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The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing ob-
servables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan
Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski & Bland-
ford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic
alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to
constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation
function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey,
we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of
1.8 and2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to2.3 and
2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey
following the EUCLID redshift selection function, we find signal-to-noise ratios of12 and15, respectively. Lo-
cal type primordial non-Gaussianity, parametrized byfNL = 10, is only marginally significant in the intrinsic
alignments signal with signal-to-noise ratios< 2 for the three surveys considered.

I. INTRODUCTION

The intrinsic alignments of galaxies are correlations between their positions, shapes and orientations that arise dueto physical
processes during their formation and evolution as tracers of the large-scale structure of the Universe. Examples of such processes
are stretching by the tidal field of the large-scale structure [1–3] or clusters of galaxies [4, 5], the interaction between the angular
momentum of a galaxy and the tidal torque [6], or dynamics along preferred directions [7, i.e., the filamentary distribution of galaxies].

The observed alignments of Luminous Red Galaxies (LRGs) [8]have been shown to be adequately reproduced by the linear
alignment (LA) model of [1–3] on large scales (> 10Mpc/h) in the redshift range0.16 < z < 0.47 [9, 10]. On smaller scales,
[11, 12] have suggested replacing the linear matter power spectrum by its non-linear analog. The non-linear alignment (NLA) model
is widely used, despite the simplicity of the non-linear treatment, which does not evolve the non-linear scales consistently with the
Poisson equation. A slight modification to the NLA model was proposed by [13], although once again without fully solving for the
non-linear dynamics. [14] showed that the NLA model reproduces observations of the alignments of LRGs up toz ∼ 0.7 and on
scales of comoving projected separations> 6 Mpc/h resorting to the MegaZ-LRG sample [15, 16]. On smaller scales, significant
progress has been made in developing halo models that reproduce the currently available observational constraints andextend the
forecasts of the intrinsic alignment contamination to weaklensing observables to higher redshifts and to satellite galaxies [17–19].
(Currently, there is no evidence of alignments for blue galaxies [20] and we do not consider them in this work.)

The intrinsic shapes and alignments of galaxies have been explored as a contaminant in weak gravitational lensing observables
[2, 21] but little is known about the cosmological information they encode. In the upcoming decades, imaging surveys like the
Dark Energy Survey1 (DES) [22], Hyper-Suprime Cam2 (HSC)[23], Pan-STARRS3, the Kilo-Degree Survey4 (KiDS), EUCLID5

[24], the Large Scale Synoptic Telescope6 (LSST) [25] and WFIRST7 [26] will map the large-scale structure of the Universe and
explore the nature of dark energy [27] by measuring the clustering of galaxies and the effect of weak gravitational lensing [28] over
unprecedented volumes.

In a complementary effort, ongoing spectroscopic surveys such as the Baryon Oscillation Spectroscopic Survey [29], and upcom-
ing ones, such as SDSS-IV 8, the Dark Energy Spectroscopic Instrument (DESI) [30], EUCLID, WFIRST, and the Prime Focus
Spectrograph (PFS) [31], will gather spectra of millions ofgalaxies and quasars with the goal of measuring the distancescale probed
by Baryon Acoustic Oscillations (BAO) and the growth of structure through redshift space distortions (RSD).

In the context of these rich datasets, no probe of large-scale structure should be left unexplored. Intrinsic alignments are one
such probe: an effect that was once just thought to be a contaminant to weak gravitational lensing measurements, could become a
complementary source of cosmological information. In the LA model, the tidal field determines the strength and evolution of the
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alignments, which depend on the growth function of the matter density perturbations and their power spectrum. In particular, the
LA prediction is thus sensitive to RSD, primordial non-Gaussianity and BAO. Another example of the potential of alignments to
constrain cosmology was proposed by [32], who suggested that gravitational waves from inflation could be detected in theintrinsic
alignments of galaxies.

In this work we assume that red galaxies (the ancestors of lowredshift LRGs, and which we will henceforth also refer to as LRGs)
follow the NLA model and we study the cosmological information contained in the galaxy density-intrinsic shear cross-correlation
function. In Section II, we summarize the tidal alignment model, we construct the galaxy density-intrinsic shear cross-correlation
and we discuss possible contaminants and uncertainties of the model. In Section II D we study the typical scales at which the
tidal field has an impact on the alignment of a galaxy. In Section II E we explore an alternative to the NLA model in which the
alignment between a galaxy and the tidal field of the large-scale structure occurs instantaneously. In Section III, we study different
cosmological observables that can be constrained using theintrinsic ellipticity-galaxy density cross-correlation: primordial non-
Gaussianity (Section III A) and the BAO (Section III B). In Section III A, we also analyse the effect of RSD on the cross-correlation.
In Section III C we compare our results to the constraints thecome from galaxy-galaxy lensing. In the Appendix we give a derivation
of the Gaussian covariance matrix of the galaxy density-intrinsic shear cross-correlation in real space.

Unless otherwise noted, throughout this paper we work with the following Planck [33] fiducial cosmology:Ωbh
2 = 0.022,

ΩCDMh2 = 0.1204, h = 0.67, ΩK = 0, As = 2.21× 10−9, ns = 0.9619, kp = 0.05 Mpc−1 and we defineΩM = Ωb +ΩCDM.

II. THE TIDAL ALIGNMENT MODEL

We define the ellipticity of a galaxy ase = (1− q2)/(1+ q2), whereq is the ratio of the minor axis to the major axis of the best-fit
ellipse to the galaxy image. The ellipticity can be decomposed in two components,e+ = e cos(2θ) ande× = e sin(2θ), with θ the
position angle of the galaxy. The componente+ indicates radial (if negative) or tangential (if positive)alignment of a galaxy with
respect to another galaxy. Thee× component measures the45 deg rotation with respect toe+ [34]. The distortion,γ, acting on a
galaxy is the change in its ellipticity; it can also be decomposed intoγ+ andγ×. The relation between distortion and ellipticity is
γ = e/2R, whereR is the responsivity factor, the response of the ellipticityof a galaxy to an applied distortion [34].

When we measure the shapes of galaxies, we are measuring a combination of the effect of the tidal fieldγI , the effect of weak
gravitational lensing on those shapesγG, and the intrinsic random shapes,γrnd:

γobs = γI + γG + γrnd. (1)

The topic of this work is the correlation ofγI with the galaxy field. We will consider as the fiducial model ofintrinsic alignments
the NLA model proposed by [12]. In this model, an intrinsic shear due to the tidal field of the primordial potential,φp,

γI(x, z) ≡ (γI
+, γ

I
×) = −

C1

4πG
(∇2

x −∇2
y, 2∇x∇y)φp(x) (2)

acts on a galaxy, whereC1 is some undetermined constant measuring the strength of thealignment,G is Newton’s gravitational
constant and the quantity in parentheses is the tidal tensoroperator on the plane of the sky.

The primordial potential is evaluated at a redshiftzp, during matter domination, when the galaxy was formed. Thisis anansatz,
since there is no first principle model from which the LA modelis derived. The redshift at which intrinsic alignments are set
is unconstrained, but [14] have shown that the current measurements of the intrinsic alignments of LRGs are consistent with the
primordial alignment model.

On large scales, the density field behaves linearly,δlin, and can be related to the primordial potential through the Poisson equation,

φp(k) = −
4πGa3ρ̄(z)

D(z)

δlin(k, z)

k2
, (3)

in Fourier space, wherēρ(z) is the mean density of the Universe at redshiftz, D(z) is the growth function anda is the scale factor.
In practice, we can only measure shapes of galaxies at the positions of galaxies, hence, we observe the density-weightedintrinsic

shear field,̃γI = (1 + δg)γ
I , with δg = bδlin the galaxy overdensity field andb, a scale-independent bias.9 This weighting is of

particular importance for intrinsic alignments, since galaxies that enter the correlation are physically associated. The details of the
weighting might also depend on selection effects of the galaxy sample, such as fluxS/N or apparent size, which we do not model
in this work. In the linear regime, this implies an effectiverescaling of the bias, while in the non-linear regime, it canchange the

9 For simplicity, we consider the galaxy bias to be independent of luminosity. The change of the bias with luminosity will depend on the properties of the galaxies
selected. We do not attempt to model this effect in this work,but the bias as a function of redshift and luminosity can be constrained by the galaxy auto-correlation
function. Moreover, there is significant evidence that the strength of the alignments increases with luminosity [11, 14], although this could also be consequence of
mass dependence, as suggested by [19].
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shape of the smoothing filter. A similar source-lens clustering is negligible in the context of galaxy-galaxy lensing, even at the typical
current precision of photometric redshifts [35].

The intrinsic shear in Fourier space is given by

γI(k, z) =
C1

4πG
(k2x − k2y, 2kxky)S[φp(k)], (4)

where we have defined a smoothing filter for the primordial potential,S, that removes the effect of the tidal field on scales smaller
than the typical halo inhabited by LRGs. The purpose of applying a smoothing filter is to smooth the tidal field within the scale of
the halo inhabited by the galaxy and to suppress the correlation due to non-linear effects on small scales that perturb the alignment.
Numerically, the smoothing filter also avoids spurious features in the correlation function due to a sharp cut-off ink−space. We
discuss the effect of the smoothing filter in Section II D.

The density-weighted intrinsic shear field is given by a convolution in Fourier space,

γ̃I(k, z) =

∫

d3k1γ
I(k− k1, z)

[

δ(3)(k1) +
b

(2π)3
δlin(k1, z)

]

, (5)

whereδ(3) is the three dimensional Dirac delta.
The galaxy density field and the+ component of the weighted intrinsic alignment tensor are correlated with a power spectrum

given by

Pg+(k, z) = b
C1ρcritΩM

D(z)

k2x − k2y
k2

P lin
δ (k, z). (6)

In the NLA model,P lin
δ (k, z) is replaced by the non-linear matter power spectrum in Eq. (6). [13] suggest a slightly modified

version of the NLA model, whereg+ is constructed assuming that the tidal field does not undergonon-linear evolution, whileδg
does. This is also an approximation to the problem of correlating the non-linear density field with the primordial tidal field, but does
not improve on the physical treatment of the non-linear dynamics. In this work we use the code CAMB[36] to obtain the non-linear
matter power spectrum.

A. Modeling of the correlations

For modeling the correlations between galaxies and intrinsic shapes, which is the subject of this work, we will considera redshift-
space correlation function between two observablesa andb,

ξab(rp,Π, z) = 〈a(0, χ(z), z)b(rp, χ(z) + Π, z)〉, (7)

whererp is the comoving projected separation vector, in the plane ofthe sky,χ is the comoving distance along the line of sight, and
Π is the perpendicular component of the separation vector projected along the line of sight, andz is the redshift.

We can relate the correlation function in redshift space to the power spectrum of the two observablesa andb through:

ξab(rp,Π, z) =

∫

d2k⊥dkz
(2π)3

Pab(k, z)e
i(k⊥·rp+kzΠ). (8)

Analogously to the choice of cylindrical coordinates in Eq.(7), we choose cylindrical coordinates in Fourier space (along the line of
sight,kz and perpendicular to it,k⊥). We will henceforth refer toξab(rp,Π, z) as the angular average over the directions ofrp (i.e.,
on the plane of the sky) of Eq. (7). The projected correlationfunction under the Limber approximation is defined as

wab(rp) =

∫

dzW(z)

∫ Πmax

−Πmax

dΠ ξab(rp,Π, z), (9)

where the weight functionW(z) depends on the observables. The advantage of the estimator in Eq. (9) is that it only computes the
correlation between galaxies in a box of length2Πmax along the line of sight. This procedure reduces the contamination from other
sources of correlation, as we will discuss in Section II F. Weapply here the weighting derived in [20]:

W(z) =
p2(z)

χ2(z)dχ
dz
(z)

[

∫

dz
p2(z)

χ2(z)dχ
dz
(z)

]−1

, (10)

wherep(z) is the redshift distribution of the galaxies in the sample, normalized to unity. This is the correct weighting when counting
pairs of galaxies in the cylinder defined by coordinates(rp,Π). The comoving distance factors account for the change of comoving
volume with redshift.
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B. Intrinsic shape correlations

In the tidal alignment model,γI depends on the primordial gravitational potential throughEq. (2). As a consequence,γI and the
density field are correlated. This correlation can be directly measured, by taking galaxies as tracers of the density field and building
the correlation function with their measured ellipticities. We will refer to the correlations between LRG positions and LRG shapes as
gI. We will study the cosmological information imprinted on the correlations between the intrinsic ellipticities and thedensity field,
as traced by galaxies. Under these assumptions, the cross-correlation between the observed density field and the observed shapes,
given by Eq. (5), at a given redshift is

gI = b(z)〈δγI〉, (11)

We have neglected here the contributions of galaxy-galaxy lensing and magnification bias to the correlation. We will discuss those
contributions in Section II F.

In the tidal alignment model, thegI andII correlation functions were computed by [2, 3]. We incorporate the effect of RSD
on large scales by transforming the non-linear matter powerspectrum,Pδ(k, z) to the anisotropic redshift-space distorted power
spectrum,Ps(k, z), through the transformation derived by [37] and [38] and applied to intrinsic alignments already in [10]. Moreover,
because of the smoothing filter acting on the primordial potential in Eq. (4), the tidal field power spectrum is further multiplied by
the smoothing filter,

Ps(k, z) = Pδ(k, z)S(k)
(

1 + βµ2
)2

, (12)

whereβ = Ω0.55
m (z)/b(z) [39], andµ = cos(θk) = kz/k whereθk is the angle betweenk and the line of sight. This approximation

to the effect of RSD has been shown to be valid over an arbitrary range of scales [40].
The redshift spacegI correlation functions, projected along the line of sight onthe cylinder defined byΠmax, are given by:

ξg+(rp, z) =
b

π2

C1ρcritΩM

D(z)

∫ ∞

0

dkz

∫ ∞

0

dk⊥
k3⊥
k2kz

Ps(k, z) sin(kzΠmax)J2(k⊥rp), (13)

whereJ2 is the second order spherical Bessel function, andξg×(rp,Π, z) = 0. Integratingξg+ over the redshift range of the LRG
sample using the Limber approximation, we obtain:

wg+(rp) =

∫

dzW(z)
b

π2

C1ρcritΩM

D(z)

∫ ∞

0

dkz

∫ ∞

0

dk⊥
k3⊥

(k2⊥ + k2z)kz
Ps(k, z) sin(kzΠmax)J2(k⊥rp). (14)

We have chosenΠmax = 80Mpc/h in agreement with [10].
For computing the auto-correlation functions between the different components of the ellipticity,++ and××, we find it convenient

to define the following functions,

fE(k) =
k2x − k2y

k2
,

fB(k) =
2kxky
k2

. (15)

With this notation, the auto-power spectrum ofγI
+ is given by

P++(k, z) =

(

C1ρcritΩM

D(z)

)2

Ps(k, z)S(k)f
2
E(k)

+

(

b
C1ρcritΩM

D(z)

)2 ∫
d3k1

(2π)3
fE(k1)Ps(k1, z)Ps(|k− k1|, z)S(k1)S(|k − k1|)

× {fE(k1) + fE(k− k1)} . (16)

For obtainingP××(k, z), it suffices to replacefE by fB in the above equation
The smoothing filter has a larger impact on the auto-power spectra of the intrinsic ellipticities,P++ andP××, since the smoothing

filter appears squared in Eq. (16). From now on, we neglect quadratic terms in the power spectrum in Eq. (16), since they do not
have a significant contribution toP++(k) [2].

The auto-correlation functions of intrinsic ellipticities are given by
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w++(rp) =
1

2π2

∫

dzW(z)

(

C1ρcritΩM

D(z)

)2 ∫ ∞

0

dkz

∫ ∞

0

dk⊥
k5⊥

(k2⊥ + k2z)
2kz

Ps(k, z)S(k)

× sin(kzΠmax)[J0(k⊥rp) + J4(k⊥rp)], (17)

w××(rp) =
1

2π2

∫

dzW(z)

(

C1ρcritΩM

D(z)

)2 ∫ ∞

0

dkz

∫ ∞

0

dk⊥
k5⊥

(k2⊥ + k2z)
2kz

Ps(k, z)S(k)

× sin(kzΠmax)[J0(k⊥rp)− J4(k⊥rp)]. (18)

C. Strength of alignment

We obtainC1 from fitting the density-intrinsic shear cross-correlation. As illustrated by Eq. (1), the shape of a galaxy has
contributions from the shear, the tidal field and a random noise component. For low redshift galaxies, the effect of gravitational
lensing is negligible. We use low redshift observations of the intrinsic shapes of LRGs by [9] to constrain the value ofC1, the
amplitude of the intrinsic alignment effect. We assumeb = 2.12, the bias derived for this sample of LRGs from their clustering [10].

[9] measuredwg+(rp) for 73, 935 LRGs in SDSS DR6 in the redshift range of0.16 < z < 0.47 and with a median redshift of
z̄ ∼ 0.32. In that work, LRGs are selected by applying the technique of[41], identifying central LRGs and removing satellites for
each halo. The volume associated with each halo is a cylinderwith dimensionsrp = 0.8Mpc/h and∆Π = 20Mpc/h. This cut
effectively removes the one-halo term contribution towg+.

We perform a least-squares fit towg+(rp) and obtainC1ρcrit = 0.131 ± 0.013 with a reducedχ2 = 3.2, for rp > 1 Mpc/h.
Figure 1 shows the results of our fit to the data from [9] (theirfigure 3). If we only take into account points atrp > 10 Mpc/h
for the fit, we obtain a consistent result ofC1ρcrit = 0.126 ± 0.013 with a reducedχ2 = 0.9. [10] also performed the fit on large
scales, where the effect of the smoothing filter is not significant; our results are in agreement with theirs. Because we are interested
in cosmological constraints on large scales, we adopt the latter value ofC1 as our fiducial amplitude for the remaining sections. Our
numerical convergence tests forwg+ indicate a1.2% additional uncertainty in the value ofC1.

We can compare the scatter in intrinsic ellipticities to thepredicted value from the NLA model, which is obtained from the power
spectrum of the gravitational potential as in Eq. (8) of [1]:

〈e2〉 = 4R2〈γI 2
+ + γI 2

× 〉,

= 4R2

∫ zmax

zmin

dzW(z)

(

C1ρcritΩM

D(z)

)2 ∫
d3k

(2π)3
Ps(k, z)

[

f2
E(k) + f2

B(k)
]

S(k),

≈ 2× 10−3. (19)

Integrated over the range0.16 < z < 0.47, the NLA prediction yields a much lower value for〈e2〉 than the measured value for
the LRGs of [9], for which〈e2obs〉 ≈ 0.1 (R = 0.947). We are assuming here thatR is independent of redshift. In practice, this will
most likely not be true, but it would require an unrealistic variation of at least an order of magnitude inR to bring the NLA model in
agreement with〈e2obs〉. The shapes used by [9] are not corrected for the Point SpreadFunction (the response of an unresolved source
to the combined effect of the telescope optics and the atmosphere). This results in an overestimation of〈e2〉 but, once more, this
effect, although highly significant [10], is not sufficient to account for the difference between the NLA prediction and the observed
value. “Shape noise” due to a random component of ellipticity, γrnd, is the dominant contribution to the scatter and prevents usfrom
estimatingC1 with this method.

D. Smoothing filter

[2] suggest the use of a top-hat filter ink−space in Eq. (4) to remove the effect of the tidal field in galactic scales. [1] use a
top-hat filter in real space. [10] do not use any particular smoothing because they focus on scales> 10 Mpc/h. These assumptions
are all consistent with the assumption of linearity. In thiswork we use a well-behaved filter ink-space in order to avoid non-physical
behavior of real-space correlation functions. We thus consider the following smoothing filter as our fiducial filter:

S(k) = exp[−(3k/kmax)
2]. (20)

The filter is a Gaussian function that decays by a factor1/e at k = kmax/3. This choice of smoothing filter removes spurious
oscillations in the correlation function produced by a sharp cut-off ink-space.

We can see in Figure 1 that the smoothing considerably changes the predicted correlation function. The smoothing filter that best
reproduces the measured correlation function haskmax = 10h/Mpc. This is roughly consistent with the typical scale of an LRG
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FIG. 1: The observed galaxy-intrinsic ellipticity correlation function (diamonds),wg+(rp), from [9] compared to our best fit intrinsic alignment
model with a smoothing filter of typical scalekmax = 10h/Mpc (solid line). The dashed and dotted-dashed lines correspond to the predictions of the
intrinsic alignment model for the cases withkmax = 5h/Mpc andkmax = 1h/Mpc, respectively (using the best fitC1 from thekmax = 10 h/Mpc
case). The dotted line corresponds to the linear alignment model (which uses the linear matter power spectrum).

halo found by [41], ofrhalo = 0.8 Mpc/h. The linear alignment model curve (with a filter ofkmax = 10h/Mpc) lies between the
non-linear alignment models withkmax = 1h/ Mpc andkmax = 5h/Mpc. This is because, even though it does not capture the
non-linear physics well enough, the linear alignment modelstill has non-zero power on small scales. Removing the smoothing filter
for the LA model leads to changes of< 0.5% on scales> 10Mpc/h, which are negligible compared to the effect of non-Gaussianity
or the BAO inwg+ in Section III.

(a) The auto-correlation function ofγ+ predicted for the sample of [9] for
smoothing filters of differentkmax values.

(b) Same as (a) forγ×

FIG. 2: The auto-correlation functions of the intrinsic ellipticity components:γI
+ (left) andγI

× (right) predicted for the sample of [9] for smoothing
filters of differentkmax values. The LA curve is subject to smoothing withkmax = 10h/Mpc.

The smoothing filter also has a noticeable effect on the auto-correlation function of intrinsic shapes,II. In Figure 2, we show
the predictedII correlation for the sample of [9]. Forw++(rp) andw××(rp), the effect of the smoothing filter is smaller on small
scales in comparison towg+(rp), but it is still present at scales of20 Mpc/h. As in Section II C, we have neglected the quadratic
contributions of the matter fluctuation power spectrum in this section. The auto-correlation functions of LRG shapes atz < 0.5 were
measured by [42] and shown to be in agreement with the LA modelon large scales by [10]. For the sample of [42],w××(rp) is
consistent with0 at rp < 10Mpc/h, where the effect of the smoothing filter is large.
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E. When were intrinsic alignments imprinted?

In the study by [2, 3], intrinsic alignments are imprinted atthe redshift of formation of the galaxy,zp. An alternative to the pri-
mordial alignment model is to assume that there is an instantaneous response of the galaxy shape to the tidal field. These two models
result in different redshift dependence of the amplitude ofthe intrinsic alignment signal. In the case of instantaneous alignment, Eq.
(4) is modified to be

γI(k, z) =
C1

4πG
(k2x − k2y, 2kxky)S[φ(k, z)], (21)

whereφ is the gravitational potential at redshiftz. Any model in which the galaxy shape and orientation is determined between the
redshift of formation of the galaxy and the redshift of observation will have an amplitude that lies between the instantaneous and
the primordial alignment case. The instantaneous and primordial alignment model differ from one another by a factorD−1(z), the
inverse of the growth function.

The constraints on the amplitude of the alignment signal obtained by [11] and [14] are inconclusive regarding the redshift depen-
dence of the alignment signal. [11] measured theGI correlation of LRGs in the SDSS DR4 sample (0.16 < z < 0.35) and in the
2SLAQ LRG sample (0.4 < z < 0.8) [43]. Their results are consistent with the LA model, albeit with large error bars. Similarly, in
[14], the authors study the redshift dependence ofwg+ by combining previous results for the LRGs of the SDSS DR4 by [11] with
the MegaZ-LRG sample (at̄z ∼ 0.5) [15, 16], selected from SDSS DR6. They find no evidence for a redshift dependence other
than the one proposed by the LA model. More specifically, in their Table3, they show their constraints on the amplitude of thegI
correlation for the MegaZ-LRG sample in two redshift bins with median redshifts ofz = 0.49 andz = 0.59. ThegI amplitude is
quoted relative to a fiducial value ofC1 and correcting for galaxy-galaxy lensing and magnificationbias contaminations. At1σ, it is
not possible to distinguish between the instantaneous and the primordial models for those redshift bins. A halo model approach to
intrinsic alignments, applied to the Millenium Simulation, displays an evolution consistent with the LA model as well [19].

In Figure 3, we explore the ability of future surveys to distinguish between the instantaneous and the primordial LA model. Having
normalized the amplitude of the intrinsic alignment signalto unity today, we show the ratio between the instantaneous and the
primordial alignment models for thegI correlation and theII auto-correlation functions. This ratio is proportional tothe growth
function,D(z), for gI, and toD2(z) for II. The instantaneous model has a steeper dependence with redshift. While this difference
is really a function of scale, since the Kaiser factor of Eq. (12) for RSD depends on redshift, this affectswg+ very similarly for the
surveys considered in this work, as will be seen in Section III A and Figure 6(a), such that we only consider an overall variation in
amplitude of the IA signal with redshift in this section. (Notice that in the non-linear regime, the details of the smoothing filter and
the non-linear approximation adopted [12, 13] have a significant impact on the evolution of alignment signal.)

The percentual difference in the amplitude of thegI alignment signal in the primordial and the instantaneous model is∼ 20%
at z = 0.5 and reaches35% at the median redshift of EUCLID. If we had assumed that the correlation length of galaxies is fixed,
the bias would evolve proportionally to the growth function. An instantaneous LA model with constant bias has a similar redshift
dependence to a primordial model withb ∝ D(z). This result stresses the necessity of measuring the bias ofgalaxies as a function
of redshift, from the auto-correlation function of the positions of galaxies, complementarily to the intrinsic alignment correlation in
order to distinguish between these models. While theII dependence is steeper, this signal is also harder to measuredue to shape
measurement systematics.

Although the LA model reproduces the LRG alignments atz < 0.5, it does not make a prediction for the strength of alignment,
i.e., the value ofC1. The coupling of the baryons to the tidal field of the dark matter will ultimately determine the value ofC1 and
the effective redshift of the tidal field. A possibility thatwe have not explored here is that there is a lag between the tidal field and
the response of the galaxy. These variants to the LA model canonly be fully studied with hydrodynamical numerical simulations of
galaxy formation.

F. Contaminants to intrinsic alignments

In Eq. (11), we have assumed that the only contribution to thecross-correlation between the observed density field and the
observed shapes comes from intrinsic alignments. There areadditional contributions to the cross-correlation of the galaxy density
field with galaxy shapes. The shear of a background galaxy by alens gives a contribution that is referred to as galaxy-galaxy
lensing (gG, the topic of Section III C). At low redshift, there is a shortbaseline for matter fluctuations along the line of sight, hence
the gG contamination can be neglected [10]. At higher redshifts, the degree of contamination depends on the accuracy of galaxy
redshifts. For intrinsic alignments, the correlationgI arises between galaxies that are physically associated andhence, separated
by small physical distances. For galaxy-galaxy lensing,gG, the contribution to the correlation peaks for pairs of galaxies such that
the background source is at twice the angular diameter distance between the lens and the observer. When redshifts are photometric,
there is significant scatter of galaxies in redshift space such that a galaxy that in reality is behind a lens can be observed to be in the
foreground, mixing thegI andgG signals.

In the most pessimistic scenario, where only photometric redshifts would be available for our fiducial targets, the increased uncer-
tainty in the redshifts of the galaxies will induce a higher contamination of galaxy-galaxy lensing to thegI correlation measurement
that can readily be modeled, as done by [14] in the context of the MegaZ-LRG sample. In this context, a joint analysis of alignments,
clustering and weak lensing cosmological constraints as in[21] would be more adequate. Nevertheless, while we consider only
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FIG. 3: The ratio between the redshift evolution of the primordial alignment model and the instantaneous model. Vertical lines in gray indicate the
median redshift of the surveys considered in this work, fromlow to high redshift: LOWZ and CMASS (BOSS), DESI and EUCLID.

spectroscopic redshifts in this work, typical photometricscatter for LRGs can be significantly smaller than for galaxies selected for
cosmic shear [44]. Moreover, since LRGs have been shown to trace group environments [45], it is also conceivable that a combination
of photometric redshifts for these galaxies and the group members can result in redshift estimates for our fiducial targets that would
be more accurate than using photometric redshifts alone.

The density field is also subject to lensing bias [35]: magnification increases the density of galaxies at a given redshiftby increasing
the brightness of galaxies in the background. Lensing bias contributes a termqκ to the weighting of the tidal field by the observed
galaxy population, whereκ is the convergence field [28] andq(z) is the faint end slope of the luminosity function of LRGs. This
introduces additional termsmI andmG in Eq. (11). The termmG arises when a galaxy is being magnified by the same matter
overdensity that is shearing the second galaxy, andmI arises when a galaxy in the background is being magnified by the same matter
overdensity that is producing the tidal alignment of the second galaxy.

We will only consider spectroscopic redshifts in this work.For the four samples of LRGs considered, we place an upper limit to the
contamination ofgG, mG andmI to the intrinsic alignment correlation. We apply the expressions derived by [14] in their Section
4.2 for the angular power spectra of each cross-correlation at the median redshift of each sample. We limit the integral to small line
of sight separations (i.e., within[−Πmax,Πmax]) and assume that there is no scatter in the redshifts of the tracers. We estimate the
slope of the luminosity function required for computing themagnification correlations using the expression derived inthe Appendix
of [21] and we assume limiting magnitudes ofrlim = {22.5, 23.5, 24.5} for the Baryon Oscillation Spectroscopic Survey10 (BOSS)
[29], the Dark Energy Spectroscopic Instrument (DESI) [30]and the EUCLID mission [24], respectively. Under these assumptions,
we find that thegG signal contributes less than10% to gI for all surveys. The contribution ofmG is at least two orders of magnitude
below thegI correlation and whilemI is at the level of a few percent for LOWZ (LRGs at0.2 < z < 0.4 in BOSS), it is several
orders of magnitude belowgI for CMASS (described in more detail in Section III), DESI andEUCLID. The contaminations would
decrease further if we decrease the line of sight correlation length,Πmax. While we have consideredΠmax = 80Mpc/h to ease
the comparison of our results to those of [10], it would be possible to reduce this value toΠmax = 60Mpc/h, since there is little
contribution to thegI signal from above those scales [11, 46].

III. COSMOLOGY FROM INTRINSIC ALIGNMENTS

In this section, we explore the cosmological information inthe intrinsic alignment of LRGs. We consider three spectroscopic
surveys: BOSS, DESI and the EUCLID mission. For each of theseexperiments, we constrain their ability to measure primordial
non-Gaussianity and the BAO signature from the projected cross-correlation function of the galaxy density field and their intrinsic
shears.

BOSS [29] is an undergoing survey of the SDSS-III collaboration. Among its targets, it has gathered spectra for low redshift LRGs,
the LOWZ sample [47], and it has extended the LRG target selection of SDSS-II toz = 0.7 [48, 49], targeting bluer but massive
galaxies in the CMASS galaxy sample, with a typical bias similar to that of the LRG population. The LOWZ sample has three times
the typical comoving number density of SDSS DR6 LRGs in the redshift range of0.2 < z < 0.4, with the same selection cuts but
extended to fainter objects. Whilewg+ has not yet been measured for these samples, the linear alignment model has been shown to

10 http://www.sdss3.org/surveys/boss.php
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reproduce the alignments of the MegaZ-LRG sample [21], withphotometric redshifts up toz = 0.7. Hence, we consider both LOWZ
and CMASS galaxies as tracers of the intrinsic alignment signal.

For the LOWZ sample, we consider a constant comoving number density of3 × 10−4h3Mpc−3 in the range of0.2 < z < 0.4.
The median redshift of the LOWZ sample isz̄ = 0.32. We construct the redshift distribution of CMASS galaxies from spectroscopic
redshifts obtained in SDSS-III data release 10 (DR10). Figure 4 shows the comoving number density as a function of redshift for the
galaxies in LOWZ and CMASS. The median redshift of CMASS galaxies isz̄ = 0.54. The area of the survey footprint, in the DR10
release, is6, 373 deg2. We do not attempt to model in detail the selection effects necessary for constructing a large-scale structure
catalogue based on the CMASS sample as done in [50], we only expect to reasonably reproduce the comoving number density of
CMASS galaxies as a function of redshift. In the final data release (DR12), BOSS is expected to have covered10, 000 deg2. In the
following sections, we make forecasts both for the currently available sample of BOSS galaxies in DR10 and for DR12. For the
LOWZ and CMASS samples, we assume the galaxies have a constant biasb ≃ 2 [47, 49, 51].

DESI is a spectroscopic survey scheduled for operation between the years2018 and2022. It will cover 14, 000 deg2 and it will
target spectroscopic LRGs in the redshift range0.1 < z < 1.1. We consider the comoving number density of LRGs observed by
DESI, shown in Figure 4, as quoted in Table 3 of [30]. The median redshift of the LRG sample observed by DESI isz̄ = 0.7. While
DESI is a purely spectroscopic survey, we assume imaging will be available from a combination of other surveys.

The EUCLID mission [24], scheduled to launch in 2020, will perform a weak gravitational lensing survey of2π sr (20, 000 deg2)
combined with a spectroscopic survey for measuring BAO. We model the redshift distribution of LRGs in an EUCLID-type survey
in the range0.5 < z < 1.5 with:

dN

dzdΩ
(z) = za exp

[

−

(

z

z0

)b
]

, (22)

wherea = 2, b = 1.5 and z0 = 0.64 [21, 52], with a resulting median redshift of̄z ∼ 0.9. We have chosen to normalize
the distribution of Eq. (22) to approximately match the comoving number density of LRGs at lower redshift [53]. To assessthe
impact of the normalization choice in our results, we consider two normalizations:n0 ≡ n(z = 0.32) = 3 × 10−4h3Mpc3 and
n0 = 4 × 10−4h3Mpc3. We show the resulting comoving number density of EUCLID LRGs as a function of redshift in Figure
4. Since the proposed spectroscopic targets in EUCLID are H-α emitters [24] (i.e., blue galaxies), LRG redshifts will be better
constrained from photometry at a typical precision that will beσz ∼ 0.03(1 + z) for the overall population of galaxies [24], which
we do not include in our current modelling. Forn0 = 3 × 10−4h3Mpc3 andn0 = 4 × 10−4h3Mpc3, the number of LRGs in the
EUCLID sample will be6.5 million and8.7 million, respectively.

Both for DESI and EUCLID, we consider that the bias of these tracers changes with cosmological epoch, becoming larger at higher
redshifts. As a toy model for this process, we fix the correlation length of galaxies by making the bias proportional to thegrowth
function. To normalize the bias, we match the LRG bias of the sample of [9] atz̄ = 0.32. This implies an almost linear increase in
the bias fromb ∼ 2.3 to b ∼ 3.6 in the range0.5 < z < 1.5.

FIG. 4: The comoving number density of LOWZ (dashed-triple dotted line), CMASS galaxies as observed in DR10 (solid line), DESI LRGs
(dashed) and EUCLID LRGs (dotted), as a function of redshift. See Section III for a discussion of the underlying assumptions.

The typical systematic errors on galaxy shapes are subdominant compared to shape noise, and we consider a dispersion in the
distortion ofσγ = 0.25 per component for all scenarios.
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A. Primordial non-Gaussianity

We consider a simple model of local non-Gaussianity (NG) where the non-Gaussian primordial gravitational potential isgiven by

φNG = φp + fNLφ
2
p, (23)

whereφp is the primordial Gaussian potential andfNL is a constant that parametrizes deviations from Gaussianity [54]. A non-
zero detection offNL would rule out any model of single-field inflation [55]. Current best constraints on the local typefNL have
been set by thePlanck Collaboration atfNL = 2.7 ± 5.8 (68% C.L.) from observations of the Cosmic Microwave Background
temperature field [56]. In the near future, tighter constraints will come from large-scale structure surveys, with EUCLID being
capable of obtaining constraints to∆fNL = 2 from galaxy clustering [24].

The non-Gaussian density field can be derived from the Poisson equation to first order infNL as

δNG ≈ δG [1 + 2fNLφp] , (24)

whereδG is the Gaussian density field. We can see from Eqs. (19) and (24) that primordial non-Gaussianity will have an effect
on the ellipticity of the galaxies. The observable〈e2〉 behaves similarly toσ2

R, the rms variation of mass within a Gaussian sphere of
radiusR. In the presence of primordial non-Gaussianity, there willbe additional terms in Eq. (19). We can separate the contribution
to the gravitational potential from long,φl, and short wavelength modes,φs, following the peak-background split formalism [57, 58],

φp = φl + φs, (25)

and in doing so, we find that the effect of primordial non-Gaussianity on the scatter of intrinsic ellipticities is

〈e2〉 → 〈e2〉(1 + 4fNLφl). (26)

On the other hand, local non-Gaussianity gives rise to a scale dependent bias of halos on large scales [58, 59]:

∆b(k, z) = 3fNL(b− p)
δcΩM

k2T (k)D(z)

H2
0

c2
, (27)

wherec is the speed of light,T (k) is the linear matter transfer function atz = 0, δc = 1.686 is the spherical collapse linear
overdensity and we have assumed a merger history consistentwith p = 1, implying that LRGs have not undergone recent mergers.
This assumption is consistent with the assumption of passive evolution of LRGs in the LA model, where the halo shape is determined
at zp.

The components of the intrinsic shear field in Fourier space in the non-Gaussian case are

γI,NG(k, z) =
C1ρcritΩM

D(z)

(k2x − k2y, 2kxky)

k2
δNG(k, z), (28)

where the non-Gaussian density field in Fourier space is given by

δNG(k, z) = δG(k, z) + fNL

3H2
0ΩM (1 + z)

2c2D(z)
k2

∫

d3k1

(2π)3
δG(k− k1, z)δ

G(k1, z)

|k− k1|2|k1|2
, (29)

and the observed galaxy density field is

δNG
g (k, z) = [b+∆b(k, z)]δG(k, z). (30)

An additional effect of primordial non-Gaussianity is to modify the effect of RSD on large scales by changing the bias (i.e.,
replacingb by b + ∆b in the expression forβ in Eq. (12)) and to add terms to the Kaiser factor [60]. While the change in the
bias produces a significant effect that we take into account in this work, additional terms become relevant only on non-linear scales,
smaller thank >

∼ 0.1h/Mpc [60]. On small scales, the non-linearity of the density field can also give rise to non-Gaussian effects on
the intrinsic alignments of galaxies. [61] have explored these effects for a different alignment model than the one considered in this
work. However, in our case, because we restrict to large scales, this effect can be safely neglected.
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1. Intrinsic ellipticity-density cross-correlation

In Section II B, we introduced the correlation functions of the galaxy density field and the observed shears. The full non-Gaussian
contribution to the observed density-intrinsic shear correlation in Fourier space is given by

〈δNG
g (k′, z)γ̃∗(k, z)〉 = 〈[b+∆b(k′, z)]δG(k′, z)[γI,NG(k, z)

+

∫

d3k1
b+∆b(k1, z)

(2π)3
γI,NG(k− k1, z)δ

G(k1, z)]
∗〉, (31)

To orderfNL, Eq. (31) can be simplified to

〈δNG
g (k′, z)γ̃∗(k, z)〉 = −

C1ρcritΩM

D(z)
[b+∆b(k, z)](2π)3δ(3)(k− k

′)(k2x − k2y, 2kxky)
Ps(k, z)

k2

− 3b2fNL

H2
0C1ρcritΩ

2
M

c2D2(z)
(1 + z)δ(3)(k− k

′)
Ps(k, z)

k2

×

∫

d3k1(k
2
2x − k22y , 2k2xk2y)

Ps(k1, z)

k21
, (32)

wherek2 = k− k1 and components(k2x, k2y) on the plane of the sky.
The non-Gaussian correlation function, integrated overz, is

wNG
g+ (rp) =

∫

dzW(z)
1

π2

C1ρcritΩM

D(z)

∫ ∞

0

dkz

∫ ∞

0

dk⊥
k3⊥

(k2⊥ + k2z)kz
Ps(k, z) sin(kzΠmax)J2(k⊥rp)

×

[

b+∆b(k, z) +
3b2fNLH

2
0ΩM (1 + z)

2π2D(z)

∫ ∞

0

dk1z

∫ ∞

0

dk1⊥k1⊥
Ps(k1, z)

k21

]

. (33)

There are two non-Gaussian terms to orderO(fNL) contributing towg+. The second term inside the brackets in Eq. (33) is the
usual non-Gaussian bias on large scales, derived by [59]. The mixing of scales in the second term of Eq. (32) gives rise to the third
term inside the brackets. Interestingly, this term gives a constant constribution with scale. In all terms in Eq. (33), the bias that
appears in the Kaiser factor of Eq. (12) is replaced by the non-Gaussian large-scale bias,b +∆b.

The relative contribution from the third term towg+ is at the level of10−5. Moreover, because this term adds a constant to the
bias, its effect is to rescale the correlation function. Given that the strength of the alignment cannot be derived from first principles,
in practice it is not feasible to distinguish between this constant increase in the bias and intrinsic evolution ofC1 as a function of
redshift at the level of0.001%.

In Figure 5 we show the cross-correlation functionwg+ for a cosmology withfNL = 10 compared to a Gaussian correlation
function for the four samples of LRGs described in Section III. The error bars have been computed by constructing the covariance
matrix of the cross-correlation function, as described in the Appendix of this work. The correlation function has been tested for
convergence due to numerical integration and our tests indicate un upper limit in the uncertainty due to convergence of0.25%.

The likelihood difference between a non-Gaussian and a Gaussianwg+ is obtained by summing over(i, j) projected radius bins

∆χ2 =
∑

i,j

(

wNG
g+,i − wg+,i

)

C−1
i,j

(

wNG
g+,j − wg+,j

)

, (34)

whereCi,j is the covariance matrix. Table I shows the estimated signal-to-noise ratios for detecting non-Gaussianity offNL = 10 for
each sample up to200 Mpc/h. For DESI and EUCLID, extending the constraints torp < 500 Mpc/h does not alter our predictions
significantly. To show the impact of cosmic variance on theseresults, we include in Table I the constraints on the detection of non-
Gaussianity in the case where cosmic variance is neglected.While shape noise typically dominates the covariance matrix on small
scales, cosmic variance increases with scale, as does the effect of non-Gaussianity. For all samples considered, theS/N for detecting
fNL = 10 is < 2 when cosmic variance is taken into account. As a consequence, for ongoing and upcoming surveys, primordial
non-Gaussianity needs not be considered when removing the intrinsic alignments signal from gravitational lensing correlations.

In Eq. (12), we introduced the Kaiser factor, the correctionfactor to the matter power spectrum when RSD are taken into account.
In Figure 6(a), we show the impact on the correlation function when the Kaiser factor is included compared to when its effect is
ignored. In the right panel of Figure 6(a), we also show the change in thewg+, with RSD, when we apply a non-Gaussianity of
fNL = 10. On large scales, the effects of RSD and primordial non-Gaussianity are similar: they both produce an enhancement in the
correlation function. This is due to the rapid oscillation of the integrand in Eq. (14) along the length of the cylinder ofwg+. When
projected, RSD and primordial non-Gaussianity have a similar scale-dependence, they both increase at large separations. Neglecting
to model the effect of RSD can lead to a false detection of primordial non-Gaussianity of the local type.



12

(a) LOWZ. DR12 points have been artificially displaced to higherrp for
visualization purposes.

(b) CMASS. DR12 points have been artificially displaced to higherrp for
visualization purposes.

(c) DESI. (d) EUCLID.

FIG. 5: The correlation function of galaxies and+ ellipticities in a Gaussian cosmology (solid line) and a cosmology with primordial non-
Gaussianity offNL = 10 (dashed line), with a smoothing scale ofkmax = 10 h/Mpc for the different surveys considered (LOWZ and CMASS in
DR10 and DR12, DESI and EUCLID).

TABLE I: Signal-to-noise ratio for the detection of primordial non-Gaussianity offNL = 10 in the cross-correlation of the galaxy density field with
intrinsic ellipticity for the surveys considered in this work. We have definedn0 = η × 10−4h3Mpc−3.

Survey LOWZ CMASS DESI EUCLID

DR10 DR12 DR10 DR12 η = 3 η = 4

With cosmic variance <0.1 0.11 0.14 0.17 0.95 1.7 1.8

Without cosmic variance 0.26 0.33 0.20 0.24 1.3 2.1 2.5

B. Baryon Acoustic Oscillations

We study the level of detectability of Baryon Acoustic Oscillations (BAO) in the intrinsic ellipticity-density field cross-correlation.
We compute the likelihood difference between the case in which the cross-correlation has a matter power spectrum with baryon
damping but no oscillations,wnowiggles

g+ [62], and the case in which the effect of the baryons is present, wwiggles
g+ :

∆χ2 =
∑

i,j

(

wwiggles
g+,i − wnowiggles

g+,i

)

C−1
i,j

(

wwiggles
g+,j − wnowiggles

g+,j

)

. (35)

In Figures 7(a)-7(d), we show the two correlation functionswith and without the BAO feature for BOSS, DESI and EUCLID. In
these figures, we see clearly that the BAO appears in thewg+ correlation successively as a trough, a node and a bump around the
110 Mpc/h scale. The usual bump observed in the matter correlation function appears at∼ 100Mpc/h, roughly coinciding with the
location of the trough inwg+. This feature has also been called a “shoulder” in the galaxy-galaxy lensing correlation function by
[63]. The correlation functions without wiggles have numerically converged to a tolerance of< 1%.
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(a) Relative difference between the Gaussianwg+ with and without the
effect of RSD.

(b) Relative difference between the Gaussianwg+ and the non-Gaussian
wg+ for fNL = 10.

FIG. 6: Comparison of the effect of RSD on the cross-correlation functionwg+ with the effect of primordial non-Gaussianity of the local type
parametrized byfNL = 10 for LOWZ, CMASS, DESI and EUCLID. In projection, the two effects have a similar scale-dependence, increasing at
large separations.

In Figure 8, we show the estimated cumulative signal-to-noise ratio of the detection of the BAO in thewg+ cross-correlation when
we take a fixed upper limit to the interval of200Mpc/h and we vary the lower bound. TheS/N displays a significant increase at
∼ 110 Mpc/h. We do not extend our computation of theS/N below the scale of50Mpc/h due to differences in the prediction
of wg+ in the non-linear scales by CAMB/halofit and the analytical predictions of the case without BAO by [62]. For the BOSS
samples, theS/N at80 Mpc/h reaches1.8 and2.2 for LOWZ and CMASS in DR10, respectively, and2.3 and2.7 for those samples
in DR12. For the LOWZ sample only, cosmic variance has a significant impact on theS/N estimate due to the smaller volume
probed at low redshift. For DESI, the cumulativeS/N predicted is12 at 80 Mpc/h and for EUCLID, it is15 and18 for with
n0 = 3 × 10−3h3Mpc−3 and withn0 = 4 × 10−3h3Mpc−3, respectively. Thus, the BAO signature could be detected athigh
significance in DESI and EUCLID. In these surveys, large-scale structure probes will be combined to achieve tighter cosmological
constraints. The addition of thegI correlation to the ensemble of observables probed by these surveys is worth considering in the
context of measuring the evolution of the distance scale of the BAO.

C. Comparison to galaxy-galaxy lensing

The detectability of the BAO and primordial non-Gaussianity in the galaxy-galaxy lensing signal (gG) were studied by [63]. In
the case of primordial non-Gaussianity, [63] obtain the following expression for the projected surface mass density profile of a lens
at zL:

∆Σ(rp, zL) = ρ0

∫

kdk

2π
[b+∆b(k, zL)]Pδ(k, zL)J2(krp), (36)

whereρ0 = 2.77 × 1011(ΩMh2)M⊙Mpc−3 is the mean comoving mass density. This expression takes into account the scale
dependent bias of the lenses in a similar spirit as our Eq. (33). The main difference between Eq. (33) and Eq. (36) is the effect of
the scale-dependent bias on RSD in the case of IA. We compare in Figure 9 the fractional difference in∆Σ(rp, zL) and inwg+ when
non-Gaussianity offNL = 10 is considered (similar results forgG are presented in Figure 5 of [63]). In the galaxy-galaxy lensing
case, we choosezL and the bias values at the median redshift of the surveys considered. For LOWZ and CMASS, the bias is fixed
at b = 2, while for DESI and EUCLID, we scale the bias keeping the correlation length fixed and normalizing it to match the bias
derived by [10] for the sample of [9] at̄z = 0.32. The fractional change in the inferred surface mass densityprofile andwg+ are
similar because they result from the scale-dependent bias.The effect of non-Gaussianity also enterswg+ through the RSD factor.

[63] find that, for lens samples of LRGs and clusters atz = {0.3, 0.5, 0.8}, they cannot distinguish betweenfNL = 0 and
fNL = 100 but they can achieve a significant detection of the BAO feature in the projected surface mass density from galaxy-galaxy
lensing. As suggested in the previous section,gG andgI could be combined to yield a more robust detection of the BAO.

IV. CONCLUSIONS

The intrinsic alignments of LRGs may become a cosmological tool in the near future. We have presented forecasts for the detection
of the BAO signature and of primordial non-Gaussianity in the cross-correlation function of LRG positions and shapes for ongoing
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(a) LOWZ. DR12 points have been artificially displaced to higherrp for
visualization purposes.

(b) CMASS.DR12 points have been artificially displaced to higherrp for
visualization purposes.

(c) DESI. (d) EUCLID (n0 = 3× 10−3h3Mpc−3).

FIG. 7: The correlation function of galaxies and+ ellipticities in the cases: with baryons but no wiggles [62](solid line) and for our fiducial case
(dashed line). The data points correspond to the radially binned correlation function with errors predicted from the covariance matrix. At∼ 110
Mpc/h, the BAO appears as a decrement, a node and an increment inwg+ with respect to the “no wiggles” case, rather than the usual bump present
in wgg .

and upcoming surveys. Our predictions are based on the LA model of [1] and further development by [2, 3] and the NLA model of
[12], which yield similar results on scales above10 Mpc/h but differ on non-linear scales. Our results are expressed in terms of the
projected correlation function of galaxy positions and intrinsic shears,wg+.

At low redshift, we constrain the strength of alignment, parametrized byC1, by means of the observational results of [9] forwg+.
Our result is consistent with that of [10]. We explore the effect of smoothing the tidal field on different scales and we findthat it
has a significant impact on non-linear scales in the cross-correlation function of positions and shapes. The observational constraints
are consistent with a smoothing over the scales of a typical LRG halo. The impact of the smoothing filter is smaller on smallscales
and larger on large scales in the auto-correlation functions of intrinsic shears compared towg+. While the NLA model reproduces
the observedwg+ surprisingly well even below10 Mpc/h, there is a need for simulations to study the alignments of LRGs on small
scales to fully address non-linear physics. We also explored the redshift dependence of the LA model and compared the amplitude
of wg+ if alignments are fixed at the redshift of formation of a galaxy to the case where the galaxy reacts instantaneously to the
large-scale tidal field. We have shown that at the current level of uncertainty, it is not possible to distinguish betweenthe two models.

We computed the covariance matrix associated towg+, presented in the Appendix, and we have shown that while thismatrix is
dominated by shape noise on small scales, cosmic variance has a significant contribution on scales> 100 Mpc/h for all surveys
considered. Cosmic variance is negligible in the scale of the BAO for the assumed value ofσγ except for the LOWZ sample, which
probes a much smaller cosmological volume.

The BAO feature inwg+ is different from the usual bump in the galaxy correlation function,wgg . In the case ofwg+, the BAO
appears as a consecutive trough, node and bump around the scale of 110 Mpc/h, similarly to the observed effect on thegG correlation
function [63]. The trough coincides with the position of thepeak in the galaxy correlation function, at∼ 100 Mpc/h for our fiducial
cosmology. For the LOWZ and CMASS samples, the BAO detectionwould be marginally significant atS/N = 2.3 andS/N = 2.7
once BOSS is completed. For DESI and EUCLID, we obtain forecasts of significant detections atS/N = 12 (DESI),15 (EUCLID
with n0 = 3× 10−3h3Mpc−3) and18 (EUCLID with n0 = 4× 10−3h3Mpc−3).
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(a) LOWZ (b) CMASS

(c) DESI (d) EUCLID

FIG. 8: The signal-to-noise ratio of the BAO feature in thewg+ cross-correlation as a function of the lower bound of the interval of projected radius
for which it is calculated, keeping the upper bound fixed at200Mpc/h. We see a clear increase in theS/N when the interval comprises the scale
of the BAO,∼ 110Mpc/h. TheS/N converges to2.3, 2.7, 12 for LOWZ DR12(8(a)), CMASS DR12 (8(b)) and DESI (8(c)), respectively, at
rp = 80 Mpc/h. For EUCLID (8(d)), theS/N predicted depends on the assumed comoving number density normalization, yieldingS/N = 15
andS/N = 18 for n0 = 3× 10−3h3Mpc−3 andn0 = 4× 10−3h3Mpc−3, respectively.

FIG. 9: The fractional effect of primordial non-Gaussianity (fNL = 10) and the BAO feature in the projected surface mass density profile obtained
from galaxy-galaxy lensing for lenses at the median redshifts of LOWZ, CMASS, DESI and EUCLID LRGs.

We find that there are two non-Gaussian contributions towg+ to orderO(fNL). One of the terms comes from the non-Gaussian
bias of large-scale structure [59]. The second term is constant with scale but dependent on redshift. Interestingly, this term propagates
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the effect of non-Gaussianity from large to small scales. Unfortunately, it is at least2 orders of magnitudes below the contribution of
the non-Gaussian bias term. We have also considered the effect of non-Gaussianity on RSD, as in [60]. Overall, we find thata value
of fNL = 10 (at the 1.2σ level withPlanck measurements) yieldsS/N < 2 for all surveys.

On very large scales, above the scale of the BAO, the effect ofRSD is roughly proportional to the effect of non-Gaussianity in
projection. While ink− space these terms have a different dependence, in projection, RSD can mimic primordial non-Gaussianity of
the local type. Neglecting RSD in the modeling ofwg+ can lead to a spurious detection of primordial non-Gaussianity.
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Appendix A: Covariance Matrix Derivation

The correlation functionξg+(rp,Π, z) presented in Eq. (7) is not spherically symmetric andwg+, in Eq. (14), represents a
projection ofξg+(rp,Π, z) along the direction of the line of sight,Π, between−Πmax andΠmax, and an angular average on the
plane of the sky. We present in this Appendix the calculationof the covariance matrix between radially averaged bins of the projected
correlation function of two observables A and B in the case inwhich the spherical symmetry has been broken. We note that this
is relevant, for example, in the presence of RSD. In the case of spherically symmetric correlation functions, a derivation of the
covariance matrix is given by [64].

The projected correlation function of two observables A andB, averaged over a radial bin with boundaries[ri,min, ri,max] and
centered onri, is given by

w̄AB(ri) =
2π

Ai

∫ ri,max

ri,min

dr r wAB(r), (A1)

wherewAB(r) is the continuous projected correlation function, andAi is the area of bini.
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For computing the covariance matrix element between two radial binsi andj of the projected correlation function, we first compute
the covariance matrix of the power spectrum of observables Aand B,

Cd
PAB

= 〈P d
AB(k1, z)P

d
AB(k2, z)〉 − 〈P d

AB(k1, z)〉〈P
d
AB(k2, z)〉, (A2)

where the superscriptd indicates that the observables are discrete, i.e., the galaxy density field is not a continuous field, but is rather
sampled at the positions of the galaxies. For the density-intrinsic shear power spectrum,

Cd
Pg+

(k1,k2) =
(2π)3δ(D)(k1 + k2)

Vs

[

Pgg(k1, z) +
1

n(z)

]

[

P++(k1, z) +
σ2
γ

n(z)

]

+
(2π)3δ(D)(k1 − k2)

Vs

P 2
g+(k1, z), (A3)

whereσγ is the intrinsic scatter in the galaxy shears,n(z) is the average comoving number density of galaxies at a givenredshift and
Vs is the survey volume.

We work in cylindrical coordinates both in Fourier space andin real space; the components of thek andr vectors are(k⊥, θ, kz)
and(rp, φ,Π) respectively. The angle betweenr1 andr2 is φ12. The covariance element of the correlationwAB for radii r1 andr2
can be obtained by a Fourier transform ofCd

PAB
,

CwAB
(r1, r2) = (2Πmax)

2

∫

dzW2(z)

∫

d3k1

(2π)3

∫

d3k2

(2π)3
Cd

PAB
(k1,k2, z)

× j0(k1zΠmax)j0(k2zΠmax)e
ik1⊥·r1eik2⊥·r2 , (A4)

where we have applied the Limber approximation consistently with our computation of the projected correlation function in Section
II A.

To obtain the covariance matrix of the bin averaged correlation, we average over the annuli,

Cw̄AB
(ri, rj) =

(2Πmax)
2

AiAj

∫

Ai

d2r1

∫

Aj

d2r2

∫

dzW2(z)

∫

d3k1

(2π)3

∫

d3k2

(2π)3
Cd

PAB
(k1,k2, z)

×j0(k1zΠmax)j0(k2zΠmax)e
ik1⊥·r1eik2⊥·r2 . (A5)

In the density-intrinsic shear case, it follows that Eq. (A4) can be specified to be

Cw̄g+
(ri, rj) =

(2Πmax)
2

(2π)3VsAiAj

∫

dzW2(z)

∫

Ai

d2r1

∫

Aj

d2r2

∫

d3k1

∫

d3k2 e
ik1⊥·r1eik2⊥·r2

× j0(k1zΠmax)j0(k2zΠmax)×

{δ(D)(k1 + k2)
[

Pgg(k1, z) + n−1(z)
] [

P++(k1, z) + σ2
γn

−1(z)
]

+ δ(D)(k1 − k2)P
2
g+(k1, z)}, (A6)

whereAi andAj are the areas of the radial bins over which the average of the correlation function is performed, delimited by
[ri,min, ri,max] and [rj,min, rj,max]. Performing the integration for each term yields the following expression for the covariance
matrix,

Cw̄g+
(ri, rj) =

4πΠmaxF(ri, rj ,∆r)

VsAjAi

∫

dzW2(z)
σ2
γ

n(z)2
+

(2Πmax)
2

VsAiAj

b2σ2
γ

n(z)

∫

dzW2(z)

×

∫

dk1z
dk1⊥
k1⊥

j20(k1zΠmax)Pδ(k1, z)×

[rj,maxj1 (k1⊥rj,max)− rj,minj1 (k1⊥rj,min)] [ri,maxj1 (k1⊥ri,max)− ri,minj1 (k1⊥ri,min)] +

+
Π2

max

πVsAiAj

∫ 2π

0

dφ12

∫

i

dr1 r1

∫

j

dr2 r2

∫

dzW2(z)

(

C1ρcritΩM

D(z)

)2

×

∫

dk1zdk1⊥
k51⊥
k41

j20 (k1zΠmax)S
2(k1⊥)S

2(k1z)Pδ(k1, z)

× {
[

b2Pδ(k1, z) + n−1(z)
]

[J0(k1⊥|r1 − r2|) + J4(k1⊥|r1 − r2|)]

+ b2Pδ(k1, z) [J0(k1⊥|r1 + r2|) + J4(k1⊥|r1 + r2|)]}, (A7)
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wherej0(x) is the zeroth order spherical Bessel function,J0 andJ4 are Bessel functions of the first kind, and we have defined the
functionsJ1,

J1(a, b) ≡ ab

∫

dxj1(ax)j1(bx)x
−1 =

ab(a2 + b2)− (a2 − b2)2

8ab
atanh

(

b

a

)

, (A8)

andF(ri, rj ,∆r),

F(ri,min, ri,max, rj,min, rj,max) ≡ J1 (ri,max, rj,max)− J1 (ri,max, rj,min)

+ J1 (ri,min, rj,min)− J1 (rj,max, ri,min) . (A9)

For each power ofPδ in Eq. (A7), there is a factor due to redshift space distortions in the Kaiser approximation,
(

1 + βk2z/k
2
)2

, that
we have left implicit. As mentioned in Section II B,β is related to the growth factor throughβ = Ω0.55

M (z)/b(z).
Figure 11(a) shows the correlation coefficient for the covariance matrix ofw̄g+(ri, rj) for the CMASS sample in DR10 assuming

the comoving number density shown in Figure 4. On small scales, the covariance matrix is predominantly diagonal due to the
dominance of the shape noise term. Figure 11(b) shows the ratio between the covariance matrix that only considers shape noise (the
first two terms of Eq. A7), compared to the full covariance matrix, including cosmic variance terms. The correlation coefficient for
DESI and EUCLID are also shown in Figures 12(a) and 13(a), respectively. We also compare the full covariance matrix to theshape
noise-only covariance in Figures 12(b) and 13(b). For CMASS, DESI and EUCLID, cosmic variance terms only become significant
at scales of above100Mpc/h. The LOWZ DR10 sample, in the contrary, shows a significant effect from cosmic variance on small
scales in Figures 10(a) and 10(b) due to the small cosmological volume probed. In general, cosmic variance does not affect the
detection of the BAO except for the LOWZ sample (both in DR10 and DR12), but it can have a significant impact on the detectionof
primordial local non-Gaussianity.

Convergence tests of the computation of the covariance matrix were performed for all terms that required numerical integration in
Eq. (A7) and in all variables (kz, k⊥, z, r1, r2, andφ12). The level of convergence achieved in all of these cases wasalways below
7%.

(a) Correlation coefficientrij =
Cij√
CiiCjj

for the covariance matrix of

w̄g+(ri, rj) with logarithmic spacing for the radial bins.

(b) The ratio between the shape noise-only covariance matrix and the full
covariance matrix.

FIG. 10: LOWZ DR10.
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(a) Correlation coefficientrij =
Cij√
CiiCjj

for the covariance matrix of

w̄g+(ri, rj) with logarithmic spacing for the radial bins.

(b) The ratio between the shape noise-only covariance matrix and the full
covariance matrix.

FIG. 11: CMASS DR10.

(a) Correlation coefficientrij =
Cij√
CiiCjj

for the covariance matrix of

w̄g+(ri, rj) with logarithmic spacing for the radial bins.

(b) The ratio between the shape noise-only covariance matrix and the full
covariance matrix.

FIG. 12: DESI.

(a) Correlation coefficientrij =
Cij√
CiiCjj

for the covariance matrix of

w̄g+(ri, rj) with logarithmic spacing for the radial bins.

(b) The ratio between the shape noise-only covariance matrix and the full
covariance matrix.

FIG. 13: EUCLID withn0 = 3× 10−4h3Mpc−3.
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