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Layer effects on the magnetic textures in magnets with local inversion asymmetry
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Magnets with broken local inversion symmetries are interesting candidates for chiral magnetic textures, such
as skyrmions and spin spirals. The property of these magnets is that each subsequent layer can possess a different
Dzyaloshniskii-Moriya interaction (DMI) originating from the local inversion symmetry breaking. Given that
new candidates of such systems are emerging, with the Van der Waals crystals and magnetic multilayer systems,
it is interesting to investigate how the chiral magnetic textures depend on the number of layers and the coupling
between them. In this article, we model the magnetic layers with a classical Heisenberg spin model where the sign
of the DMI alternates for each consecutive layer. We use Monte Carlo simulations to examine chiral magnetic
textures and show that the pitch of magnetic spirals is influenced by the interlayer coupling and the number of
layers. We observe even-odd effects in the number of layers where we observe a suppression of the spin spirals
for even layer numbers. We give an explanation for our findings by proposing a net DMI in systems with strongly
coupled layers. Our results can be used to determine the DMI in systems with a known number of layers and for
new technologies based on the tunability of the spiral wavelength.
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I. INTRODUCTION

The role of electronic devices in society is ever increasing,
and there is a need to make them smaller and faster, whereas
keeping a low-power consumption. However, the current tech-
nologies are reaching their limits since the information density
cannot be increased much further. Therefore, new technolo-
gies need to be developed. One of the most promising new
technologies for data processing and storage are magnetic
systems with chiral textures, such as chiral magnetic domain
walls and skyrmions [1–5]. Their chiral and topological prop-
erties make for sturdy textures which can become extremely
small, this makes them suitable for applications. An example
of such a design is the skyrmion-racetrack memory, which is
a promising route for fast and energy efficient memory and
processing devices [6–8].

At the moment, a plethora of systems is known to host
skyrmionic textures, such as the chiral magnet MnSi which
hosts so-called Bloch skyrmions and ultrathin ferromagnetic
films which typically host Néel skyrmions [9–17]. These thin
magnetic films are formed by stacking multiple layers of
different metals, and the order of these layers determine their
magnetic properties. Furthermore, a new class of suitable ma-
terials is emerging: The Van der Waals crystals. These crystals
consists of two dimensional layers of one atom thick, stacked
on top of each other via Van der Waals bonds [18,19]. Two-
dimensional layers can be exfoliated from bulk materials,
such as graphite, hexagonal boron nitride and CrI3 [18,20,21].
Because of the freedom to stack different kinds of materials,
the end product is tunable and can be formed such that the
desired properties are present in the end product with virtually

no strain since the weak interlayer bonds make them less
sensitive to lattice mismatch problems.

In this article, we demonstrate how a local DMI arising
from a local inversion asymmetry can give rise to chiral
structures even in materials with global inversion symmetry.
DMI is an interaction formed when strong spin-orbit coupling
and broken inversion symmetry are present. An example of
such symmetry breaking is the interface between two different
materials, such as Co and Pt [22,23]. The DMI is also referred
to as antisymmetric exchange since the interaction picks up
a minus sign when exchanging two spins. Because of this
property, the interaction leads to chiral magnetic textures. One
example of chiral magnetic textures is spirals with a preferred
turning sense [either clockwise (CW) or counterclockwise
(CCW)] which are formed by DMI in the absence of fields
and anisotropies. Here, we note that a local DMI can arise in
crystal possessing global inversion symmetry, but which show
a local inversion asymmetry (as drawn in Fig. 1). This allows
for a DMI term to be nonzero locally whereas averaging
out when the complete infinite crystal is taken into account
This is analogous to the “hidden spin-polarization” effect that
occurs because of local inversion symmetry breaking and was
elucidated in Ref. [24] and experimentally verified in Van der
Waals crystals [25–28]. We are interested in magnets where
this local DMI has an alternating nature of its sign in subse-
quent layers. Especially, we are interested in materials with
(anti)ferromagnetic coupling between the layers. To comply
with this condition, Van der Waals crystals need to have
bulk inversion symmetry, layer inversion asymmetry, mag-
netism, and high spin-orbit coupling. An example of a Van der
Waals material meeting these criteria is Fe3GeTe2 [19], which
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FIG. 1. Schematics of (a) a bulk crystal with a global inversion
symmetry whereas showing local inversion asymmetry and (b) the
model used in our simulations. Here, the arrows are Heisenberg
spins and can rotate freely in three dimensions, Jxy is the intralayer
coupling, Jz is the interlayer coupling, and D is the DMI.

belongs to the space-group P63/mmc [29] in its bulk form and
point-group D3h in its monolayer form [30]. The condition of
local inversion asymmetry in a globally inversion symmetric
system can also be obtained in sputtered metallic thin films,
such as Ta/Co/Pt/Co/Ta systems making it even easier to
perform such DMI engineering [31].

In this article, we discuss how a locally nonzero DMI
influences magnetic textures. We show what different textures
form and find that these chiral textures occurring in the system
are influenced by the stacking of the layers. The resulting spin
spiral wavelength and their turning sense are affected by the
interlayer coupling relative to the DMI. Furthermore, we find
that the number of layers influences the wavelength of the spin
spirals in the system, and an even-odd effect is found for the
number of layers in the system. The tunability of the spin
spirals suggests that skyrmions will also be tunable in their
size. The tunability of the spin spiral wavelength and turning
sense demonstrate the potential of DMI engineering for new
magnetic devices. Moreover, since spin spiral systems can
develop skyrmions upon applied magnetic fields, our results
also serve as a basis for the design of skyrmionic devices.

The remainder of this paper is organized as follows. In
Sec. II, we discuss our model and how the simulations are
performed. After this, we show results of our simulations in
Sec. III, where we focus on the phase diagram, wavelength,
and turning sense found in the system with an odd number of
layers. This is compared in Sec. III to systems with an even
number of layers. Finally, we conclude with an outlook in
Sec. IV.

II. MODEL AND METHOD

To model a stack of coupled ferromagnetic layers, we
describe them with a classical Heisenberg spin model. Each
layer is modeled by equally spaced spins on a square lattice.
This is performed for simplicity and is a decent approximation
since we are modeling temperatures far below the Curie tem-
perature and are interested in smooth textures, such as spin
spirals. The layers are placed right on top of each other as
shown in Fig. 1(b), and each layer has an alternating sign
for the DMI strength. We assume that the leading interac-
tions within the layers are ferromagnetic nearest-neighbor
exchange and DMI. The leading interaction between the lay-
ers is assumed to be nearest-neighbor exchange varying from
the ferromagnetic to the antiferromagnetic regime. We note
that these conditions are met for various Van der Waals crys-
tals as well as for metallic thin-film heterostructures with
Ruderman-Kittel-Kasuya-Yosida (RKKY) coupled layers.

We describe the Hamiltonian H with separate terms for the
intra- and interlayer terms,

H = Hintra + Hinter. (1)

The interactions within the layers are expressed as follows:

Hintra = −Jxy

N∑

α=1

∑

r

Sα
r · (

Sα
r+x̂ + Sα

r+ŷ

)

+
N∑

α=1

(−1)α−1D
∑

r

(
Sα

r × Sα
r+x̂ · ŷ − Sα

r × Sα
r+ŷ · x̂

)
,

(2)

where Jxy is the intralayer coupling, D is the Dzyaloshinskii-
Moriya interaction, Sα

r is the spin at position r in layer α =
1, 2, . . . and x̂ and ŷ are the unit vectors in the the x and
y directions, respectively. The number of layers is denoted
with N and the (−1)α term regulates the alternating DMI
sign in the system. The interactions between the layers are
described by

Hinter = −Jz

N∑

α=1

∑

r

Sα
r · Sα+1

r ,

where Jz is the intralayer coupling.
To investigate the ground state of this model, we use Monte

Carlo simulations. We begin the simulation by taking a ran-
dom spin configuration at a high temperature. Then, we use
the Metropolis algorithm to thermalize the system [32,33].
This algorithm picks a random spin and proposes a new semi-
random direction. This new direction is such that the average
acceptance ratio is 50%, which is determined from the energy
difference between the new and the old spin configuration:
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FIG. 2. Snapshot of a 32 × 32 cut out of a three-layer 128 × 128 spin system with Jz/Jxy = 0.10 and D/Jxy = 0.50. The color red indicates
that a spin is pointing upwards and blue downwards. Spin spirals are clearly visible, and the sign of the DMI has a clear effect on the turning
sense [counterclockwise for layers 1 and 3 and clockwise for layer 2].

�E . The acceptance probability P is then P = exp(�E/kBT )
if �E < 0 or P = 1 in all other cases. Finally, we accept
or reject this new direction with a probability of 0.5. When
the system is fully thermalized, we decrease the temperature
and repeat this thermalization and lowering of the temperature
until the temperature gets close to zero and approaches the
ground state. We start our simulations at kBT/Jxy = 10, where
kB is the Boltzman constant and T is the temperature. To
this end, the temperature is lowered by a factor of 0.95 until
kBT/Jxy = 0.01.

III. RESULTS FOR ODD NUMBER OF LAYERS

For low temperatures, we expect that magnetic textures
will form in the ferromagnet. The DMI leads to the formation
of a chiral spiral inside the layer and, depending on the sign
of the DMI, the turning sense of the spiral should be differ-
ent in each subsequent layer. The size of the spiral should
be influenced by the relative strength between the DMI and
the intralayer coupling terms (D/Jxy). We performed simula-
tions for varying parameters of DMI (D/Jxy) and interlayer
coupling (Jz/Jxy), and systems with sizes varying between

FIG. 3. (a) Cartoon of two coupled spin layers corresponding to
the phases described above. (b) Phase diagram of an odd multilayer
system. Phases Ia and Ib correspond to the FM and AFM polarized
phases, respectively, phases IIa (FM) and IIb (AFM) to the interlayer
coupling dominant phase and phases IIIa (FM) and IIIb (AFM) to
the DMI dominant phase. The phase diagram is determined with help
from the second layer of a five layers system with 256 × 256 spins
with a DMI between 1 and −1 and a Jz/Jxy between 1 and −1.

32 × 32 spins and 256 × 256 spins. We find that the systems
thermalize and form a stable state where a clear chiral spiral
pattern is visible. In Fig. 2, we show snapshots of such a
system with chiral spirals. We performed simulations for a
varying number of layers, and, in this part of the article, we
will discuss systems with an odd number of layers. The even
number of layer systems are discussed later in Sec. III.

A. Phases and phase diagram

The magnetic structures in our systems will be determined
by the competition among the three terms in the model: The
intralayer coupling, which favors the alignment of the spins
inside the layer, the DMI, which leads to a chiral spiral inside
of the layer, and the interlayer coupling, which favors the
(anti-)alignment of the spins between the layers.

Our simulations show six prominent magnetic phases. The
first two phases are the fully polarized phases where the in-
terlayer exchange is dominant, i.e., |Jz|/Jxy � D/Jxy. Here,
no magnetic structure appears, all spins are always aligned
inside the layer. For a negative interlayer exchange Jz, the
layers are antiferromagnetically (AFM) oriented with respect
to each other, this is in contrast with a positive interlayer
exchange where the layers are oriented ferromagnetically
(FM). A cartoon of this is shown in Fig. 3(a) Ia for Jz > 0
and Ib for Jz < 0. The next two phases, phases IIa and IIb, are
obtained by increasing the DMI and magnetic spirals start to
form. Here, the DMI term is non-negligible when compared
to Jz. We have observed this for all finite nonzero values
of D/Jxy. Since the interlayer coupling is still fairly large
compared to the DMI in this phase, the system behaves, such
as the complete system possesses a single “net” DMI value,
and all spirals have the same turning sense as is shown in
Fig. 3(a) IIa and IIb. Important to note, here, is that the system
we consider in this section is still inversion asymmetric due to
the odd number of layers which does allow for a net DMI to
be present. Furthermore, the sign of the interlayer coupling Jz

determines the relative orientation of the layers, here, as well.
The difference is shown in Fig. 3 IIa for FM and IIb for AFM
orientation between the layers. The last two phases are where
the DMI is dominant and since the sign of the DMI is alter-
nating, the turning sense of the spirals is also alternating in
subsequent layers. As is drawn in Fig. 3(a) IIIa and IIIb. Here,
the interlayer exchange is only present to regulate the relative
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FIG. 4. Average turning sense in each layer. To calculate this
average turning sense each spin is given a value of ±1 corresponding
to the orientation with respect to their neighboring spin, finally an
average of all these values is calculated. A value of +1 corresponds
to a CW turning sense and −1 to a CCW turning sense. This is plotted
for five layers of 256 × 256 spins with a DMI between 1 and −1, and
a Jz/Jxy between 1 and−1.

orientation of the layers. The snapshot in Fig. 2 is taken in
the DMI dominant phase (IIIa), an counterclockwise turning
sense is visible in layers 1 and 3 and a clockwise turning sense
in layer 2. In Fig. 3(b), we plot the phase diagram where these
three phases occur for different values of DMI and interlayer
coupling.

In Fig. 4, we show the average turning sense for a system
with five layers. We determined this turning sense by looking
at the average value of turning direction between two neigh-
boring spins CTS, which we defined by

CTS = Sgn[(Sr × Sr+x̂ ) · ŷ],

where our reference vector ŷ = (0, 1, 0), is the unit vector
along y. A positive CTS corresponds to a CW orientation
between the spins, and negative CTS corresponds to a CCW
orientation. The total average value of all turning directions
gives an indication of how the spiral is oriented in the layer
on average. In Fig. 4, the fully polarized phases Ia and Ib are
clearly visible as the white region where D/Jxy = 0 and no
turning sense is present. For increased DMI, a nonzero aver-
age turning sense is visible, corresponding to phases IIa and
IIb. In each subsequent layer, the turning sense has the same
direction. Increasing the DMI even further, we find phases IIIa
and IIb, and this is clearly visible in Fig. 4. There is a stronger
turning sense, and each subsequent layer switches the turning
sense following the sign of the DMI. In layers 2 and 4, a right
(left) turning sense is found for a negative (positive) value of
D/Jxy instead of a left (right) turning sense.

The only difference between ferromagnetic (Jz > 0) and
antiferromagnetic (Jz < 0) interlayer couplings is is the rela-
tive orientation of the layers. For the rest, all plots in Fig. 4(b)
are symmetric around Jz/Jxy. We can explain this from
looking at Fig. 4(a) IIa and IIb, here, we see that the
ferromagnetic coupled layers have aligned spirals, and the an-
tiferromagnetic coupled layers have antialigned spirals. This
difference can be described as a phase shift between the spi-
rals of half a wavelength. Furthermore, for Fig. 4(a) IIIa, the
spins pointing perpendicular to the layer are aligned between
the layers, but due to the alternating nature of the DMI, the
parallel pointing spins are antialigned. In Fig. 4(a) IIIb the
opposite is true: The perpendicular spins are antialigned, but
the parallel spins are not. This contrast makes that there is no
noticeable energy difference between the ferromagnetic and
the antiferromagnetic cases.

B. Wave vector

In this section, we will focus on the wave vector of the
spirals found in phase IIa/b and IIIa/b. The wave vector is
defined by the number of cycles a spiral forms per spin and is
determined by the ratio of DMI and intralayer exchange cou-
pling. A higher ratio leads to a shorter spiral period and, thus,
a larger wave vector. We expect that the competition between
the DMI and the interlayer coupling has significant effects on
the spirals since two coupled spirals with different turning
senses cannot be coupled such that all spins are aligned. In
Fig. 3(a) III, it is visible that the interlayer coupling between
the two spirals gives a different energy contribution per spin:
A favorable energy contribution for the vertically aligned
spins and an unfavorable one for the horizontal antialigned
spins. It is impossible to shift the spirals relative to each other
such that the interlayer coupling is favorable for all spins. The
wave vector will be the largest where the interlayer coupling is
not present. Here, with Jz/Jxy = 0, the wave vector is the same
as a single layer system and goes to zero where the interlayer
coupling is much larger than the DMI.

In Fig. 5, we show the wave vector for constant DMI, D/Jxy

ranging from 0 to 1, and varying interlayer exchange. A big
variation in the wave vector is found between small and large
interlayer exchanges. The wave vector for the large interlayer
exchange is around one-fifth the size of the wave vector for
the small interlayer exchange. The drop off between these two
cases corresponds to the phase transition in the phase diagram
between phases IIa/b and IIIa/b. Thus, we see that phase IIa/b
has a larger wave vector than phase IIIa/b. Also, here, there
is no clear distinction visible between the ferromagnetic and
the antiferromagnetic interlayer couplings. To examine the
distance between the different cases of D/Jxy in Fig. 5, we plot
the wave-vector dependence on the DMI for different values
of interlayer coupling Jz/Jxy in Fig. 6. Here, we see that the
relation between DMI and wave vector without any interlayer
coupling is linear, but for increasing interlayer coupling, this
linearity is not found since the wave vector is dependent on
the different phases of the system.

Since the wave vector is influenced by finite-size effects,
we used a finite-size scaling to determine the true wave vec-
tor. For this, simulations were preformed for systems with
system size 64 × 64, 128 × 128, and 256 × 256, and we
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FIG. 5. Wave vector for various values of DMI plotted for a range
of interlayer coupling for a five-layer system. A small wave vector
corresponds to a larger spiral wavelength.

extrapolated the wave vector linearly in 1/L. An example of
a plot with different system sizes and the resulting true wave
vector is shown in Fig. 8. In the inset, we show one of the data
fits we used to determine the wave vector. The wave vector is
determined as the average distance to the origin for all pixels
in a two-dimensional Fourier transform that are more then five
standard deviations above the mean of all pixels in a layer,
divided by the system size.

C. Influence of the number of layers

We investigated the wave vector for systems with three,
four, and five layers. In this section, we are focusing on
systems with an odd number of layers only. See Fig. 7 for a
comparison between two systems with three and five layers.

FIG. 6. Wave vector for various values of interlayer coupling
plotted for a range of DMI for a five-layer system corresponding
to Fig. 5. It is visible that the linear behavior of the wave vector is
affected by the interlayer coupling.

FIG. 7. Comparison of the wave vectors of a system with three
layers and a system with five layers. Both layers are plotted for a
DMI of D/Jxy = 0.75. A drop off between 2.6 and 3.2 is visible in
the three-layered system and between 3.3 and 5.3 in the five-layered
system.

It is visible that the drop off is larger for a larger number
of layers. Examining the ratio between the long wavelength
in the DMI dominant phase and the shorter wavelength in
the interlayer coupling dominant phase, we find two effects.
First, this ratio is roughly 3 for a system with three layers
and around 5 for a system with five layers. Our hypothesis
is that the sum of the DMI divided by the number of layers
gives a net DMI for strong interlayer coupling. At Jz/Jxy = 0,
the layers are completely decoupled and behave as individual

FIG. 8. Wave vector plotted against interlayer coupling Jz/Jxy for
a system with four layers and a DMI of D/Jxy = 0.50. Different
system sizes 64 × 64, 128 × 128, and 256 × 256 are plotted, and
a finite-size scaling made with a linear fit in 1/L is added. The inset
shows the finite-size scaling for Jz/Jxy = 0. Here, we only show the
results smaller than |Jz/Jxy| < 0.5 since the finite-size scaling did not
work above this value.
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TABLE I. Table of the ratio between the wave number in the
DMI dominating phase IIIa/b and the phase IIa/b in a three-layer
system. Columns are for D/Jxy and rows for the different layers in a
system. This is for a three-layer system. The ratio is determined for
Jz/Jxy = ±1 and Jz/Jxy = 0. The results for D/Jxy = ±1 are omitted
in this table because this strong the interlayer coupling must be
stronger than the intralayer coupling to reach phase IIa/b.

D/Jxy −0.75 −0.50 −0.25 0.25 0.50 0.75

Layer 1 2.88 2.96 2.66 2.82 3.14 2.88
Layer 2 3.00 3.04 2.69 2.75 3.24 3.01
Layer 3 2.91 2.95 2.60 2.74 3.13 2.89

layers. Here, the net DMI in each individual layer is exactly
D/Jxy. As we increase Jz, the interlayer coupling leads to a
“dilution” of the DMI, and, at very large interlayer coupling,
the system behaves as a system with a single DMI value, given
by the sum of the DMI in each individual layer divided by the
number of layers. As the number of layers increases, the DMI
gets divided by an increasing number, Therefore, leading to a
decrease in the net total DMI and a reduction of the observed
wave vector. Because of the alternating DMI, the total sum
of the DMI is D leading to a net DMI Dnet = D/3 for three
layers and Dnet = D/5 for five layers. This is only a rough ap-
proximation which works within 10% of the ratio. Second, the
precise ratio of the layers themselves shows a pattern. There
is a symmetry, the two outermost layers have the same ratio,
whereas the inner layer has a different ratio. For example, in
a five-layered system, the second and fourth layers have the
same ratio, and there is a symmetry around the middle layer.
This hints to a richer structure between the layers. We show
the ratios in Table I and Table II for which we used a system
with Jz/Jxy = ±1 for the wave vector of a interlayer coupling
dominating phase and the values at Jz/Jxy = 0 as the DMI
dominating phase.

D. Results for even number of layers

When a thin ferromagnet with local inversion asymmetry
has an even number of layers, the sum of the total DMI will

TABLE II. Table of the ratio between the wave number in the
DMI dominating phase IIIa/b and the phase IIa/b in a five-layer
system. Columns are for D/Jxy, and rows are for the different layers
in a system. This is for a five-layer system. Our approximation of Dnet

breaks down at D/Jxy = ±0.25 where the ratios are much smaller.
The ratio is determined for Jz/Jxy = ±1 and Jz/Jxy = 0. The results
for D/Jxy = ±1 are omitted in this table because this strong the
interlayer coupling must be stronger than the intralayer coupling to
reach phase IIa/b.

D/Jxy −0.75 −0.50 −0.25 0.25 0.50 0.75

Layer 1 4.47 4.65 3.37 3.25 5.21 4.57
Layer 2 4.65 4.77 3.38 3.34 5.31 4.60
Layer 3 4.56 4.68 3.40 3.29 5.28 4.59
Layer 4 4.66 4.77 3.37 3.27 5.34 4.63
Layer 5 4.51 4.64 3.44 3.24 5.21 4.51

be zero, i.e., Dnet will be zero. Thus, in the ferromagnetic
dominant phase, we expect to observe no spin spirals. This is,
indeed, the case. In Fig. 8, we plot the wave vector of a system
with four layers. In the DMI dominant phase, we still find
spin spirals with a wave vector of 0.07 inverse lattice spacings,
which is comparable to the odd layered case. However, in the
interlayer coupling dominate phase, the wave vector drops to
the predicted 0. Unfortunately, the finite-size scaling breaks
down in this regime and gives noisy results, and to prevent
confusion, we decided not to show the noisy results. To ensure
that the wave vector is, indeed, zero, we examined quali-
tatively all snapshots of the systems where |Jz/Jxy| < 0.5.
Here, we, indeed, see that no spin spirals are present in the
interlayer dominating region. However, we observe localized
spin textures, a region where the spins are oriented differently
from the rest of the polarized system. These are formed by
thermal fluctuations around the nucleation temperature and
are stabilized by the DMI which is still present. This is a
metastable state, but due to the higher number of local min-
ima in the phase space, our Monte Carlo simulations do not
reach the global minimum. By comparing these textures to
uniform magnetized textures, we found that these artifacts
have a higher energy and are, thus, not representative for the
ground state. The error bars for these structure also indicate
the volatility of these textures and indicate that they are not
the ground state.

IV. CONCLUSION, DISCUSSION, AND OUTLOOK

In conclusion, we presented results on the behavior of spin
textures in ferromagnets with a local inversion asymmetry
between the layers which leads to alternating DMI for con-
secutive layers. We found strong effects for the chiral spiral
textures originating from the DMI. Furthermore, we were able
to distinguish three different phases: The polarized phase, the
DMI-dominant phase, and the interlayer coupling-dominant
phase. The interlayer coupling-dominant phase has shown
different behaviors for the number of layers in a system by
influencing the wavelength of the spirals and shown a strong
difference between odd and even numbers of layers in a
system.

In this paper, we used a minimal model. Future research
can be focused to include additional magnetic effects known
to influence textures, such as anisotropy, dipole-dipole in-
teractions, and an external magnetic field. Although the
finite-size scaling of our results gives a good indication of
the expected wave number and a maximum system size of
256 × 256 spins is still efficient to simulate, more certainty
in the wave number is possible with larger system sizes. More
computations can also be used to test our hypothesis of the
net DMI that occurs in coupled layers. A higher number of
layers should continue the trend reported in this paper. Fur-
thermore, the phase diagram in this paper gives a direction
to where the different phases occur, a more detailed version
can be achieved by simulations for more parameters. The
small energy scales and high number of metastable states of
chiral systems makes it difficult for Monte Carlo simulations
to reach the ground state. By performing multiple simulations
and finding comparable spin configurations, we are convinced
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that our results are close to the ground state and are represen-
tative of the ground state itself.

Our results shown here demonstrate that rich magnetic
structures can be obtained through local DMI engineering.
First, as a useful method to measure the Dzyaloshinskii-
Moriya interaction in Van der Waals ferromagnets or multi-
layer ferromagnets with a broken local inversion symmetry.
When the number of layers and coupling between the layers
is known, the DMI can be determined by looking at the spiral
wave vector in the upper layer. Second, possible applications
that need the ability to tune spiral wavelength or even com-
pletely turn off spin spirals. This can be achieved by changing
the coupling between the layers, e.g., through applying pres-
sure a Van der Waals material [34,35] or by changing the
spacing layer in a RKKY-coupled metallic stack. Third, our
results serve as a prelude to investigating skyrmions in Van der

Waals magnets. Moreover, an addition of an external magnetic
field should lead to the formation of skyrmions.
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