Implementation of an animated medication information tool in community pharmacies, with a special focus on patients with limited health literacy

Boudewijn B. Visscher1,*, Marcia Vervloet2, Roland te Paske2, Liset van Dijk2,3, Eibert R. Heerdink1,4 and Jany Rademakers2,5

1Researchgroup Innovations in Pharmaceutical Care, University of Applied Sciences Utrecht, Utrecht, the Netherlands, 2Nivel, Netherlands Institute for Health Services Research, Utrecht, the Netherlands, 3Department of PharmacoTherapy, -Epidemiology, and -Economics (PTEE), Groningen Research Institute of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands, 4Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands and 5CAPHRI, Care and Public Health Research Institute, Department of Family Medicine, Maastricht University, Maastricht, the Netherlands

*Correspondence: Boudewijn B. Visscher, University of Applied Sciences Utrecht, Heidelberglaan 7, 3584 CS Utrecht, the Netherlands. Email: boudewijn.visscher@hu.nl

Received February 3, 2021; Accepted June 10, 2021.

Abstract

Objectives The animated medication information tool ‘Watchyourmeds’ provides information in an accessible manner through animated videos and therefore appears to be especially suitable for people with limited health literacy. This study aimed to assess the implementation of this animated medication information tool in Dutch community pharmacies, with a special focus on patients with limited health literacy.

Methods A cross-sectional survey based on the Reach, Effectiveness, Adoption, Implementation and Maintenance (RE-AIM) framework was sent to approximately 75% of the ±1900 community pharmacies in the Netherlands through email newsletters of pharmacy networks.

Key findings 140 pharmacists (~10%) completed the survey and 125 of them (89%) indicated that they offered the animated medication information tool to their patients. 108 pharmacists indicated that the tool was offered to all patients, not only to patients with limited health literacy. The distribution method was primarily passive (patients were given a leaflet and were not explicitly pointed to or informed about the tool). Two frequently cited motivations for offering the tool were that it complemented other sources of information and that the health insurer provided a financial incentive. The main reasons patients refused to use the tool were that they had no access to or no affinity for the required technology.

Conclusions This study demonstrated that the tool is used in community pharmacies and that it is offered to all patients, regardless of their presumed health literacy level. A more active method of offering the tool may be warranted to better reach patients with limited health literacy.

Keywords: health literacy; medication information; community pharmacies
Introduction

To promote the appropriate and safe use of medication, patients need to be well informed about their medicines. To improve patients’ understanding of the expected benefits and risks, they should be provided with practical instructions as well as information about possible side effects, expected pharmacological action, and consequences of not taking the medication. Patients who are better informed about their treatment risks and benefits, and who understand how to use the medication, are more adherent, which leads to improved quality of life and reductions in drug-related problems, morbidity, mortality, healthcare utilization and healthcare costs.

As medication experts, pharmacists have an important role to inform patients to consult the package information leaflet (PIL) when a medicine is collected from the pharmacy or delivered to them. However, for many patients the information in the PIL is difficult to understand or even unreadable. Besides the PIL, pharmacists offer cognitive pharmaceutical services, which include patient education, pharmacist-led clinical medication review, medication adherence counselling and individual-tailored prescription labels with instructions for medication use.

People with limited health literacy have difficulty understanding information about medication and medical terms. In the Netherlands, 36% of the population have limited health literacy. Health literacy ‘encompasses people’s knowledge, motivation and competences to access, understand, appraise, and apply health information in order to make judgments and take decisions in everyday life concerning healthcare, disease prevention and health promotion to maintain or improve quality of life during the life course’. These patients are at higher risk of misinterpreting instructions for dosage, duration and frequency provided in the PIL as well as other written information or verbal pharmacist counselling. The current cognitive pharmaceutical services may not be sufficiently tailored to the needs of people with limited health literacy.

Previous needs assessments regarding medication information for people with limited health literacy indicate that they need understandable, reliable and practical information focused on a single main message, which reduces cognitive load, resulting in better recall of information. Presenting information to people with limited health literacy in the form of narrated animations, illustrations or spoken text also helps promote understanding and recall of information.

In the Netherlands, an animated medication information tool called ‘Watchyourmeds’ is available. This online library contains more than 8000 animated videos which use lay language to explain the most important information from the PILs for more than 95% of all medicines dispensed in the Netherlands. Due to the method of presentation, this tool appears to be especially suitable for people with limited health literacy. The videos are personalized by gender, age and medication. The tool is available in different languages (Dutch, English, Turkish and Arabic) and can be offered by a pharmacist.

Since January 2019, the largest health insurer in the Netherlands recommends the use of the animated medication information tool as part of their quality improvement policy. Community pharmacies receive a financial incentive to provide this tool to their patients, with the aim of promoting proper use of medicines. Pharmacists were informed by ‘Watchyourmeds’ about the various ways the tool could be offered to patients. It could be offered with an informational flyer, through a general web link to the tool or a medication-specific web link to the tool sent by email or text message, by allowing patients to view the tool in the pharmacy on a PC or tablet, or the patient can be referred to their pharmacy’s patient portal in which the tool can be viewed. Some methods of offering the tool are more passive and provide general written information without explicitly pointing to the tool, while other methods are more active and tailored to the patient with explicit information about and direction to the tool. It is the pharmacists who decide how the tool is offered, to fit in with their own working practices. The aim of this study was to assess the implementation of the animated medication information tool in Dutch community pharmacies, with a special focus on patients with limited health literacy. The following research questions were explored:

1. To what extent and in what way do pharmacists offer the animated medication information tool to their patients and specifically to patients with limited health literacy?
2. Why do pharmacists offer the animated medication information tool to their patients?
3. According to pharmacists, what are the reasons patients accept or refuse to use the animated medication information tool?

Method

Study design and setting

A cross-sectional study was performed using an online survey of community pharmacists. The survey was conducted from September 2019 to February 2020. Pharmacists were invited to complete the survey through email newsletters from three professional networks: the Utrecht Pharmacy Practice network for Education and Research (UPPER), the network of the foundation ‘Watchyourmeds’ and the pharmacy network of Groningen University. The invitation to the UPPPER network was repeated once in the newsletter. Combined, these networks reach approximately 75% of the ±1900 pharmacies in the Netherlands. In the Netherlands, completing a survey does not fall under the scope of the Dutch Medical Research Involving Human Subjects Act, therefore, a medical ethics review of the study was not required. All respondents participated on a voluntary basis.

Survey

The survey (Supplementary Appendix S1) was developed by researchers of the Netherlands Institute for Health Services Research (Nivel). The questions were checked for comprehensibility, feasibility and completeness (options that are correct in pharmacy practice and that no answers were missing) by a pharmacist and an independent researcher. Only minor textual changes were made. The survey consisted of five multiple choice questions regarding the characteristics of the pharmacies and 16 multiple choice questions about the implementation of the tool derived from the RE-AIM framework. The RE-AIM framework comprises five dimensions for evaluating the public health impact of interventions (Table 1). Effectiveness was not assessed in this study because the survey was distributed only to pharmacists and focused on the implementation of an intervention, whereas the effectiveness of an intervention must be measured in patients. In the results section, we linked our results to the dimensions of the RE-AIM framework by placing the corresponding dimension in brackets.
Analysis
Only completed surveys, without missing variables, were included in the analysis. Data was held in an SPSS database (SPSS Statistics for Windows, version 25.0 (SPSS Inc)).

Results
Participant characteristics
In total, 172 pharmacists started the online survey and 140 (81%) of them completed it. 45% of the pharmacists estimated that their patient population was predominantly older and 31% of the pharmacists estimates that their patient population had a low education level (Table 2). About one-third (35%) of the pharmacists estimated that a relatively high number of their patients had a limited health literacy level; 18% reported having a patient population with predominantly adequate health literacy.

To what extent and in what way do pharmacists offer the animated medication information tool to their patients and specifically to patients with limited health literacy? Of the 140 pharmacists who completed the survey, 89% indicated that they currently offered the animated medication information tool to their patients (adoption), 7% indicated that they had offered it but stopped, and 4% of the pharmacists never offered it to their patients. 42% of the pharmacists indicated that the tool was included in the usual routines of the pharmacy (maintenance). Of the 125 pharmacists currently offering the tool, 86% of them offered the tool to all patients and 14% offered it to specific groups based on presumed health literacy level, education level, type of medicine or age of the patient (reach/implemention). 61% of the pharmacists indicated that they actively offered the tool to their patients by explicitly recommending it, and 39% of the pharmacists indicated that they passively offered it (reach). Table 3 shows the various ways the responding pharmacists reported offering the medication tool. This was mainly passively using a flyer (65%) or with a general web link to the tool (33%). The other more active methods of distribution were less used, such as the medication-specific web link (26%) or referral to the pharmacy patient portal (21%), and only 2% of the pharmacies offered access to the tool on a PC or tablet in the pharmacy. Table 3 illustrates the distribution of the animated medication information tool by the pharmacists to patient populations with different levels of health literacy. Pharmacists whose patients were predominantly of limited health literacy level distributed the tool relatively frequently, using a medication-specific web link, compared to the other two patient populations (Table 3). In the other four distribution methods, there were minor differences between the three patient populations.

Why do pharmacists offer the animated medication information tool to their patients?
Figure 1 provides an overview of motivating factors for pharmacists (n = 125) to offer the animated medication information tool (implementation/adoption). Two factors frequently reported were that it complements other sources of information and that the health insurer offers a financial incentive; 73% of all pharmacists gave a score of 6 or higher in the question whether they would recommend...
using the tool to other pharmacies. The pharmacists generally considered the tool to be of added value (81%) and held the opinion that it should be used by all patients (67%) and that it fitted well in the digitization of healthcare (93%). However, in most pharmacists’ experience, the tool did not save their time for other activity (91%), and it did not reduce the number of questions at the first refill (80%).

Perceived reasons for patient acceptance or refusal of the tool
More than half of the pharmacists (n = 125) reported that patients use it because they find it easy to use (60%) and are interested in the tool (52%) (Figure 2). Reasons for accepting or refusing the tool were that patients did not have access to the required technology (58%)
Discussion

Key findings
The majority of the pharmacists surveyed offered the tool to all of their patients, including patients with limited health literacy. The tool was mainly offered because of the financial incentive provided by the health insurer and because the tool complements other existing medication information. Most patients were interested in using the tool and found it easy to use; according to the pharmacists surveyed, the main reasons patients refused to use the tool were a lack of affinity for or lack of access to the required technology.

Strengths and limitations
This study has several strengths and limitations. One strength is that the survey was widely distributed among approximately three-quarters of all Dutch community pharmacies. Furthermore, this study assessed the implementation of an intervention at the pharmacy level. Although more and more interventions are available for pharmacies, there is still little research assessing the implementation of these interventions. The questions used to assess the implementation were based on the RE-AIM framework. However, due to the distribution of the survey to pharmacies and not patients, the effectiveness was not assessed. Future research should also assess the effectiveness of the intervention in patients to complete all the dimensions of the RE-AIM framework. Another limitation of this study is that pharmacists estimated the health literacy level of their patients instead of measuring it with a validated measure, while research has shown that pharmacists find it difficult to estimate the level of health literacy. On the other hand, this study showed that pharmacists estimations of the health literacy level of their population did not lead to a selection of the patient population to which the tool was offered, which is in line with the universal precautionary approach. Another limitation of this study is that it is unclear to what extent the respondents who volunteered to participate in this study are representative of pharmacists in the Netherlands, limiting the extent to which the results can be generalized to all Dutch pharmacies. Furthermore, the pharmacists reported the reasons they believed patients chose whether or not to use the animated medication information tool. Patient experiences with the tool are currently being investigated, which could be used to improve the fit of the tool and the method used to offer the tool. This could contribute to the sustainable use of a tool that is beneficial for understanding, remembering and interpreting medication information for people with adequate and limited health literacy.

Comparison to existing knowledge
Regarding the reach and adoption dimensions of the RE-AIM framework, pharmacists reported offering the tool to all patients, not exclusively to those with limited health literacy. Previous research has indicated that pharmacists find it difficult to estimate the level of health literacy and assessing health literacy levels takes time, partly because patients are not likely to expose their limited health literacy skills because they feel ashamed. The universal precautionary approach advocates structuring the delivery of care as if every patient may have limited health literacy, thus with information that is easy to process and understand. This is beneficial for understanding, remembering and interpreting medication information for both people with adequate and people with limited health literacy.

While the majority of the pharmacists offered the animated medication information tool to all patients, it is possible that patients with limited health literacy more often refused the tool. Previous research showed that patients with limited health literacy have more difficulty using internet and websites and use digital tools less often than patients with adequate health literacy. Patients with limited health literacy might not be reached through the current methods pharmacists use to offer the tool, while they may benefit most from the tool.

To reach patients with limited health literacy, an active method of recommending the tool to all patients with tailored information may be more effective. Although patients with limited health literacy use digital tools less than patients with adequate health literacy, they can effectively use digital tools if they are properly guided. Pharmacists often play a pivotal role in this active provision of tailored information. For example, a pharmacist can actively offer the tool by showing it to patients or providing a medication-specific web link. These types of access were less reported in the pharmacies, possibly because not all pharmacies had all distribution methods available at the time of the study. For example, they may not have had a tablet or PC available yet or the tool may not yet have been integrated into the patient portal. Further research is needed to explore how the intervention can be best offered to patients with limited health literacy.

The motivations pharmacists reported for offering the tool can be divided into two categories. First, the pharmacists considered the animated medication information tool to be of value to their patients because it complements the existing information provided when medication is dispensed. Second, the financial incentive from the health insurer. This finding aligns with the results of previous research which indicates that financial incentives promote more frequent offering of cognitive pharmaceutical services. It is not clear from this study which reason contributed most to implementation of the tool; future research could further investigate the primary motivating factor to maintain sustainable use of the tool.

Conclusion
This study demonstrates that the animated medication information tool is used in pharmacies and that it is offered to all patients, regardless of their presumed health literacy level. The current method of distribution is mainly passive. A more active method of offering the tool may be warranted to better reach patients with limited health literacy.

Supplementary Material
Supplementary data are available at International journal of Pharmacy Practice online.

Author Contributions
Boudewijn B. Visscher: conceptualization, methodology, formal analysis, investigation, data curation, writing—original draft, visualization. Marcia Vervloet: conceptualization, methodology, writing—review & editing, supervision, funding acquisition. Roland te Paske: conceptualization, methodology, writing—review & editing,
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Funding
This work was supported by a grant of Stichting Kijksluiter.

Conflict of Interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.

Data Availability Statement
The datasets generated during and/or analysed during the study are available from the corresponding author on reasonable request.

References
30. Meppelink CS, Smit EG, Diviani N et al. Health literacy and online health information processing: unraveling the underlying mechanisms. *J Health