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ABSTRACT In this study, a data driven approach
was used by applying linear regression and machine
learning methods to understand animal related and
environmental factors affecting hatchability. Data was
obtained from a parent stock and grand-parent stock
hatchery, including 1,737 batches of eggs incubated in
the years 2010−2018. Animal related factors taken into
consideration were strain (white vs. brown strain),
breeder age, and egg weight uniformity at the start of
incubation, whereas environmental factors considered
were length of egg storage before incubation, egg weight
loss during incubation and season. Effects of these fac-
tors on hatchability were analyzed with 3 different mod-
els: a linear regression (LR) model, a random forest
(RF) model and a gradient boosting machine (GBM)
model. In part one of the study, hatchability was pre-
dicted and the performance of the models in terms of
coefficient of determination (R2) and root mean square
error (RMSE) was compared. The ensemble machine
learning models (RF: R2 = 0.35, RMSE = 8.41; GBM:
R2 = 0.31, RMSE = 8.67) appeared to be superior than
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the LR model (R2 = 0.27, RMSE = 8.92) as indicated by
the higher R2 and lower RMSE. In part 2 of the study,
effects of these factors on hatchability were investigated
more into detail. Hatchability was affected by strain,
breeder age, egg weight uniformity, length of egg storage
and season, but egg weight loss didn’t have a significant
effect on hatchability. Additionally, four 2-way interac-
tions (breeder age £ egg weight uniformity, breeder
age £ length of egg storage, breeder age £ strain,
season £ strain) were significant on hatchability. It can
be concluded that hatchability of parent stock and
grand-parent stock layer breeders is affected by several
animal related and environmental factors, but the size of
the predicted effects varies between the methods used.
In this study, 3 models were used to predict hatchability
and to analyze effects of animal related and environmen-
tal factors on hatchability. This opens new horizons for
future studies on hatchery data by taking the advantage
of applying machine learning methods, that can fit com-
plex datasets better than LR and applying statistical
analysis.
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INTRODUCTION

Effects of animal related and environmental factors on
hatchability in layer breeder eggs are considerably less
investigated than broiler breeder eggs. Precise prediction
of hatchability may help the industry in proper predic-
tion of hatchability of batches of eggs from the incubator
(important for logistics) and possibilities to adjust incu-
bation conditions to get more favorable outcomes. New
technologies in the hatchery generate data about
breeders, eggs, incubators, and other potentially
important factors, that can be used for predicting perfor-
mance of the hatchery (Klein et al., 2020). This abun-
dance of data, produced in hatcheries, may require new
modeling techniques (Ren et al., 2020). Machine learn-
ing techniques might be good alternatives to the classical
techniques, such as linear regression, because they are
based on pattern recognition (Coronel-Reyes et al.,
2018). Hatchability depends on numerous animal related
and environmental factors (King’ori, 2011). Some ani-
mal related factors, like breeder age and egg weight uni-
formity, and environmental factors, like egg storage
duration, season, and egg weight loss during incubation
have been shown to have an effect on hatchability, par-
ticularly in broiler breeders (Grochowska et al., 2019).
Effects of these factors in layer breeders, including the
effect of strain (brown vs. white) have hardly been inves-
tigated (Machado et al., 2020). In general, brown genetic
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strain showed a higher hatchability than white genetic
strain (Tona et al., 2010), which might be related to dif-
ferences in egg characteristics (Narushin et al., 2016).
Breeder age has been shown to affect hatchability in
both broiler and layer breeders (Nasri et al., 2020a). In
general, prime breeder flocks (31−42 wk of age) showed
the highest hatchability, whereas younger (25−30 wk of
age) and older breeder flocks (>42 wk of age) showed
lower hatchability (Damaziak et al., 2021). Another
aspect that is hardly investigated in layer and broiler
breeders is the effect of egg weight uniformity on hatch-
ability. Previous studies have focused mostly on body
weight uniformity (Abbas et al., 2010) of the broiler
breeder flock with little focus on egg weight uniformity.
Furthermore, effect of egg storage duration on hatch-
ability was significant. Short egg storage duration (<7
d) seems to increase hatchability of eggs from young
breeders, probably because of albumen liquefaction with
consequently better oxygen availability for the embryo.
Prolonged (>7 d) storage reduced hatchability of eggs
from 92 to 71% (Dymond et al., 2013), especially in eggs
from older breeders. This might be related to modifica-
tions in the blastoderm or in the albumen during stor-
age, which subsequently had an effect on hatchability
negatively (Pokhrel et al., 2018; Nasri et al., 2020b).
Egg weight loss is another important factor that could
indirectly affect hatchability (Duman and
Şekero�glu, 2017). Season of incubation is another factor
that has been suggested to affect hatchability; hatch-
ability was higher during late summer than during
spring and eggs from older breeders (61−65 wk of age)
were more sensitive to season than eggs of younger (25
−30 wk of age) breeders (Yassin et al., 2008). The aim of
this study is 2-fold. The first aim is to analyze and pre-
dict hatchability of layer breeders, using 3 different mod-
els including, random forest (RF), gradient boosting
machine (GBM) and linear regression (LR). The sec-
ond aim is to investigate more specific effects of animal
related (strain, breeder age, egg weight uniformity at
the start of incubation) and environmental (length of
egg storage before incubation, egg weight loss during
incubation, seasons) factors on hatchability of layer
breeders. These effects are studied in experimental set-
ups not including all potential influencing factors. The
approach has been described in material and methods.
MATERIALS AND METHODS

Dataset

A dataset (Hendrix Genetics, Boxmeer, the Nether-
lands) obtained from a parent (PS) and grand-parent
stock (GPS) of the layer hatchery, including 1,737
batches of 100 to 166 number of eggs incubated during
2010 to 2018, was used. The dataset consisted of 3
groups of factors: animal related factors (parent stock or
GPS generation, genetic strain, breeder farm, breeder
age, egg weight, and egg weight uniformity at set), envi-
ronmental factors (length of egg storage before incuba-
tion, set month (season), egg weight loss during
incubation, day of incubation at transfer from setters to
hatchers), and hatchery factors (setter number and
hatcher number in which the eggs were incubated). Dur-
ing incubation, the temperature, CO2, relative humidity,
and airflow for the setters were set to 99°F, 0.4%, 66%,
and 36 ft3, respectively, while those of the hatchers were
set to 98°F, 0.3%,50 %, 55 ft3, respectively. Hatchability
was calculated per batch of eggs as hatch of fertile eggs
(HOF) as shown in Equation (1).

HOF ¼ CP þ NC
SE � IE

� �
� 100; ð1Þ

Where CP = Number of chicks pulled, NC = Number
of chicks culled, SE = Number of set eggs and
IE = Number of infertile eggs.
In the first part of this study, which aimed to predict

hatchability, all factors in all 3 groups were used. In the
second part of this study, some animal related and envi-
ronmental factors were investigated more into depth on
their effects on hatchability.
Overview of Methods

The overall flowchart of the used methods in both
parts of this study is shown in Figure 1. For each part,
the dataset, feature engineering process, dimensionality
reduction techniques, methods used, and postprocessing
strategies have been shown. The first part deals with
predicting hatchability by using RF, GBM, and LR
models. The second part deals with investigating effects
of animal related and environmental factors on hatch-
ability by applying an ordinary least square (OLS) lin-
ear model for statistical significance of these main
factors and their 2-way interactions.
Part I: Predicting Hatchability

Feature Engineering Factors in the dataset poten-
tially affecting hatchability were singled out and prepro-
cessed. Month was a cyclical feature, from 1 to 12,
meaning that the difference between the successive val-
ues is 1. However, there is always a jump from 12 to 1 to
complete the cycle. By converting the months to their
corresponding cosine and sine values, different coordi-
nates were assigned for every moment between 1 and 12,
making them unique. Furthermore, on the categorical
factors (setters, hatchers, breeder farms, generation
[grant-parent or parent stock], genetic strain) one-hot-
encoding was applied to transform them into numeric
values (0s and 1s). This process converted factors into
forms that could be provided to machine learning (ML)
algorithms for analysis. One-hot-encoding leads to an
increased number of features, especially if there are
many categories and this can make algorithms not to
perform better. To solve this problem, dimensionality
reduction was applied.
Dimensionality Reduction Dimensionality reduction
was done by extracting new features from the original
features, a process referred to as feature extraction



Figure 1. Flow chart, showing the methods used to predict hatchability (part I) and to investigate effects of animal related and environmental
factors on hatchability (part II). Random forest (RF), gradient boosting machine (GBM) and linear regression (LR) methods were used to predict
hatchability. Random forest - Recursive feature elimination (RF-RFE) was applied to reduce the dimensionality of the processed data to increase
accuracy in predicting hatchability. The OLS (ordinary least square) was used to analyze animal related and environmental effects on hatchability.
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(Osman et al., 2018). To perform feature extraction, a
Recursive Feature Elimination with Cross Validation
(RFECV) algorithm was applied on a Random Forest
Classifier with a StratifiedKFold, K = 10 (Chen et al.,
2018). The RFECV technique is recursive in the sense
that for each feature, it calculates its importance score
relative to the other features with hatchability as depen-
dent variable. The algorithm helps to detect interactions
between different features and classify them, but highly
correlated features could mask these interactions. Thus,
before fitting the model, Pearson’s correlations (r) were
calculated to eliminate highly correlated features with r
>0.8. Consequently, only one feature from the genera-
tion (the PS) was eliminated, but the GPS remained.
Methods and Performance Evaluation To predict
hatchability, the LR method and 2 independent ensem-
ble ML methods, RF and GBM, were used. Analyses
were performed in Python version 3.7.4 and the models
were trained in the sklearn machine learning library.
The methods were trained by splitting the dataset, using
60% as training set and 40% as test set to predict hatch-
ability (Liu and Cocea, 2017).

For the 2 ensemble ML methods, RF and GBM, prior
to training, hyperparameter optimization with K-Fold
cross validation (CV) was performed, using a Grid-
SearchCV algorithm. Hyperparameter optimization or
tuning is a technique that is used to choose a set of opti-
mal hyperparameters for a learning algorithm (Hea-
ton, 2017). A hyperparameter is a parameter whose
value is used to control the learning process of a ML
algorithm (Ghawi and Pfeffer, 2019). Three options of
hyperparameter values for the learning rate (0.001, 0.01,
1), number of estimators (500, 1,000, 10,000), just to
name a few, were passed to the algorithms. This allowed
each of the machine learning methods to autonomously
choose from each option, which values were best to opti-
mize predictive performance. Furthermore, to validate
the stability of these models, K-Fold CV (K = 10) was
applied to ensure the models got most of the patterns in
the dataset (generalize). This automatically divided the
dataset into 10 subsets, the hold out method was
repeated 10-times such that 1 of the 10 subsets was used
as the test/validation set and the other 9 (K-1) subsets
were put together to form the training set. The error
estimation was averaged over all 10 trials to get the
overall effectiveness of the models. For the LR method,
direct training was done without prior hyperparameter
optimization, because LR does not support hyperpara-
meter optimization. Finally, the predictive performance
of the RF, GBM, and LR models were evaluated based
on two standard performance metrices R2 and RMSE.
Part II: Effects of Genetics and
Environmental Factors on Hatchability

Effects of animal related (breeder strain, breeder age,
egg weight uniformity) and environmental (egg storage
duration, egg weight loss, season) factors on actual
hatchability were evaluated. Breeder age was the age of
the flocks in weeks and was categorized into 4 classes
before analyses: <30 wk, 30 to 45 wk, 45 to 60 wk and
>60 wk. Egg weight uniformity referred to homogeneity
in egg weight at set within a batch (based on 150 eggs
per batch) and was categorized into 3 classes: <85.0,
85.0 to 90.0% and >90.0%. These categories express
the percentage of eggs within the average egg weight of
the batch § 10%. Egg storage duration was the number
of days the eggs were stored at the breeder farm plus
the hatchery prior to placement in the setters
(Grochowska et al., 2019) and was categorized into 5
classes: 0 to 4 d, 5 to 7 d, 8 to 10 d, 11 to 14 d and 15
to 18 d. A storage temperature of 16 to 18°C was set
when the eggs were stored for less than 7 d and when
the storage period was longer, a temperature of 10 to
12°C was employed. Season was the period the eggs
were set and was categorized into 4 classes (December,
January, February = Winter; March, April,
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May = Spring; June, July, August = Summer; Septem-
ber, October, November = Autumn). Egg weight loss
during incubation (from setting to transfer to the
hatcher baskets) was categorized into 3 classes:
<10.0%, 10.0 to 11.9% and ≥12.0%. Egg weight loss
was calculated as the percentage of egg weight at trans-
fer (from setter to hatcher on either day 17, 18, or 19 of
incubation) relative to the egg weight prior to setting
the eggs in the setter at the start of incubation. Breeder
strain was categorized into brown and white, where
both the brown and white strain included 11 genetic
strains each. Data was analyzed, using a general linear
model (Equation 2):

y ¼ mþ BAþ EWU þ ESDþ seasonþ EWL

þ Strainþ interactionsþ e; ð2Þ

where y = Hatchability, m = overall mean,
BA = breeder age class (four levels), EWU = egg
weight uniformity class (3 levels), ESD = egg storage
duration class (five levels), season = season (spring,
summer, autumn, winter), EWL = egg weight loss class
(3 levels), strain = strain (white vs. brown), interac-
tions = 2-way interactions between all these factors and
e = residual error. Firstly, Pearson’s correlations
between these factors were calculated to ensure that
they were not highly correlated. Preliminary analyses
indicated that the strongest correlation between these
features was r = 0.14 and none of them were significant.
Consequently, these factors and their 2-way interactions
were all included in the model. Thereafter, the model
was reduced by stepwise deleting of the 2-way interac-
tions. Main effects all remained in the model. A P-value
of ≤ 0.05 was used as a threshold for significant main
effects and interactions. Results are expressed as pre-
dicted means with SEM, and P-values obtained from the
OLS statistical model. Bonferroni correction was used
for multiple comparisons. All statistical analysis was
performed in python version 3.7.4 using statsmodels,
scipy, and scikit_posthocs libraries.
RESULTS AND DISCUSSION

Part I: Predicted Hatchability

Prior to predicting hatchability, dimensionality
reduction was performed (Terko et al., 2019). Figure 2A
shows that, out of the 125 features that were introduced
to the algorithm, 103 were extracted as optimal features
and were used to analyze hatchability. Figure 2B shows
the top 8 features out of the 103 optimal features. Here,
egg weight loss was the most important feature in pre-
dicting hatchability, meaning egg weight loss contrib-
uted the most in improving the performance (predictive
accuracy) of the machine learning models.

Figure 3 shows a scatter plot of predicted hatchability
vs. the actual hatchability for RF, GBM, and LR mod-
els. The predictive performance based on RMSE for the
RF, GBM and LR were 8.41, 8.67 and 8.92, respectively,
whereas the predictive performance based on R2 of the
models were 0.35, 0.31, and 0.27, respectively. It appears
that both ML (RF and GBM) models could fit the data
in a similar and had a higher predictive accuracy than
the LR model as indicated by the higher R2 and lower
RMSE, which is in agreement with studies on other bio-
logical processes (Wekesa et al., 2020). To further evalu-
ate, again RF and GBM models showed consistently
lower SEM than the LR model (see next section). The
success of RF and GBM may be due to their ability to
learn hidden interactions of features. The regression fits
in Figure 3 showed deviation from the 45o angle for all 3
used models. This appears to be particularly related to
the low values of actual hatchability, where higher val-
ues were predicted. This might be due to the relatively
low number of observations in the dataset below hatch-
ability of 60%. Increasing the number of observations
would probably be the best solution to improve the per-
formance of the models. The highest performance in
terms of R2 was recorded by the RF (0.35), which is still
low to rely on. However, it also shows that ML models
might perform better to predict biological processes with
a lot of variation compared to LR models.
Part II: Genetic and Environmental Effects on
Hatchability

Five main effects and four 2-way interactions showed
significant effects on actual hatchability. First animal
related factors (strain, breeder age, egg weight unifor-
mity) will be discussed, followed by environmental fac-
tors (egg storage duration, season). In this section, the
figures express the actual hatchability, while the tables
express the predicted hatchability by each model (LR,
RF, GBM) and their overall P-values and SEM.
Effect of Strain on Hatchability Genetic strain had a
highly significant effect on hatchability (P < 0.001).
Strain also showed a significant 2-way interaction with
breeder age and with season. Overall, the predicted
hatchability of the brown genetic strain was higher than
that of the white genetic strain (on average over the 3
models D = 2.02%; Table 1), which was similar with to
(Narushin et al., 2016; Iqbal et al., 2016). This might be
due to the differences in embryo physiology of the brown
and white strains and higher egg weight in brown strains
(Tona et al., 2010). Another reason for the differences in
hatchability between the brown and white genetic strain
might be due to the initial egg composition especially
the distribution of yolk and albumen, which is deter-
mined by strain besides breeder age and egg weight
(Van Der Wagt et al., 2020). Whether or not this differ-
ence in hatchability between strains is related to specific
genes or single nucleotide polymorphism (SNP’s) needs
to be investigated further (Samiullah et al., 2015).
Effect of Breeder Age on Hatchability Breeder age
and its interaction with strain had a highly significant
effect on hatchability (P < 0.001). Figure 4 shows the
relationship between breeder age and actual hatchabil-
ity for white and brown strains. On average, white and



Figure 2. (A) Relationship between the number of features selected and the cumulative feature importance score, (B) top 8 of 103 selected fea-
tures related to hatchability.
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brown strains showed the highest hatchability at a
breeder age between 30 and 45 wk of age. However, in
the brown strain, hatchability remained rather constant
and just declined after particularly 60 wk of age, whereas
in the white strain the decline in the hatchability was
more linear across the whole range of breeder ages. This
might be related to differences in eggshell conductance
between the 2 strains. It can be speculated that in older
white leghorns the eggshell quality is decreasing faster
than in brown strains. Consequently, more hair cracks
or higher egg weight loss during incubation can occur,
which might have a negative effect on hatchability.
Thus, in white strains the hatchability will decrease,
whereas this will less frequently occur in brown strains
with a better eggshell quality. Table 2 shows the average
hatchability per breeder age class for the 3 different
models. The breeder age class of <30 wk of age had too
limited observations to calculate predicted hatchability
trustfully and consequently, this breeder age class was
not taken into account. All 3 models showed the same
trend, with the lowest hatchability after 60 wk of age.
Eggs laid by old breeders often presented higher infertil-
ity and total embryo mortality, resulting in lower hatch-
ing percentage (Almeida et al., 2008). However, the
difference in hatchability between a breeder age of 30 to
45 wk (highest hatchability) and above 60 wk (lowest
hatchability) was considerably different between the 3
models (D = 5.54, 2.93 and 3.68% for LR, RF, and
GBM, respectively). Comparing the variation between
the highest and the lowest hatchability for the 3 models,
the LR model showed the highest variation. This might
be because the LR predicted hatchability values, which
deviated more from the actual hatchability due to its
inability to support parameter tuning prior to training,
unlike the RF and GBMmodels.
Effect of Egg Weight Uniformity on Hatchability Tag-

gedPEgg weight uniformity and its interaction with breeder
age (P < 0.001 and P = 0.04, respectively) showed a sig-
nificant effect on hatchability. Figure 5 shows the rela-
tionship between egg weight uniformity and actual
hatchability for 3 breeder age classes. The breeder age
class <30 wk did not have enough observations in the



Figure 3. Regression plot of actual vs predicted hatchability of layer breeders for three models.

Table 1. Predicted hatchability for different levels of strain
(grandparent and parent) by 3 models.

Predicted hatchability (%)

Strain N* Linear regression Random forest
Gradient

boosting machine

Brown 905 82.10a 82.29a 82.10a

White 789 79.86b 80.39b 80.15b

SEM 1.97 2.06 1.48
P-value <0.001 <0.001 <0.001

*Number of batches.
a,bPredicted means within a column lacking a common superscript dif-

fer significantly (P < 0.05).
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dataset to estimate a good relationship between egg
weight uniformity and hatchability, thus it was not con-
sidered in the analyses. For breeders older than 45 wk,
hardly any effect of egg weight uniformity on hatchabil-
ity was found, but for breeders between 30 and 45 wk of
age, higher egg uniformity resulted in a higher hatchabil-
ity. In literature, more focus is given to broiler breeders
and their body weight uniformity (Abbas et al., 2010) in
relationship to hatchability. However, hardly any rela-
tionships between egg weight uniformity or the interac-
tion between egg weight uniformity and breeder age on
hatchability have been shown. It can be speculated that
in younger breeders, variation in egg weight within a
batch of eggs varies more than in older breeders, which
consequently might have effect on heat transfer within
an incubator. For example, Elibol and Brake (2008)
demonstrated that eggshell temperature of large broiler
breeder eggs during incubation was more affected by the
place in the incubator (near the fan or far away from the
fan) than that of smaller eggs. Consequently, it can be
speculated that a batch of eggs with more variation in
egg weight experience more variation in eggshell weight,
affecting hatchability. Additionally, younger broiler
breeders produce smaller eggs and it has been shown
that hatchability of smaller eggs is lower compared to
that of medium and large eggs (Iqbal et al., 2016).
Table 3 shows the average hatchability per egg weight
uniformity class for the 3 different models. All 3 models
showed a similar trend, with the lower hatchability
recorded for egg weight uniformity <85% compared to
the other egg weight uniformity classes. The difference
in hatchability between an egg weight uniformity >90%
(highest hatchability) and <85% (lowest hatchability)
was not considerably different between the 2 ML models
(RF and GBM), but differed between the ML models
and the LR model (D = 3.54, 2.32 and 2.85% for LR,
RF, and GBM, respectively). This might be because RF
and GBM are both ensemble (use a combination of tree
algorithms) methods to do prediction unlike the LR
method.
Effect of Egg Storage Duration on Hatchability Egg
storage duration and its interaction with breeder age
showed a highly significant effect on hatchability (P <
0.001). Figure 6 shows the relationship between egg



Figure 4. Relationships between breeder age (BA) and hatchability of white and brown layer breeder strains (grandparent and parent stock).
Each dot represents a batch of eggs. Hatchability ¼ 97:62� 4:45 � BAþ 0:98ðBA � StrainÞ.

Table 2. Predicted hatchability for different levels of breeder age (grandparent and parent) by 3 models.

Predicted hatchability (%)

Breeder age (wk) N* Linear regression model Random forest model Gradient boosting machine model

30−45 398 82.53 a 82.74a 82.69a

45−60 1131 80.99b 81.03b 80.85b

>60 158 76.99c 79.81c 79.01c

SEM 0.53 0.56 0.40
P-value <0.001 <0.001 <0.001

*Number of batches.
a,b,cPredicted means within a column lacking a common superscript differ significantly (P < 0.05).

Figure 5. Relationships between egg weight uniformity (EWU) and hatchability of three layer breeder age (BA) classes, grandparent and par-
ent stock. Each dot represents a batch of eggs. Hatchability ¼ 97:62� 0:33 � EWUþ 0:34ðEWU � BAÞ.
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Table 3. Predicted hatchability for different levels of egg weight uniformity (grandparent and parent) by 3 models.

Predicted hatchability (%)

Egg weight uniformity(%) N* Linear regression model Random forest model Gradient boosting machine model

<85 584 79.45c 79.63b 79.43b

85−90 824 81.26b 82.27a 81.84a

>90 286 82.98a 81.95a 82.28a

SEM 0.31 0.33 0.24
P-value <0.001 <0.001 <0.001

*Number of batches.
a,b,cPredicted means within a column lacking a common superscript differ significantly (P < 0.05).

Figure 6. Relationships between egg storage duration (ESD) and hatchability of 3-layer breeder age (BA) classes: 30−45, 45−60, and >60 wk of
age (grandparent, and parent stock). Each dot represents a batch of eggs. Hatchability ¼ 97:62� 2:45 � ESDþ 0:34ðESD � BAÞ.

Table 4. Predicted hatchability for different levels of egg storage duration (grandparent and parent) by 3 models.

Predicted hatchability (%)

Egg storage duration (d) N* Linear regression model Random forest model Gradient boosting machine model

0−4 185 83.24a 82.06a 82.02ab

5−7 474 82.12a 82.15a 82.18a

8−10 532 80.61b 81.64a 81.42b

11−14 446 79.45c 80.13b 79.61c

15−18 57 78.07c 76.88c 76.30d

SEM 0.23 0.24 0.17
P-value <0.001 <0.001 <0.001

*Number of batches.
a,b,c,dPredicted means within a column lacking a common superscript differ significantly (P < 0.05).
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storage duration and actual hatchability for the breeder
age classes (30−45, 45−60 and >60 wk). All 3 breeder
age classes showed the highest hatchability at storage
duration of approximately 5 to 7 d (Silva et al., 2008).
With prolonged storage duration, the hatchability
declined for all breeder age classes, but this decline was
more severe in the breeders > 45 wk than in the prime
flock (30−45 wk) breeders. This also confirms what is
shown in broiler literature: egg storage duration longer
than 7 d, especially from older breeders, results in modi-
fications to the blastoderm, which has a negative effect
on hatchability (Damaziak et al., 2021). Adapted stor-
age conditions related to the age of breeders might be an
option to reduce negative effects of prolonged storage on
hatching egg quality (Nasri et al., 2020c). Table 4 shows
the average hatchability per egg storage duration class
for the 3 different models. In general, all 3 models
showed the same trend, with the highest hatchability for
egg storage lower than 7 d. In particular the 2 ML mod-
els (RF and GBM) could specifically predict the highest
hatchability at egg storage of 5 to 7 d due to their high
ability to quickly learn a pattern in the dataset. The



Table 5. Predicted hatchability for different levels of egg weight loss (grandparent and parent) by 3 models.

Predicted hatchability (%)

Classes of egg weight loss (%) N* Linear regression model Random forest model Gradient boosting machine model

<10 555 81.50a 81.49 81.34a

10.0−11.9 783 81.07a 81.58 81.39a

≥12.0 356 79.79b 80.36 80.02b

SEM 0.06 0.06 0.04
P-value <0.001 0.27 0.02

*Number of batches.
a,bPredicted means within a column lacking a common superscript differ significantly (P < 0.05).
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lowest hatchability was after 15 to 18 days of egg stor-
age. However, the difference in hatchability between egg
storage duration class 5 to 7 d (highest hatchability)
and 15 to 18 d (lowest hatchability) was considerably
different between the 3 models (D = 4.05, 5.27 and
5.88% for LR, RF, and GBM, respectively).
Effects of Egg Weight Loss on Hatchability Table 5
shows the average predicted hatchability per egg weight
loss for the 3 different models. Based on the RF model,
again there was no effect of egg weight loss on hatchabil-
ity. However, LR and GBM models showed that egg
weight loss had a significant effect (P < 0.001 and
P= 0.02, respectively) on hatchability. This discrepancy
between the models could be because of lower predictive
performance of LR and GBM compared to the RF as
indicated by their lower R2 and higher RMSE. Previous
studies have shown that there is little or no effect of
egg weight loss on hatchability (Wolc et al., 2010;
Hossain et al., 2017) and differences in egg weight caused
by oviposition times does not have an effect on embryo
development (Akil and Zakaria., 2015).
Figure 7. Relationships between month of set (the month the eggs w
strains (white vs. brown) of grandparent and parent stock. E
0:28 � SetMonth� 0:26ðSetMonth � StrainÞ.
Effect of Season on Hatchability Season (P = 0.03)
and its interaction with strain (P < 0.001) showed a
significant effect on hatchability. Figure 7 shows the
relationship between set month (the month the eggs
were transferred into the setter trays) and actual
hatchability for 2 strains (white vs. brown). For all
the months, the hatchability of the brown strain was
higher than that of the white strain. Table 6 shows
the average hatchability per season for the 3 different
models. Only the LR model showed an effect of sea-
son on hatchability, whereas both ML models did
not. Based on the LR model, the hatchability was
highest in Spring followed by Winter, Autumn and
lastly by Summer. A comparable effect of season on
hatchability was also shown by (Yassin et al., 2008)
in broilers and (Jesuyon and Salako, 2013) in layers.
The latter study demonstrated the influence of Early
Wet (April−July), Late Wet (August−October) and
Early Dry (November−January) and Late Dry (Feb-
ruary−March) seasons (of humid climate) on hatch-
ability of Bovan Nera (BN) and Isa Brown (IB)
ere placed in the setter trays) and hatchability of two-layer breeder
ach dot represents a batch of eggs. Hatchability ¼ 97:62þ



Table 6. Predicted hatchability for different levels of seasons (grandparent and parent) by 3 models.

Predicted hatchability (%)

Seasons N* Linear regression model Random forest model Gradient boosting machine model

Spring 360 81.70a 81.64 81.36
Summer 526 80.26b 81.38 81.05
Autumn 455 80.98ab 81.28 81.00
Winter 353 81.18ab 80.92 81.02
SEM 0.16 0.17 0.12
P-value 0.03 0.84 0.63

*Number of batches.
a,bPredicted means within a column lacking a common superscript differ significantly (P < 0.05).
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parent-stock eggs. In Bovan Nera and Isa Brown, sea-
son had significant influence on egg fertility and egg
hatchability, respectively (Jesuyon et Salako., 2013).

In can be concluded that, animal related and environ-
mental factors are important factors in predicting hatch-
ability of layer breeder eggs. It has been shown that
machine learning models (RF, GBM) could predict hatch-
ability more accurately than the LR model. All the 3 mod-
els showed consistency with each other in predicting and
analyzing hatchability but predicted means may differ
between the 3 models. Breeder age, egg storage duration,
strain and egg weight uniformity had the strongest effects
on hatchability, whereas season and egg weight loss only
showed minor or no effects. Using large numbers field
data, factor analyses more or less confirms what experi-
mental data already found and the advantage of ML is
that all factors are used in the models. This also allowed
comparison of the best explaining factors for Hatchability.
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