion by giving yet
another, complementary, argument for the appearance of
an Abelian gauge factor in Uð1Þ restricted Tate models of
the form (3.16). This argument makes contact with the
weakly coupled type IIB orientifold picture as follows:
For weakly coupled models, the restriction to a6 ¼ 0 de-
scribes the split of an orientifold invariant 7-brane into a
brane-image brane pair. To see this we need to recall that
for a Weierstrass model (2.3) the connection with the IIB
picture arises by the well-known Sen limit [53]. One
parametrizes without loss of generality

f¼�3h2 þ 
�; g¼�2h3 þ 
h�� 
2	=12: (3.31)

For the Tate model, which is related to the Weierstrass
model via (2.4) and (2.5), one identifies

�2 ¼ �12h; �4 ¼ 2
�; �6 ¼ � 1

3

2	: (3.32)

The orientifold limit consists in taking 
 ! 0 such that the
string coupling becomes weak away from h ¼ 0. The
leading order discriminant then reads

�
 ¼ �9
2h2ð�2 � h	Þ þOð
3Þ: (3.33)

For generic � and 	, corresponding to a smooth
Weierstrass model without non-Abelian gauge symmetries,
one identifies one D7-brane and one O7-plane located at

O7: h ¼ 0; D7: �2 ¼ h	: (3.34)

On the Calabi-Yau three-fold double cover Z: �2 ¼ h of
the base spaceB ¼ Z=Z2 one finds only one set of 7-branes
[54,55] wrapping the invariant cycle Q: �2 � �2	 ¼ 0.
Correspondingly the Abelian gauge boson is projected
out by the orientifold action.
Let us now specialize the complex structure moduli such

that the orientifold invariant brane along Q splits into a
brane-image brane pair. As discussed in [55] this requires
that

	 ¼ c 2; (3.35)
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which induces, again on the double cover Calabi-Yau Z,
the split Q ! Qþ [Q� with Q	: �
 �c ¼ 0. The ori-
entifold action � ! �� exchanges Qþ and Q�.

In view of the identification (3.32) together with the
relation �6 ¼ a23 þ 4a6 given in (2.5) the factorization

(3.35) means nothing other than a6 ¼ 0. Thus, the Tate
model corresponding to the split brane-image brane pair is
exactly of the Uð1Þ restricted form (3.16). This orientifold
picture makes the appearance of an extra Uð1Þ gauge
symmetry clear: Prior to orientifolding the brane-image
brane pair Qþ [Q� carries gauge group Uð1Þþ �Uð1Þ�.
The orientifold action identifies the two factors such that a
single Uð1Þ boson survives corresponding to Uð1Þþ �
Uð1Þ�. This is the Uð1Þ boson observed for restricted
Tate models of the form (3.16). Note the crucial fact that
for the simple model (3.35) the branesQþ andQ� lie in the
same homology class on Z. Therefore the geometric mass
term discussed around (2.23) does not make the linear
combination Uð1Þþ �Uð1Þ� massive in agreement with
the appearance of a Uð1Þ boson. In the generic situation,
however, the factorization Q ! Qþ [Q� is lost because
of a deformation of 	 ¼ c 2 into a nonfactored form. This
simply describes the Higgsing of the Uð1Þ symmetry,
whereby the extra matter states localized on the curve C
of A1 singularities acquire a VEV. From a more technical
perspective, our analysis illustrates the connection between
brane-image brane pairs and the appearance of restricted
fibers in the Tate model, here fibers of E7-type,; see the
discussion around (3.23).6

Note that away from the strict orientifold limit 
 ! 0 the
terms in the discriminant of higher order in 
 become
important. Taking them into account, the discriminant no
longer factorizes in the O-plane and brane-image brane,
but becomes a single component. This process is to be
interpreted as the nonperturbative recombination of the
brane and the O-plane system. However, it does not affect
the presence of the Abelian gauge boson. For recent
advances in the context of weak-coupling type IIB vs
F-theory models, see [20,57–63].

IV. GLOBAL SPECTRAL COVERS
AND MIRROR SYMMETRY

A. Spectral cover constructions

In this section we revisit the general philosophy behind
the spectral cover approach to F-theory models. In par-
ticular we will argue for the appearance of a spectral cover
directly from the form of the (globally defined) Tate model.

As reviewed, the general idea of the spectral cover is to
describe the gauge group G along a divisor S by unfolding
an underlying E8 symmetry. This picture arose in the
description of local ALE fibrations over S [1,4,7,26].

Formally the same structure appears as in F-theory ex-
amples with a perturbative heterotic dual description [64].
In these cases the four-dimensional F-theory gauge group
can be understood as the commutant of the structure group
of a vector bundle embedded into the perturbative heterotic
E8 � E8. The heterotic vector bundle can be directly de-
termined from the constraint of the F-theory manifold
[65,66]. In the sequel we find more evidence for the
relevance of an E8 bundle V in the description of the
four-dimensional gauge dynamics along S in a genuine
F-theory compactification of the type described in
Sec. II. Our considerations rely entirely on the structure
of the Tate model without any reference to the local gauge
dynamics on S or a heterotic dual. We therefore believe
that this view sheds new light on the relevance of the
spectral cover that helps understand also its role in compact
models.
We consider F-theory compactifications on elliptically

fibered Calabi-Yau four-folds as introduced in Sec. II A
and with a gauge enhancement G over a single divisor S
given by the constraint w ¼ 0. In a Tate model with E8

elliptic fiber the generic fiber is given by P1;2;3½6�. As we
will see in this case it is natural to consider gauge groupsG
contained in E8. Given a P1;2;3½6� fibration there is a

natural split of the Tate constraint (2.2) as

PT ¼ P0 þ PV ¼ 0: (4.1)

It turns out that PV specifies a gauge bundle V with
structure group H which breaks E8 to its commutant G ¼
E8=H. The simplest case is an E8 singularity over S
corresponding to the Tate form

P0 ¼ x3 � y2 þ xyzwh6 þ x2z2w2h4 þ yz3w3h3

þ xz4w4h2 þ z6w6h0;

PV ¼ z6w5b0:

(4.2)

Note that b0 can be chosen to be independent of w by
absorbing all higher order dependence onw into h0. Such a
singular Y can be constructed by studying the resolved
four-fold �YE8

in which a set of resolution P1s is fibered

over S.
Exactly in the case of an E8 gauge group the leading

powers of w and z match in P0. One thus can introduce
local coordinates ~w ¼ wz and v ¼ z5w4 and write (4.2) as

P0 ¼ x3 � y2 þ xy ~wh6 þ x2 ~w2h4 þ yh3 þ x ~w3h2 þ ~w6h0;

PV ¼ v ~wb0: (4.3)

The point is that PV is the defining equation for an SUð1Þ
bundle in the sense of the spectral cover as introduced
in [64]. Note that the coordinate redefinition will gene-
rally induce inverse powers of v in P0, and hence is only
valid in the patch of nonvanishing v. Before turning to a
more global analysis, let us first focus on PV . To reduce
the gauge group from E8 to a subgroup G one can

6This connection was observed by the authors of the present
article during completion of [18]. For an independent analysis
see [56].
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systematically add new terms to PV which lower the
vanishing orders �n in (2.7). This implies the following
interpretation of the Tate model: The groups G on S are
obtained as the deformation of the originalE8 singularity in
(4.2) by allowing for new monomials with lower powers in
w. This introduces new complex structure deformations of
the Calabi-Yau four-fold so as to change PV while keeping
P0 unaltered. In absence of a topological obstruction
enforcing a minimal gauge group, this process can be
performed until all non-Abelian gauge symmetry has been
Higgsed. For example, using the Tate formalism as in [31]
one finds the PV listed in Table I.

In Table I we have performed a coordinate redefinition
to ~w ¼ zw and v ¼ z6�Nw5�N , N ¼ 1; . . . ; 5 to bring PV

into the form of a spectral cover for SUðNÞ bundles [64].
For SOð10Þ bundles one redefines v ¼ z, ~w ¼ zw and thus
captures the terms z6ðb0;1w4 þ b0;2w

5Þ in the Tate form

(4.2) for an SUð4Þ singularity. As the polynomial for the
SOð10Þ bundle has a term v2, such a bundle cannot be
constructed directly by a spectral cover [64]. However, the
data of this bundle are encoded by the generalized spectral
cover with higher powers of v. A more complete list
including various other bundle groups can be found in
Ref. [66].

Let us analyze the SUðNÞ spectral covers in more detail
by specifying the transformation of the coordinates
ðv; ~w; x; yÞ and the bn as sections of appropriate line
bundles. Recall that ðz; x; yÞ appearing in (2.2) are sections
z 2 H0ðLÞ, x 2 H0ðL2 � K�2

B Þ, y 2 H0ðL3 � K�3
B Þ,

where L is the line bundle for the scaling of P1;2;3, the

ambient space of the elliptic fiber. By definition w is a
section of NS=B, the normal bundle to the divisor S of B
over which we engineer non-Abelian gauge enhancement.
With the above definition ~w ¼ zw and v ¼ z6�Nw5�N one
arrives at ~w 2 H0ðL � NS=BÞ, v 2 H0ðL6�N � N5�N

S=B Þ.
Homogeneity of the polynomial PT therefore uniquely
determines the coefficients bn as sections

bn 2H0ðS;��nc1ðSÞÞ; �¼ 6c1ðSÞþc1ðNS=BÞ: (4.4)

This uses the adjunction formula KBjS ¼ KS � N�1
S=B as

well as the fact that bn are truly sections of S since all
further dependence on w has been shifted to hn. Recall that
the construction of an SUðNÞ bundle over S via spectral
covers involves a spectral surface of class N�þ �, with �

the section corresponding to S. In the presented construc-
tion one recovers the spectral cover with � from the
geometry of Y via PV .
It is crucial to keep in mind that the split (4.1) was only

possible because we assumed that the non-Abelian gauge
symmetry G appears over the single divisor S and that
G � E8. Despite this restriction, the geometry can be
general and no reference to the existence of a heterotic
dual has to be made. The nontrivial global information
about the Calabi-Yau four-fold is captured by the sections
hn in P0, which are given already in the Calabi-Yau
four-fold YE8

with E8 singularity (4.2) with trivial PV .

One consequence of this construction appears to be the
existence of a simple formula for the Euler characteristic of
the resolved four-fold �YG as [18]

	ð �YGÞ ¼ 	ð �YE8
Þ þ 	V: (4.5)

Here 	V is determined in a trivial fashion from the second
Chern class of V and can be computed for various bundles
V as a function of � and the Chern classes of S using [64].
For example, for a vector bundle V with structure group
SUðNÞ one has

	SUðNÞ
V ¼

Z

S
c1ðSÞ2ðN3 �NÞþ 3N�ð��Nc1ðSÞÞ: (4.6)

Note that there is no reason for (4.5) to be generally valid.
Rather one should compare the Euler characteristic com-
puted directly for an explicitly constructed and resolved
Calabi-Yau four-fold �YG with the value (4.5). A match
indicates the global applicability of the spectral cover
formalism. Such matches have been found explicitly for
many examples [18,19].

B. Mirror symmetry and spectral covers

In the study of F-theory compactifications with non-
Abelian gauge symmetry one can use two techniques to
analyze the gauge sector. The first method is to study
singularity enhancements over the divisor S. At each
codimension the singularity can enhance further as

G � GC � GP; (4.7)

where C is an intersection curve of S with the I1 locus and
P is a point of intersection of C with other I1 curves in S.

TABLE I. Spectral covers PV and their generalizations.

G E8=G PV

E8 SUð1Þ v ~wb0
E7 SUð2Þ vð ~w2b0 þ xb2Þ
E6 SUð3Þ vð ~w2b0 þ x ~wb2 þ yb3Þ
SOð10Þ SUð4Þ vð ~w4b0 þ x ~w2b2 þ y ~wb3 þ x2b4Þ
SUð5Þ SUð5Þ vð ~w5b0 þ x ~w3b2 þ y ~w2b3 þ x2 ~wb4 þ xyb6Þ
SUð4Þ SOð10Þ vð ~w2yb3 þ ~w5b0;2 þ yxb6 þ ~wx2b4Þ þ v2ð ~w4b0;1 þ ~w2xb2Þ
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At the enhancement loci new matter fields and couplings
can localize. Much of the information about the singularity
is encoded in the canonical resolution �YG by gluing in
resolving P1s into the singular fibers over S, curves and
points. In particular, the group enhancements are captured
by the fact that the P1s intersect as the Dynkin diagrams of
G, GC, GP at the various locations in S (see e.g. [67]). The
second method to describe non-Abelian enhancements is
the generalization of the constructions of [64] as described
in Sec. IVA. Here the situation is somewhat inverse to (4.7)
since the bundles breaking the E8 become more trivial over
curves and points. Thus the structure group reduces as

H � HC � HP; (4.8)

whereH ¼ E8=G,HC ¼ E8=GC andHP ¼ E8=GP are the
respective commutants. We have already stressed that this
construction is much less general. In particular, only the
analysis of F-theory compactifications with single groups
G in E8 has been carried out. It would be interesting to
explore generalizations of this construction.

In order to get deeper insights into the global applica-
bility of the spectral cover construction and its extensions
described in Sec. IVA one can attempt to make H, HC, HP

visible as a physical gauge group in a dual theory. In
Ref. [66] it was suggested to use mirror symmetry for
Calabi-Yau four-folds to study F-theory models with
heterotic dual (see also [68]). In the following we will
show how mirror symmetry can be applied to the geome-
tries studied in this paper, which, however, do not admit a
heterotic dual.

Let us start by considering the mirror four-fold �Y�
G to the

resolved space �YG. Our aim is to determine the gauge group
obtained by compactifying F-theory on �Y�

G. Hence we have

to impose that �Y�
G itself is elliptically fibered. In fact, this is

the case for the explicit elliptically fibered Calabi-Yau four-
folds used for GUT model-building given by two con-
straints [18,19], as well as the elliptically fibered Calabi-
Yau hypersurfaces studied in [52]. This can be traced back
to the fact that these Calabi-Yau spaces are realized in a
toric ambient space. Thus their mirror [69–72] and fibration
structure [73] can be analyzed in detail using toric tech-
niques (see Refs. [19,38], which include a review of these
techniques and references). We first analyze the mirror of
the space �YE8

with a resolved E8 singularity over S. The

gauge group H ð �Y�
E8
Þ associated with the resolved elliptic

fibration of �Y�
E8

can be explicitly determined for the ex-

amples considered in this work, and will be of rather high
rank. We can proceed in the same way for �YG, i.e. the space
in which the gauge group E8 on S is unfolded to G. One
then shows that the new mirror gauge group is

H ð �Y�
GÞ ¼ H ð �Y�

E8
Þ �H : (4.9)

Here the new factor H is composed out of the structure
groups (4.8) of the bundle V appearing over S as well as the
enhancement groups over curves and points,

H ¼ HkS �H
kC
C � � � � �HkP

P � � � � : (4.10)

The dots indicate that one has to consider the bundle groups
over all possible enhancement curves and points in S. Note
that this picture makes direct contact with the spectral cover
description and its extensions of Sec. IVA. The precise
form of H determines PV and vice versa. The largest
group H determines G and hence the form of PV to be
picked out of Table I. The exponents in (4.10) are best
explained by considering a specific example for G, H, as
we will do next.
Given the PV in Table I encoding the bundles on the

divisor S one can count the number of monomials in each
of the defining bn. Let us explain this for the example of
G ¼ SUð5Þ. Clearly, if bn ¼ 0 for all n > 0 one obtains an
E8 gauge group or SUð1Þ bundle. Let kn denote the number
of possible nonzero monomials in bn. Starting with an
SUð1Þ bundle, there are k2 deformations to an SUð2Þ
bundle, k3 deformations to an SUð3Þ bundle and k4 defor-
mations to an SUð4Þ bundle. Finally, one has k6 possible
SUð5Þ bundles corresponding to the different monomials in
b6. One can then show that in the mirror four-fold �Y�

SUð5Þ
one finds as gauge factor in (4.9) the group

H ¼SUð5Þk6 �SUð4Þk4 �SUð3Þk3 �SUð2Þk2 �SUð1Þk0 :
(4.11)

This gauge group can be determined by the Tate algorithm
implemented via toric methods [31,33,34]. Very basically,
the weighted projective space P1;2;3 is encoded torically by

the vertices


1 ¼ ð0;�1Þ; 
2 ¼ ð�1;0Þ; 
3 ¼ ð3;2Þ; (4.12)

which correspond to the x, y, z coordinates in the Tate
equation (2.2). In the above construction the mirror mani-
fold �Y� admits the dual two-torus as the generic elliptic
fiber. It is given by the vertices


�
1 ¼ ð1;�2Þ; 
�

2 ¼ ð�1;1Þ; 
�
3 ¼ ð1;1Þ; (4.13)

which correspond to the x, y, z coordinates in the mirror of
the Tate model. It is this dual Tate model in which one
reads off the gauge group H .
Let us discuss this result in more general terms. First, the

exchange of G and H under mirror symmetry arises as a
simple combinatorial fact intrinsic to elliptic fibrations
with generic fiber P1;2;3½6� of E8 type. In other words, it

is possible to show that the identification (4.9) is rooted in
the application of mirror symmetry for reflexive polyhedra
and does not rely on the duality to a heterotic model.
Hence, mirror symmetry will likely turn out to be a power-
ful tool to argue for the global validity of the spectral cover
construction for Calabi-Yau examples in which all non-
Abelian gauge dynamics localizes on S. In particular, the
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split (4.5) of the Euler characteristic appears to be in accord
with the factorization of the dual gauge group (4.9).

C. Split spectal covers and mirror symmetry for
Uð1Þ-restricted Tate models

In Sec. II we discussed an interesting specialization of
the Tate model by demanding that globally a6 ¼ 0. This
led to a Calabi-Yau four-fold X which admits an additional
singularity over a curve C. We have argued that then an
Abelian factor Uð1ÞX remains un-Higgsed and can forbid
dangerous dimension-4 proton decay operators. We now
seek to apply mirror symmetry to the resolved manifold �X
and generalize the discussion of Sec. IVB. In particular,
we want to determine the dual gauge group H for a
singular four-fold XSUð5Þ with SUð5Þ singularity over S
and SUð2Þ singularity over C.

To begin with, we note that the restriction a6 ¼ 0 can be
implemented at the level of the Tate equation (2.2) by
introducing a new coordinate s with appropriate scaling
relations to forbid a term z6a6. This has been done in
(3.23), where we also noted that the divisor s ¼ 0 corre-

sponds to the blow-up divisor D̂C of the singular curve C.
In contrast to a generic P1;2;3½6� elliptic fiber, one now has

an elliptic fiber encoded by the two-torus vertices

f
ig ¼ fð0;�1Þ; ð�1; 0Þ; ð3; 2Þ; ð�1;�1Þg: (4.14)

The new vertex 
4 ¼ ð�1;�1Þ corresponds to the coordi-
nate s and restricts the Tate form to be (3.23). Note that this
four-fold X still admits the section z ¼ 0 corresponding to
the base B.

The analysis of the mirror �X� of the Calabi-Yau four-
fold �X proceeds as before. In particular, one can perform
the restriction a6 ¼ 0 for the GUT examples of
Refs. [18,19] and show that the mirror is again elliptically
fibered. The generic two-torus fiber of �X� is the dual to the
fiber of �X and can hence be inferred from (4.14) to be

f
�
i g ¼ fð1;�2Þ; ð�1; 1Þ; ð1; 0Þ; ð0; 1Þg: (4.15)

By comparison with the dual of the P1;2;3½6� elliptic fiber

(4.13) one notes that the vertex (1, 1) corresponding to the
mirror z-coordinate has split into two vertices (1, 0), (0, 1).
We denote the corresponding coordinates by z1 and
z2. This implies that the corresponding Tate form is
modified as

P�
T ¼ P1 þ PUð1Þ (4.16)

P1 ¼ y2z2 þ x3z1 þa�1;1xyz1z2 þa�2;1x2z21z2 þ a�2;2yz21z22
þa�3;2xz

3
1z

2
2 þa�4;3z

4
1z

3
2

PUð1Þ ¼ a0;0x
2y: (4.17)

This form of P�
T is inferred by using the scaling relations of

the coordinates ðx; y; z1; z2Þ, which are the linear relations
among the points (4.15). Note that in contrast to the stan-
dard Tate model (2.2) based on P1;2;3½6� one finds a term

proportional to x2y. This is precisely the deformation

mirror dual to the blow-up D̂C. Hence, the extra term
PUð1Þ signals the existence of the extra Uð1Þ. In the re-

striction a6 ¼ 0 with no further modification a0;0 is a

single monomial and corresponds to a single Uð1ÞX gauge
boson.
Since the elliptically fibered four-fold �X� has the form

(4.16) we have to reinvestigate the dual gauge group H .
Using the scaling relations to set z1 ¼ 1 ¼ z2, one finds
that P1 has the standard Tate form (2.2). Hence, we can
study the gauge group by analyzing the vanishing of
the polynomial over different divisors using the Tate
algorithm. One shows that the dual gauge group naturally
splits as

H ð �X�
GÞ ¼ H ð �X�

E7
Þ �H X: (4.18)

This is the analogue of (4.9) for the Tate model without the
additional Uð1Þ factor. Note that now the maximal gauge
group attained on XG is E7 as stressed in Secs. III B and
III C. This matches nicely with the split (4.18) and can be
checked for numerous examples. In particular, for �X�

SUð5Þ
one finds

H X ¼ SUð4Þk6 � SUð3Þk4 �SUð2Þk3 �SUð1Þk2 : (4.19)

Here kn are the number of monomials in the bn of the split
spectral cover, which is equal to the kn in (4.11). Note that
k0 ¼ 0 in agreement with the fact that one has set a6 ¼
b0 ¼ 0. In contrast to the dual gauge group in (4.11) one
thus finds that each factor has been broken by a Uð1Þ. This
is the global analogue of the split spectral cover construc-
tion S½Uð4Þ �Uð1Þ�.

V. CONCLUSIONS

In this article we have analyzed aspects of Abelian
gauge symmetries in global F-theory models. We have
proposed a mechanism to guarantee un-Higgsed Uð1Þ fac-
tors by a special restriction of the form of the Tate model.
The presence of the Uð1Þ factor has been explained from
different perspectives: The Uð1Þ-restricted Tate model
gives rise to localized massless states charged under the
Abelian group which signal the un-Higgsing of the Abelian
symmetry. The Abelian gauge boson can also be detected
directly due an increase in h1;1 of the Calabi-Yau four-fold
after resolution. Finally in models with a IIB description
the Uð1Þ can be traced back to the presence of a brane-
image brane pair. We have been able to match one sector of
the Stückelberg mechanism in type IIB orientifolds with
the appearance of the extended node in the affine Dynkin
diagram in the fibers, a picture which we will describe in
greater detail in an upcoming paper [37].
As a phenomenologically relevant application this

mechanism allows one to implement a global Uð1ÞX sym-
metry in F-theory GUT models that forbids dimension-4
proton decay. Crucially, our analysis goes beyond the split
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spectral cover approach, which is insensitive to the global
question of Uð1Þ symmetries. The price one has to pay for
the presence of Uð1ÞX is a decrease of the Euler character-
istic of the four-fold, which directly enters the D3-tadpole
cancellation condition.

An important open question concerns the precise defi-
nition of the gauge flux. Along the Coulomb phase of the
underlying E8 and, respectively, E7 �Uð1Þ Tate model one
can easily study the Cartan fluxes, which are then trans-
formed into non-Abelian flux data after deformation to the
actual Tate model of interest. We have argued that forUð1Þ
restricted Tate models a D-term naturally appears due to
extra available flux data that involve a four-form written as
the wedge product of two two-forms. The most pressing
remaining question in this context is to identify the four-
form describing the Uð1Þ flux concretely in terms of the
resolved geometry in order to reliably compute its
D3-tadpole charge andD-term. Progress is underway [37].

In the last part of the paper we have worked out the
connection between the spectral cover construction and the
global Tate model of an elliptic four-fold. We have
argued that the E8 structure underlying a generic Tate
model is responsible for the relevance of spectral covers,

independently of a local gauge theory description or a
heterotic dual. This picture has been corroborated by an
analysis of the mirror dual four-folds, both for generic and
for Uð1Þ restricted Tate models. Let us stress that mirror
symmetry is used here as a calculational tool and appears
not to correspond to a physical duality. Clearly, this is in
sharp contrast to heterotic/F-theory duality for which one
expects a map of all physical quantities. It will be of
considerable interest to focus on examples which admit
no heterotic dual and highlight their global properties.
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