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Simple Summary: Evidence of hearing impairment was identified in a female harbour porpoise
(Phocoena phocoena) on the basis of inner ear analysis. The animal live stranded on the Dutch coast at
Domburg in 2016 and died a few hours later. Ultrastructural examination of the inner ear revealed
evidence of sensory cell loss, which is compatible with noise exposure. In addition, histopathology
also revealed multifocal necrotising protozoal encephalitis. A diagnosis of toxoplasmosis was
confirmed by positive staining of tissue with anti-Toxoplasma gondii antibodies; however, T. gondii
tachyzoites were not observed histologically in any of the examined tissues. This is the first case
of presumptive noise-induced hearing loss and demonstration of T. gondii cysts in the brain of
a free-ranging harbour porpoise from the North Sea.

Abstract: Evidence of hearing impairment was identified in a harbour porpoise (Phocoena phocoena)
on the basis of scanning electron microscopy. In addition, based on histopathology and immunohis-
tochemistry, there were signs of unrelated cerebral toxoplasmosis. The six-year old individual live
stranded on the Dutch coast at Domburg in 2016 and died a few hours later. The most significant
gross lesion was multifocal necrosis and haemorrhage of the cerebrum. Histopathology of the brain
revealed extensive necrosis and haemorrhage in the cerebrum with multifocal accumulations of
degenerated neutrophils, lymphocytes and macrophages, and perivascular lymphocytic cuffing.
The diagnosis of cerebral toxoplasmosis was confirmed by positive staining of protozoa with anti-
Toxoplasma gondii antibodies. Tachyzoites were not observed histologically in any of the examined
tissues. Ultrastructural evaluation of the inner ear revealed evidence of scattered loss of outer hair
cells in a 290 µm long segment of the apical turn of the cochlea, and in a focal region of ~ 1.5 mm from
the apex of the cochlea, which was compatible with noise-induced hearing loss. This is the first case
of concurrent presumptive noise-induced hearing loss and toxoplasmosis in a free-ranging harbour
porpoise from the North Sea.

Keywords: Toxoplasma gondii; North Sea; live stranding; post-mortem examination; encephalitis;
noise-induced hearing loss; inner ear; hair cell

1. Introduction

The harbour porpoise (Phocoena phocoena Linnaeus 1758) is the most abundant cetacean
species in the North-East Atlantic Ocean and adjacent North Sea, both in terms of sight-
ings [1] and of strandings [2]. The harbour porpoise is protected under the EU Habitats
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Directive, and Marine Strategy Framework Directive (MSFD), Natura 2000 and the Agree-
ment on the Conservation of Small Cetaceans of the Baltic, North East Atlantic, Irish,
and North Seas (ASCOBANS), which were established to ensure the conservation of small
cetacean populations in these waters [3,4]. Due to the statutory requirements of these
regional and international agreements, systems for the reporting, documenting and retriev-
ing of stranded and bycaught cetaceans have been in place in many countries bordering
the North Sea [2]. Additionally, in most north-western European countries, including
the Netherlands, post-mortem programs were established to study a range of threats
affecting stranded individuals and population status.

Harbour porpoises confront several anthropogenic and natural threats, including
underwater noise pollution. There is an increasing concern on how man-made under-
water noise exposure affects cetaceans and their hearing capabilities [5,6]. As hearing is
fundamental to cetaceans, changes to their auditory capabilities may impact their ability
to carry out vital activities. Previous studies have shown that the cochlea of the harbour
porpoise contains two types of auditory sensory cells, the inner hair cells (IHCs) and
the outer hair cells (OHCs) [7–9]. As in terrestrial mammals, the hair cells are arranged
in one single row of IHCs and three rows of OHCs within the organ of Corti, or hearing
organ. The disposition of sensory and supporting cells in the apex of the cochlea (the tip of
the spiral, where the lowest frequencies are encoded) is variable. However, a recent study
has described the arrangement of sensory cells in the apex of the harbour porpoise [10],
providing baseline information on the common pattern in these species.

Ultrastructural alterations can be detected in the sensory cells as a result of high intensity
and/or long duration sound exposure [11]. These alterations include hair cell apoptosis.
When a mammalian cochlear hair cell dies, the contiguous supporting cells actively participate
in hair-cell elimination, resulting in a distinct scar [12]. The presence of scars within hair cell
rows can be distinguished from artefacts that may derive from autolysis and is an important
criterion to assess for prior noise-induced cochlear lesions [8,13].

Frequent causes of death of harbour porpoises in the Netherlands include fisheries
bycatch [14], grey seal predation [15] and a range of infectious diseases, including viral,
mycotic and bacterial pathogens (e.g., [16–19]). Recently, concerns have been raised about
contamination of marine aquatic life with the zoonotic, protozoal parasite Toxoplasma gondii,
which is capable of infecting a variety of terrestrial and marine warm-blooded animals,
including harbour porpoises [20–22]. The definitive hosts of T. gondii are felids. Through
a sexual phase in their intestine, T. gondii oocysts can be introduced into the environment
through contaminated faeces [23]. Oocysts can subsequently reach the sea through coastal
run-off, with multiple studies demonstrating the presence of T. gondii in marine mammal
species (reviewed in Dubey and colleagues [22]). To date, only serological evidence of
T. gondii exposure has been reported for free-ranging harbour porpoises from the North-East
Atlantic and adjacent waters [21,24,25].

Understanding of natural and anthropogenic causes of mortality in stranded cetaceans
is vital for evaluating marine mammal and ecosystem health and species conservation and
sustainability [26]. Post-mortem examinations of stranded small cetaceans and the diag-
nosis of (emerging) infectious diseases, such as toxoplasmosis, as well as anthropogenic
threats, such as noise-induced hearing loss, contribute to quantifying the health status
and conservation of harbour porpoises inhabiting the southern North Sea. Herein we de-
scribe an extensive investigation of a live stranded harbour porpoise found on the coast of
the Netherlands, including pathological investigations, molecular screening for pathogens,
life history data, toxicology and inner ear analyses, to determine a cause of death and
ante-mortem health status of the animal.

2. Materials and Methods
2.1. Stranding and Necropsy

An adult live stranded female harbour porpoise (UT1535) was recovered on the beach
of the town of Domburg on the Dutch North Sea coast in July 2016 and died en route to
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a regional rehabilitation centre. In the Netherlands, necropsies of marine mammals are
conducted at the division of Pathology, Department of Biomolecular Health Sciences of
the Faculty of Veterinary Medicine of Utrecht University (UU) following an internationally
standardised protocol [27]. The harbour porpoise was transported to UU directly after
death and the necropsy started 3.5 h post mortem. The animal was photographed and
weighed, and its length, girth and blubber thickness immediately anteriorly to the dorsal
fin were measured and recorded [27].

All organs were grossly examined and, samples were systemically collected for
histopathology, including skin, skeletal muscle, lung, heart, thymus, thyroid, stomachs,
pancreas, spleen, liver, adrenals, kidney, intestine, urinary bladder, reproductive organs,
mammary gland, eyes, brain and spinal cord, and various lymph nodes. This suite of
tissues and representative samples of gross lesions were preserved in 10% neutral buffered
formalin, processed by conventional histologic techniques, embedded in paraffin, sectioned
at 4 µm and stained with haematoxylin and eosin (HE). Additional recuts and special stains
of the cerebrum tissue, included periodic acid–Schiff (PAS) stain, to assess the presence
of fungal organisms, and Ziehl–Neelsen (ZN) stain, to assess the presence of acid-fast
mycobacteria. Sections of the cerebral lesions were stained immunohistochemically with
polyclonal rabbit antibody against T. gondii (LSBio, LS C312239, 1:200) following a standard
avidin–biotin complex protocol [28]. Control sections were processed without primary
antibodies. A frozen blood sample was examined by an in-house immunoblot method
using T. gondii surface antigen p30 (SAG1) as described previously [29] with the modifica-
tion that, instead of the peroxidase-conjugated anti-mouse IgG, a peroxidase-conjugated
Protein A/G (Pierce™ Recombinant Protein A/G, Peroxidase Conjugated; ThermoFisher
Scientific) was used.

2.2. Inner Ear Analysis

The inner ears of the harbour porpoise were collected and fixed within 4 h post mortem
following earlier published methods [30]. The ears were shipped to the University of British
Columbia (UBC), Canada, for analysis (with CITES export permit number 16NL234380/12).
The right inner ear was processed for immunofluorescence (IF) and the left inner ear for
scanning electron microscopy (SEM), following previously optimised protocols (see Morell
and colleagues [13] for SEM and Morell and colleagues [9,31] for IF).

2.2.1. Right Inner Ear: Immunofluorescence (IF)

The right periotic bone was decalcified with 14% EDTA (ethylenediaminetetraacetic
acid, Sigma-Aldrich, St. Luis, MO, USA) tetrasodium salt (pH 7.4) for 43 days at room
temperature. Then, the bone was removed, and the cochlea dissected using the whole-
mount technique. The OHCs of the organ of Corti were labelled with anti-prestin antibody
(Santa Cruz Biotechnology, Inc., Dallas, TX, USA, SC22692, 1:200), the IHCs and OHCs
with anti-myosin VI antibody (Proteus Biosciences Inc., Waltham, MA, USA, 256791, 1:500),
and type I afferent innervation was labelled with anti-neurofilament 200 kD antibody
(Sigma-Aldrich, St. Luis, MO, USA, N0142, 1:400). Nuclei were counterstained with DAPI
(4′, 6-diamidino-2′-phenylindole, dihydrochloride; Thermo Scientific, Rockford, lL, USA,
62247, 1:1000) and with the secondary antibodies (Alexa Fluor® 488 donkey anti-goat IgG,
Alexa Fluor® 568 donkey anti-rabbit IgG, Alexa Fluor® 647 donkey anti-mouse IgG; Molec-
ular Probes, Inc. Eugene, OR, USA A11055, A10042 and A31571, respectively; 1:400). Three
small sub-segments were processed as controls: (1) control for the specificity of binding
by the primary antibody (the sub-segment was incubated with normal IgG at the same
concentration at which the primary antibody was used and then incubated with the same
concentrations of the secondary antibody and DAPI as used on experimental segments);
(2) control for non-specific binding of the secondary antibodies (the sub-segment was incu-
bated without the primary antibodies, but with the same concentrations of the secondary
antibody and DAPI as used on experimental segments) and (3) control for autofluorescence
(no primary and no secondary antibodies were used).
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The right inner ear was evaluated using an Olympus FV1000 confocal microscope
at the UBC Bioimaging Facility. Micrographs of the three controls were taken using
the same settings as their respective treatments (i.e., same magnification and same intensity
of the four lasers). Brightness and contrast were enhanced, using identical values for
treatments and the respective controls.

2.2.2. Left Inner Ear: Scanning Electron Microscopy (SEM)

The left periotic bone was decalcified with 14% EDTA (see above) for 37 days. The cochlea
was dissected, dehydrated with increasing concentrations of ethanol, critical-point-dried
with CO2 and coated with platinum/palladium. The left cochlea was observed using
an S-4700 SEM at the UBC Bioimaging Facility.

2.3. Life History

The ovaries were fixed and assessed for corpora scars (following Murphy and col-
leagues [32,33]) with results presented by van den Heuvel-Greve and colleagues [34].
In short, ovaries were initially examined macroscopically, then serially sectioned at 0.5–2 mm
slices and examined under a binocular microscope. Total numbers of ovarian corpora scars
were counted, representing the number of ovulations. During the necropsy, pregnancy and
lactation were confirmed by detection of a foetus and milk secretions from the mammary
glands. Age was determined by counting growth layer groups in the dentine of tooth
sections, using a binocular microscope following earlier published methods [35].

2.4. Molecular Studies

Targeted pathogen screening was conducted by PCR for Brucella spp., herpesvirus,
morbillivirus, Neospora caninum and T. gondii. For Brucella spp., DNA was extracted from
fresh lung, pulmonary lymph node and reproductive tract lymph node tissue, and for
T. gondii and N. caninum from frozen as well as paraffin-embedded and fixed lung and
cerebrum tissue using the DNeasy Blood and Tissue Kit (QIAGEN, Hilden, Germany)
and QIAamp DNA FFPE Tissue Kit at Laboklin, according to the manufacturer’s protocol,
respectively. An ADIAVET™ TOXO FAST TIME Kit von ADIAGENE Bio-X Diagnostics,
according to manufacturer’s instructions, was used for the detection of T. gondii, while an in-
house-developed PCR modified after Pereira and colleagues [36] was used for the detection
of N. caninum. Isolated DNA was screened by real-time PCR targeting the IS711 sequences
of Brucella spp. following Maio and colleagues [16] and by qPCR following Elmore and
colleagues [37]. For herpesvirus detection, DNA was extracted from frozen lung and
cerebrum tissue using the DNeasy Blood (QIAGEN) according to the manufacturer’s
protocol. A nested pan-herpes PCR targeting the polymerase gene was performed as
described previously [38]. For morbillivirus detection, RNA was extracted from frozen
lung and cerebrum using the RNeasy mini-Kit (QIAGEN) according to the manufacturer’s
protocol. A morbilli PCR targeting conserved sequences in the phosphoprotein gene was
performed as described previously [39].

2.5. Toxicology

Blubber and milk samples were analysed for polychlorinated biphenyls (PCBs), as part
of a separate study [34]. Air-exposed parts of the blubber sample were removed and
the remaining sample was homogenised. Total extractable lipid levels were determined
in milk and blubber and samples analysed to quantify PCBs using accelerated solvent
extraction and gas chromatography coupled to a mass spectrometry (GC-MS) method.
∑17PCB is given, based on the most relevant PCB congeners (congener # 47, 49, 52, 101,
105, 118, 128, 138, 149, 151, 153, 156, 170, 180, 187, 194 and 202). For full details, see van den
Heuvel-Greve and colleagues [34].
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2.6. Image Processing

The brightness and contrast of images were adjusted in Adobe (San Jose, CA, USA)
Photoshop CC 2018.

3. Results
3.1. Pathological Findings

At necropsy, the adult female measured 146 cm total body length and weighed 46 kg.
Based on the absence of visceral fat, muscle atrophy and blubber thicknesses of 6–8 mm she
was in poor nutritional condition. Macroscopic lesions included multiple foci of necrosis
in the cerebrum (Figure 1a). Additionally, the animal had verminous bronchopneumonia
with a moderate number of nematodes (Pseudaliidae) in both the bronchi and in the lumen
of multiple pulmonary vessels. There were large numbers of nematodes morphologically
consistent with Anisakis simplex present in the lumen of the forestomach, with multifocal
mucosal ulceration and numerous invading nematodes (Figure 2). A moderate amount
of opaque white fluid was in the forestomach with a distinct acetone-smell, suggestive
of ketosis. There was no ingesta observed within the gastrointestinal tract. Nematodes,
morphologically consistent with Stenurus minor, were bilaterally present in large num-
bers in cranial sinuses (peribullar and pterygoid) and in the tympanic cavities. A small
number of trematodes, morphologically consistent with Campula oblonga, were observed
in the hepatobiliary arcade.

Figure 1. (a) Gross dissection of the cerebrum partially fixed in 10% neutral buffered formalin showing the extent and
location of the lesions macroscopically. (b,c) Cerebrum (HE ×10 in (b) and HE ×20 in (c)) extensive mixed inflammatory
reaction of degenerated neutrophils, macrophages and lymphocytes. (d) Immunopositivity for Toxoplasma gondii (×60).
The background of the image in panel (a) was removed.
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Figure 2. (a) Nematode infestation of the forestomach, with (b) focal nodular hyperkeratosis and hyperplasia with central
ulceration (crateriform) of the mucosa (asterisk), which is consistently observed in gastric mucosa of the first stomach
compartment in animals infected with these nematodes.

Histopathology of the cerebrum revealed extensive necrosis with haemorrhage and
degenerated neutrophils, lymphocytes and macrophages (Figure 1b–d). There was lym-
phocytic perivascular cuffing in the cerebral white and grey matter and in the meninges.
Additional recuts and special stains of the cerebrum for fungi and acid-fast bacilli were
negative. In the cerebellum, there were scattered foci of acute haemorrhage. In mul-
tiple regions of the lung, there was diffuse, moderate to severe interstitial pneumonia,
and alveolar spaces were filled with eosinophils, lymphocytes and foamy macrophages.
There was a mild multifocal granulomatous and eosinophilic cholangiohepatitis with
multifocal hepatocellular hemosiderosis. The forestomach featured multifocal, severe
necroerosive and ulcerative nonsuppurative gastritis with numerous foamy macrophages
and occasionally, cross-sections of adult nematodes. There was white pulp hyperplasia
and hemosiderin-laden macrophages throughout the splenic stroma with multisystemic
congestion, including the eyes, thyroid, several lymph nodes, spleen, adrenal and kidney.
No lesions were detected in any of the other examined tissues.

3.2. Immunohistochemistry and Molecular Studies

The presence of Toxoplasma gondii cysts in the cerebrum was confirmed by positive
staining with anti-T. gondii antibodies (Figure 1) and no tachyzoites were observed his-
tologically in any of the organs. All additional ancillary diagnostic studies to screen for
recognised pathogens were negative. No nonspecific binding was noted in control sections.

3.3. Inner Ear Analyses
3.3.1. Right Inner Ear: IF

All three control treatments for nonspecific immunofluorescence were negative. Anti-
neurofilament 200 kD antibody had penetration problems (Figure 3a,b) since the Rosen-
thal’s canal is very thick in toothed whales. The Rosenthal’s canal is the region where
the spiral ganglion cells (i.e., afferent nerve cell bodies) are located. However, since spiral
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ganglion cells are very autofluorescent, they were observed throughout the cochlear spiral
and there was no visible neuronal degeneration.

Figure 3. Immunofluorescence micrographs of the right cochlea from individual UT1535, labelled
with anti-prestin (green), anti-myosin VI (red) and anti-neurofilament 200 kD (yellow) antibodies
and DAPI (blue). (a–d) Apical turn; note the missing outer hair cells (OHCs) in (c) and a few OHCs
missing from the third row in (d). (e) Organ of Corti of the lower apical turn. All these micrographs
are z-projections from confocal images, whose slice thicknesses were 75 µm (a), 10 µm (b) and 1.5 µm
(c–e). IHC, inner hair cells; O. Corti, organ of Corti; SGCs, spiral ganglion cells.

Hair cells of the organ of Corti were present through the spiral except in the most
apical portion. There were some missing OHCs in the first 200 µm from the apex, possibly
due to normal individual apex variability. There was no information in the adjoining
600 µm segment due to a dissection or processing artefact. From 0.8 to 1 mm from the apex,
the next 200 µm, had missing OHCs from the three rows (Figure 3c). Then, there was
a 500 µm region with scattered OHCs loss (Figure 3d), and thereafter, three intact rows of
OHCs were present consistently all along the spiral (Figure 3e).
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3.3.2. Left Inner Ear: SEM

Examination by a dissecting microscope revealed focal to segmental congestion in-
volving the vein towards the cochlear aqueduct (black arrow in Figure 4a).

Figure 4. (a) Subgross image of the left cochlea from individual UT 1535. The black arrow highlights focal to segmental
congestion involving the vein at the cochlear aqueduct. (b–h) Scanning electron microscope images. (b–e) Evidence of
outer hair cell (OHC) death at the upper apical turn, highlighted with orange arrows. The dashed orange arrows indicate
potential evidence of lesions. Panel (c) is located ~525 µm from the beginning of the apex. The micrograph in panel (b) is
taken 15 µm after that of panel (c), towards the base. Panels (d) and (e) are located ~1.5 mm from the beginning of the apex.
Organ of Corti with three rows of OHCs and one row of inner hair cells (IHCs) of the upper apical turn (f), upper (h) and
lower (g) basal turn.
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Ultrastructural evaluation with SEM revealed that the organ of Corti was absent
in the first 525 µm segment from the apex and moderately well preserved through the rest
of the spiral turn. In the first region where the organ of Corti cells were present, there
were scars as a result of OHC death in a 290 µm segment (Figure 4b,c) and in a focal area
approximately 1.5 mm from the apex (Figure 4d,e). Orange arrows in Figure 4 highlight
the position of the scars and dashed arrows mark the potential remains of OHCs or evidence
of scars.

Three rows of OHCs and one row of IHCs could be identified in the rest of the cochlear
spiral (Figure 4f–h). Focal mild haemorrhage was observed in the vestibular scala of
the lower basal turn.

3.4. Life History

Upon necropsy, the left uterine horn was distended and there was endometrial oedema
and congestion with a prominent luteal body on the left ovary. These findings were con-
sistent with recent gestation. In addition, the mammary glands were secretory with thick,
white contents. No calf had been observed during the live stranding nor in the surround-
ings of the stranding location. Twelve corpora scars, including one corpus luteum, were
counted in the left ovary and none were observed in the right. Tooth examination revealed
a 6-year-old female (results taken from van den Heuvel-Greve and colleagues [34]).

3.5. Toxicology

The ∑17PCB in blubber was 5.1 mg/kg lipid weight (lw) and 16.8 mg/kg lw in milk,
indicative of active offloading through lactation (for details, see van den Heuvel-Greve and
colleagues [34]).

4. Discussion

Inner ear analysis revealed evidence of OHC death in the apical turn of the cochlea,
which in mammals results in permanent hearing loss [40–42]. Specifically, evaluation
of the left cochlea by SEM showed scattered OHC loss from 525–815 µm and focally at
1.5 mm from the apex. The lack of OHCs (especially OHCs from the third row) can be
considered part of the normal apical variability in harbour porpoise and other animals [10].
However, because the ratio of hair cells and supporting Deiters cells is 1:1 [10], there was
strong evidence of scars as a result of OHC death by apoptosis (orange arrows in Figure 4)
in this case, rather than artefact or normal anatomic variation. The focal mild haemor-
rhage observed in the vestibular scala of the lower basal turn was possibly an artefactual
transfer of erythrocytes from around the vein towards the cochlear aqueduct that may
have occurred during the dissection or critical point drying process. The lack of positive
staining in OHCs from the right apical turn (Figure 3b,c) could also have been due to hair
cell autolysis, and not necessarily a consequence of OHC death. The selection of antibodies
used for this sample was optimal to discriminate between newly formed lesions and old
ones [9]. In the case of recent noise-induced hearing loss, prestin clumps in the cytoplasm
of the supporting cells occurs in guinea pigs up to 9–10 days post-exposure [43]. If a similar
rate of scar formation occurs in harbour porpoises, the missing hair cells from the right ear
of this animal were not associated with recent acoustic injury.

Permanent hearing loss can be caused by several factors, including exposure to
noise, ototoxic drugs, or PCBs, age, congenital or immunological disorders, and other
infections [44–49]. Congenital toxoplasmosis can cause sensorineural hearing loss in hu-
mans [50], but little is known on the specific characteristics of the type and level of hearing
loss, or of other disorders possibly involved in the auditory processing [51]. Histopatholog-
ical and immunohistochemical studies in infants with congenital toxoplasmosis showed
a decreased neuron population and in one individual a significant loss of OHCs, especially
severe at the basal turn [52]. However, in this case, it is highly unlikely that the toxo-
plasmosis and the lesions found in the inner ear in our study are related. There were no
apparent degenerate spiral ganglion neurons, nor OHC loss in the base of the cochlea.
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In humans and terrestrial mammals, depending on the aetiology, pathogenic impacts of
sensorineural hearing loss may either affect the entire hearing range uniformly, or result
in hearing loss predominantly in the high frequencies [53–56] encoded at the cochlear base.
To the best of our knowledge, at present there are no recognised pathogens exclusively
and focally affecting the apex of the cochlea. Therefore, based on the location and pattern
of OHC loss in this case, an infectious aetiology is unlikely. This individual was a rela-
tively young adult (six years old) and it is unlikely that the ultrastructural results were
related to presbycusis, since age-related hearing loss primarily starts to affect the high
frequencies [44]. Moreover, auditory evoked potential studies in cetacean species have
demonstrated that aged individuals typically present high-frequency hearing loss [57,58].
In addition, experiments in terrestrial mammals show that hair cell loss and spiral gan-
glion cell degeneration typically affect initially and more severely the base of the cochlea
in cases of barotrauma, or exposure to ototoxic drugs (e.g., gentamicin or amikacin) [59,60].
No medication was administrated to this animal after stranding. There were no apparent
lesions in the sensorineural epithelium at the base of the cochlea that were consistent with
presbycusis, barotrauma or ototoxic drug exposure. Studies in rats showed that devel-
opmental exposure to PCBs can result in severe hearing loss with corresponding mild to
moderate loss of OHCs in the upper-middle and apical turns [47–49]. This animal had
a total concentration of 5.1 mg/kg ∑PCBs (lw) in her blubber and 16.8 mg/kg (lw) in her
milk [34]. Levels in blubber were below the threshold considered to cause physiological
effects [61,62]. This makes it unlikely that overexposure to PCBs was a plausible cause for
the OHC death, although more research is needed on PCB levels in different types of tissues
and fluids and their effects on hearing. Other, rarely reported causes in humans, such as
developmental defects or immunological disorders, have not yet been described in marine
mammals and were deemed unlikely for their extremely low prevalence (less than 1% of
all cases of hearing impairment in humans [63]).

The type of lesions seen in the cochlea in our study are compatible with noise-induced
hearing loss. The location of noise-induced lesions within the cochlea depends on the fre-
quency of the source. Studies on noise-induced hearing loss in terrestrial and marine
mammals exposed to high intensity noise levels showed that the frequency of maximum
hearing loss was a half octave, up to one octave, above the exposing tone [64–67]. Future
research on predicting the cochlear frequency maps (i.e., frequency distribution along
the cochlear spiral) based on morphological features on harbour porpoises is needed.
These maps are important for determining the frequency range that is impaired if lesions
are found. In addition, in cases of noise-induced hearing loss, frequency maps can ulti-
mately provide key information on the frequency characteristics of the causal sources of
the cochlear lesions.

This animal live stranded on the Dutch coast in 2016 and the most significant gross
findings were multifocal necrosis and haemorrhage of the cerebrum and generalised
emaciation. Positive staining of cerebrum tissue with anti-T. gondii antibodies confirmed
protozoal encephalitis due to T. gondii infection while herpesvirus, morbillivirus and
N. caninum were negative.

Toxoplasma gondii is generally considered a sporadic infection of aquatic and marine
mammals [68,69]. Exposure to T. gondii is likely from terrestrial run-off and infection may be
predisposed or possibly exacerbated by immunosuppressive, or debilitating factors, such
as chemical contamination by PCBs, pregnancy, malnutrition, morbillivirus infection and
other processes [21,70–74]. Harbour porpoises have a coastal distribution and, in this case,
parasite exposure was most likely via terrestrially sourced faecal oocysts with possible
bioaccumulation in prey species. There was another porpoise diagnosed with a fatal
disseminated T. gondii infection. This animal was born and held in a semi-open outdoor
facility [20] and faecal contamination of rainwater was deemed the route of infection.
For pelagic cetacean species, such as striped dolphin (Stenella coeruleoalba), reports of
toxoplasmosis are more common [69] and an “open sea T. gondii life cycle” with more
virulent genotypes has been suggested, but not yet confirmed [75,76]. These cases highlight
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the need for more comparative studies on protozoan genotyping and host factors involved
in recruitment and infection [75,77].

Severe and multiple-organ metazoan parasitic infections were also detected in this por-
poise. The degree of emaciation and parasitic burden in this animal indicates generalised
debilitation and impaired health status. However, in harbour porpoises from the southern
North Sea, severity of parasite infections increased with total length of the host and all
examined adults presented multisystemic parasitism [78]. The lungs typically had high
parasitic loads, with associated bronchopneumonia and vasculitis [79–82]. A degree of
immunosuppression during pregnancy is also recognised in terrestrial mammals and if this
phenomenon occurs in cetaceans, may also have contributed to the impaired health status
of this animal. Studies on cetaceans have shown that individuals with an impaired immune
system have a higher susceptibility to infectious diseases [83,84]. There were no discernible
viral inclusions in the examined tissue sections and molecular studies proved negative
of morbillivirus. The blubber contaminant levels were below the thresholds reported for
adverse effects [33,85], although offloading through lactation was apparent [34].

Harbour porpoises use very high frequency acoustic signals of relative narrow bandwidth,
with a frequency peak of ~130 kHz and the main energy between 110 and 150 kHz [86–88].
However, behavioural audiograms show that harbour porpoises can hear from 125 Hz
to 180 kHz with a maximum of hearing sensitivity of 100–125 kHz [89]. The relevance
and impact of having a hearing impairment in the lower frequencies in harbour porpoise
is not clear. However, it is possible that a hearing impairment could have made this
individual more vulnerable to other threats. The effects of noise pollution on cetaceans
are not limited to damage to the inner ear and can include a range of physiological and
pathological changes, which may induce adverse behavioural responses [90]. The detection
and quantification of the effects of noise pollution is highly challenging in free-ranging
cetaceans. With the diagnostic investigation into this porpoise, we show that age, tox-
oplasmosis, barotrauma, potential previous ototoxic drug exposure and PCB pollution
were unlikely the cause of hearing loss. The location and focal distribution of the scars
in the cochlea suggest that exposure to anthropogenic sound was the most likely cause of
the lesions. There is an urgent need to increase our understanding of the consequences
of anthropogenic sound exposure on marine mammal hearing. Continued comprehen-
sive diagnostic research programs on fresh, stranded cetaceans is highly recommended.
These investigations increase our knowledge with the auditory systems of these species
and ultimately to help distinguishing between changes attributable to noise pollution,
infectious or other causes of hearing loss.

5. Conclusions

This study presents a case with evidence of hearing loss, which was compatible with
noise exposure. In addition, histopathological and immunohistochemical analysis revealed
a case of toxoplasmosis in a wild harbour porpoise stranded in the North Sea with severe
lesions in the brain.
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