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Magnon polarons induced by a magnetic field gradient
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In this paper, we report the theoretical possibility of generating magnon-polaron excitations through a
space-varying magnetic field. The spatial dependence of the magnetic field in the Zeeman interaction gives rise
to a magnon-phonon coupling when a magnetic field gradient is applied, and such a coupling depends directly
on the strength of the gradient. It is also predicted that the direction of the magnetic field gradient allows control
over which phonon polarization couples to the magnons in the material. Here, we develop the calculations
of the magnon-phonon coupling for an arbitrary (anti)ferromagnet, which are later used to numerically study
its consequences. These results are compared to the ones obtained with the phenomenological magnetoelastic
coupling in yttrium iron garnet (YIG) where we show that the magnon-polaron band gap seen in YIG can be
also obtained with a magnetic field gradient of ~0.1 T/m which can be achieved with the current experimental
techniques. Our results propose a different way of controlling the magnetoelastic coupling in an arbitrary material
and open a route to exploit the magnon-phonon interaction in magnonic and spintronic devices.
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I. INTRODUCTION

In the past years, the magnetoelastic coupling has gained
much attention due to the potential applications it offers in the
field of spintronics [1-3], magnonics [4,5], spin caloritronics
[6], and, more recently, spin mechatronics [7]. The simulta-
neous excitation of spin and elastic waves mediated by the
magnetoelastic coupling gives rise to the so-called magne-
toelastic waves [8,9], which has been a focus of study over
the past decades [10—12]. However, due to recent progress
in the synthesis and characterization techniques of materials,
the effects related to the magnetoelastic coupling have been
experimentally better addressed only recently [13-16].

From a quantum-mechanical point of view, both spin and
elastic waves have a quantized form of their elementary ex-
citations, namely, magnons and phonons, respectively. Due
to their bosonic nature, both quasiparticles obey the Bose-
Einstein statistics. In the long-wave-length limit and around
the I point, magnons in collinear ferromagnets are usually
characterized by their quadratic dispersion relation, which
possesses a band gap proportional to the external magnetic
field and the magnetic anisotropy [17]. Differently, magnons
in antiferromagnets present a linear dispersion relation around
the same point [18]. On the other hand, phonons have a
well-known linear dispersion at low energy and, according to
the symmetry of the material, have three distinct vibrational
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modes [19]. In the absence of magnetoelastic coupling, the
dispersion relations of the magnon and phonon might cross at
some wave-vector k*. However, in the presence of magnetoe-
lastic coupling, the interaction between magnons and phonons
avoids the crossing point at k*, and, instead, forms what is
called an anticrossing point [20-23]. At this point, the inter-
action between magnons and phonons is maximum, and the
related eigenstates are a hybridization between magnons and
phonons, called magnon polarons or magnetoelastic waves
[23-25].

Magnon polarons have recently been studied in the con-
text of transport, topological, and magnetic properties of,
mainly, (anti)ferromagnetic insulators. For example, anoma-
lies in the spin Seebeck [26] and spin Peltier [27] effects have
been attributed to the presence of magnon polarons. Local
[23,26] and nonlocal [28,29] magnon-polaron spin transport
has been also studied and/or measured in yttrium iron gar-
net (YIG) films. More recently, the topological nature of
magnon-polarons has been predicted [14,30-32] as well as the
control of its topology [30,33]. Antiferromagnets also present
magnon-polarons as reported in Refs. [34,35]. Particularly,
noncollinearity in antiferromagnets has been pointed out as
a source of magnon-polaron excitations [35]. Spin pumping
has been also enhanced due to the presence of magnon-
polarons [36]. Thus, in most of the effects attributed to
magnon-polarons, the magnitude of its contribution depends
essentially on the magnetoelastic parameter, which quantifies
the strength of the interaction. For instance, in Ref. [37], the
nonreciprocity of the sound velocity in the phonon magne-
tochiral effect is mediated by the cubic of a magnetoelastic
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constant. In the same way, the magnon lifetime due to the
phonon scattering is also proportional to the magnetoelastic
constant [22,38]. The enhancement of magnetization damping
by phonon pumping has been reported to be proportional to
the magnetoelastic constant too [39]. In general, any physical
quantity related to the action of magnon-polarons depends
on a magnetoelastic parameter. Importantly, the strength and
source of this interaction are not unique: Although there
is an intrinsic anisotropy-mediated magnetoelastic coupling,
hereafter, phenomenological magnetoelastic coupling, which
stems from the spin-orbit coupling and dipole-dipole interac-
tion [11,12], there are also other sources of magnetoelastic
coupling as the dependence of the exchange interaction on
the lattice deformations [20,22,38,40] or the modulation of
the Dzyaloshinskii-Moriya (DM) interaction by shear strains
[14,15,37].

In this paper, we study how a magnetoelastic coupling
can be induced by applying a magnetic field gradient on a
arbitrary magnetic lattice. We will show analytically and nu-
merically that the coupling depends directly on the magnitude
and direction of the magnetic field gradient. This will be
shown to imply that the experimental control of the magnetic
field’s shape allows the tuning of the coupling strength and the
possibility of selecting which phonon polarization couples to
the magnons of the material. The presented coupling could be
applied, in principle, to any (anti)ferromagnetic lattice with a
crossing point between the dispersion relations of magnons
and phonons. The idea of controlling the magnon-phonon
coupling with inhomogeneous magnetic fields [20,41-43],
time-dependent magnetic fields [21,44], or other methods
[45,46] has been already reported in the literature where the
main idea is to control the magnon dispersion to make it
match with the phonon one, obtaining, thus, a controllable
magnon-phonon coupling with a constant strength, which is
mediated by a magnetoelastic constant. However, our pro-
posal goes beyond the mentioned approaches. Specifically, we
claim to control the magnon-phonon interaction not only by
choosing when magnon and phonon bands hybridize through
the gradient direction, but also to control the strength of
the interaction that results to be directly proportional to the
module of the magnetic field gradient as will be shown
below.

The paper is organized as follows: In Sec. II, we start
our paper by describing the proposal with a toy model in a
unidimensional system. Despite this is a pretty simple model,
it will allow us to establish the role that a magnetic field
gradient plays in the stability of a given system in the presence
of an inhomogeneous magnetic field with the same periodicity
of the lattice. Once we identify the conditions that our system
must have in order to be physically realizable, in Secs. Il A
and II B, we introduce the basic concepts on the quantization
of the magnetic and elastic systems in a superlattice, respec-
tively, and explore the analytical nature of the magnon-phonon
coupling due to a magnetic field gradient in Sec. II C. Also, in
Sec. II D, we detail the numerical algorithm we used to diag-
onalize the Hamiltonian of our system. Next, in Sec. III, we
apply our results to a magnonic crystal where we study the dis-
persion relation of magnon-polarons and highlight the main
properties of the energy bands obtained with the proposed
coupling mechanism. We also make a comparison between

FIG. 1. Schematic of the unidimensional lattice with a space-
varying magnetic field. The nonuniform arrow represents a magnetic
field gradient, which according to our proposal, exerts an external
force on each magnetic dipole which deviates them from its equi-
librium position so ultimately excites simultaneously magnon and
phonon modes, generating, thus, magnon-polaron excitations.

the phenomenological magnetoelastic coupling and the one
we propose. Finally, in Sec. IV, we discuss and give some
conclusions for future works.

II. MODEL

In this section, we will describe the nature of magnons and
phonons in an arbitrary lattice as well as their coupling due to
the enforcement of a magnetic field gradient in the presence
of a space-varying magnetic field. We chose to explore our
proposal utilizing a lattice model in a quantum-mechanical
frame. However, it is essential to keep in mind that a con-
tinuous model should work as well, and in such a case, the
energy of a continuous elastic theory with a continuous spin
field must be employed. For simplicity, we will assume a low-
temperature regime such that the magnetization’s fluctuations
are weak enough to keep the magnetic order with no thermal
disturbance. The idea of this section is to capture the physics
behind the magnetic field gradient-mediated magnon-phonon
coupling considering an inhomogeneous magnetic field with
the same periodicity of the lattice. This will allow us to un-
derstand the physical limitations of the proposal, and it will
pave our way to the next section where we will overcome
some of these limitations by changing the spatial periodicity
of the magnetic field. We will also consider a ferromagnetic
insulator to neglect the electronic charge.

As mentioned before, we will begin by analyzing a
unidimensional magnetoelastic lattice with nearest-neighbor
distance ap in a space-varying magnetic field B(r) with the
same periodicity of the lattice. For this first example, we will
consider that the system is dominated by a nearest-neighbor
elastic coupling, nearest-neighbor Heisenberg exchange, and
Zeeman interaction as depicted in Fig. 1. In this way, we
consider a spin chain along the x axis and parametrize the
Hamiltonian of it in terms of the displacement u; = x; — X;
being x; and X;, the position and equilibrium position of site i,
respectively; the phonon momentum p;, and the spin vectors
S, meaning that the Hamiltonian reads

N 2 2
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where J is the Heisenberg exchange constant, M is the average
mass of each site, wy is the natural frequency of the elastic
coupling between two neighboring sites, (g is the Bohr mag-
neton, and g is the Land¢ factor.

We can expand the magnetic field around its equilibrium
X; up to to first order in the displacement u; in the displaced
position x; = X; + u;,

0B~
B%(x;) = B*(X;) +
0x

ui + 0(u7). )
x=X;

Note that a magnetoelastic coupling has been induced as ev-
idenced in the linear term of the expansion in displacement
u;. Importantly, the proposed interaction does not have a de-
pendence on the derivative or differences of the displacement
field as reported in previous works [11,30,37,38]. This is
consistent with the fact that, in the present paper, and due
to the application of a magnetic field gradient, every spin in
the lattice is subject to a distinct distortion in such a way that
the displacement field is different for every site, so each spin
displaces differently. In other words, the presented mechanism
breaks the translation invariance. This makes the linear term in
the displacement field the dominant one. This procedure will
be used from now on, and it will be the base to show how
a magnetic field gradient drives an induced magnetoelastic
coupling. Eq. (2) can be directly replaced on Hamiltonian (1)
to obtain

N 2 2
. Pi May, 2
H = ; |:w + T(”i+1 —u))” = JS;i - Sit
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where the induced magnetoelastic interaction becomes evi-
dent in the last term of the above expression when coupling the
elastic degrees of freedom {u;} with the magnetic ones {S;}.
Note that a similar spin-phonon interaction could be obtained
following the guidelines of Ref. [47] by manipulating the last
term of Eq. (3) to express the coupling in terms of the strain
tensor. However, such a formalism does not consider varia-
tions on the magnetic field as in the present case and focuses
on a lattice with no basis, which differs from this essential
feature of our model as we will argue below. This fact imposes
that the dominant term does not involve derivatives of the
displacement field [see Eqs. (7) and (29)].

Before proceeding onto studying the coupling of magnons
and phonons, it is essential to analyze the classical equi-
librium of the system. This procedure is crucial because a
magnetic field gradient exerts a force on every magnetic
dipole, which could change the behavior of its equilib-
ria. To study the equilibria of Hamiltonian (1), the spin
variable will be written in terms of its spherical angles
¢; and 6;, and it will be assumed that the magnetic field
is given by B(x) = [0, B’(x), B*]. The main idea is, then,
to write down the Hamiltonian (1) as a function of the
variables {6;, ¢;, u;} and after Fourier transform the re-
sulting Hamiltonian, minimize it respect to the variables
{ug, u_g, O, 0_}. Major details about the equilibrium analysis
at this stage can be found in Appendix A. Thus, it can be
proven that every eigenvalue of Eq. (1) is positive if and

only if,

y

oB
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2
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X
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It is essential to recall that a stable equilibrium is ob-
tained if every eigenvalue of the Hessian is positive, which
is reflected in inequality Eq. (4). In this particular case, it
must be noted that there exists, at least, a value of k£ such
that inequality (4) is not satisfied, meaning that the system
is not in the real ground state so that the equilibrium analysis
was performed in an excited state and, then, it is unstable.
This can be understood in terms of the appearance of a force
related to the application of the magnetic field gradient, which
acts on each spin pushing them out of the equilibrium and
ultimately accelerates the system. An accelerated system is
no longer at stable equilibrium, and, then, the real equilibrium
state must be achieved. Equation (4) says that, for some range
of k values, this new equilibrium state will never be reached,
which means that magnons and phonons at that regime are
unstable and no magnetoelastic coupling it would be observed
as shown in Fig. 5 of Appendix A. Thus, by choosing a mag-
netic field with the same periodicity of the lattice, whatever
be the magnetic field gradient applied, the spins equilibrium
position, or the magnetic ground state, the system will always
show nonequilibrium aspects and then magnon-polaron ex-
citations are not allowed. To overcome this issue and obtain
stable magnon-polarons in the entire first Brillouin zone, we
need that an opposite force acts on the system and cancels
the acceleration. For such a purpose, we are going to study
the problem of these hybridized quasiparticles in an arbitrary
lattice composed of N unit cells with a basis of m sites,
which will allow us to adapt the magnetic field to get a stable
configuration. In other words, by modifying the magnetic field
periodicity, we can control how many spins belong to the new
unit cell of the lattice so that the purpose of canceling the
acceleration on the system relies now on canceling the net
force on each unit cell. Thus, the needed force to canceling
the acceleration of the system emerges from the shape and
periodicity of the magnetic field. To be more specific, in the
particular case, we will examine the magnetic field will be
adjusted such that the gradient applied to it translates into a
force pointing in a given direction acting on the half of spins
in the unit cell, whereas the other half is under the action
of an opposite force, achieving, thus, the equilibrium on the
system. It is important to recall that the premise of our model
is, then, to modulate the magnetic field such that the forces
that emerge from the gradient are always accompanied by an
opposite one (which emerges from the gradient too) to ensure
the acceleration of the system is identically nulled.

We will separate the study of the total Hamiltonian in an
arbitrary lattice into three partial Hamiltonians,

H = Hum + Hpn + Honp- (5)

In Hamiltonian H,,, we will include the magnon terms, which
will come from the Heisenberg exchange and the zeroth-order
expansion of the magnetic field in the Zeeman term. In H,
we will consider the purely phononic terms, which come from
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the kinectic energy and a elastic potential. H,,, includes the
term that couple magnons and phonons, which will come from
the first-order expansion in the displacement of the Zeeman
energy.

A. Magnons

Magnons are the bosonic elementary excitations of mag-
netic order, and they are usually interpreted as the quanta of
spin waves [48]. This system will be under the influence of an
anisotropic exchange interaction and the Zeeman interaction
with the external magnetic field. With this, we have that the
Hamiltonian reads

M= =3 SIS, — g Y By Sy (©)
ii' jj' ij

where summation over repeated greek indices is implied
throughout this article and in this case «, 8 € {%, ¥, Z}. The in-
dices i,i € {1,2,...,N} and j, j’ € {1, 2, ..., m} represent
the unit cells and basis sites, respectively, and i — i’ = R; —
R; is the distance between nearest-neighbor unit cells. Note
that the quantities with subindices ij should be understood as
the jth element (basis site) of the ith unit cell of the system. In

the Hamiltonian, we have also included the tensor JI.J J l which
corresponds to a generalized interaction between sites S;; and
Sy with no particular choice of a given symmetry such that it
might contain as the nearest-neighbor exchange interaction as
well as a DM interaction.

In order to isolate the terms purely related with the mag-
netic degrees of freedom from the Zeeman term, we will
proceed as in Eq. (2) and expand the magnetic field around the
equilibrium positions R;; up to first order in their displacement
u;j as

o
B%(rij) = B*(R;;) + o

B
7 w+0(@uy), (1)

rij=Ri;

where we are going to keep only the first term of the expansion
and in Sec. II C, we are going to consider the second one to
obtain the magnon-phonon coupling. We will also adopt the
notation,

o _ pa raf 9B”
Bj =B (Rij) and Bj =

LG ®)

r,<,»=R,»j

To obtain a quantized magnonic Hamiltonian, we must
start by using the Holstein-Primakoff transformation [48],
which allows us to write the spin operators §;; in terms of

bosonic operators ¢;; and a; 7> which annihilates and creates
magnons, respectively. This transformation reads

S .
Sfj R \/;(an + a;j), (9a)
]S
Sl?j ~ 1\/;(an — a;j), (9b)
Sf'j =95 ajjaij, (9¢)

where we have linearized the spin operators by using the
boson operators a;; (ajj) described above by considering the
z axis as the quantization axis, according to the linear spin-
wave theory. The reason for keeping the linear order for the

x and y component of spin operators is that, together with the
phonon operators, they will give rise to a Hamiltonian in its
quadratic form, which is enough to obtain the energy spectrum
of the system. Furthermore, we are interested in obtaining
the description of magnons in k space, which is obtained by
employing the Fourier series, given by

1 ik
aj; = —— ag;e™"i, (10)
J \/N Xk: kj

Now, we can simultaneously replace Eqgs. (9) and (10) into
Hamiltonian (6) to obtain the Hamiltonian for magnons in k
space, which reads

S _
_ _ = Ji'=_ 1 Ji—= o Ji'+ T .
Hp = 4 § :[Fk @ gy + U axjary + T "y an
Jji'k
~JJ+ At jilzz, t o ¥ .
+ T Takjaly, — 2050 (g ak; + akj’ak.//)]

+usg ) Biyjaj. (11)
Jjk

Py —
where T}’ * and ry * are defined as

Fl{/i _ J,gj'xx T U/,(ij/xy + u}{j’yx :t]l{j’yy’ (12a)
I—,]{j’:ﬁ: _ JI{j’xx + i‘]]{j’xy _ U]gj/yx :tJ,{j/yy, (12b)

and
J’{j’aﬂ _ Zjij;j;flﬂeik-(rij*ri’j/). (13)

k

Note that Eq. (13) does not represent the Fourier transfor-

mation of Ji’_’;fyﬁ , but it is a definition where the summation
on k by the factor exp(ik - r;;) is inherited from the Fourier
transform of Boson operators.

The result obtained in Eq. (11) can be used for any lattice
with magnetic order. Even though in Eq. (9) we have assumed
that the magnetic order in equilibrium is equal to Z for every
site in the lattice, we can incorporate any periodic magnetic
texture described by the equilibriums So(6;, ¢;) (for instance,
a skyrmion or vortex lattice) by introducing a local change of
coordinates at every site by means of rotation matrices,

cosp; —sing; O cosf; 0 sin6;
Rj=|sin¢g; cos¢; O 0 1 0 1.
0 0 1/ \—sinf; 0 cos¥,
(14)

which can be used to redefine the anisotropic exchange tensor
as

T = RIIR,, (15)

where we only have to use jl]_]; instead of Jl’_’l in Eq. (13).
An important aspect at this point is that when considering
the DM interaction and depending on the anisotropy and
the external magnetic field, the magnetic ground state could
no longer be collinear, so not only commensurate magnetic
structures might appear (for instance, a skyrmion lattice), but
also other noncommensurate ones. In such cases, the local
rotation presented in Eq. (14) is not enough to diagonalize
the Hamiltonian, and a preceding coordinate transformation
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involving a rotating frame must be employed by introducing
an ordering wave vector [49].

B. Phonons

Analog to spin waves, elastic waves can also be quantized.
The elementary excitations of elastic waves are the so-called
phonons. To describe phonons in our system, we consider that
each ion with mass M at position r;; deviates from its equi-
librium position R;; by a small displacement u;; =r;; — R;;
such that the phonon Hamiltonian can be written as [50,51]

p1 o
Hph Z TR uuqﬂf,*“u’?,, (16)
lljj

where p; is the conjugate momentum vector and the index
convention is the same as used for Eq. (6). Additionally,
we have that the mechanical interg/ction between two sites is
described by the elastic tensor @’ P which can be used to
define

I i 17

k

The same as in Eq. (13), Eq. (17) does not represent the
Fourier transformation of @fif"g , but it is a definition where
the summation on k by the factor exp(ik - r;;) is inherited from
the Fourier transform of boson operators. It is also important
to note that because <I>’ b g originally obtained from the
second-order expansion of the potential energy between sites
rij and ry; [51], we must have that &;’ b is real and symmet-
ric, which ultimately implies that it is diagonalizable as

€y, = oy (18)

where we have used the indices u and v as a shorthand
to represent the basis j, j/ and coordinate «, B as a single
index. With the diagonalization of the problem, we obtain
A e{l,2,...,3m} eigenvalues and eigenvectors. Here, the
vectors €, encode the phonon polarizations which can, in turn,
be used to write the operators in k space using the discrete
Fourier transform,

(19a)

1kr,,
E le}tfk)‘e

I 1kr,
E Dlon€p;, .

Replacing Eqgs. (19a) and (19b) into Eq. (16) to obtain the
Hamiltonian in k space yields

(19b)

_ M
Hy =Y [P 4+ Zontougu ] Q0)
ki

To transform the displacement and momentum operators of
Hamiltonian (20) to phonon creation and annihilation opera-
tors, we will use the usual transformation,

[ &
Uy, = m(cikk + cka), (21a)
M, (k
por =i 2R o, (21b)

where the operator c,tk (cky) creates (annihilates) a phonon
with momentum k and polarization A and obeys the usual
commutation relations,

(22a)
(22b)

(ks €y ] = BBy
ks cxa] = [ef,. ¢l 1=0.

Replacing the transformations (21) into Hamiltonian (20),
we obtain an already diagonalized form of the phonon Hamil-
tonian,

1
Hy = Zhwx(k)<ck)\€k,\ + 2) (23)

kx

where the phonon’s dispersion relation is

o) = /22, 24)

being ¢, the eigenvalues of the tensor ®;’ P For simplicity,
in the numerical calculations of the next section, we will
consider an isotropic material. Specifically, we will use sound
velocities v; reported for YIG samples, which are incorpo-
rated to the elastic tensor by setting its Fourier transform equal
to

O = VP2~ (1 e 55087
— (1 + e85, 01, (25)
where
2
M v 0 0
viP=—=10 1 0. (26)

%\o 0

It is crucial to note this particular elastic tensor allows us to
recover the well-known phonon’s dispersion relation in the
long wave-length limit, which is given by

he, (k) = vy |kl, 27

where v corresponds to the sound velocity of the longitudinal
mode, whereas v, corresponds to the transversal mode.

C. Magnon polarons

The hybridization between magnons and phonons me-
diated by the magnetoelastic coupling forms the so-called
magnon-polarons. They are the quanta of the magnetoelastic
waves which are a solution of the coupled set of differential
equations involving the magnetic and elastic degrees of free-
dom [20]. The way we choose to obtain the magnon-polaron
excitations is to quantize the total Hamiltonian composed by
the magnetic, elastic, and magnetoelastic parts,

H = Hm + th + Hmpa (28)

where H,, is given by Eq. (11) and H,;, by Eq. (23). To obtain
the expression of the magnon-phonon Hamiltonian H,,,, we
must recall that, in the series expansion of the magnetic field
in Eq. (7), the second linear term in the displacement was kept
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apart, and it is the only term needed to obtain the magnon-
phonon coupling. Thus, the remaining Hamiltonian is

Honp = —uBgZB’“ﬂS“ uf, (29)

where the derivative is evaluated in the equilibrium position
R; as established in Eq. (8).

To obtain the quantized form of the magnon-phonon
Hamiltonian explicitly in k space, we must start by using the
Fourier transformation of u; given in Eq. (19a). Following this,
we make use of the transformations given in Egs. (9) and (21a)
and the Bloch’s theorem over the magnonic creation and an-
nihilation operators to obtain the magnetoelastic Hamiltonian
in second quantization, which reads

Hup = Y [Aa ij(cin +c ) +Hel,  (30)
kij

with the interaction parameter Ag; as

BS (o

e i B B ) 6D

A = —1Bg
From Egs. (30) and (31), we can effectively see how a
magnon-phonon coupling emerges, and that this is pro-
portional to the magnetic field gradient. Furthermore, the
magnetoelastic parameter Ay; depends essentially on the
magnitude of the derivatives of the transverse components
of the magnetic field. More importantly, the gradient di-
rection couples differently with each phonon polarization,
which, in this case, correspond to the x, y, and z axes. This
last point means that, in principle, there is complete free-
dom to choose which phonon and magnon bands hybridize.
Comparing with the usual phenomenological magnetoelastic
Hamiltonian [22,23,38] given by

HE, = Mwai(en +c ) +Hel, (32
kA

where

K i

Fkk = m[l‘kzda + kzél}(v)L + (lkx + ky)elik]’ (33)

we can see that the main difference between the coupling
introduced in this paper and the phenomenological one [see
Egs. (31) and (33)] is that the latter comes from an intrin-
sic mechanism parametrized by the magnetoelastic parameter
B, and it directly reflects a nonmanipulative feature of a
particular material. Ultimately, this implies that there is not
possibility of manipulating the magnon-polarons features as
it occurs in the case of the induced magnetoelastic coupling
proposed here, which even allows a control level to the point
of manipulate the strength of the coupling and choosing which
phonon polarizations are coupled to the magnon.

D. Numerical calculations

To obtain the magnon-polaron bands and properly compare
the contribution of the phenomenological as the magnetic field
gradient-induced magnetoelastic coupling to the system, we
perform numerical calculations by employing the Colpa’s [52]

- -

/J

s - @aﬁ / s ~

. J

FIG. 2. Magnonic crystal characterized by a crystal lattice con-
stant @, a composed by m spins by unit cell. This is a proof of concept
of the effect that the particular magnetic field gradient [see Eq. (37)]
exerts on each site of the unit cell. It can be seen that the spin located
at j is under an opposite force than the spin located at j’, which
ultimately cancels the net force in the unit cell. This is the essence
behind the feasibility of our proposal.

algorithm to para-diagonalize Hamiltonian (28). To imple-
ment the algorithm, we need to write the Hamiltonian in its
quadratic form as

1 o
H= 2 ;[az a_]Hlog o1, (34)

where oy = (arcpicpacr3) and Hy is an 8 x 8 Hermitian ma-
trix. Colpa’s algorithm [52] will return us a paraunitary matrix
Tr that satisfies

+ E 0
Te HiTe = (Ok E_k), (35)

where Ej is a 4 x 4 diagonal matrix containing the eigenener-
gies. The respective eigenvectors are given by

Ye \ _ O
(VT—k) B ﬁ(“T—k) (36)

III. MAGNON-POLARON BANDS
IN MAGNONIC CRYSTALS

Here, we numerically compute the magnon-polaron bands
in a magnonic crystal embedded in a ferromagnetic insula-
tor as depicted in Fig. 2 where we show a schematic of a
system interacting both elastic as magnetically through ®%#
and J, respectively, and under the action of a space-varying
magnetic field. The magnonic crystal emerges when con-
sidering m (m > 1) spins belonging to the unit cell of the
system. Specifically, we use a YIG sample whose relevant
parameters are listed in Table I [22,23,38]. As previously
reported, periodicity on a magnetic system gives rise to the
so-called magnonic crystals [53]. A magnonic crystal can be

TABLE 1. Values used in the numerical calculations.

Parameter Value

S 20

M 9.8 x 1072 kg
ao 12.376 A

] 7209 m/s
vy 3843 m/s

J 0.24 meV
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manufactured by means of periodic modulation on the mag-
netic anisotropy or magnetic fields [54], periodic inclusion of
nonmagnetic materials [55], periodic arrays of dots [56,57],
or antidots [58]. Geometrical modulations on the surface of
a ferromagnetic film also gives rise to a magnonic crystal
structure [59]. The main feature of the magnonic crystals
is the generation of band gaps where spin waves can not
propagate, allowing their manipulation for potential devices
in spintronics or magnonics. Thus, a magnonic crystal can
be summarized as a metamaterial that enables the suppres-
sion and/or propagation of spin waves according to its band
structure. Phonons in a crystal also have a band structure,
so one would expect that the hybridization between them to
be magnified in terms of increasing number of anticrossing
points due to the bands folding. In fact, magnon-polarons
mediated by the phenomenological magnetoelastic coupling
have been recently studied in similar structures [60,61].

Here, we use the arguments presented in Sec. II about the
stability of the system (see also the discussion in Appendix A),
which can be summarized as the absence of magnetic field
gradient-induced magnon-polaron excitations when the ap-
plied magnetic field has the same periodicity of the lattice to
explore the magnon-polaron excitations in magnonic crystals.
Recall that the main idea behind using magnonic crystals to
explore the generation of magnon-polarons mediated by a
magnetic field gradients is the fact that we can modulate the
magnetic field such that the force exerted by the magnetic field
gradient on each unit cell belonging to the magnonic crystal
is zero. In this way, we will use a periodic magnetic field,
whose periodicity encodes the number of sites belongs to each
unit cell. We start with a periodicity that is likely not easy to
achieve experimentally but that allows us to show how our
proposal should work. Next, we will go into a more realistic
case and will extract some measurable effects. Let us highlight
that the first case we will study is unrealistic with the current
experimental techniques, but it has the advantage that allows
us to show the virtues of our proposal explicitly. Importantly,
the whole discussion related to the first case holds for the
realistic one, which shows, in some way, how robust is our
proposal.

Thus, in order to adjust the magnetic field to avoid the
acceleration on the system, we will use the follow shape of
it,
7YX

B
B(x,z) = |:
q

sin(gx) + Bz cos(qu):|_)7 +B%, (37)
where g, = 27 /(may) and m is the number of sites of the
basis (see also the related case for m = 1 depicted in Fig. 5).
Note that B”? (B = x, z) corresponds to the derivative of the
y component of the magnetic field respect to the variable
B, according to our notation prescribed in Eq. (8). For this
particular choice of the magnetic field, we can ensure that a
magnetic field gradient will not produce a net force on the
unit cell as long as m is an even number. Figure 2 shows
with a solid blue line, the x component (modulus) of the
magnetic field gradient as derived from Eq. (37) as a func-
tion of the distance along the x direction. According to our
proposal, from Fig. 2, it can be seen that the exerted force
driven by the magnetic field gradient on the spin located at
J = 0 points in the opposite direction than the exerted one on

the spin located at j* = 1, canceling, thus, the net force on
the unit cell. Recall that the specific shape of the magnetic
field gradient is not relevant as long as it is periodic and
satisfy its nulled divergence. The choice we made in Eq. (37)
is related to simplicity in our calculations and must be un-
derstood as a proof of concept. The experimental realization
of such a magnetic field is beyond the scope of the present
paper, however, some insights in such a direction can be found
in Ref. [62].

We start by computing the magnon-polaron bands for
waves propagating along the X direction in the absence of
the phenomenological magnetoelastic coupling in a magnonic
crystal embedded in a YIG sample with m = 2 for differ-
ent values of the magnetic field gradient B"* presented in
Eq. (37), and a constant magnetic field of B° = 1 T applied
into the Z direction. Note that m = 2 means a crystal lattice
constant dg ~ 24 A (there are two spins per unit cell), which
is the atomic scale. Currently, it is not possible to obtain
modulations on a magnetic field at such a scale, but, as we
argued before, it is a good starting point to show the versatile
of our proposal. In Figs. 3(a)-3(c), we show the magnon-
polaron bands with the mentioned assumptions. The color
bar is a representation of the amplitude of the probability of
which character has the wave function and its corresponding
eigenenergy. In this way, the green color represents essentially
a magnon state, whereas the blue color represents a phonon
state. The intermediate colors show how mixed are magnons
and phonons, reaching the maximum coupling at the red color
when k = k7, being k; the ith anticrossing point. Note that the
whole spectrum corresponds to magnon-polaron excitations,
but, far from the anticrossing point, there excitations behave
like noninteracting magnons and phonons.

Figure 3(a) shows the magnon and phonon dispersions
with B”* =5 T/m and B”* = 0. The appearance of distinct
band gaps at the crossing points is evident, which manifests
the coupling between the longitudinal phonon mode with
magnons propagating along the ¥ direction. Note that none of
the transverse phonon modes couple with magnons as pointed
out in Eq. (31). Also, it can be seen that due to the band
folding effect, acoustic magnons might simultaneously couple
with acoustic and optical phonons. Analogously, Fig. 3(b)
shows the magnon-polaron bands for a magnetic field gradient
applied into the Z direction with B”* = 5 T/m and B = 0.
Similar to the previous case, here, magnons only couple with
a transverse phonon mode and again, simultaneously, cou-
ple with acoustic and optical phonons. Note that the energy
band-gaps A; between the magnon-polaron modes at k; are
different for the cases with the gradient applied into the X and
Z directions as will be shown in detail below.

Furthermore, and in order to depict the ability to control
which magnon and phonon bands hybridize, Fig. 3(c) shows
the system under the action of a magnetic field gradient
applied into the transverse and longitudinal directions with
B = B”™ =5 T/m. In this case, there is a coupling of both
distinct phonon modes with magnons propagating along the
direction since the magnetic field is applied into two distinct
spatial directions. If we would have considered a magnetic
field gradient applied into the three spatial directions, then,
the degenerated transverse phonon mode of YIG should be
also coupled and, consequently, obtaining two degenerated
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FIG. 3. Magnon-polaron bands for a YIG magnonic crystal with wave-vector k || & and a magnetic field B(x, z) = [0, B¥(x,z), 1] T as
mentioned in the main text. In (a)—(c), the number of the sites in each unit cell is set m = 2, whereas, in (d), we set m = 20. The color bar
shows the amplitude of the probability of the magnon-polaron wave function such that the green line corresponds to a quasifull magnon
band, whereas the blue line corresponds to a quasifull phonon one. The maximum mixture between magnons and phonons is represented in
red color. (a) Magnon-polaron bands for B”* =5 T/m and B”* = 0, (b) for B> =0 and B”* =5 T/m, (c) for B”* = B”* =5 T/m; and
(d) B”* = B =1 T/m. The wave-vector k = k& is written in units of 1/ap. The insets in the red boxes are a zoom in of the anticrossing

points marked with a red circle.

magnon-polaron bands. In the same way, for a given material
with three distinct phonon modes, a magnetic field gradient
with the three spatial components gives rise to three different
magnon-polaron bands. Then, we have shown that it is possi-
ble to choose which magnon-polaron mode to excite by only
fixing the direction of the magnetic field gradient. Remark-
ably, under the same conditions as above, but considering only
the phenomenological magnetoelastic coupling, the ability to
choose which magnon and phonon bands interact does not
exist.

Next, we go into a more realistic system by computing
the magnon-polaron bands for a YIG magnonic crystal with
m = 20 sites per unit cell as shown in Fig. 3(d). In this case,
the periodicity of the magnetic field translates into a crystal
lattice constant dg &~ 25 nm, which it does currently feasibly.
Since m = 20 means 20 magnon bands and 2 x 20 phonon
ones, the presented magnon-polaron bands in Fig. 3(d) shows
a significant convergence between them, which makes it very
difficult to distinguish them. However, it is possible to observe

the hybridization between them as depicted in red color. In
this case, the calculation has been performed for a gradient of
1 T/m applied into the x and z directions, which induces a si-
multaneous hybridization between longitudinal and transverse
phonons with magnons.

To compare the contribution of this induced magnetoelastic
coupling with the usual phenomenological one, we compute
the band-gap A; = E,I(VIPl - E,?APZ lk=x: that separately gener-
ates each kind of coupling between the magnon-polaron bands
at the ith anticrossing point k} and using the same parameters
as above, i.e., a YIG magnonic crystal with m = 20. Thus, in
Fig. 4, we have plotted, on a log-log scale, the energy gap A
for different values of the magnetic field gradient B” p B =
x, 7), where we have considered only the two lowest pairs of
magnon-polaron bands. As stated above, the gap is measured
at all the possible wave-vectors k = k* where the magnon and
phonon bands would cross in the absence of magnetoelastic
coupling and have been depicted by solid and dashed lines ac-
cording the coupled phonon mode. Specifically, the solid lines
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FIG. 4. Energy gap for different values of the magnetic field gra-
dients B”* presented in Eq. (37) in the main text for a YIG magnonic
crystal with a basis m = 20. The presented values are obtained
by computing the two lowest pairs of magnon-polaron bands [see
Fig. 3(d)]. The red color is used to represent the band gap between
the lowest pair of magnon-polaron bands (acoustic magnons copled
with acoustic phonons), and the green color is used to represent the
energy band gap between the next pair of magnon-polaron bands
(optical magnons coupled with acoustic phonons). In the solid and
dashed lines, it is shown the gap between magnons and transverse
and longitudinal phonon modes, respectively. The gray horizontal
line represents the energy gap Ak obtained in Ref. [23].

represent coupling between magnons and transverse phonon
modes, whereas the dashed lines correspond to coupling be-
tween magnons and longitudinal phonon modes. The red and
green colors are used to show in which anticrossing point k; is
measured the energy band gap. More precisely, the coupling
between acoustic magnons and phonons is depicted with the
red lines, whereas the coupling between acoustic magnons and
optical phonons are represented by green lines (see Fig. 4 for
comparison). In this plot, the log-log scale has been used to
show the energy gap for a wide range of magnetic field gradi-
ents, however, we have also performed a linear plot depicted
in Appendix B in Fig. 6. It is of particular interest to find the
value of B”? for which each gap reproduces the gap seen in
Ref. [23], which is approximately Agx ~ 2.1 ueV, an aspect
that has been marked by the gray dotted lines. The importance
of reproducing such a gap by means of the current proposal
relies on the fact that most of the experimental measurements
have been accomplished in YIG samples by only considering
the phenomenological contribution.

From Fig. 4, we can also see with the solid red line that
acoustic magnons couple with transverse acoustic phonons
at k¥, ~5.07 x 10’ m~!, whereas optical magnons couple
transverse acoustic phonons at k%, ~ 9.64 x 10’ m~! as de-
picted with a solid green line. Similarly, Fig. 4 also shows
that, at kf; & 2.53 x 107 m~!, acoustic magnons and a longi-
tudinal acoustic phonon mode are coupled, whereas, at kﬁ‘z ~
6.34 x 10" m~!, optical magnons couple with the transverse
acoustic phonon band. Note that the gap opened at k|, has a
nontrivial behavior with the magnetic field gradient. In fact,

for gradient values smaller than ~1072 T/m, the gap does
not have significant dependence on the magnetic field gra-
dient but, then, grows almost linearly for higher values of
it. We attribute this behavior to the high number of bands
converging in a small portion of the phase space for small
values of the magnetic field gradient, making the population
of magnon-polarons profoundly affected by the contiguous
hybridizations. Importantly, the gap reproduced in Ref. [23]
Ak can be reproduced with magnetic field gradients of about
~0.1 T/m, that, in fact, can be reasonably achieved with the
current experimental techniques [63-67]. Indeed, by using
a magnetic microtrap, Ref. [62] reported gradients of up to
8000 T/m, which, due to the linear behavior of A with BP
(see related discussion in Appendix B), it would translate into
very large A values, so we predict enhancements of transport
properties related to the presence of magnon-polarons when
a magnetic field gradient larger than 0.1 T/m is applied.
Interestingly, Fig. 4 (see also Fig. 6) also shows that we
could reach gaps of order of about 0.1 meV with gradients
of about ~10 T/m. This gap is on the same order as reported
on previous works on topological magnonics [68].

IV. CONCLUSIONS

In this paper, we have proposed a versatile way to induce a
magnetoelastic coupling in any (anti)ferromagnetic material.
Despite the fact that our formalism was developed in a specific
spin chain, it can be extended to more sophisticated systems
where we expect similar behaviors due to the generalized
treatment we gave for the total Hamiltonian. The main contri-
bution of the present paper is the proposal of an enhancement
of the magnetoelastic coupling by a magnetic field gradient.
The physics behind it can be understood in terms of the force
exerted by the magnetic field gradient on each magnetic dipole
which deviates them from its equilibrium position exciting,
thus, simultaneously, both phonon and magnon modes. Im-
portantly, for a realistic setup (represented by m = 20 in our
calculations), the order of magnitude of the magnetic field
gradient needed to achieve measurable effects starts from
~10~" T/m in YIG, which is well accomplished in standard
experiments. Since a magnetic field gradient means an exter-
nal force on each magnetic dipole, an infinite system with the
same periodicity of the magnetic field is then accelerated and
a non-Hermitian Hamiltonian is expected when considering
the Z axis as the ground state, so no magnon-polarons can
be excited. This can be overcome by properly adjusting the
magnetic field periodicity such that the net force on each unit
cell of the system is zero. Thus, by employing our proposal
in a magnonic crystal where the nature of it allows having
such features, we can avoid the imaginary parts of the energy
spectrum and real energies are obtained in the whole Brillouin
zone. Furthermore, as a highlighted results, the band gaps in
the magnonic crystal can be controlled by varying the strength
and direction of the magnetic field gradient. Note that since
the formalism demands a stable ground state in the system,
which must be accomplished canceling the net force emerged
from the gradient on the unit cell of the system, our proposal
should be very well achieved in an antiferromagnetic system
where the nature of the unit cell would allow major liberty on
the choice of the magnetic field shape. In such a case, since
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forces emerged from the magnetic field gradient leads to local
deformations, we should first compute the new equilibrium
positions and, then, perform the whole analysis developed in
this paper. Finally, our proposal could open new possibilities
to control the magnon-phonon interaction with the idea of
manufacturing efficient spintronic and/or magnonics devices.
We claim, then, that this induced magnetoelastic coupling is
fully controllable by a magnetic field gradient. Since most of
magnon-polaron transport properties depend on the strength
of this interaction, we predict, thus, an enhancement of them
by controlling the strength and direction of the magnetic field
gradient.
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APPENDIX A: EQUILIBRIUM CONDITION
IN AN ARBITRARY LATTICE

To analyze the equilibria in an arbitrary lattice, let us first
start by analyzing the equilibrium in a system composed of a
single spin attached to a spring and coupled to a inhomoge-
neous magnetic, whose Hamiltonian is described by

p2 Ma)%

=t

where we have defined the small deviation u = (x — X)X,
being Xy the equilibrium position. Classically, the spin’s
time evolution is governed by Newton’s second law and the
Landau-Lifschitz-Gilbert equation. To make the study of the
system’s equilibria more comfortable, the spin variable can
be written in spherical coordinates angles 6, ¢, and it can
be considered the particular case where B = [0, B”(x), B],
meaning that the classical energy E (x, 6, ¢) is given by

u® — upgB - S, (A1)

p2 wz
E(x,0,¢) = 7 T“u2 — 1pgSB’ sin(0) sin(¢)
— wpgSB cos(6). (A2)

From Eq. (A2), the equilibria of the system follow directly
from minimizing the energy. For this, it must be imposed that
E =0, dpE =0, and d4E =0,

2 B . .
Mawgu — /LBgSg sin(f) sin(¢) = 0, (A3a)
B’ cos(0) sin(¢p) — B*sin(f) = 0, (A3b)
B sin(0) cos(¢p) = 0. (A3c)

From Eq. (A3), it is direct to see that (u, 8, ¢) = (0, 0, 0)
is a solution. Studying the Hessian at the equilibrium point,
it is clear that this is positive definite whenever the following

inequality complies:
B\ Mo}
— <
0x lu=0 8B S

B (A4)

Thus, the point (u, 6, ¢) = (0,0,0) is a stable equilib-
rium whenever the condition established by inequality (A4)
is fulfilled. The importance of analyzing the equilibrium of
Hamiltonian (A1) comes from the fact that the equilibrium
needs to be stable for it to have spin waves. This single spin-
toy model allows us to see that there exists a magnetic field
gradient from which the equilibrium is no longer stable and
no spin waves are admitted under those conditions.

Now, we go beyond this single spin model and expand our
analysis of equilibrium to an extended one-dimensional lattice
with the spacing ag parameter. The simplest system with both
magnetic and elastic interactions is given by

Cl)
H= Z|: 0(lll+1 —u;)? JSi"Si+1—MBgB‘Si],
(AS)

where the unidimensional elastic interaction and Heisenberg
exchange were considered. To further simplify the model, the
magnetic field B(x) will be assumed to be periodic with a
periodicity equal to that of the lattice. Next, we expand the
arbitrary magnetic field B(x) around the equilibrium positions
X up to first order in the displacement u, which leads to

w?

-% [

— (i1 —w;)* —JS; - Sip1

oB
— 1B8B - Si — upg— 'SiM“:|, (A6)
axH
where the positions X; = (iag, 0,0) and the spin ground-
state S; = (0, 0, S) were chosen as possible equilibria of the
system.

To study the actual equilibria of Hamiltonian (AS), the spin
variable will be written in terms of its spherical angles 6; and
¢; and, as in the single spin case, it will be assumed that
the magnetic field is given by B = [0, B”(x), B*]. With these
considerations, the Hamiltonian can be written explicitly as

3

— JS?[sin(8;) sin(B;41) cos(;) cos(giv1)
+ sin(6;) sin(8;11) sin(@;) sin(¢i+1) + cos(6;) cos(;41)]

Mwj
Prwln To(ui+1 —u;)’

— npglSB’ (x) sin(6;) sin(¢;) + SB* cos(6;)] ¢ (A7)

Using the single spin case as inspiration, the point
(u;, 6;, ;) = (0,0, 7/2) is considered as possible equilib-
rium. We expand the Hamiltonian (A7) to second order around
the mentioned point,

H:ZB—M+

2
,

0 2

— (w1 —uy)
2

—JS*(0,6i+1 — 67 — 62)) — uBgS<

9B’ -
Lt,’@i — B"ei .
dx

(A8)
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To find the stability of the system, Fourier’s theorem on u; and 6; will be used. This will lead to a Hamiltonian described by

ug, U_g, 6y, and 0_;, which is given by

2
H=Y" [217_1\];1 + Ma[1 - cos(ka)lu — 2JS°[1 = cos(ka)lokb- + usgSB 0O« — g
k

From the Hamiltonian in k space, it can be noted that the
Hessian is a block diagonal matrix where each block is 4 x 4,
formed by the variables uy, 6, u_x, and 6_;. With this, it can
be proved that every eigenvalue is positive if and only if

dBY 2
(8—ngg) < AMSw}(—2JS[1 — cos(ak)]
X

+ ppgB?) sin? (%) (A10)
which is Eq. (4) of the main text. As an extra note, it is es-
sential to recognize that, intuitively, the proposed equilibrium
could never be stable because every site feels the same force,
thus, always pushing it away from the equilibrium obtained
with a constant magnetic field. As explained in Sec. II D of the
main text, the way we choose to diagonalize the Hamiltonian
of the system is following the Colpa’s algorithm, which de-
mands to write the total Hamiltonian into its quadratic form.
However, as shown in Eq. (A10), there will be some range
of k values where the diagonalization procedure breaks down
essentially because of the system is no longer stable at the
chosen equilibrium points. In order to show explicitly such a
claim, in Fig. 5, we compute the magnon-polaron bands for a
magnetic field given by

(27
B(x) = B, sin <—x)jr, (A11)
) %

14.4 M
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FIG. 5. Magnon-polaron bands for a YIG sample as function of
1/ay for By = 1 nT. The green color is used to denote the probability
amplitude of the eigenstate to by a magnon and blue is used to denote
any phonon mode. The gray-dotted vertical line denotes the point

when the Hamiltonian is no longer positive definite and no physical
eigenenergies are observed below it.

v

X

I/tkek:| . (Ag)

(

where it must be noted that B(x) has the same periodicity of
the lattice, in the same way as assumed to arrive in Eq. (A10).
Also, the magnetic field gradient has been applied into the
x direction, it has been used By = 1 nT, and the magnetic
parameters were extracted from Table I for a YIG sample. Im-
portantly, the gray-dotted vertical line marks the point where
inequality (A10) stops being true. Thus, it has been proven
that when applying a magnetic field gradient on a magnetic
field with the same periodicity of the lattice, the system feels
a net force which ultimately accelerates it and is no longer sta-
ble. This has the consequence of magnon-polaron excitations
should not be observed for this case.

APPENDIX B: ENERGY GAP A AS A FUNCTION
OF THE MAGNETIC FIELD GRADIENT

Here, we show the dependence of the energy gap A as a
function of the magnetic field gradient. As depicted in Fig. 4
of the main text, the log-log scale was used to show a wide
range of the magnetic field gradient. However, here, we use a
linear scale to show that the energy gap A effectively varies
linearly with B”? from values of B*® larger than ~0.1 T/m as
shown in Fig. 6.

The most important aspect of Fig. 6 is that a linear equation
can directly describe it: A = bB'" (1 = «, B), and the log-log
scale is not necessary to show the linear behavior of the energy
gap but was, nonetheless, used to clearly show in the same plot
the value upon which the gap in Ref. [23] is obtained.

.025 1
0-025 —==- k=0.0107/ay
—==- k=0.0257/ay
0.0204 — k= 0.0207/ag
— k=10.0387/ag
—~
% 0.0154
&
=
< 41 -
¢o.or04 - .-
00054 S =" ]
0.000 === : , , , ,
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

B [f /m|

FIG. 6. Energy band-gap A as a function of the magnetic field
gradient B as depicted in Fig. 4. In this case, the linear scale has
been used.
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