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a b s t r a c t 

Spermatogenesis in mammals is a cyclic process of spermatogenic cell development in the seminifer- 

ous epithelium that can be subdivided into 12 subsequent stages. Histological staging analysis of testis 

sections, specifically of seminiferous tubule cross-sections, is the only effective method to evaluate the 

quality of the spermatogenic process and to determine developmental defects leading to infertility. Such 

staging analysis, however, is tedious and time-consuming, and it may take a long time to become profi- 

cient. We now have developed a Computerized Staging system of Spermatogenesis (CSS) for mouse testis 

sections through learning of an expert with decades of experience in mouse testis staging. The develop- 

ment of the CSS system comprised three major parts: 1) Developing computational image analysis models 

for mouse testis sections; 2) Automated classification of each seminiferous tubule cross-section into three 

stage groups: Early Stages (ES: stages I-V), Middle Stages (MS: stages VI-VIII), and Late Stages (LS: stages 

IV-XII); 3) Automated classification of MS into distinct stages VI, VII-mVIII, and late VIII based on newly 

developed histomorphological features. A cohort of 40 H&E stained normal mouse testis sections was 

built according to three modules where 28 cross-sections were leveraged for developing tubule region 

segmentation, spermatogenic cells types and multi-concentric-layers segmentation models. The rest of 12 

testis cross-sections, approximately 2314 tubules whose stages were manually annotated by two expert 

testis histologists, served as the basis for developing the CSS system. The CSS system’s accuracy of mean 

and standard deviation (MSD) in identifying ES, MS, and LS were 0.93 ± 0.03, 0.94 ± 0.11, and 0.89 ± 0.05 

and 0.85 ± 0.12, 0.88 ± 0.07, and 0.96 ± 0.04 for one with 5 years of experience, respectively. The CSS 

system’s accuracy of MSD in identifying stages VI, VII-mVIII, and late VIII are 0.74 ± 0.03, 0.85 ± 0.04, 

and 0.78 ± 0.06 and 0.34 ± 0.18, 0.78 ± 0.16, and 0.44 ± 0.25 for one with 5 years of experience, respec- 

tively. In terms of time it takes to collect these data, it takes on average 3 hours for a histologist and 1.87 

hours for the CSS system to finish evaluating an entire testis section (computed with a PC (I7-6800k 4.0 

GHzwith 32GB of RAM & 256G SSD) and a Titan 1080Ti GPU). Therefore, the CSS system is more accurate 

and faster compared to a human histologist in staging, and further optimization and development will 

not only lead to a complete staging of all 12 stages of mouse spermatogenesis but also could aid in the 

future diagnosis of human infertility. Moreover, the top-ranking histomorphological features identified by 

the CSS classifier are consistent with the primary features used by histologists in discriminating stages 

VI, VII-mVIII, and late VIII. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Mammalian sperm production is a highly complex yet efficient 

evelopmental process, generating hundreds of millions of motile 
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Fig. 1. Illustration of the stages of spermatogenesis in the mouse (Adapted from 

Russell et al. (1993) ). Early (I-V), middle (VI-VIII), and late (IX-XII) stages of seminif- 

erous tubule epithelial cycle were defined in this paper. Various types of developing 

spermatogonial cells (In and B), spermatocytes (PI, L, Z, P, D, and m2), and various 

steps of developing spermatids from 1 to 16. Spermatid development is divided into 

sixteen steps, so 1 to 16 represent each of sixteen steps of developing spermatids. 
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perm per ejaculation. A key element to this massive sperm pro- 

uction is the continuous and cyclical nature of spermatogene- 

is taking place inside the seminiferous tubules packed within 

he testis. The testes are capable of producing male germ cells 

hrough spermatogenesis, secreting androgen through Leydig cell 

hat maintains male sexual characteristics Clermont (1972) . Due 

o the similarity of mammalian testis structure and sperm devel- 

pment, human sperm production is usually modeled on mouse 

estes. Mouse spermatogenesis is a continuous, cyclical and syn- 

hronized process taking place in the epithelium of the semi- 

iferous tubules. The specific associations of germ cells at dif- 

erent steps of their development in tubule cross-sections are 

alled “stages” or “phases” of spermatogenesis ( Ahmed and de 

ooij, 2009 ). During spermatogenesis, stem spermatogonia trans- 

orm within the seminiferous tubules through subsequent types of 

ndifferentiated and differentiating spermatogonia, into spermato- 

ytes that carry out the process of meiosis, and further into round 

nd elongated spermatids that transform into spermatozoa. The 
ig. 2. H&E stained slide of mouse testicular sections at different resolutions and a cross

t 400 X magnification. Images at different magnifications of H&E stained mouse testicul

permatogenic cells and three concentric-layers. (a) a digitalized Whole Slide Image (W

 tubule cross-section from (b) in Stage VII at 400 X magnification showing three concen

permatocyte regions (red). The middle of a tubule (c) is the lumen with elongated sper

hite. Distinct morphological differences in staining and texture between round sperma

nnotated mask (h) of three types of spermatogenic cells from (c). 

2 
evelopment of successive associations of types of spermatogonia, 

permatocytes, and round and elongated spermatid are key factors 

n determining the epithelial stages in cross-sections of seminifer- 

us tubules. The cycle of the mouse seminiferous epithelium is ar- 

itrarily subdivided into 12 subsequent stages (I-XII) by using de- 

elopmental steps in the acrosomic system and nucleus of sper- 

atids Oakberg (1956) ( Fig. 1 ). 

Identification and analysis of those stages in testicular sec- 

ions are key to understand histopathological changes of spermato- 

enic cells of animals suffering from infertility ( VanGompel and Xu, 

010; Li et al., 2019a ). Moreover, a proper identification of the ep- 

thelial stages is of key importance to determine protein/mRNA ex- 

ression of fertility genes during germ cell development or when 

ne wants to analyze the spermatogenic defects in infertile mice 

 Ahmed and de Rooij, 2009 ). A mouse testis section contains hun- 

reds of seminiferous tubules ( Fig. 2 (b)). Each tubule cross-section 

 Fig. 2 (c)) contains multiple types of spermatogenic cells in spe- 

ific concentric layers Russell et al. (1993) ( Fig. 2 (c-h)). A seminif- 

rous tubule cross-section contains various types of spermatogenic 

ells with distinct and complex morphological features, and con- 

ecutive stages have small or even subtle differences, which makes 

t difficult to identify and distinguish each stage. However, most 

tudies describing the epithelial stages are based on Periodic Acid 

chiff (PAS) and hematoxylin-stained sections and are based pri- 

arily upon the changes of the acrosome and nuclear morphol- 

gy of the younger generation of spermatids. In some circum- 

tances, PAS-hematoxylin stained sections are not available, such as 

ith immunohistochemistry, or when characteristic spermatogenic 

ell types are missing, as in young mice and some mutant mice, 

aking stage identification much more difficult ( Ahmed and de 

ooij, 2009 ). We aimed to develop a fast staging method of tubule 

ross-sections stained by the generally available H&E methodology. 

tage identification has been used by reproduction labs around the 

orld yet only a few manage to attain the level of mastery to pro- 

uce unequivocal analysis. We started off by subdividing the cycle 

f the seminiferous epithelium into three-stage groups (see Fig. 1 ): 

arly Stages (ES: I-V), Middle Stages (MS: VI-VIII) and Late Stages 

LS: IX-XII) ( Hess and de Franca, 2008; Meistrich and Hess, 2013 ). 

S tubules are harder to distinguish from each other even by sea- 

oned histologists. Given the difficulty in distinguishing stage VII 

nd early or middle VIII (mVIII) stage without acrosome staining, 

e decided only to use VII-mVIII as the category closest to VII. We 
-section of a tubule with types of spermatogenic cells and multi-concentric-layers 

ar cross-sections from a slide image to a tubule section with three main types of 

SI) at 100 X magnification, (b) a testicular cross-section at 200 X magnification, (c) 

tric layers of spermatogenic cells, round spermatids (purple), spermatogonia and 

matids and/or sperm in green. Between tubules are the background regions (g) in 

tid (d), spermatocyte (e), and spermatogonium (f) are highlighted. The manually 
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oped that the computerized system could learn and eventually 

istinguish VII and early or mVIII based on H&E staining. 

In recent years, with the rapid development of whole slide dig- 

tal scanners, tissue slides can be stored in digital image form 

era et al. (2019) . It makes a computerized quantitative analysis of 

istopathological images possible. The development of a Computer- 

zed Staging of Spermatogenesis (CSS) system can help histologists 

n making more accurate staging decisions. High-resolution Whole 

lide Image (WSI) of a mouse testis section covers a very large 

rea, and each WSI contains many tubule cross-sections ( Fig. 2 (a) 

nd (b)). Each mouse testis section comprises hundreds of sem- 

niferous tubule cross-sections (see Fig. 2 (b)). There are different 

ypes of spermatogenic cells laying in concentric layers in each 

ubule ( Figs 2 (c-g)). In general, a seminiferous tubule cross-section 

epresents one epithelial stage and shows three major types of 

permatogenic cells: round spermatids ( Fig. 2 (d)), spermatocytes 

 Fig. 2 (e)), and spermatogonia ( Fig. 2 (f)). These cell types form con-

entric layers: round spermatids (purple region in Fig. 2 (c)), sper- 

atogonia and spermatocytes (see red region in Fig. 2 (c)), the lu- 

en and elongated spermatid (green region in Fig. 2 (c)), and back- 

round (white region in Fig. 2 (c)) regions. Automated segmenta- 

ion of different spermatogenic cells and distinguishing concentric- 

ayers in a tubule is a challenging task. Fig. 2 (h) shows the manual

egmentation for three types of spermatogenic cells and three con- 

entric layers in a mouse seminiferous tubule. 

. Previous work and novel contributions 

Stage-identifying criteria are based on the successive cellu- 

ar associations appearing in any one given area of the seminif- 

rous tubule. Based on Oakberg’s 12-stage classification scheme, 

hmed and de Rooij (2009) summarized all stage-identifying cri- 

eria that can be used in the ideal situation as well as in 

ematoxylin-only stained sections and/or when some spermato- 

enic cell types are missing. Seminiferous tubules are the basic 

iological structure as part of the criteria for staging. The ep- 

thelial cell types in a seminiferous tubule are the most impor- 

ant in staging. The identification and segmentation of a tubule 

nd its epithelial cells represent the first step in the development 

f a computerized staging system. To improve the speed and ac- 

uracy of staging, Hess and Chen (1992) developed a computer 

rogram to aid in tracking male germ cells in different mam- 

als. Fakhrzadeh et al. (2012) presented an active contour model 

ased approach for fully automated segmentation of seminiferous 

ubules. Fakhrzadeh et al. (2013) further presented a graph-cut 

ased approach for epithelial cell segmentation in testicular tis- 

ue and subsequently presented a computerized staging method 

o analyze mink testis tissue in Fakhrzadeh et al. (2017) . However 

hese approaches were developed using immunohistochemically 

tained images involving a Gata-4 antibody to stain the acrosomes 

f round spermatids in the mink Spörndly-Nees (2018) . A convolu- 

ional neural network was presented in Lee et al. (2018) for tubule 

tructure segmentation using fluorescence microscope images. In 

he present study Xu et al. (2019b) , we developed a computational 

pproach employing Hematoxylin and Eosin (H&E) stained images 

f mouse testis sections. H&E represents the most common form 

f tissue staining to evaluate tissue morphology. Handcraft features 

ave been used for describing the morphology of tissue samples. A 

erivative-of-Gaussian (DtG) filter can be used for edge detection, 

etinal vascular segmentation and texture analysis. Basic Image 

eatures (BIFs) was used in Reis et al. (2017) to classify breast can- 

er matrix maturity. The calculation method of BIFs were to divide 

he output results obtained after the convolution of an image with 

 group of DtG filters into seven categories. Each category corre- 

ponds to the distinction of different local image structures based 

n local symmetric types: Slopes, radially dark and light blobs, 
3 
ark and light lines, saddle points, and flat regions ( Griffin, 2007; 

rosier and Griffin, 2010 ). In Lee et al. (2017) ; Lu et al. (2018) ;

ang et al. (2018) ; Whitney et al. (2018) ; Li et al. (2019b) , the tex-

ural heterogeneity measurements of tissue or nuclear feature were 

sed for diagnosis or prognosis of cancers. In Lee et al. (2017) , nu-

lear shape and architecture was developed with respect to benign 

issues for predicting biochemical recurrence in prostate cancer. Lu 

t al. ( Lu et al., 2018 ) proved that nuclear shape and orientation

eatures from H&E images can predict survival in early-stage es- 

rogen receptor-positive breast cancers. Whitney et al. (2018) and 

i et al. (2019b) used quantitative nuclear histomorphometric fea- 

ures to predict Oncotype DX risk categories in ductal carcinoma 

n situ. Lewis et al. (2014) used graph-based features, allowing for 

apture of spatial distribution, arrangement and architecture of in- 

ividual types of nuclei or lymphocytes to identify aggressive ver- 

us indolent p16-positive oropharyngeal squamous cell carcinoma. 

In recent years, deep learning based detection and segmen- 

ation models have been shown to effectively address some 

f most challenging problems in histological image analysis 

 Xu et al., 2016b ). A convolutional neural network was presented 

n Lee et al. (2018) for tubule structure segmentation in fluores- 

ence microscopy images. Kao (2018) presented a deep learning 

odel for classifying normal and abnormal seminiferous tubules. 

e developed ResNet based models for seminiferous tubule seg- 

entation in mouse testis sections and types of spermatogenic 

ells and multi-concentric layers segmentation in seminiferous 

ubules ( Xu et al., 2019b ). Sirinukunwattana et al. (2017) pro- 

ided an overview of gland segmentation in colon histology, where 

ost of the segmentation schemes were based on deep con- 

olutional neural networks ( LeCun et al., 2015 ). Recently, U-Net 

 Ronneberger et al., 2015 ) based frameworks have attracted con- 

iderable attention to the problem of medical image segmentation 

 Ibtehaz and Rahman, 2020 ). U-Net can capture and utilize global 

ontext information on semantic segmentation tasks, which is fit- 

ed to our task of region segmentation according to the histological 

istribution of the different regions shown in Fig. 2 (c). 

Inspired by these studies, we aimed to develop a CSS system 

f mouse spermatogenesis based on quantitative image analysis in 

ouse testis sections. The organization of different types of sper- 

atogenic cells in concentric layers within cross-sections of the 

eminiferous tubules is the key factor to discriminate different de- 

elopmental steps, especially Stages VI-VIII. Also, the visual recog- 

ition, semi-quantification and integration of multiple morphologi- 

al features of the different spermatogenic cells and concentric lay- 

rs in seminiferous tubules are the key to stage-identifying crite- 

ia. In order to further identify Stages VI, VII-mVIII, and late VIII 

n MS, the segmentation of different spermatogenic cells and dif- 

erent concentric layers was the fundamental step. Then new his- 

omorphological features were developed for quantifying tubules 

nd subsequently leveraged to discriminate the stages in mouse 

estis sections. There are three segmentation models: seminifer- 

us tubule segmentation ( Fig. 7 (b)), types of spermatogenic cell 

spermatids, spermatocytes, and spermatogonia) ( Fig. 2 (c-h)) seg- 

entation, and multi-concentric-layers (Spermatogonial & Sperma- 

ocyte layer, round spermatids layer, and elongated spermatid area) 

 Fig. 2 (c)) segmentation. According to the distribution of nuclei in 

ig. 8 (b-f), we chose segmantic segmentation methods using U- 

et instead of the time-consuming pixel-wise method ( Xu et al., 

019b ) due to the large numbers of seminiferous tubules in a sec- 

ion. 

The developmental stages in MS are harder to discriminate by 

istologists. Histologists discriminate stages VI, VII-mVIII, and late 

III based on the visualization of the association of various types 

f spermatogenic cells and multi-concentric-layers. We concluded 

hat there are two critical factors in discriminating stages VI, VII- 

VIII, and late VIII: 1) the association of different spermatogenic 
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Fig. 3. Diagram describes the datasets and modules in the paper and the connection between three datasets and modules in the paper. 

Fig. 4. The diagram shows how the basis for distinguishing developmental stages I-XII is manually generated (b) by histologist DR in a mouse testicular section (a). The 

annotated tubule regions (d) and boundaries (e) shown in false-color (f) for (a) were generated based on the result of automated seminiferous tubule segmentation (c) and 

manual annotation (b) by histologist DR. For stage-identifying criteria see Table 2 . 
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ells and different concentric layers; 2) the elongated spermatids 

rea in each tubule. The CSS system includes three modules: 1) 

he segmentation of seminiferous tubules in testis sections, types 

f spermatogenic cells, and multi-concentric-layers in a tubule. 

hen based on the segmentation results, types of spermatogenic 

ells and multi-concentric-layers, cell- and region-level based fea- 

ures were extracted for quantifying MS tubules; 2) Classification 

f seminiferous tubules in a mouse testis section into three initial 

tage groups: ES (stages I-V), MS (stages VI-VIII), and LS (stages IV- 

II); 3) Classification of MS into Stages VI, VII-mVIII, and late VIII. 

The novel contributions of this study: 

• To the best of our knowledge, this is the first report on the de- 

velopment of computerized staging of the spermatogenic pro- 

cess(CSS system) in mouse H&E stained testis sections based on 

quantitative image analysis. 
4 
• The CSS system was developed for identifying three stage 

groups (ES, MS, and LS). In addition, the MS tubules were fur- 

ther discriminated into VI, VII-mVIII, and late VIII stages. 
• A seminiferous tubule segmentation model was developed for 

the identification of tubules in mouse testicular sections. Also, 

types of spermatogenic cells and multi-concentric-layers seg- 

mentation models were developed to identify types of sper- 

matogenic cells and multi-concentric-layers in seminiferous 

tubules. 
• A set of quantitative histomorphological features were devel- 

oped for discriminating tubules in stages VI-VIII: 
• Derivative-of-Gaussian (DtG) filter was leveraged to extract 

elongated spermatids orientation entropy, which is the pri- 

mary feature for discriminating tubules in stages VI-VIII; 
• The significant histomorphological features chosen by the 

CSS system were spermatogonial textures, elongated sper- 

matids orientation and spermatid textures, which are the 



J. Xu, H. Lu, H. Li et al. Medical Image Analysis 70 (2021) 101835 

Fig. 5. The diagram shows the flowchart of the CSS system with three modules for identifying (d) three initial stage groups and (r) stages VI, VII-mVIII, and late VIII in a 

mouse testicular section (a). 

Fig. 6. The distribution of tubules in 6 mouse testis sections of (a) training and of (b) 6 testing sets. 

3

3

p

c

M

a

C

a

b

t

a

primary features of stage-identifying criteria by histologists 

in discriminating stages VI, VII-mVIII, and late VIII. 

. Materials and methods 

.1. Dataset description 

Mice used were housed and maintained under specific 

athogen-free conditions in a temperature- and humidity- 
5 
ontrolled animal facility at Nanjing Medical University, China. 

ice were maintained on a 12h-light-12h-dark cycle with free 

ccess to water and food. The Institutional Animal Care and Use 

ommittee (IACUC) of Nanjing Medical University, China, approved 

ll animal work. Mouse strains were on the C57BL/6 genetic 

ackground. 

Adult mouse testes were collected and fixed in Hartman’s Fixa- 

ive (Sigma, H0290) for 24 hours first, cut in halves, and fixed for 

nother 24hr at room temperature. Fixed testes were embedded 
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Table 1 

Summary of datasets studied in the paper and their corresponding purpose, training and testing sets, annotations, and modules to three datasets. 

Datasets Purpose Training and testing sets 

Annotations as the 

groundtruth Modules 

( � of sections) Training Testing (see Fig. 4 ) (see Fig. 3 ) 

40 28 D 1 Developing 

quantitative 

Seminiferous tubule 

segmentation 

14 sections 14 sections By a histologist 

(HL) 

Module 1a 

D 2 image analysis 

models 

Types of spermatogenic 

cells and 

multi-concentric-layers 

segmentation 

172 MS 

tubules 

171 MS 

tubules 

with 5 years 

experiences 

Modules 1b & 1c 

and histomorphological 

features extraction for MS 

tubules 

12 D 3 Training and testing the CSS system as well 

as compared to a human histologist with 5 

year experiences 

6 sections 6 sections By a well-known 

histologist (DR) 

Modules 2b & 3 

i

t

(  

a

r

s

a

w

s

s

s

T

3

t

T

m

e

s

t

t

b

t

R

s

i
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t

g  

(

a

r

d

t

f

g

p

3

f

a

(

t

o

t

s

w

t

t

n paraffin and cross-sectioned at 5 μm . Each slide con- 

ained 6 testis sections that were processed for H&E staining 

 VanGompel and Xu, 2010 ) ( Fig. 2 (a)). Images were captured on

 3DHISTECH Pannoramic SCAN II at 40X magnification with a 

esolution of 0.23 μm per pixel and processed using ImageScope 

oftware. The size of each digitized Whole Slide Image (WSI) was 

round 210 0 0 × 230 0 0 pixels and the compressed storage space 

as approximately 1.5GB. A total of 162 testis sections from 27 

lides were captured. 40 high-quality testis sections (not from con- 

ecutive sections) were carefully chosen from the 27 WSIs for this 

tudy. A detailed description of the three datasets is presented in 

able 1 . 

.1.1. Manual annotation 

The developmental stages of seminiferous tubules in testis sec- 

ions were manually evaluated based on different modules (see 

able 1 ) by histologists DR and HL who have been working on 

ouse testis histology for many years. As one of these (DR) has an 

xceptionally large experience in this field, his opinion on how to 

ubdivide the cycle of the seminiferous epithelium in H&E stained 

estis sections was taken as a reference base in order to minimize 

he variation between the individual histologists. The differences 

etween the epithelial stages in sections not stained by the PAS 

echnique have been described in detail previously ( Ahmed and de 

ooij, 2009 ). The stage evaluation was done according to the de- 

cription of the stages in the paper. Table 2 describes the stage- 
Fig. 7. The flowchart of seminiferous tubule segmentation. It comprises

6 
dentifying criteria when annotating the tubules in a testis section 

 Fig. 4 ). Three datasets were built from 40 mouse testicular sec- 

ions ( Table 1 ). The flowchart of generating the basis for distin- 

uishing developmental stages is shown in Fig. 4 . In D 3 , the stage

stages I-XII) of spermatogenesis for each seminiferous tubule were 

nnotated by DR ( Fig. 4 (b)). Then based on tubule segmentation 

esults ( Fig. 4 (c)), the tubules in different stages were shown in 

ifferent false-colors ( Fig. 4 (d,e)). In the study of Modules 2 and 3, 

he annotation of developmental stages by DR served as the basis 

or comparing the results obtained by the CSS system and histolo- 

ist HL in the staging of spermatogenesis. 

The detailed description on how three datasets were created is 

resented as follows: 

.1.2. Data set ( D 1 ) for seminiferous tubule regions segmentation 

Figs. 7 (a-d) show the process of generating training samples 

or seminiferous tubule region segmentation. Firstly, the bound- 

ries of seminiferous tubule regions were manually annotated 

 Fig. 7 (b)). A training set was subsequently built for identifying 

ubule regions in mouse testis sections based on the boundaries 

f annotated seminiferous tubule regions. The set includes two 

ypes of image patches: tubule and non-tubule patches, whose 

izes are 39 × 39 pixels. Each image patch is a context patch 

hich accommodates the local spatial dependencies among cen- 

ral pixel and its neighborhoods. Fig. 7 (b) shows, the boundaries of 

ubules, tubule regions, and background in green, red, and black, 
 training (a-e) and seminiferous tubule segmentation (f-l) phases. 



J. Xu, H. Lu, H. Li et al. Medical Image Analysis 70 (2021) 101835 

Table 2 

Description of the stage-identifying criteria. 

Spermatogenesis Stages Description 

Early Stages(ES) I-II Pachytenes are small and close to the basal membrane. 

Spermatogonia are dividing in both stages. 

III There are young (small In spermatogonia and no spermatogonial divisions). Rare stage. 

IV Large or dividing In spermatogonia and B spermatogonia in telophase of mitosis. 

Pachytenes are somewhat larger and not so close to the basal lamina as in stages I-II. 

V Young (small) B spermatogonia and elongated spermatids not yet at the lumen. 

Middle Stages (MS) VI Large or dividing B spermatogonia or preleptotene spermatocytes in telophase. 

Elongated spermatids at the tubule lumen. 

VII-mVIII Preleptotenes are larger but did not yet enter leptotene. 

Spermiation did not not yet occur. Spermatids are still round 

Late VIII Spermiation is taking place or finished, preleptotenes are entering leptotene. 

Spermatids are still round 

Late Stages (LS) IX Spermatids are no longer round but not yet elongated 

X Spermatids are elongating but did not yet flatten completely 

XI Spermatids have flattened completely 

XII All tubule sections in which meiotic divisions or secondary spermatocytes can be seen 
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espectively. Fig. 7 (c) shows that randomly selected red patches 

hose central pixels are in the tubule region in Fig. 7 (b) are 

ubule patches while green and black patches whose central pix- 

ls are on the boundary and background are non-tubule patches. 

hese tubule and non-tubule patches built up the training set (see 

ig. 7 (d)). 

.1.3. Data set ( D 2 ) for types of spermatogenic cells segmentation 

We focused on the segmentation of round spermatids 

 Fig. 8 (c)), spermatocytes ( Fig. 8 (d)), spermatogonia ( Fig. 8 (e)) and

ackground ( Fig. 8 (f)) in a cross-sectioned seminiferous tubule. The 
Fig. 8. The flowchart of types of spermatogenic cel

7 
raining set of U-Net was built by manually annotating index maps 

f three types of cells ( Fig. 8 (b)). The index map has the same size

s the original image. The values of each pixel in different areas in 

he index map can be represented by category information. For ex- 

mple, the round spermatids are labeled as the first category, and 

he values of round spermatids in all the index maps are defined 

s 1. The corresponding training set generation method is shown in 

igs. 8 (b-f), there are 4 categories of the entire label map, includ- 

ng round spermatids (green), spermatocytes (brown), spermatogo- 

ia (red), and the background (black) being labeled as 1, 2, 3, and 

, respectively. 
ls and multi-concentric-layers segmentation. 
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Fig. 9. Derivative-of-Gaussian (DtG) with light line filter response for elongated 

spermatid orientation extraction. 

3

r  

g

g

m

(

3

t

a

e

o

L

3  

w

(

f

a

b

s

a

3

i

m

c

f

t

c

V

n

3

V

t  

r

“

t

t

l

3

t

m

o

i

m

i

t

t

t

u

s

n

H

H

t

f

i

e

c

a

c

e

t

s

R

fl

p

m

s

m

(

w

s

fl

c

p

a

i

c

s

3

s

l

f

l

t

r

t

m

V

s

p

o

s

i

g

b

a

o

m

i

.1.4. Data set ( D 2 ) for multi-concentric-layers segmentation 

The tubules in the training set were manually annotated with 

egion index maps of three regions ( Fig. 8 (l)). There are 4 cate-

ories in the index maps, including the elongated spermatids re- 

ion (light blue), the round spermatids region (yellow), the sper- 

atogonial & spermatocyte region (brown), and the background 

dark blue) being labeled as 1, 2, 3, and 4, respectively. 

.1.5. Data set ( D 3 ) for classification of three stage groups and MS 

ubules 

From 12 testis sections, 6 were randomly chosen for training 

nd the rest for testing. Manual annotations ( Fig. 11 (b)) were gen- 

rated for each testis section ( Fig. 11 (a)). Training and testing sets 

f seminiferous tubules for the three stage groups (ES, MS, and 

S) were generated ( Fig. 11 (c)). The training set comprised 427 ES, 

20 MS, and 326 LS tubules (see Fig. 6 (a)) from D 3 for training

hile the testing set comprised 515 ES, 399 MS, and 327 LS tubules 

see Fig. 6 (b)). The numbers of tubules in training and testing sets 

or different stages were counted and the distribution of tubules 

cross different stages was determined ( Fig. 6 ). Note that the num- 

ers of tubules in different stages across the training and testing 

ets are dependent on the partitioning of the images into training 

nd testing sets. 

.2. Computerized staging of spermatogenesis (CSS) system 

The CSS system has three main modules: 1) Computational 

mage analysis module which comprises: 1a) Tubule region seg- 

entation model, 1b) Types of spermatogenic cells and multi- 

oncentric-layers segmentation model, and 1c) Histomorphological 

eatures extraction which includes cell-level and region-level fea- 

ure extraction; 2) Each seminiferous tubule in a testis section was 

lassified into one of three initial stage groups: ES: I-V, MS: VI- 

III, and LS: IV-XII. As stages VI-VIII in MS are harder to discrimi- 

ate by histologists, we chose MS for in-depth CSS staging analysis; 

) The seminiferous tubules in MS were further classified into VI, 

II-mVIII, and late VIII. The overview of three modules in a mouse 

estis section is shown in Fig. 5 . In this paper, we use “model” to

epresent the segmentation or feature extraction algorithms while 

module” represents independent units that were used to construct 

he CSS system. Three segmentation models and a feature extrac- 

ion model comprise the first module which is subsequently uti- 

ized in the next two modules. 

.2.1. Computational image analysis module 

This module comprises three segmentation models and a his- 

omorphological feature extraction model. Seminiferous tubule seg- 

entation model The aim is to develop a model for seminifer- 
8 
us tubule segmentation in a mouse testis section ( Fig. 7 ). Sem- 

niferous tubule segmentation is the first step in analyzing a 

ouse testis section. The flowchart for this procedure is shown 

n Fig. 7 . It comprises training ( Figs. 7 (a-e)) and seminiferous 

ubule segmentation phases ( Figs. 7 (f-l)). Each mouse testis sec- 

ion was downsampled into 2 X magnification ( Figs. 7 (a,g)) and 

he seminiferous tubule segmentation procedure was conducted 

nder this magnification based on the lowest resolution to vi- 

ualize the tubule regions. Different deep convolutional neural 

etworks such as ResNet-50 He and et al. (2016) , SE-ReSNet-50 

u et al. (2018) , AlexNet Krizhevsky et al. (2012) , and ResNet-18 

e and et al. (2016) models were evaluated for this segmentation 

ask. ResNet-18 model was chosen since it is a popular model with 

ewer layers and more easy to implement. ResNet-18 also resulted 

n the best performance when compared to the other models. 

Spermatogenic cell and multi-concentric-layers segmentation mod- 

ls in stages VI-VIII As the association of types of spermatogenic 

ells in multi-concentric-layers at different developmental periods 

re the key factors to discriminate stages VI-VIII, spermatogenic 

ells and concentric layers identification and segmentation mod- 

ls are an important step in developing computerized staging sys- 

em. The U-Net model was used here the architecture of which is 

hown in Fig. 8 (g,m). The implementation of U-Net was based on 

onneberger et al. (2015) . 

3.2.1.0.1. U-Net for types of spermatogenic-cell segmentation. The 

owchart of the types of spermatogenic cells segmentation com- 

rises training ( Fig. 8 (a-g)) and types of spermatogenic cells seg- 

entation phases ( Fig. 8 (h-i)). Different from seminiferous tubule 

egmentation, we focus on round spermatids (see Fig. 8 (c)), sper- 

atocytes ( Fig. 8 (d)), spermatogonia ( Fig. 8 (e)), and background 

 Fig. 8 (f)) in a cross-sectioned seminiferous tubule. The training set 

as built from Section 3.1.3 . 

The boundaries of three spermatogenic cells obtained by the 

egmentation model were used for subsequent feature extraction. 

3.2.1.0.2. U-Net for multi-concentric-layers segmentation. The 

owchart of the multi-concentric-layers segmentation framework 

omprises training ( Fig. 8 (k-m)) and multi-region segmentation 

hases ( Fig. 8 (h,j)). The training set of U-Net was built by manu- 

lly annotating region masks of three regions ( Fig. 8 (l)). The train- 

ng set was built from Section 3.1.4 . The boundaries of three con- 

entric layers obtained by the segmentation model were used for 

ubsequent feature extraction. 

.2.2. Histomorphological feature extraction model for discriminating 

tages VI-VIII 

Based on types of spermatogenic cells and multi-concentric- 

ayers segmentation results in Section 3.2.1.2 , histomorphological 

eatures were developed for discriminating stages VI, VII-mVIII, and 

ate VIII. We developed 1) elongated spermatids orientation en- 

ropy, 2)cell-level, and 3) region-level features for quantitative rep- 

esentation of seminiferous tubules ( Figs. 10 ). 

3.2.2.0.3. Elongated spermatids orientation entropy (39 descrip- 

ors). Based on the staging-identification criteria, elongated sper- 

atids’ orientation is one of the primary features in discriminating 

I, VII-mVIII, and late VIII. We presented a new feature set for de- 

cribing elongated spermatids orientation entropy. Fig. 9 shows the 

rocedure used to generate the features. The elongated spermatids 

rientation entropy needs to find the boundary of each elongated 

permatid before performing the feature extraction. Therefore, our 

mportant premise for the calculation of the entropy of the elon- 

ated spermatids is to find a good way to describe the slender 

oundary ( Fig. 9 (a-f)). With the segmentation results of the lumen 

nd elongated spermatid area ( Fig. 9 (b,c)), a light line Derivative- 

f-Gaussian (DtG) filter response was employed for elongated sper- 

atids segmentation in order to identify the elongated spermatids 

n the lumen and elongated spermatid area in the center of a sem- 
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Fig. 10. Quantitative histomorphometry feature map illustration of a tubule (a). The first and second rows show cell-level (b-g) and region-level (h-n) features, respectively. 

Cell-level features comprise nuclear shape (b,c), nuclear orientation (d,e), and nuclear texture (f,g). Region-level features comprise region shape (h,i), elongated spermatids 

orientation (j,k), and region textures (l,m,n). 

Fig. 11. The flowchart of seminiferous tubule classification for Modules 2 and 3. It comprises training (a-d) and seminiferous tubule classification (e-g) phases. 
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niferous tubule ( Fig. 9 (d)). Then the directionality of each elon- 

ated spermatid is determined by performing principal compo- 

ent analysis on the Cartesian coordinate locations on the set of 

oundary points of each elongated spermatid. Second order statis- 

ics are calculated (e.g., contrast energy, entropy) on the orienta- 

ion of all elongated spermatids within local clusters. A total of 13 

econd-order elongated spermatid orientation statistics was, thus, 

btained for each elongated spermatids and the mean, median, 

nd standard deviation measurements for each of these statistics 

ggregated across all the elongated spermatid in the lumen and 

longated spermatids area of each tubule. These features explore 

hether elongated spermatids in the three phases of VI, VII-mVIII, 

nd late VIII have different orientation disorder and associated en- 

ropy. 

3.2.2.0.4. Cell- and region-level features. As the association of 

ypes of spermatogenic cells in multi-concentric-layers at different 

evelopmental periods are the key factors to discriminate stages 

I-VIII, cell- and region-level features were developed for quantify- 

ng tubules in VI, VII-mVIII, and late VIII stages. Cell- and region- 

evel based feature extraction methods ( Fig. 10 ) were adapted from 

ang et al. (2017) : 1)cell-level features in this paper include: nu- 

lear shape features (100 descriptors), nuclei orientation entropy 

39 descriptors), nuclei texture (39 descriptors). 2) region-level fea- 
9 
ures include region shape features (100 descriptors); region tex- 

ure (39 descriptors). 

.3. Automated classifier building for classification of a seminiferous 

ubule into one of three stage groups: ES, MS, and LS 

Our strategy is to classify each seminiferous tubule into one of 

hree initial stage groups: ES, MS, and LS in a testis section image 

ith a deep learning based model. As we had enough annotated 

ubules for three stage groups, we employed ResNet ( He and et al., 

016 ) for seminiferous tubules classification. Figs. 11 (a-f) show the 

rocedure for classifying a seminiferous tubule section into one of 

hree stage groups: ES, MS, and LS with a ResNet. The architecture 

f ResNet is shown in Fig. 11 (d). 

.4. Feature selection and classifier building for classification of MS 

ubules into stages VI, VII-mVIII, and late VIII 

Seminiferous tubules that had been classified as MS were 

ubsequently classified into stages VI, VII-mVIII, and late VIII. 

ased on the segmentation results on types of spermatogenic 

ells and multi-concentric-layer, cell- and region-level features and 

longated spermatid orientation entropy features for each tubule 
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Table 3 

A subset of 11 features selected from entire feature set. 

Feature type and category Ranking Description 

Spermatognial texture 6 Haralick:standard deviation of nuclear pixel intensity variance 

Spermatognial texture 7 Haralick:standard deviation of nuclear pixel intensity entropy 

Spermatognial texture 8 Haralick:standard deviation of nuclear pixel intensity contrast entropy inverse 

Cell-and region- Elongated spermatids texture 1 Haralick:mode of region pixel intensity contrast variance 

level features Elongated spermatids texture 2 Haralick:mean of region pixel intensity contrast entropy inverse 

Elongated spermatids texture 3 Haralick:standard deviation of region pixel intensity contrast entropy inverse 

Elongated spermatids texture 4 Haralick:mean of region pixel intensity contrast entropy 

Elongated spermatids texture 5 Haralick:standard deviation of region pixel intensity variance 

Elongated spermatids Elongated spermatids orientation 9 Orientation Entropy:mean of elongated spermatids tensor entropy 

orientation entropy Elongated spermatids orientation 10 Orientation Entropy:standard deviation of elongated spermatids tensor contrast entropy 

Elongated spermatids orientation 11 Orientation Entropy:standard deviation of elongated spermatids tensor contrast ave. 

Table 4 

The illustration of datasets studied in the paper and corresponding quantitative evaluation results for three segmentation results in Modules 1a and 1b with the CSS system. 

Segmentation Datasets Total Patches Models Training Set Testing Set 

� of patches 

� of images model set 

validation 

set 

Classification 

accuracy � of images 

Pixel 

accuracy 

Tubule D 1 28 Tubule ResNet-18 He and 

et al. (2016) 

14 105,072 23,459 96.25% 14 93.84% 

background 103,790 20,723 

Types of 

spermatogenic 

cells 

D 2 343 round spermatid U-Net 

Ronneberger et al. (2015) 

172 - - - 171 92.95% 

spermatocyte 

spermatogonia 

background 

Multi-concentric- 

layers 

elongated 

spermatids layer 

91.08% 

round spermatids 

layer 

spermatogonia & 

spermatocytes 

layer 

Table 5 

Quantitative results of proposed and compared models in tubule segmentation on 

D 1 in Module 1a. The accuracy shown in the table reflects the average values across 

all the testing samples. A bold typeface represents the best performance in the 

table. 

~

Proposed CSS 

system 

gLoG 

Xu et al. (2016a) 

CoNNACaeF 

Xu et al. (2019a) 

Pixel accuracy 93.84% 56.54% 85.28% 

Mean accuracy 91.20% 43.82% 83.59% 

Mean IU 86.58% 33.60% 72.73% 

Frequency weight 

IU 

88.60% 42.46% 74.36% 
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ere obtained with the feature extraction model developed in 

ection 3.2.2 ( Fig. 11 (i)). A total of 790-dimensional feature sets 

or each tubule were developed based on the histomorphologi- 

al feature extraction model in Section 3.2.2 . Then, we adopted 

inimum Redundancy Maximum Relevance (mRMR) algorithm 

 Hanchuan Peng et al., 20 05 ) and used 10 0 times 3-fold cross-

alidation to select the top 11 features with the highest frequency 

f occurrence from the feature sets as the final high discriminative 

eatures (see Fig. 11 (j)). Table 3 shows the top 11 features selected 

y the mRMR algorithm. 

While carrying out the feature selection, five different machine 

earning classifier, Linear Discriminant Analysis (LDA), Quadratic 

iscriminant Analysis (QDA), Support Vector Machine (SVM), Ran- 

om Forest (RF), and Softmax regression combined with the top 11 

eatures of different types of cell and regions are validated in the 

odel set. Based on confusion matrix, the mRMR-Softmax is the 

est combination according to the classification accuracy of distin- 
10 
uishing stages VI, VII-mVIII, and late VIII. The entire process of 

SS system is shown in Fig. 5 . 

. Experimental designs and comparison strategies 

To show the effectiveness of the CSS system, 6 experiments 

ere designed. 

.1. Experiment 1: The CSS system for seminiferous tubule 

egmentation 

The aim of this experiment is to show the effectiveness of the 

SS system for tubule segmentation in testis sections in Module 

a. As Section 3.2.1 showed, the ResNet based model was lever- 

ged for seminiferous tubule segmentation. The segmentation pro- 

ess includes training and testing phases, which can be described 

s follows: 

.1.1. Training phase 

With the training set built in the previous section, a ResNet 

8 model ( He and et al., 2016 ) was trained with the training

atches in the training set. The trained ResNet 18 model was then 

mployed for seminiferous tubule segmentation ( Fig. 7 (f-l)). The 

rchitecture of the ResNet-18 model is shown in Fig. 7 (e). The 

etwork ends with a global average pooling layer and a 2-way 

ully-connected layer with softmax. The detailed description of the 

esNet-18 can be found in He and et al. (2016) . 

.1.2. Testing phase 

The pixel-wise segmentation scheme ( Fig. 7 (g-l)) was leveraged 

o tubule regions’ segmentation. Firstly, the trained ResNet and a 
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liding window scheme were integrated to choose the context im- 

ge patches from Fig. 7 (g). The window slides across the entire im- 

ge row by row from upper left corner to the lower right with a 

tep size of 1 pixel. Border padding is employed to address issues 

f boundary artifacts. The pixel-wise segmentation was achieved 

 Fig. 7 (i)) by predicting the class probabilities of the central pixel 

f each context patch chosen by sliding window scheme. The seg- 

entation results were then upsampled back into the original im- 

ge size via bilinear interpolation ( Fig. 7 (j-l)). 

As the tubule segmentation is a relatively new problem, there 

re few approaches to compare with. Consequently, we compared 

he performance of our approach against two automated nuclear 

egmentation approaches: gLoG ( Xu et al., 2016a ) and CoNNACaeF 

 Xu et al., 2019a ) for detecting and segmenting elliptic-like ob- 

ects in histological images. The number of training and testing 

estis sections are shown in Table 4 . The segmentation accuracy 

as determined in terms of segmentation accuracy in pixel-level 

s compared to manual annotation of tubule regions ( Fig. 7 (b)). 

our quantitative measurements ( Long et al., 2015 ): pixel accuracy, 

ean accuracy, mean IU, frequency weight IU were used. 

.2. Experiment 2: The CSS system for types of spermatogenic cells 

nd multi-concentric-layer segmentation 

The aim of this experiment is to show the effectiveness of 

he CSS for types of spermatogenic cells and multi-concentric- 

ayers segmentation in MS tubules in Module 1b. Figs. 8 show 

he flowchart of types of spermatogenic cells and multi-concentric- 

ayers segmentation in a tubule. The types of spermatogenic cells 

nd multi-concentric-layer were segmented with the segmentation 

odels developed in Section 3.2.1 ( Fig. 8 (i,j)). For region segmen- 

ation, we augmented the images horizontally, vertically, and ro- 

ated it every 90 degrees, which subsequently expanded D 2 to six 

imes in size. Meanwhile, we adopted transfer learning methods 

sing the model parameters which had already been trained in 

 Ronneberger et al., 2015 ) as initialization parameters for the U-net 

odel. 

The number of training and testing tubules is shown in Table 4 . 

he accuracy of segmentation results was determined in pixel-level 

s compared to manual annotation index map of types of sper- 

atogenic cells and multi-concentric-layers in tubules. 

.3. Experiment 3: The CSS system for classification of each 

eminiferous tubule in a testis section into one of three initial stage 

roups: ES, MS, and LS 

The aim of this experiment is to show the effectiveness of CSS 

ystem in discriminating three initial stage groups: ES, MS, and LS 
ig. 12. Illustration of the tubule region segmentation in a mouse testis section (a) by gL

n this paper (d). 

11 
n testis sections in Module 2. The performance is shown by com- 

aring the manual annotations by histologist DR in terms of clas- 

ification accuracy across 6 testicular sections. 

The seminiferous tubule segmentation model developed in 

ection 3.2.1 was first applied to all testis section images in both 

raining and testing sets for identifying tubule regions ( Fig. 5 (a-b)). 

hen a ResNet was leveraged to seminiferous tubule classification. 

he flowchart of Module 2 is shown in Figs. 11 (a-f). The classifica- 

ion procedure includes training and testing phases: 

.3.1. Training phase 

The input image size to ResNet is 3 × 224 × 224. Firstly, 

e resized the original image of each seminiferous tubule to 

 × 500 × 500 ( Figs. 11 (c)). Then we introduced a crop cutting 

ethod to train the ResNet. The crop cutting method can effec- 

ively utilize the features in the central area of tubules, which is 

he key factor in discriminating three initial stage groups. Dur- 

ng the training, the cropped images in the training set were aug- 

ented via horizontally flipped, vertically flipped, and rotated ev- 

ry 90 0 , so that the size of the training set was expanded to 6

imes. The cropped images were then fed to the ResNet for train- 

ng ( Fig. 11 (d)). 

.3.2. Testing phase 

6 testis sections in the testing set comprise 515 ES, 399 MS, 

nd 327 LS tubules. The distribution of tubules in different stages 

s shown in Fig. 6 (b). In the testing phase, a similar crop cutting 

rocedure was applied for each seminiferous tubule in the testicu- 

ar section before feeding to the trained ResNet for prediction. Each 

ubule in the testis section was then sent to the trained ResNet for 

lassification. Figs. 11 (e-f) show the flowchart on how the seminif- 

rous tubules in a mouse testis section ( Figs. 11 (e)) were classified 

nto one of three stage groups: ES, MS, and LS ( Figs. 11 (e)). 

.4. Experiment 4: The CSS system for classification of MS tubules 

nto stages VI, VII-mVIII, late VIII 

The aim of this experiment is to show the effectiveness of the 

SS system in discriminating stages VI, VII-mVIII and late VIII in 

estis sections in Module 3. The performance is shown by compar- 

ng with the manual annotations in terms of classification accu- 

acy across 6 testis sections. The flowchart of Module 3 is shown 

n Figs. 11 (f-k). 

For all the tubules in the MS stage ( Fig. 11 (f-g)), the types of

permatogenic cells and multi-concentric-layers were segmented 

ith the segmentation models in Module 1b ( Fig. 11 (g-h)). Then 

ased on the segmentation results, elongated spermatids orien- 

ation entropy, region-level and cell-level features were extracted 
oG Xu et al. (2016a) (b), CoNNACaeF Xu et al. (2019a) (c), and the model presented 



J. Xu, H. Lu, H. Li et al. Medical Image Analysis 70 (2021) 101835 

Table 6 

Illustration of datasets studied in Modules 2&3 and corresponding quantitative evaluation results for classification accuracy with the CSS system. 

Classification Datasets Total Stages Models Training Set Testing Set 

� of images model set 

validation 

set 

Classification 

accuracy � of images testing set 

Classification 

accuracy 

All tubules D3 12 ES ResNet-18 6 412 103 96.28% 6 427 91.95% 

MS 319 80 320 

LS 262 65 326 

Tubules in 

MS 

VI MRMR- 

Softmax 

100 25 83.46% 92 79.00% 

VII-mVIII 168 42 180 

late VIII 52 12 48 
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ith histomorphological feature extraction models in Module 1c 

 Fig. 11 (h-i)). The 11 significant features were subsequently chosen 

ia mRMR algorithm (see Fig. 11 (i-j)). Finally, the 11 features of a 

ubule were fed to a classifier for being identified as one of stages 

I, VII-mVIII, late VIII (see Fig. 11 (j-k)). 

.5. Experiment 5: Comparison of CSS system VS a human histologist 

n classification of each seminiferous tubule into one of three stage 

roups: ES, MS, and LS as well as MS tubules into stages VI, 

II-mVIII, late VIII in 6 mouse testis sections 

The aim of this experiment is to compare the CSS system with 

wo human histologists on 6 testis sections in terms of the per- 

ormance with respect to discriminating developmental stages of 

ach seminiferous tubule into one of three stage groups: ES, MS, 

nd LS as well as MS tubules into stages VI, VII-mVIII, late VIII in

 mouse testis sections. We compare the developmental stage re- 

ults between the histologists HL and the CSS system in terms of 

ime and accuracy for 6 testis sections. 

.6. Experiment 6: Comparison of CSS system VS a ResNet based 

odel in classification of MS tubules into stages VI, VII-mVIII, late VIII 

The aim of this experiment is to show the effectiveness of the 

odule 1c: histomorphological features of the CSS system in clas- 
ig. 13. Qualitative and quantitative results on a mouse testis section for classification 

istologist HL (d,e) compared to the basis (a) by histologist DR where tubules delineated

nd 2) MS tubules into stages VI, VII-mVIII, and late VIII by the CSS system (g,h), histo

here tubules delineated with purple, orange, and light blue curves represent tubules 

re shown in (b,d,g,i,k) where the tubules marked with sign “x” represent a different cla

atrices (c,e,h,j,l) where each row of the matrix represents stages predicted by the CSS c

evelopmental stages, respectively, while each column represents the instances stages an

eing classified into relevant stages. 

12 
ification of stages VI, VII-mVIII, and late VIII as compared to a 

esNet based model in terms of classification accuracy across 6 

estis sections. During the implementation of the ResNet based 

odel in classification of MS tubule into stages VI, VII-mVIII, late 

III, we replaced two components: 1) types of spermatogenic cells 

nd multi-concentric-layers segmentation, and 2) feature extrac- 

ion and selection ( Figs. 11 (h-j)) with a ResNet in the flowchart of 

ig. 11 . 

. Experimental results and discussion 

.1. The segmentation accuracy of seminiferous tubules by module 1a 

n CSS system 

The qualitative segmentation results of seminiferous tubules 

btained by the CSS system in a mouse testis section ( Fig. 12 (a))

re shown in Fig. 12 (d). The segmentation results of gLoG 

u et al. (2016a) and CoNNACaeF Xu et al. (2019a) are shown in 

igs. 12 (b) and (c), respectively. In these images, the green curves 

epresent the segmentation results by the different models. The 

uantitative segmentation results of the CSS system, gLoG, and 

oNNACaeF across 14 mouse testis sections are shown in Table 5 . 

oth qualitative and segmentation results obtained by the CSS sys- 

em appeared to be the best performance. For quantitative seg- 

entation results, CSS achieves the best results in terms of an 
of 1)tubules into 3 initial stage groups: ES, MS, and LS by CSS system (b,c) and 

 with red, green, and blue curves represent tubules in ES, MS, and LS, respectively, 

logist HL (i,j), and ResNet model (k,l) compared to the basis (f) by histologist DR 

in stages VI, VII-mVIII, and late VIII, respectively. Qualitative classification results 

ssification compared to the basis. The quantitative results are shown in confusion 

lassifier(c,h), histologist HL (e,j), and a ResNet (l) classifier for the prediction of the 

notated by histologist DR. The numbers in parentheses are the number of tubules 
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Fig. 14. The mean and standard deviation of CSS (a,c) and human histologist (b,d) in discriminating ES, MS, and LS (a,b) and stages V, VII-mVIII, and VIII (c,d) across 6 mouse 

testis sections. (e) is the mean and standard deviation of Resnet in classifying stages V, VII-mVIII, and VIII across 6 mouse testis sections. In confusion matrices (a,b,c,d,e), 

each row of the matrix represents stages predicted by the CSS classifier(a,c), histologist HL (b,d), and a ResNet (e) classifier for the prediction of the developmental stages, 

respectively, while each column represents the instances stages annotated by histologist DR. 
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verage pixel accuracy of 93.84%, mean accuracy of 91.20%, mean 

U of 86.58%, and frequency weighted IU of 88.60% across 14 

ouse testis sections. The results suggest that the proposed model 

utperforms the two other models. Overall, the CSS system yielded 

easonable results in terms of segmentation of tubule regions in a 

ouse testis section. 

.2. The segmentation accuracy of types of spermatogenic cells and 

ulti-concentric-layers by module 1b of the CSS system 

The quantitative segmentation results of types of spermatogenic 

ells and multi-concentric-layers are shown in Table 4 . For types of 

permatogenic cells segmentation, the CSS system achieved a seg- 

entation accuracy of 92.95% ( Table 4 ) in the test set. The pixel-

ise accuracy of the U-Net model for multi-concentric-layer seg- 

entation on the test set was 91.08% ( Table 4 ). Overall, the CSS

ystem yields good results in terms of segmentation of types of 

permatogenic cells and multi-concentric-layers in a tubule. 

.3. The classification accuracy on developmental stages by modules 

 and 3 of the CSS system and a human histologist on 6 mouse testis 

ections 

To demonstrate the effectiveness of the CSS system’s Modules 2 

nd 3, qualitative and quantitative classification results on mouse 

estis sections are shown in Fig. 13 . The qualitative classification 

esults on 5 other mouse testicular sections are shown in the sup- 

lementary materials. The results show the performances of two 
13 
odules. 1)Module 2: classification of the tubules into 3 initial 

tage groups: ES, MS, and LS by the CSS system ( Figs. 13 (b,c))

nd by histologists HL ( Figs. 13 (d,e)) and DR ( Figs. 13 (a)). In

hese cross-sections, tubules delineated with red, green, and blue 

urves represent ES, MS, and LS, respectively. 2)Module 3: the MS 

ubules were classified into stages VI, VII-mVIII, and late VIII by 

he CSS system ( Figs. 13 (g,h)), histologist HL (see Figs. 13 (i,j)), and

esNet model ( Figs. 13 (k,l)) and DR (see Figs. 13 (f)) (by histolo-

ist DR). In these testis sections, tubules delineated with purple, 

range, and light blue curves represent stages VI, VII-mVIII, and 

ate VIII, respectively. Qualitative classification results are shown 

n Figs. 13 (b,d,g,i,k) where the tubules marked with sign “x” in 

he center represent a difference of opinion between the CSS sys- 

em or histologist HL and DR. For quantitative classification results, 

onfusion matrices ( Figs. 13 (c,e,h,j,l)) were employed to show the 

lassification accuracy of each stage type and the error rate of the 

tage types being classified into others. All of confusion matrices 

igs. 13 (e,j,l) present in the same fashion as Figs. 13 (c,h), respec- 

ively. The rows of the matrix represents predicted stages by the 

SS system (see Figs. 13 (c,h)), histologist HL (see Figs. 13 (e,j)), and 

 ResNet (see Figs. 13 (l)) on Modules 2 and 3, respectively, while 

he columns of the matrix represent actual stages annotated by 

R. In confusion matrices, the number of tubules being classified 

nto relevant stages are shown in parentheses. In these matrices, 

he diagonal elements in red represent the best accuracy in each 

ype of developmental stage. Overall, these results suggest that the 

SS system yields better results in terms of classification accu- 

acy of tubules’ developmental stages as compared with histologist 
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Table 7 

The execution time of CSS on the training and corresponding run time when evaluated a testis section as comparing with a human histologist. 

~ Components Modules Training Time (6 sections) Testing Time (per section) 

CSS Tubule segmentation Module 1a 2 hours with 50 epoch 9 minutes per section 

Types of spermatogenic cells segmentation Module 1b 8 hours with 50 epoch 0.36 second per 1 tubule 

Multi-concentric-layers segmentation 8 hours with 50 epoch 0.36 second per 1 tubule 

Feature extraction Module 1c 12 hours with 6 sections 20 seconds per tubule 

Total time in evaluating a section Modules 2 and 3 30 hours 1.87 h per section 

Human histologist Many years ≈ 3 hours per section 
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L. With respect to tubules in stages I-XII, histologists DR and HL 

howed comparable results in discriminating three-stage groups: 

S, MS, and LS. However, there was more variation between re- 

ults by both histologists in discriminating MS into VI, VII-mVIII, 

nd VIII stages. Especially, it appears it is hard to discriminate the 

ubules in stage VI but also the other stages in this group. This 

esult is correlated with the real scene. The development of the 

tages is slow and differences are gradual. Therefore, different his- 

ologists will have slightly different opinions about, for example, 

hen to call a tubule in stage VI or in VII. As the opinion of his-

ologist DR was taken as the basis for CSS to distinguish stages, 

t is no wonder that the results of CSS were more like those of 

R than of HL. Figs. 14 shows the mean and standard deviation of 

SS ( Figs. 14 (a,c)) and human histologist HL ( Figs. 14 (b,d)) in dis-

riminating ES, MS, and LS ( Figs. 14 (a,b)) and stages V, VII-mVIII, 

nd VIII ( Figs. 14 (c,d,e)) across 6 testis sections. Indeed, the sta- 

istical results show that the CSS system results are more in line 

ith those obtained by DR than by HL. All of confusion matrices 

n Figs. 14 (b,d,e) are presented in the same format as the ones 

n Figs. 14 (a,c), respectively. The rows of the matrix represent the 

tages predicted by the CSS classifier ( Figs. 14 (a,c)), histologist HL 

see Figs. 14 (b,d)), and a ResNet (see Figs. 13 (e)) on Modules 2 and

, respectively, while the columns of the matrix represent stages 

nnotated by DR. In the confusion matrices, the number of tubules 

eing classified into relevant stages are shown in parentheses. De- 

elopmental staging by human histologists is a time-consuming 

nd tedious work. As Table 7 shows, it takes an average of 3 hours

or both histologists to finish evaluating a testicular section while 

he trained CSS system on average needs 1.87 hours. 

In the classification of stages VI, VII-mVIII, and late VIII, 

he CSS system leveraged histomorphological features developed 

n Section 3.2.1 . In comparison with the ResNet based model 

 Figs. 13 (k,l)), the CSS system ( Figs. 13 (g,h)) performed better in

erms of classification accuracy across 6 testis sections. The statis- 

ical results show that the CSS system (c) outperforms ResNet (e) 

n overall accuracy across 6 cross-sections. The histomorphological 

eatures developed in Section 3.2.1 included 11 features, as shown 

n Table 3 . The table shows the feature type and the feature cat- 

gories identified by the mRMR algorithm, which also ranks their 

mportance among top 11 features in discriminating the tubules in 

tages VI-VIII. The interesting finding is that the significant histo- 

orphological features chosen by the CSS system were spermato- 

onial textures, elongated spermatids orientation, and spermatids 

extures, which are the primary features of staging-identifying cri- 

eria in discriminating stages VI, VII-mVIII, and late VIII. 

.4. Computational environment 

All the experiments were carried out on a PC(IntelCore(TM) I7- 

800k 4.0 GHz processor with 32GB of RAM & 256g SSD) and a Ti-

an 1080Ti NVIDIA Graphics Processor Unit. We compared the com- 

utational efficiency of CSS against a human histologist in devel- 

pmental staging of a mouse testis section. The execution time for 

SS and human histologist on a cross-section is shown in Table 7 . 

t shows that, once the CSS system was trained, it was more effi- 
14 
ient in evaluating a testicular section compared to human histol- 

gists in terms of run time execution. 

. Concluding remarks 

In this paper, a Computerized Spermatogenesis Staging (CSS) 

ystem of seminiferous tubule cross-sections is presented for fast 

nalysis of mouse sperm development. Both qualitative and quan- 

itative evaluation results show that the CSS system outperforms 

 human histologist in terms of discriminating three stage groups: 

S, MS, and LS and MS stages. Some new domain-inspired hand- 

raft features were developed to further discriminate the tubules 

n LS stages. The Derivation-of-Gaussian (DtG) filter was utilized 

o describe the orientation entropy of elongated spermatids, a fea- 

ure identified as being critical for discriminating tubules in stages 

I-VIII. Moreover, we leveraged cell- and region- level features to 

uantify tubules in stages VI-VIII. Significant histomorphological 

eatures chosen by the CSS system were found to be consistent 

ith the primary features employed by histologists in discriminat- 

ng stages VI-VIII. These computerized features are interpretable, 

ntuitive, and repeatable and can potentially be applied to other 

roblems in computational pathology. This is our first attempt to 

evelop a CSS system in studying mouse sperm development. One 

imitation of this work is that the current CSS system can only dis- 

riminate three initial stage groups. In future work, we will extend 

he CSS system to discriminate the tubules in I-XII stages. Also, this 

tudy focused on normal mouse testis sections. In the future, we 

ill extend the studies to sections of infertile testes and quanti- 

atively analyze morphological changes in seminiferous tubule sec- 

ions. The other limitation of the study was the imbalance between 

xemplars for the different stages in the training and testing sets. 

nfortunately, we were limited in the number of available cases for 

his study, but we will be looking to expand the number of cases 

oth for training and testing in future work. 
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