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The intrinsic alignments of galaxies are usually regarded eontaminant to weak gravitational lensing ob-
servables. The alignment of Luminous Red Galaxies, detegtambiguously in observations from the Sloan
Digital Sky Survey, can be reproduced by the linear tidgratient model of Catelan, Kamionkowski & Bland-
ford (2001) on large scales. In this work, we explore the adegical information encoded in the intrinsic
alignments of red galaxies. We make forecasts for the glwfitcurrent and future spectroscopic surveys to
constrain local primordial non-Gaussianity and Baryon égt@ Oscillations (BAO) in the cross-correlation
function of intrinsic alignments and the galaxy densitydiegFor the Baryon Oscillation Spectroscopic Survey,
we find that the BAO signal in the intrinsic alignments is niaadly significant with a signal-to-noise ratio of
1.8 and2.2 with the current LOWZ and CMASS samples of galaxies, resyslyt and increasing t@.3 and
2.7 once the survey is completed. For the Dark Energy Spectpasttstrument and for a spectroscopic survey
following the EUCLID redshift selection function, we findysial-to-noise ratios of2 and15, respectively. Lo-
cal type primordial non-Gaussianity, parametrizedfy, = 10, is only marginally significant in the intrinsic
alignments signal with signal-to-noise ratias2 for the three surveys considered.

I. INTRODUCTION

The intrinsic alignments of galaxies are correlations leetvtheir positions, shapes and orientations that ariseéadpkysical
rocesses during their formation and evolution as tracktiseolarge-scale structure of the Universe. Examples ofi swocesses
are stretching by the tidal field of the large-scale strue{dr-3] or clusters of galaxies|[4, 5], the interaction betwéhe angular
< momentum of a galaxy and the tidal torglle [6], or dynamicagjureferred directions|[7, i.e., the filamentary distribnof galaxies].
"(7)" The observed alignments of Luminous Red Galaxies (LRGshi8k been shown to be adequately reproduced by the linear
(g alignment (LA) model of[[1H3] on large scales (10Mpc/h) in the redshift rang®.16 < z < 0.47 [9,(10]. On smaller scales,
,] have suggested replacing the linear matter powastagm by its non-linear analog. The non-linear alignmatit4A) model
is widely used, despite the simplicity of the non-lineaatreent, which does not evolve the non-linear scales camigtwith the
Poisson equation. A slight modification to the NLA model wasgwsed by([13], although once again without fully solving the
cinon-linear dynamics. [14] showed that the NLA model reprmtuobservations of the alignments of LRGs up te’ 0.7 and on
l\scales of comoving projected separatich$ Mpc/h resorting to the MegaZ-LRG sampl__eg__[iEJ 16]. On smaller s;agnificant
CDprogress has been made in developing halo models that reg@dlde currently available observational constraintsexiend the
forecasts of the intrinsic alighment contamination to wsaising observables to higher redshifts and to satellitexigs [17-10].
- (Currently, there is no evidence of alignments for blue giats[20] and we do not consider them in this work.)
The intrinsic shapes and alignments of galaxies have beglorexi as a contaminant in weak gravitational lensing olzdses
O[E [21] but little is known about the cosmological infornmtithey encode. In the upcoming decades, imaging survegsHik
O Dark Energy Survey(DES) [22], Hyper-Suprime Cab(HSC)[23], Pan-STARRS the Kilo-Degree Surve§ (KiDS), EUCLIDS
_F! [24], the Large Scale Synoptic Telesc8geSST) [25] and WFIRST [26] will map the large-scale structure of the Universe and
~ explore the nature of dark energy [27] by measuring the etirsj of galaxies and the effect of weak gravitational leggR8] over
=~ unprecedented volumes.
>< In a complementary effort, ongoing spectroscopic survagh sis the Baryon Oscillation Spectroscopic Surlely [29], sycom-
(g ing ones, such as SDSS<8, the Dark Energy Spectroscopic Instrument (DESI) [30], EWL WFIRST, and the Prime Focus
Spectrograph (PFS) [31], will gather spectra of milliongafaxies and quasars with the goal of measuring the distuate probed
by Baryon Acoustic Oscillations (BAO) and the growth of stiwre through redshift space distortions (RSD).
In the context of these rich datasets, no probe of largeesstalicture should be left unexplored. Intrinsic alignrsesmte one
such probe: an effect that was once just thought to be a camaaitto weak gravitational lensing measurements, coutdine a
complementary source of cosmological information. In tiherhodel, the tidal field determines the strength and evotutibthe
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alignments, which depend on the growth function of the maténsity perturbations and their power spectrum. In paldic the
LA prediction is thus sensitive to RSD, primordial non-Gsiasity and BAO. Another example of the potential of aligmtseto
constrain cosmology was proposed byl [32], who suggestedjthuitational waves from inflation could be detected initfteinsic
alignments of galaxies.

In this work we assume that red galaxies (the ancestors ofddghift LRGs, and which we will henceforth also refer to &Qs)
follow the NLA model and we study the cosmological infornoaticontained in the galaxy density-intrinsic shear crassetation
function. In Sectiofl, we summarize the tidal alignmentdelp we construct the galaxy density-intrinsic shear coumsselation
and we discuss possible contaminants and uncertaintidseofbdel. In Sectiof ITD we study the typical scales at whiuh t
tidal field has an impact on the alignment of a galaxy. In ®e¢l[El we explore an alternative to the NLA model in which the
alignment between a galaxy and the tidal field of the largdesstructure occurs instantaneously. In Sedfidn I, we\sdifferent
cosmological observables that can be constrained usingttiesic ellipticity-galaxy density cross-correlatioprimordial non-
Gaussianity (Sectidn IT1A) and the BAO (Section Tl B). In@en[ITA] we also analyse the effect of RSD on the cross-@ation.
In Sectior TILQ we compare our results to the constraintctme from galaxy-galaxy lensing. In the Appendix we give ava¢ion
of the Gaussian covariance matrix of the galaxy densityrisic shear cross-correlation in real space.

Unless otherwise noted, throughout this paper we work with following Planck [33] fiducial cosmology:Q,h2 = 0.022,
Qcpmh? = 0.1204, h = 0.67, Qi = 0, A; = 2.21 x 1079, ny, = 0.9619, k, = 0.05 Mpc~! and we definéy; = Q, + Qcpm-

Il. THE TIDAL ALIGNMENT MODEL

We define the ellipticity of a galaxy as= (1 — ¢?)/(1 + ¢*), whereq is the ratio of the minor axis to the major axis of the best-fit
ellipse to the galaxy image. The ellipticity can be deconeglds two components,; = ecos(20) andey = esin(26), with 0 the
position angle of the galaxy. The componentindicates radial (if negative) or tangential (if positiva)gnment of a galaxy with
respect to another galaxy. The component measures tH& deg rotation with respect te,. [34]. The distortion;y, acting on a
galaxy is the change in its ellipticity; it can also be decosgd intoy, and~«. The relation between distortion and ellipticity is
~v = e/2R, whereR is the responsivity factor, the response of the elliptioity galaxy to an applied distortion [34].

When we measure the shapes of galaxies, we are measuringbination of the effect of the tidal fielg?, the effect of weak
gravitational lensing on those shapgs, and the intrinsic random shapes?<:

’}/Obs _ ,YI + ,}/G + ’Ymd- (1)

The topic of this work is the correlation af with the galaxy field. We will consider as the fiducial modelmfinsic alignments
the NLA model proposed by [12]. In this model, an intrinsieahdue to the tidal field of the primordial potentia),

C
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acts on a galaxy, wher€, is some undetermined constant measuring the strength aflihement,G is Newton’s gravitational
constant and the quantity in parentheses is the tidal teqmrator on the plane of the sky.

The primordial potential is evaluated at a redshjftduring matter domination, when the galaxy was formed. ©h&nansatz,
since there is no first principle model from which the LA modederived. The redshift at which intrinsic alignments ae¢ s
is unconstrained, but [14] have shown that the current mreagents of the intrinsic alignments of LRGs are consistettt e
primordial alignment model.

On large scales, the density field behaves lineagly, and can be related to the primordial potential through thiseg®n equation,

B 4rGa®p(z) O (k, 2)
D(z) k27
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in Fourier space, whergz) is the mean density of the Universe at redshjfD(z) is the growth function and is the scale factor.

In practice, we can only measure shapes of galaxies at thi#opssof galaxies, hence, we observe the density-weiginteitsic
shear fieldy’ = (1 + §,)7!, with §, = bdy;, the galaxy overdensity field arigd a scale-independent bia%.This weighting is of
particular importance for intrinsic alignments, sinceayas that enter the correlation are physically associatbéé details of the
weighting might also depend on selection effects of thexyadample, such as flu§/N or apparent size, which we do not model
in this work. In the linear regime, this implies an effectigscaling of the bias, while in the non-linear regime, it change the

9 For simplicity, we consider the galaxy bias to be independétuminosity. The change of the bias with luminosity wiktgend on the properties of the galaxies
selected. We do not attempt to model this effect in this wbit,the bias as a function of redshift and luminosity can bestained by the galaxy auto-correlation
function. Moreover, there is significant evidence that thergjth of the alignments increases with luminosity [17], athough this could also be consequence of
mass dependence, as suggested Hy [19].



shape of the smoothing filter. A similar source-lens clustgis negligible in the context of galaxy-galaxy lensingee at the typical
current precision of photometric redshifts|[35].
The intrinsic shear in Fourier space is given by

V(0 2) = g (2 K2, 2k, )16, (1)), @

where we have defined a smoothing filter for the primordiaéptal, S, that removes the effect of the tidal field on scales smaller
than the typical halo inhabited by LRGs. The purpose of dapglg smoothing filter is to smooth the tidal field within thelecof
the halo inhabited by the galaxy and to suppress the caorldtie to non-linear effects on small scales that pertuetatiynment.
Numerically, the smoothing filter also avoids spuriousdieas in the correlation function due to a sharp cut-oftinspace. We
discuss the effect of the smoothing filter in Secfionlll D.

The density-weighted intrinsic shear field is given by a abation in Fourier space,

b
;)'/I(k, Z) = /dgkl"y[(k — k17 Z) 5(3)(1{1) + W 5lin(k1; Z) 5 (5)
wheres®) is the three dimensional Dirac delta.
The galaxy density field and the component of the weighted intrinsic alignment tensor areetated with a power spectrum
given by

Chperienr k2 — K,
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o+ (k,z) = b

Pt (k,2). (6)

In the NLA model, P} (k, z) is replaced by the non-linear matter power spectrum in E}. [66] suggest a slightly modified
version of the NLA model, wherg+ is constructed assuming that the tidal field does not undeogelinear evolution, whilé,
does. This is also an approximation to the problem of caiirgjahe non-linear density field with the primordial tidadlfi, but does
not improve on the physical treatment of the non-linear dyica. In this work we use the code CAMBJ36] to obtain the nioredr
matter power spectrum.

A. Modeling of the correlations

For modeling the correlations between galaxies and intrstsapes, which is the subject of this work, we will consiadeedshift-
space correlation function between two observablasdb,

€ab(rpa I, Z) = <a(07 X(Z)7 Z)b(rpa X(Z) + 11, Z)>7 (7

wherery, is the comoving projected separation vector, in the plarth@ky,x is the comoving distance along the line of sight, and
IT is the perpendicular component of the separation vectgegiex along the line of sight, ands the redshift.
We can relate the correlation function in redshift spac&éopower spectrum of the two observahiesndb through:

&k, dk, P
fab(rp,H,Z)/WPab(k,z)e (ko p+sz)_ (8)

Analogously to the choice of cylindrical coordinates in Ed), we choose cylindrical coordinates in Fourier spacen@khe line of
sight, k. and perpendicular to it;; ). We will henceforth refer t@,; (r,, IL, z) as the angular average over the directionsofi.e.,
on the plane of the sky) of EQ.1(7). The projected correlatiorction under the Limber approximation is defined as

Hmax

Wap(rp) = /de(z) / dIL € (rp, 11, 2), (9)
_Hmax

where the weight functiohV(z) depends on the observables. The advantage of the estimaqr {9) is that it only computes the

correlation between galaxies in a box of lengilh,,., along the line of sight. This procedure reduces the contatioin from other

sources of correlation, as we will discuss in Sediiof I F.apply here the weighting derived in [20]:
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wherep(z) is the redshift distribution of the galaxies in the sampternmalized to unity. This is the correct weighting when cagt

pairs of galaxies in the cylinder defined by coordindtgsII). The comoving distance factors account for the change obworg
volume with redshift.



B. Intrinsic shape correlations

In the tidal alignment model’ depends on the primordial gravitational potential throigi [2). As a consequencg, and the
density field are correlated. This correlation can be diyeneasured, by taking galaxies as tracers of the density dietl building
the correlation function with their measured ellipticitiéVe will refer to the correlations between LRG positiond BRG shapes as
gI. We will study the cosmological information imprinted oretborrelations between the intrinsic ellipticities and deasity field,
as traced by galaxies. Under these assumptions, the asogdation between the observed density field and the obdeskiapes,
given by Eq.[(b), at a given redshift is

gl =b(z)(0~"), (11)

We have neglected here the contributions of galaxy-galkemgihg and magnification bias to the correlation. We wiltdss those
contributions in SectionIIIF.

In the tidal alignment model, the/ and I correlation functions were computed by [2, 3]. We incorpertae effect of RSD
on large scales by transforming the non-linear matter p@pectrum,Ps(k, z) to the anisotropic redshift-space distorted power
spectrump; (k, z), through the transformation derived by|[37] and [38] andi@pto intrinsic alignments already in [10]. Moreover,
because of the smoothing filter acting on the primordial pidéin Eq. [3), the tidal field power spectrum is further tiplled by
the smoothing filter,

Py(k, 2) = Ps(k, 2)S(k) (1 + Bu®)”, (12)

where = Q9:55(2) /b(z) [89], andy = cos(6y) = k. /k whered, is the angle betweek and the line of sight. This approximation
to the effect of RSD has been shown to be valid over an arpitearge of scales [40].
The redshift spaceg! correlation functions, projected along the line of sightloa cylinder defined b¥l,,,.., are given by:

Egr (rpy2) = b Clp““QM / dk., / dk;L (K, 2) sin(kzTlmax) J2 (kL 7p), (13)

where J, is the second order spherical Bessel function, gpdr,, II, z) = 0. Integratingé, over the redshift range of the LRG
sample using the Limber approximation, we obtain:

b CipeitQn [~ o K3 .
wng(Tp) /dZW(Z)PW/O dkz/o dkl.mps(kaz) Sln(kZHmaX)JQ(kJ—Tp)' (14)

We have choseH,,., = 80 Mpc/h in agreement with [10].
For computing the auto-correlation functions between tfierént components of the ellipticity; -+ and x x, we find it convenient
to define the following functions,

k2 — k2
fE (k) = B 2 K )

With this notation, the auto-power spectrunmdf is given by

Po(kz) = (%) P (1, 2)S(k) £3 (1)
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For obtainingPx « (k, z), it suffices to replacgr by f5 in the above equation

The smoothing filter has a larger impact on the auto-powestepef the intrinsic ellipticitiesP, . and Py «, since the smoothing
filter appears squared in E4._{16). From now on, we negledrgtia terms in the power spectrum in Ef.](16), since theyato n
have a significant contribution 8, , (k)

The auto-correlation functions of intrinsic ellipticiti@re given by

X
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C. Strength of alignment

We obtainC; from fitting the density-intrinsic shear cross-correlatioAs illustrated by Eq. [{1), the shape of a galaxy has
contributions from the shear, the tidal field and a randonsen@omponent. For low redshift galaxies, the effect of gasiginal
lensing is negligible. We use low redshift observationshaf intrinsic shapes of LRGs byl [9] to constrain the valueef the
amplitude of the intrinsic alignment effect. We assume 2.12, the bias derived for this sample of LRGs from their clustgiiL0].

[9] measuredo, . (r,) for 73,935 LRGs in SDSS DR6 in the redshift range @6 < > < 0.47 and with a median redshift of
z ~ 0.32. In that work, LRGs are selected by applying the techniqui, identifying central LRGs and removing satellites for
each halo. The volume associated with each halo is a cyliwikrdimensions, = 0.8Mpc/h and AII = 20Mpc/h. This cut
effectively removes the one-halo term contributionuip, .

We perform a least-squares fit tq, . (r,) and obtainC; pe;ir = 0.131 + 0.013 with a reducedy® = 3.2, for r, > 1 Mpc/h.
Figure[d shows the results of our fit to the data from [9] (tHigiure 3). If we only take into account points gt > 10 Mpc/h
for the fit, we obtain a consistent result©f p.,;; = 0.126 + 0.013 with a reducedy® = 0.9. [IE] also performed the fit on large
scales, where the effect of the smoothing filter is not sigaift; our results are in agreement with theirs. Because avmtarested
in cosmological constraints on large scales, we adopt tter lzalue ofC'; as our fiducial amplitude for the remaining sections. Our
numerical convergence tests fog . indicate al.2% additional uncertainty in the value 6f;.

We can compare the scatter in intrinsic ellipticities to pinedicted value from the NLA model, which is obtained frora pgower
spectrum of the gravitational potential as in Eq. (8).0f [1]:

(€?) = AR*(v{® + 712,

Zmax O\ 2 3
— v [ (P ) [ R (709 + 730 S0

~ 2x1073. (19)

Zmin

Integrated over the range16 < z < 0.47, the NLA prediction yields a much lower value f¢+?) than the measured value for
the LRGs of[9], for which(e?, ) =~ 0.1 (R = 0.947). We are assuming here tt&tis independent of redshift. In practice, this will
most likely not be true, but it would require an unrealisiciation of at least an order of magnitudefnto bring the NLA model in
agreement witffe2, ). The shapes used Hy [9] are not corrected for the Point Sifiaaction (the response of an unresolved source
to the combined effect of the telescope optics and the athewep. This results in an overestimation(ef) but, once more, this
effect, although highly significant [10], is not sufficientaccount for the difference between the NLA prediction areldbserved
value. “Shape noise” due to a random component of elliptisit,q, is the dominant contribution to the scatter and prevenfsouns

estimatingC; with this method.

D. Smoothing filter

[2] suggest the use of a top-hat filter in-space in Eq.[{4) to remove the effect of the tidal field in gétascales. [[1] use a
top-hat filter in real spacel._[110] do not use any particulansthing because they focus on scates( Mpc/h. These assumptions
are all consistent with the assumption of linearity. In thik we use a well-behaved filter inspace in order to avoid non-physical
behavior of real-space correlation functions. We thus icemshe following smoothing filter as our fiducial filter:

S(k) = exp[—(3k/kmax)?]- (20)

The filter is a Gaussian function that decays by a fatjerat k& = k,.x/3. This choice of smoothing filter removes spurious
oscillations in the correlation function produced by a ghart-off in k-space.

We can see in Figuid 1 that the smoothing considerably clsahgepredicted correlation function. The smoothing filkettbest
reproduces the measured correlation function®as. = 10h/Mpc. This is roughly consistent with the typical scale of dRG&



10.00 T
- K... = 10 h/Mpc ]
Knaox = 5H/Mpc - - - - - 1
. R Kpox = 1 H/MpC =-=-=-=-= 1
£ 1.00¢F 5
O E ]
o L ]
= I :
= 0.10F
oolt ‘

1 10 100

r, (Mpc/h)

FIG. 1: The observed galaxy-intrinsic ellipticity corréta function (diamondsyw,+ (r,,), from [9] compared to our best fit intrinsic alignment
model with a smoothing filter of typical scalg... = 10 h/Mpc (solid line). The dashed and dotted-dashed lines spomd to the predictions of the
intrinsic alignment model for the cases with.x = 5 h/Mpc andkmax = 1 h/Mpc, respectively (using the bestdit from thekmax = 10 h/Mpc
case). The dotted line corresponds to the linear alignmexein(which uses the linear matter power spectrum).

halo found by/[[4f1], ofr,.10 = 0.8 Mpc/h. The linear alignment model curve (with a filter laf.... = 10h/Mpc) lies between the
non-linear alignment models with.,., = 14/ Mpc andkn.x = 5h/Mpc. This is because, even though it does not capture the
non-linear physics well enough, the linear alignment mati#lhas non-zero power on small scales. Removing the snirogfilter

for the LA model leads to changes-af0.5% on scales> 10Mpc/h, which are negligible compared to the effect of non-Gauntsia

or the BAO inwy4 in Sectior 1.
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FIG. 2: The auto-correlation functions of the intrinsidgticity componentszL (left) and~% (right) predicted for the sample of [9] for smoothing
filters of differentkax values. The LA curve is subject to smoothing with.. = 10h/Mpc.

The smoothing filter also has a noticeable effect on the aateelation function of intrinsic shape#/. In Figurel2, we show
the predicted I correlation for the sample ofl[9]. Far. ., (r,) andw « (r,), the effect of the smoothing filter is smaller on small
scales in comparison 0, (r;,), but it is still present at scales @) Mpc/h. As in Sectior ITC, we have neglected the quadratic
contributions of the matter fluctuation power spectrum ia fiection. The auto-correlation functions of LRG shapes-at0.5 were
measured by [42] and shown to be in agreement with the LA modéarge scales by [10]. For the sample lof [42], « () is
consistent with) atr, < 10Mpc/h, where the effect of the smoothing filter is large.



E. When were intrinsic alignments imprinted?

In the study byl[[2[13], intrinsic alignments are imprintedtze redshift of formation of the galaxy,. An alternative to the pri-
mordial alignment model is to assume that there is an irsteeoius response of the galaxy shape to the tidal field. Tivesmodels
result in different redshift dependence of the amplitudthefintrinsic alignment signal. In the case of instantasedignment, Eq.
(@) is modified to be

G
4G

where¢ is the gravitational potential at redshift Any model in which the galaxy shape and orientation is aeieed between the
redshift of formation of the galaxy and the redshift of olvs¢ion will have an amplitude that lies between the instaetais and
the primordial alignment case. The instantaneous and pdialignment model differ from one another by a factor!(z), the
inverse of the growth function.

The constraints on the amplitude of the alignment signatiakd by [111] and [14] are inconclusive regarding the reftisieipen-
dence of the alignment signal._[11] measured@ecorrelation of LRGs in the SDSS DR4 samplel < z < 0.35) and in the
2SLAQ LRG sample({4 < z < 0.8) [43]. Their results are consistent with the LA model, allvéith large error bars. Similarly, in
[14], the authors study the redshift de endencepf by combining previous results for the LRGs of the SDSS DR414y {vith
the MegaZ-LRG sample (at ~ 0.5) [‘ﬁ [16], selected from SDSS DR6. They find no evidence faedshift dependence other
than the one proposed by the LA model. More specifically, @irtfiable3, they show their constraints on the amplitude of gtie
correlation for the MegaZ-LRG sample in two redshift binshanedian redshifts of = 0.49 andz = 0.59. The gl amplitude is
quoted relative to a fiducial value 6f; and correcting for galaxy-galaxy lensing and magnificatims contaminations. Alto, it is
not possible to distinguish between the instantaneoustengrimordial models for those redshift bins. A halo modgirapch to
intrinsic alignments, applied to the Millenium Simulatjatisplays an evolution consistent with the LA model as wi][

In Figure3, we explore the ability of future surveys to digtiish between the instantaneous and the primordial LA inbtaring
normalized the amplitude of the intrinsic alignment sigtmlunity today, we show the ratio between the instantaneadstlae
primordial alignment models for thel correlation and thd [ auto-correlation functions. This ratio is proportionalte growth
function, D(z), for g1, and toD?(z) for I1. The instantaneous model has a steeper dependence witfiftedhile this difference
is really a function of scale, since the Kaiser factor of EIf)(for RSD depends on redshift, this affeats, very similarly for the
surveys considered in this work, as will be seen in Se¢fibAl#nd Figurd 6(g), such that we only consider an overallatam in
amplitude of the IA signal with redshift in this section. (i that in the non-linear regime, the details of the smioatfilter and
the non-linear approximation adoptéd|[12, 13] have a siganifiimpact on the evolution of alignment signal.)

The percentual difference in the amplitude of gealignment signal in the primordial and the instantaneoudehis ~ 20%
atz = 0.5 and reache85% at the median redshift of EUCLID. If we had assumed that theetation length of galaxies is fixed,
the bias would evolve proportionally to the growth functiohn instantaneous LA model with constant bias has a simddshift
dependence to a primordial model withx D(z). This result stresses the necessity of measuring the bigalaties as a function
of redshift, from the auto-correlation function of the gasis of galaxies, complementarily to the intrinsic aligemhcorrelation in
order to distinguish between these models. Whilelthelependence is steeper, this signal is also harder to medsern® shape
measurement systematics.

Although the LA model reproduces the LRG alignments at 0.5, it does not make a prediction for the strength of alignment,
i.e., the value of”;. The coupling of the baryons to the tidal field of the dark mattill ultimately determine the value @f; and
the effective redshift of the tidal field. A possibility thae have not explored here is that there is a lag between thkfitdd and
the response of the galaxy. These variants to the LA modebohnbe fully studied with hydrodynamical numerical simiidas of
galaxy formation.

vk, z) = (k3 — Ky, 2koky ) S[o(k, 2)], (21)

F. Contaminants to intrinsic alignments

In Eq. (I3), we have assumed that the only contribution toctioss-correlation between the observed density field aad th
observed shapes comes from intrinsic alignments. Theradaditional contributions to the cross-correlation of ttadagy density
field with galaxy shapes. The shear of a background galaxy lens gives a contribution that is referred to as galaxysgala
lensing G, the topic of SectioR TITC). At low redshift, there is a shbeseline for matter fluctuations along the line of sight,deen
the ¢G contamination can be neglectéd|[10]. At higher redshifts,degree of contamination depends on the accuracy of galaxy
redshifts. For intrinsic alignments, the correlati@h arises between galaxies that are physically associatethemck, separated
by small physical distances. For galaxy-galaxy lensy(g, the contribution to the correlation peaks for pairs of geda such that
the background source is at twice the angular diametendisthetween the lens and the observer. When redshifts aterpéwic,
there is significant scatter of galaxies in redshift spach $hat a galaxy that in reality is behind a lens can be obsgérvbe in the
foreground, mixing thg andgG signals.

In the most pessimistic scenario, where only photometdshiéts would be available for our fiducial targets, the @aged uncer-
tainty in the redshifts of the galaxies will induce a highentamination of galaxy-galaxy lensing to thé correlation measurement
that can readily be modeled, as donelby [14] in the context®fMegaZ-LRG sample. In this context, a joint analysis afraiients,
clustering and weak lensing cosmological constraints g&84hwould be more adequate. Nevertheless, while we considly
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FIG. 3: The ratio between the redshift evolution of the pridial alignment model and the instantaneous model. Véitiwes in gray indicate the
median redshift of the surveys considered in this work, flomto high redshift: LOWZ and CMASS (BOSS), DESI and EUCLID.

spectroscopic redshifts in this work, typical photomesigatter for LRGs can be significantly smaller than for gaaxselected for
cosmic sheaf [44]. Moreover, since LRGs have been showade tiroup environments [45], it is also conceivable tharalination
of photometric redshifts for these galaxies and the groumbsgs can result in redshift estimates for our fiducial tertjeat would
be more accurate than using photometric redshifts alone.

The density field is also subject to lensing blas [35]: magatfon increases the density of galaxies at a given redspificreasing
the brightness of galaxies in the background. Lensing asributes a terngx to the weighting of the tidal field by the observed
galaxy population, where is the convergence field [28] andz) is the faint end slope of the luminosity function of LRGs. Fhi
introduces additional terms/ andmG in Eq. [I1). The termnG arises when a galaxy is being magnified by the same matter
overdensity that is shearing the second galaxy,-afiérises when a galaxy in the background is being magnifiedéogdime matter
overdensity that is producing the tidal alignment of theoselcgalaxy.

We will only consider spectroscopic redshifts in this wdrkr the four samples of LRGs considered, we place an uppitdrihe
contamination of;G, mG andm/I to the intrinsic alignment correlation. We apply the express derived byl [14] in their Section
4.2 for the angular power spectra of each cross-correlatiomeatrtedian redshift of each sample. We limit the integral talkhime
of sight separations (i.e., withir-I1,,,.x, IT;hax]) @nd assume that there is no scatter in the redshifts of dcers. We estimate the
slope of the luminosity function required for computing thagnification correlations using the expression derivetiénAppendix
(ﬂ)%‘%]] and we assume limiting magnitudesrgf, = {22.5,23.5, 24.5} for the Baryon Oscillation Spectroscopic Surt®(BOSS)

], the Dark Energy Spectroscopic Instrument (DESI) [803 the EUCLID missior [24], respectively. Under these agstions,
we find that theyG signal contributes less thdf% to gI for all surveys. The contribution ef.G is at least two orders of magnitude
below thegI correlation and whilen! is at the level of a few percent for LOWZ (LRGs@®R < z < 0.4 in BOSYS), it is several
orders of magnitude below/ for CMASS (described in more detail in Sectloqd 11l), DESI @8dCLID. The contaminations would
decrease further if we decrease the line of sight correldéagth,Il,,... While we have considered,,., = 80Mpc/h to ease
the comparison of our results to those [ofl[10], it would besitale to reduce this value ., = 60Mpc/h, since there is little
contribution to they signal from above those scalés|[iL1], 46].

Ill. COSMOLOGY FROM INTRINSIC ALIGNMENTS

In this section, we explore the cosmological informatiorthie intrinsic alignment of LRGs. We consider three spectpg
surveys: BOSS, DESI and the EUCLID mission. For each of tieeperiments, we constrain their ability to measure priradrd
non-Gaussianity and the BAO signature from the projectedszcorrelation function of the galaxy density field andrth@rinsic
shears.

BOSS[29] is an undergoing survey of the SDSS-III collabioratAmong its targets, it has gathered spectra for low rédlsRGs,
the LOWZ samplel[47], and it has extended the LRG target Seteof SDSS-Il toz = 0.7 h,@], targeting bluer but massive
galaxies in the CMASS galaxy sample, with a typical bias gsinid that of the LRG population. The LOWZ sample has threet
the typical comoving number density of SDSS DR6 LRGs in tlushét range 0.2 < z < 0.4, with the same selection cuts but
extended to fainter objects. While,;- has not yet been measured for these samples, the lineamaiigrmodel has been shown to

10 http:/vww.sdss3.org/surveys/boss.php
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reproduce the alignments of the MegaZ-LRG saniple [21], plitbtometric redshifts up to = 0.7. Hence, we consider both LOWZ
and CMASS galaxies as tracers of the intrinsic alignmemtadig

For the LOWZ sample, we consider a constant comoving numéesity of3 x 10~*h3Mpc=2 in the range 0D.2 < z < 0.4.

The median redshift of the LOWZ samplezis= 0.32. We construct the redshift distribution of CMASS galaxiesi spectroscopic
redshifts obtained in SDSS-II data release 10 (DR10). feidushows the comoving number density as a function of rétdshihe
galaxies in LOWZ and CMASS. The median redshift of CMASS giglaisz = 0.54. The area of the survey footprint, in the DR10
release, i$, 373 deg?. We do not attempt to model in detail the selection effecteeasary for constructing a large-scale structure
catalogue based on the CMASS sample as dorle |n [50], we oplgcexo reasonably reproduce the comoving number density of
CMASS galaxies as a function of redshift. In the final dataasé (DR12), BOSS is expected to have covéfed00 ded. In the
following sections, we make forecasts both for the curyeatiailable sample of BOSS galaxies in DR10 and for DR12. Rer t
LOWZ and CMASS samples, we assume the galaxies have a cohitah~ 2 [47,[49/51].

DESI is a spectroscopic survey scheduled for operationdssivthe year8018 and2022. It will cover 14, 000 deg and it will
target spectroscopic LRGs in the redshift rage < z < 1.1. We consider the comoving number density of LRGs observed by
DESI, shown in FigurEl4, as quoted in Table 3lof [30]. The medéishift of the LRG sample observed by DEStis: 0.7. While
DESI is a purely spectroscopic survey, we assume imagindeivailable from a combination of other surveys.

The EUCLID mission([24], scheduled to launch in 2020, wilHieem a weak gravitational lensing survey®f sr (20, 000 deg?)
combined with a spectroscopic survey for measuring BAO. \Weehthe redshift distribution of LRGs in an EUCLID-type gey
in the rangd.5 < z < 1.5 with:

digﬂ (2) = 2%exp l (zioﬂ , (22)

wherea = 2, b = 1.5 andz, = 0.64 [21,[52], with a resulting median redshift f ~ 0.9. We have chosen to normalize
the distribution of Eq. [[22) to approximately match the ceing number density of LRGs at lower redshift [53]. To assies
impact of the normalization choice in our results, we coesitvo normalizationsng = n(z = 0.32) = 3 x 10~*h3>Mpc?® and
no = 4 x 107*R3Mpc?. We show the resulting comoving number density of EUCLID LsR&3 a function of redshift in Figure
A Since the proposed spectroscopic targets in EUCLID areéhitters [24] (i.e., blue galaxies), LRG redshifts will better
constrained from photometry at a typical precision thatbélo. ~ 0.03(1 + z) for the overall population of galaxiels [24], which
we do not include in our current modelling. Fag = 3 x 10~*h3*Mpc?® andng = 4 x 10~*h3Mpc?, the number of LRGs in the
EUCLID sample will be6.5 million and8.7 million, respectively.

Both for DESI and EUCLID, we consider that the bias of theaedrs changes with cosmological epoch, becoming largégla¢ih
redshifts. As a toy model for this process, we fix the corie@halength of galaxies by making the bias proportional to ghewth
function. To normalize the bias, we match the LRG bias of #maple of [9] atz = 0.32. This implies an almost linear increase in
the bias fromb ~ 2.3to b ~ 3.6 in the rangd).5 < z < 1.5.

'S 0.0006 * w
= I EUCLID, n,=4x10"h°Mpc® - - - - -
= EUCLID, n,=3x10"h°Mpc”® - - - - -
> Lo LOWZ —memmem |
@ g CMASS
= 0.0004 = DES| «reeeeeees *
o rooi i
o
-Q I M
g L |
5 00002 : ..
m r M “~ - ~§ o
-E - ~~ ~ -
> “Itel
(@] 3 =y
g 0.0000 .
© 0.0 1.0 15

FIG. 4: The comoving number density of LOWZ (dashed-triptéted line), CMASS galaxies as observed in DR10 (solid |i#} S| LRGs
(dashed) and EUCLID LRGs (dotted), as a function of redsBifte SectiofTll for a discussion of the underlying assuomgti

The typical systematic errors on galaxy shapes are subdmiaompared to shape noise, and we consider a dispersibe in t
distortion ofo, = 0.25 per component for all scenarios.
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A. Primordial non-Gaussianity

We consider a simple model of local non-Gaussianity (NG)neltiee non-Gaussian primordial gravitational potentigiiven by

onG = bp + [NLDS, (23)

whereg, is the primordial Gaussian potential afig;, is a constant that parametrizes deviations from Gausgiidi. A non-
zero detection of'y;, would rule out any model of single-field inflation [55]. Cuntebest constraints on the local tyge ;, have
been set by th@lanck Collaboration atfy;, = 2.7 + 5.8 (68% C.L.) from observations of the Cosmic Microwave Background
temperature field [56]. In the near future, tighter constiaiwill come from large-scale structure surveys, with EUClbeing
capable of obtaining constraints fof v ;, = 2 from galaxy clusterind [24].

The non-Gaussian density field can be derived from the Poisgoation to first order iff ;, as

NG ~ 5 1+ 2fNrdyp] (24)

wheres© is the Gaussian density field. We can see from Egs. (19)andf{agprimordial non-Gaussianity will have an effect
on the ellipticity of the galaxies. The observakié) behaves similarly to%, the rms variation of mass within a Gaussian sphere of
radiusR. In the presence of primordial non-Gaussianity, there béladditional terms in Eq_{IL9). We can separate the cottiibu
to the gravitational potential from longy;, and short wavelength modes,, following the peak-background split formalism [57/ 58],

¢p = ¢l + ¢37 (25)

and in doing so, we find that the effect of primordial non-Gausity on the scatter of intrinsic ellipticities is

(€®) = () (1 + 4 fxLn)- (26)

On the other hand, local non-Gaussianity gives rise to @stependent bias of halos on large scalels/[58, 59]:

5.0 H2

k2T (k)D(z) ¢’ @7

Ab(k,z) =3fnL(b—p)

wherec is the speed of light]'(k) is the linear matter transfer function at= 0, 6. = 1.686 is the spherical collapse linear
overdensity and we have assumed a merger history consigitbnt = 1, implying that LRGs have not undergone recent mergers.
This assumption is consistent with the assumption of pagsiglution of LRGs in the LA model, where the halo shape iswueined
atz,.

The components of the intrinsic shear field in Fourier spadheé non-Gaussian case are

_ ClpcritQM (k;% B kzv 2k$ky)6NG

702 = =50 =

(k, 2), (28)

where the non-Gaussian density field in Fourier space isdiye

3HZQ (14 2) d®k; 6% (k — ky,2)0%(ky, 2)
NG k _ G k 0NEM 2/ ) ) 2
ez = 002+ N B CrF K-k (29)
and the observed galaxy density field is
NG _ G
6, (k,z) = [b+ Ab(k, 2)]67 (k, 2). (30)

An additional effect of primordial non-Gaussianity is to dify the effect of RSD on large scales by changing the biaes, (i.
replacingb by b + Ab in the expression fog in Eq. [12)) and to add terms to the Kaiser factor [60]. While thange in the
bias produces a significant effect that we take into accautitis work, additional terms become relevant only on noedr scales,
smaller thark > 0.12/Mpc [60]. On small scales, the non-linearity of the densigjcfican also give rise to non-Gaussian effects on
the intrinsic alignments of galaxie$. [61] have exploresstheffects for a different alignment model than the oneidensd in this
work. However, in our case, because we restrict to largesgtiis effect can be safely neglected.
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1. Intrinsic ellipticity-density cross-correlation

In Sectior{1B, we introduced the correlation functionsiud galaxy density field and the observed shears. The fullGaumssian
contribution to the observed density-intrinsic shear&ation in Fourier space is given by

(3¢ (K, 2)7" (k,2)) = ([b+ Ab(K',2)]6% (K, 2)[y"N (K, 2)

b+ Ab(kq, z ”
+ /d3k1#31) NG (K — Ky, 2)0% (ky, 2)]), (31)
To orderfyr, Eg. [31) can be simplified to
~ %k C pCI‘i Q k z
(ONG (K, 2)7" (k. 2)) = —W[MAb(k,,z)](27r)i“'(5<3>(k—k')(k:2 ke, 2k, k )%
H2C Peri 02 Pi(k, z
— 3P fyp M 23)2& M (1 4 2)6®) (k — k’)i(k2 )
ki,
X / 4Pk (K2, — kzgy,zk%kgy)%, (32)
1
wherek,; = k — k; and componentSks,, k2, ) on the plane of the sky.
The non-Gaussian correlation function, integrated ayés
1 C1peritf kG :
wC(r,) = /de( )W M/ dk. / dlum s (K, 2) sin(k, Hmax) J2 (k1 7p)
302 fnp H3 0 (1 (K1,
x [b—l—Ab(kz,z) n fNLWDM +2) / dklz/ by s fyy 2 k; 21 (33)

There are two non-Gaussian terms to or@¥if v ) contributing tow,,. The second term inside the brackets in Eql (33) is the
usual non-Gaussian bias on large scales, derived by [5%.ndiking of scales in the second term of Eg.](32) gives ristécthird
term inside the brackets. Interestingly, this term give®mastant constribution with scale. In all terms in Ef.1(38f bias that
appears in the Kaiser factor of Eq.112) is replaced by the@aussian large-scale bids}- Ab.

The relative contribution from the third term to, . is at the level ofl0—°. Moreover, because this term adds a constant to the
bias, its effect is to rescale the correlation function. gaivhat the strength of the alignment cannot be derived frshgrinciples,
in practice it is not feasible to distinguish between thisastant increase in the bias and intrinsic evolutiorCpfas a function of
redshift at the level 06.001%.

In Figure[% we show the cross-correlation functiop, for a cosmology withfy; = 10 compared to a Gaussian correlation
function for the four samples of LRGs described in SedfidinTlhe error bars have been computed by constructing therieova
matrix of the cross-correlation function, as describedhim Appendix of this work. The correlation function has beestad for
convergence due to numerical integration and our testsatelun upper limit in the uncertainty due to convergende2if%.

The likelihood difference between a non-Gaussian and askaus, . is obtained by summing ovét, j) projected radius bins

Ax* = Z (Wi —wg+,i) O (woej — wgrj) (34)

]

whereC; ; is the covariance matrix. Talle | shows the estimated sitirabise ratios for detecting non-Gaussianityf g, = 10 for
each sample up 200 Mpc/h. For DESI and EUCLID, extending the constraints-fo< 500 Mpc/h does not alter our predictions
significantly. To show the impact of cosmic variance on thresellts, we include in Tab[@ | the constraints on the dedaati non-
Gaussianity in the case where cosmic variance is neglettie shape noise typically dominates the covariance matrismall
scales, cosmic variance increases with scale, as doedeleeafnon-Gaussianity. For all samples consideredSthe for detecting
fnr = 10is < 2 when cosmic variance is taken into account. As a consequésrcengoing and upcoming surveys, primordial
non-Gaussianity needs not be considered when removingtitiesic alignments signal from gravitational lensingredations.

In Eq. (12), we introduced the Kaiser factor, the correcfamtor to the matter power spectrum when RSD are taken irtoua.
In Figure[6(d), we show the impact on the correlation functiden the Kaiser factor is included compared to when itscefte
ignored. In the right panel of Figufe 6[a), we also show thenge in thew,., with RSD, when we apply a non-Gaussianity of
fnz = 10. On large scales, the effects of RSD and primordial non-&angy are similar: they both produce an enhancementin the
correlation function. This is due to the rapid oscillatidrtiee integrand in Eq.L{(14) along the length of the cylindergf.. When
projected, RSD and primordial non-Gaussianity have a airsitale-dependence, they both increase at large separatieglecting
to model the effect of RSD can lead to a false detection of pritial non-Gaussianity of the local type.
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FIG. 5: The correlation function of galaxies and ellipticities in a Gaussian cosmology (solid line) and antobgy with primordial non-
Gaussianity offyz = 10 (dashed line), with a smoothing scaleief.. = 10 h/Mpc for the different surveys considered (LOWZ and CMASS in
DR10 and DR12, DESI and EUCLID).

TABLE I: Signal-to-noise ratio for the detection of priméatinon-Gaussianity of vz, = 10 in the cross-correlation of the galaxy density field with
intrinsic ellipticity for the surveys considered in this tkkoWe have definedo = 1 x 10~*h*Mpc=3.

Survey LOWZ CMASS DESI EUCLID
DR10 DR12/DR10 DR12 n=3 n=4
With cosmic variance|| <0.1 0.11

0.14 0.17| 0.95| 1.7 1.8
0.20 0.24| 1.3 2.1 2.5

Without cosmic variancg 0.26 0.33

B. Baryon Acoustic Oscillations

We study the level of detectability of Baryon Acoustic Olstibns (BAO) in the intrinsic ellipticity-density field oss-correlation.

We compute the likelihood difference between the case irchvitie cross-correlation has a matter power spectrum witjoba
damping but no oscillations,” “&&!es

ot [62], and the case in which the effect of the baryons is prtea%ﬁrgglesz

2 _ wiggles  nowiggles —1 wiggles  nowiggles
Ax" = Z (“’gm Wt i Ciy (Wor. Wo+,j :
4,J

(35)

In Figureq§ 7(8)-7(dl), we show the two correlation functiaith and without the BAO feature for BOSS, DESI and EUCLID. In
these figures, we see clearly that the BAO appears invfhecorrelation successively as a trough, a node and a bump cibean
110 Mpc/h scale. The usual bump observed in the matter correlaticetitmappears at 100Mpc/h, roughly coinciding with the

location of the trough inv,.. This feature has also been called a “shoulder” in the gagmtgixy lensing correlation function by
[63]. The correlation functions without wiggles have nuialty converged to a tolerance ef 1%.
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FIG. 6: Comparison of the effect of RSD on the cross-cori@fatunction w4 with the effect of primordial non-Gaussianity of the locgpé
parametrized bynr = 10 for LOWZ, CMASS, DESI and EUCLID. In projection, the two edts have a similar scale-dependence, increasing at
large separations.

In Figurel8, we show the estimated cumulative signal-tes@aatio of the detection of the BAO in the, cross-correlation when
we take a fixed upper limit to the interval 800Mpc/h and we vary the lower bound. TH& N displays a significant increase at
~ 110 Mpc/h. We do not extend our computation of t§¢N below the scale 050Mpc/h due to differences in the prediction
of wy4 in the non-linear scales by CAMB/halofit and the analyticadictions of the case without BAO by [62]. For the BOSS
samples, th&'/N at80 Mpc/h reached .8 and2.2 for LOWZ and CMASS in DR10, respectively, aBd and2.7 for those samples
in DR12. For the LOWZ sample only, cosmic variance has a @amt impact on the5/N estimate due to the smaller volume
probed at low redshift. For DESI, the cumulati$¢N predicted isl12 at 80 Mpc/h and for EUCLID, it is15 and 18 for with
no = 3 x 1073h3Mpc—3 and withng = 4 x 1073h3Mpc—3, respectively. Thus, the BAO signature could be detecteulgt
significance in DESI and EUCLID. In these surveys, largdessaucture probes will be combined to achieve tighter caegical
constraints. The addition of thgl correlation to the ensemble of observables probed by theseys is worth considering in the
context of measuring the evolution of the distance scala®BAO.

C. Comparison to galaxy-galaxy lensing

The detectability of the BAO and primordial non-Gaussigititthe galaxy-galaxy lensing signaj®) were studied byl [63]. In
the case of primordial non-Gaussianify,/[63] obtain théofeing expression for the projected surface mass densitfjieiof a lens
atzr:

kdk

21

AZ(TP,ZL) = PO/ [b + Ab(k/’,ZL)]P(;(I{?,ZL)JQ(kTp), (36)

wherepy = 2.77 x 101 (Q2,h?)MoMpc—2 is the mean comoving mass density. This expression takesagtount the scale
dependent bias of the lenses in a similar spirit as our [Ed). (B8e main difference between E{.{33) and Eql (36) is thecefif
the scale-dependent bias on RSD in the case of IA. We compé&iguire 9 the fractional difference inX(r, z1,) and inw,+ when
non-Gaussianity of v, = 10 is considered (similar results fgi& are presented in Figure 5 6f [63]). In the galaxy-galaxyileps
case, we choosg, and the bias values at the median redshift of the surveysdenesl. For LOWZ and CMASS, the bias is fixed
atb = 2, while for DESI and EUCLID, we scale the bias keeping the @ation length fixed and normalizing it to match the bias
derived by [1D] for the sample of|[9] at = 0.32. The fractional change in the inferred surface mass depsitfile andw, are
similar because they result from the scale-dependent Breseffect of non-Gaussianity also enters, through the RSD factor.

[6d] find that, for lens samples of LRGs and clusters at {0.3,0.5,0.8}, they cannot distinguish betweeh;, = 0 and
fnz = 100 but they can achieve a significant detection of the BAO fesituthe projected surface mass density from galaxy-galaxy
lensing. As suggested in the previous sectigi,andg/ could be combined to yield a more robust detection of the BAO.

IV. CONCLUSIONS

The intrinsic alignments of LRGs may become a cosmologalih the near future. We have presented forecasts for tieetien
of the BAO signature and of primordial non-Gaussianity ia thhoss-correlation function of LRG positions and shapesifigoing
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FIG. 7: The correlation function of galaxies andellipticities in the cases: with baryons but no wiggles [6&]lid line) and for our fiducial case
(dashed line). The data points correspond to the radiatigdd correlation function with errors predicted from thgartance matrix. At~ 110

Mpc/h, the BAO appears as a decrement, a node and an incremept ivvith respect to the “no wiggles” case, rather than the usuadbpresent
iNwgg.

and upcoming surveys. Our predictions are based on the LAehwddl] and further development by [2, 3] and the NLA model of
[12], which yield similar results on scales aboMeMpc/h but differ on non-linear scales. Our results are expresséerins of the
projected correlation function of galaxy positions andiigic shearsy,..

At low redshift, we constrain the strength of alignment graetrized by, by means of the observational results[of [9] toy, .
Our result is consistent with that df [10]. We explore theseffof smoothing the tidal field on different scales and we fivat it
has a significant impact on non-linear scales in the croegletion function of positions and shapes. The obsermatioonstraints
are consistent with a smoothing over the scales of a typiB&h lhalo. The impact of the smoothing filter is smaller on sreedlles
and larger on large scales in the auto-correlation funstafrintrinsic shears comparediq, . While the NLA model reproduces
the observedv,. surprisingly well even below0 Mpc/h, there is a need for simulations to study the alignments dgs&Rn small
scales to fully address non-linear physics. We also exgltre redshift dependence of the LA model and compared thditadg
of wy4 if alignments are fixed at the redshift of formation of a galéx the case where the galaxy reacts instantaneously to the
large-scale tidal field. We have shown that at the curreed lefuncertainty, it is not possible to distinguish betwésmtwo models.

We computed the covariance matrix associated o, presented in the Appendix, and we have shown that whilentlaisix is
dominated by shape noise on small scales, cosmic variarsca banificant contribution on scales 100 Mpc/h for all surveys
considered. Cosmic variance is negligible in the scale ®BhO for the assumed value of, except for the LOWZ sample, which
probes a much smaller cosmological volume.

The BAO feature inwy is different from the usual bump in the galaxy correlationdtion,wy,. In the case ofv,, the BAO
appears as a consecutive trough, node and bump around EaescE) Mpc/h, similarly to the observed effect on thé& correlation
function [63]. The trough coincides with the position of theak in the galaxy correlation function,at100 Mpc/h for our fiducial
cosmology. For the LOWZ and CMASS samples, the BAO deteetionld be marginally significant &/ N = 2.3 andS/N = 2.7
once BOSS is completed. For DESI and EUCLID, we obtain fastscaf significant detections &Y N = 12 (DESI), 15 (EUCLID
with ng = 3 x 1073h3Mpc—2) and18 (EUCLID with ng = 4 x 10~3hR3Mpc—3).
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FIG. 8: The signal-to-noise ratio of the BAO feature in thg, cross-correlation as a function of the lower bound of therival of projected radius
for which it is calculated, keeping the upper bound fixed@Mpc/h. We see a clear increase in tH¢N when the interval comprises the scale
of the BAO, ~ 110Mpc/h. The S/N converges t®.3, 2.7, 12 for LOWZ DR12[8(@)), CMASS DR1Z(8(p)) and DEST (§(c)), respively, at
rp = 80 Mpc/h. For EUCLID (8(d)), theS/N predicted depends on the assumed comoving number densityalization, yieldingS/N = 15
andS/N = 18 for ng = 3 x 107 3h*Mpc~2 andng = 4 x 10~ 3h3>Mpc 3, respectively.
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FIG. 9: The fractional effect of primordial non-Gaussigr(if . = 10) and the BAO feature in the projected surface mass densifilgoobtained
from galaxy-galaxy lensing for lenses at the median retishifLOWZ, CMASS, DESI and EUCLID LRGs.

We find that there are two non-Gaussian contributions to to orderO(fxr). One of the terms comes from the non-Gaussian
bias of large-scale structute [59]. The second term is emnstith scale but dependent on redshift. Interestingiy,térm propagates
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the effect of non-Gaussianity from large to small scaledodanately, it is at leas? orders of magnitudes below the contribution of
the non-Gaussian bias term. We have also considered ttat effeon-Gaussianity on RSD, as in [60]. Overall, we find thatlue
of fxr = 10 (at the 1.2 level with Planck measurements) yieldsy N < 2 for all surveys.

On very large scales, above the scale of the BAO, the effeBSH is roughly proportional to the effect of non-Gaussiaiit
projection. While ink— space these terms have a different dependence, in proje®ED can mimic primordial non-Gaussianity of
the local type. Neglecting RSD in the modelingwafy can lead to a spurious detection of primordial non-Gauggian
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Appendix A: Covariance Matrix Derivation

The correlation functiorg, (rp, II, z) presented in Eq.[{7) is not spherically symmetric and., in Eq. [14), represents a
projection of¢,, (rp, II, z) along the direction of the line of sighl], between—II,,.. andIl.., and an angular average on the
plane of the sky. We present in this Appendix the calculatitthe covariance matrix between radially averaged bine@projected
correlation function of two observables A and B in the casw/iich the spherical symmetry has been broken. We note tigat th
is relevant, for example, in the presence of RSD. In the casplrerically symmetric correlation functions, a derivatiof the
covariance matrix is given by [54].

The projected correlation function of two observables A 8pdveraged over a radial bin with boundarjesyin, 7 max| and
centered om;, is given by

1t Ti,max
wap(ri) = T dr rwap(r), (A1)

T4, min

wherewa (r) is the continuous projected correlation function, ahds the area of bin.
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For computing the covariance matrix element between twiarbths: and; of the projected correlation function, we first compute
the covariance matrix of the power spectrum of observablard\B,

Cg‘AB = <PgB(k17 Z)PzB(kQa Z)) - <PgB(k15 Z)><Pg8(k2a Z))) (A2)

where the superscriptindicates that the observables are discrete, i.e., thegdknsity field is not a continuous field, but is rather
sampled at the positions of the galaxies. For the densitirgic shear power spectrum,

J ~(2m)36D) (kg + ko) 1 o2
CPg+ (k1,k2) = 7 Pyg(ky,2) + n(z) Piy(ki,2) + n(l)
21)35(P) (ky — k
= V( : 2>Pg2+(k1,z), (A3)

whereo, is the intrinsic scatter in the galaxy sheat§z) is the average comoving number density of galaxies at a geeshift and
Vs is the survey volume.

We work in cylindrical coordinates both in Fourier space anckal space; the components of thandr vectors arék , 6, k.)
and(r,, ¢, IT) respectively. The angle betweenandr; is ¢12. The covariance element of the correlatiogg for radii ; andr,
can be obtained by a Fourier transform(@t, |

3
Cuwap(ri,m) = (2Hmax)2/de2(z)/é:)13/é:)2 C$. (k1 ka, 2)

X jO (klemax ).70 (k/)QszaX)eile e elk2L T2 ’ (A4)

where we have applied the Limber approximation consistemith our computation of the projected correlation funaotio Section

[TAl

To obtain the covariance matrix of the bin averaged coiicelatve average over the annuli,

2Hmax d®k d3k
C@AB(TZ',TJ‘) = / d27“1/ dQ’I“Q/dZWQ / )1 /(2 )2 CPAB( 1,k2,z)

iky | Ty zku T2 (A5)

X]O(klz max).]()(k2z max)e

In the density-intrinsic shear case, it follows that Eq.]{&4n be specified to be

(2Hmax) 1K1 r1 1 21 T2
Ca,, (ri,rj) = BrVAA dzW? (2 / d2r1/ d2r2/d3k1/d3kgek ik
JO(klz max)]O(k2z max) X
{0P) (k1 + ka) [Pyg(ki, 2) +n 7' (2)] [Piy(ki,2) + 020" ()]
+ 0P (kg — ko) P2, (k1,2)}, (A6)

X

where A; and A; are the areas of the radial bins over which the average ofdhelation function is performed, delimited by
[T min, Ti,max] and 7 min, 7j,max]. Performing the integration for each term yields the follogvexpression for the covariance
matrix,

C

Wg+

) — ArllnaxF (13,75, Ar) 2 0'27 (2M ax)? bQU?Y/ 2
(ri,r;) = VoA A, /de (Z>n(z)2 + VoAA, () d2W*(z)

dk
/ dk; . ku 2 (k12 Tlimax ) Ps (K1, 2) X

[Tj male klj_r] max — Ty, mln.]l li_Tj min [T’L max]l (li_Tz max) ri,minjl (li_Ti,min)] +

27
C cri Q
TFVIZB‘Z / d¢12 /dT1 Tl/dTQ TQ/dZW2 (_1/7 (t) Ib[)

/ Ay dky L ,;jgg(klz )82 (k1 1 )S2 (k) Py (K1, 2)

{[0*Ps(k1, 2) + 07 (2)] [Jo(k s [r1 — r2|) + Ja(ki s |re — ra])]
b?Ps(k1, 2) [Jo(k1s|ra + r2]) + Ja(kio|ra + r2])]}, (A7)

X

+

X

X

+
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wherejy(x) is the zeroth order spherical Bessel functidn.and.J, are Bessel functions of the first kind, and we have defined the
functions 71,

b 2 b2 _ 2 _ b2 2 b
Ji(a,b) = ab/dmjl(ax)jl(bx)mfl _— (@+b)—(a ) atanh [ — |, (A8)
8ab a
andF(r;,rj, Ar),
]:(Ti,minzTi,maxarj,minarj,max) = jl (ri,maxa rj,max) - jl (Ti,maxarj,min)
+ jl (ri,min; rj.,min) - jl (rj,maX; ri,min) . (A9)

For each power oF in Eq. (A1), there is a factor due to redshift space distostim the Kaiser approximatio(ﬂ, + ﬂkf/kQ)Q, that
we have left implicit. As mentioned in Sectibn1l B,is related to the growth factor through= Q5,°(2)/b(2).

Figure[11(d) shows the correlation coefficient for the ciarare matrix ofw, (r;, ;) for the CMASS sample in DR10 assuming
the comoving number density shown in Figlile 4. On small s¢dlee covariance matrix is predominantly diagonal due & th
dominance of the shape noise term. Fidure 31(b) shows tieehetiveen the covariance matrix that only considers shajseithe
first two terms of Eq[CAI7), compared to the full covariancenimatncluding cosmic variance terms. The correlation io&fnt for
DESI and EUCLID are also shown in Figufes T2(a) gnd 13(apeesvely. We also compare the full covariance matrix toshape
noise-only covariance in Figurges 12(b) 4nd IB(b). For CMASESI and EUCLID, cosmic variance terms only become sigauific
at scales of above00OMpc/h. The LOWZ DR10 sample, in the contrary, shows a significafetoefrom cosmic variance on small
scales in Figures 10(a) apd 10(b) due to the small cosmalbg@ume probed. In general, cosmic variance does not tatffiec
detection of the BAO except for the LOWZ sample (both in DR&@ BR12), but it can have a significantimpact on the deteaifon
primordial local non-Gaussianity.

Convergence tests of the computation of the covariancexvedre performed for all terms that required numericalgngtion in
Eg. (A7) and in all variablesk(, k., z, r1, 2, andg;,). The level of convergence achieved in all of these casesaivas/s below
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