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Abstract. We introduce an algorithm (Watta) which auto-
matically calculates supraglacial lake bathymetry and de-
tects potential ice layers along tracks of the ICESat-2 (Ice,
Cloud, and Land Elevation Satellite) laser altimeter. Watta
uses photon heights estimated by the ICESat-2 ATL03 prod-
uct and extracts supraglacial lake surface, bottom, and depth
corrected for refraction and (sub-)surface ice cover in ad-
dition to producing surface heights at the native resolution
of the ATL03 photon cloud. These measurements are used
to constrain empirical estimates of lake depth from satel-
lite imagery, which were thus far dependent on sparse sets
of in situ measurements for calibration. Imagery sources in-
clude Landsat 8 Operational Land Imager (OLI), Sentinel-
2, and high-resolution Planet Labs PlanetScope and SkySat
data, used here for the first time to calculate supraglacial lake
depths. The Watta algorithm was developed and tested using
a set of 46 lakes near Sermeq Kujalleq (Jakobshavn) glacier
in western Greenland, and we use multiple imagery sources
(available for 45 of these lakes) to assess the use of the red
vs. green band to extrapolate depths along a profile to full
lake volumes. We use Watta-derived estimates in conjunc-
tion with high-resolution imagery from both satellite-based
sources (tasked over the season) and nearly simultaneous Op-
eration IceBridge CAMBOT (Continuous Airborne Mapping
By Optical Translator) imagery (on a single airborne flight)
for a focused study of the drainage of a single lake over the

2019 melt season. Our results suggest that the use of mul-
tiple imagery sources (both publicly available and commer-
cial), in combination with altimetry-based depths, can move
towards capturing the evolution of supraglacial hydrology at
improved spatial and temporal scales.

1 Introduction

Ice loss from Greenland and Antarctica is the greatest current
contributor to rising sea levels, and paleodata and modeling
efforts indicate that enhanced mass loss of these ice sheets
may become irreversible if certain major tipping points are
passed (IPCC, 2019). Recent observations have shown that
ice loss is accelerating faster than projected (Slater et al.,
2020), with a sixfold increase since the 1970s and 1980s.
In Antarctica, this was largely driven by increased ocean
melting of outlet glaciers (Rignot et al., 2019), while on the
Greenland Ice Sheet mass loss is further promoted by in-
creased surface melt and runoff (Mouginot et al., 2019).

Owing to the nonlinear relationship between increasing
summer air temperatures and surface melt (Trusel et al.,
2018), meltwater production has increased rapidly on the
Greenland Ice Sheet (van den Broeke et al., 2016). In the
summer of 2019, advection of warm, wet mid-latitude air led
to a summer mass loss unprecedented in the past 50 years,
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with widespread surface melt occurring up to the highest re-
gions of the ice sheet (Tedesco and Fettweis, 2020; Sasgen
et al., 2020). Concurrent with the increase in melt extent and
duration, supraglacial lakes – which form when meltwater
runoff collects in local topographic lows – are now a com-
mon feature on large parts of the ice sheets and have become
more extensive and have advanced inland toward higher ele-
vations in the past decades (Gledhill and Williamson, 2018;
Leeson et al., 2015; Howat et al., 2013).

These meltwater lakes and streams are a key component
of the hydrological system of both ice sheets. Hydrologi-
cal systems over Antarctic ice shelves have been identified
as a major factor for potential ice shelf collapse (Bell et al.,
2018). While mass loss in Antarctica over the next 100 years
is generally thought to be dominated by the basal melt un-
der ice shelves (Schlegel et al., 2018), emerging research
has focused on the potential importance of surface hydrol-
ogy over Antarctica (Arthur et al., 2020). Supraglacial lakes
have been observed around the margin of the Antarctic Ice
Sheet up to high elevations (Stokes et al., 2019) and are likely
to become more prevalent on firn-depleted ice shelves in fu-
ture warming scenarios, which could potentially trigger their
collapse and consequently lead to accelerated sea level rise
(Lai et al., 2020). Meltwater pathways can include surface
flow into lakes and then streams, leading, in Greenland, to
direct loss to the bed from lake drainage or the sudden ter-
mination of a stream into a moulin, or near-surface flow in
which ice slabs can limit vertical motion (MacFerrin et al.,
2019). The complex links between supraglacial hydrological
systems and englacial or subglacial pathways can potentially
be deduced by capitalizing on increasingly higher-resolution
imagery and classification techniques of supraglacial feature
types (Yang et al., 2017). Past remote-sensing work has de-
rived lake volumes from high-resolution (∼ 1 m) WorldView
imagery using a physical optical depth approach, as well as
an empirical method using in situ estimates (Moussavi et al.,
2016; Pope et al., 2016). Recent work has developed an au-
tomated algorithm applying the physically based method to
Landsat 8 and Sentinel 2 to track specific hydrological fea-
tures and quantify the seasonal evolution of surface hydrol-
ogy (Dell et al., 2020). The physical method assumes that
wind-driven surface waves are minimal, that the slope of
lake bottoms are gradual, and that lake-bottom albedos are
homogeneous (Sneed and Hamilton, 2011). The empirically
based method was first applied by Box and Ski (2007) us-
ing MODIS imagery and advanced by Legleiter et al. (2014),
who used high-resolution WorldView 2 imagery. Both the
physically based and empirically based methods are limited
to supraglacial lakes which contain minimal particulate mat-
ter (Arthur et al., 2020) and by the depth of the lake, as-
suming that the reflection depletion in imagery is limited
at great depths, implying a physical limit to the ability to
calculate depth (Box and Ski, 2007). Pope et al. (2016) es-
timate that the greatest depth that could be calculated by
these methods was 5 m. Additional work has applied a sim-

ilar physically based approach using Sentinel-2 from Coper-
nicus (Williamson et al., 2018), Landsat 7 and 8 (Banwell et
al., 2014), Aster imagery (Sneed and Hamilton, 2007), and
a combination of Landsat and Sentinel-2 imagery (Moussavi
et al., 2020). Although Sentinel-2 provides relatively high-
resolution (10 m) imagery with substantial coverage at a 4 d
to weekly interval, usable imagery is often limited by cloud-
cover, and the resolution of small streams and ice cover is
imperfect. Commercial satellite imagery, which is poised to
expand substantially in the future, can help fill the gap in
coverage of small-scale melt and melt-induced features at a
higher spatial (< 3 m) and temporal (multiple daily passes)
resolution, complementing estimates resolved from Sentinel-
2.

The ICESat-2 (Ice, Cloud, and Land Elevation Satellite)
laser altimeter data, available since 2018, has now intro-
duced the potential to replace the in situ measurements used
in empirical (supraglacial lake depth) bathymetric methods
with satellite laser bathymetric depths at a high vertical res-
olution, consequently extracting lake volumes from imagery
(Parrish et al., 2019; Albright and Glennie, 2020; Thomas et
al., 2021). Here, we present a new algorithm, titled “Watta”,
using the ICESat-2 laser altimeter to derive properties of
supraglacial lakes. Watta was first presented in Fricker et
al. (2020), demonstrating both the potential for ICESat-2-
based bathymetry estimates and the greater accuracy of em-
pirically based lake depths in comparison to physically based
estimates; the latter tended to underestimate lake depth by
over 2 m. However, we note that physically based methods
have the advantage of being dependent on imagery alone.
In addition to bathymetry derived from the difference be-
tween the air–water and water–ice interface, this algorithm
assigns a probability for surface type characteristics to pho-
ton returns along track. These types include lakes, refrozen
lakes, and lakes with ice layers on top and under the surface.
Watta also returns surface heights at the native resolution of
the ATL03 photon cloud (0.7 m), allowing the algorithm to
capture small-scale changes in surface relief when multiple
passes are differenced. Additionally, we exploit a range of
imagery data to validate the surface types and to derive spec-
trally driven depth estimates calibrated to ICESat-2-based
depths, thereby providing an estimate for meltwater volume
over the full image. We compare empirically based volume
estimates derived from a single ICESat-2-based depth esti-
mate but from multiple imagery sources with different spa-
tial resolutions (and without an atmospheric correction) to
better understand the importance of spatial resolution and ra-
diometric calibration for the relative accuracy of depth vol-
ume estimates.

The method is tested and refined using representative sec-
tions along the flowline of Sermeq Kujalleq (Jakobshavn Is-
bræ), one of the fastest-moving glaciers in Greenland, as
well as the slower-flowing Sarqardliup Sermia. The repeat
tasking of Planet SkySat imagery was designed to coincide
with ICESat-2 tracks (Fig. 1), capturing lake depths at var-
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Figure 1. Study region over Sermeq Kujalleq and Sarqardliup Sermia. Top left panel: Lake Ayşe on 23 May using Planet SkySat Visual
imagery. Bottom left panel: study region over western Greenland. Right panel: main region with repeat-tasking locations for Planet SkySat
shown in grey boxes over annual velocity estimates from MEaSUREs (NSIDC). ICESat-2 reference ground tracks shown in white. Operation
IceBridge flight on 15 May 2019 shown in green. Five lakes indicated in red discussed throughout text include the following: C: Lake Cecily;
A: Lake Ayşe; J: Lake Julian; N: Lake Niels; Z: Lake Zadie.

ious stages of lake development during the unusually in-
tense melt season of summer of 2019 (Tedesco and Fet-
tweis, 2020). One of the major motivations for this task-
ing effort was its coincidence with several NASA Opera-
tion IceBridge (OIB) flights at the beginning and end of
the summer. Data from multiple instruments on board OIB
could potentially provide additional insight in future work,
and within this study, we use OIB CAMBOT (Continuous
Airborne Mapping by Optical Translator) imagery as a part
of a focused multi-instrument study of the evolution of a
supraglacial lake. The availability of simultaneous laser al-
timetry and high-resolution imagery over the season pro-
vided a rich test dataset with which to extract altimetry-based
estimates of supraglacial lakes at various points in the season.
Here, we present initial results exploiting this dataset, as well
as introducing the Watta ICESat-2 surface feature detection
algorithm.

2 Data sources

2.1 Satellite altimetry

Our Watta method relies on individual photon heights as
measured by ICESat-2’s (Ice, Cloud, and Land Elevation
Satellite) ATLAS (Advanced Topographic Laser Altimeter
System) instrument, distributed in the ICESat-2 ATL03 prod-

uct, L2A, Global Geolocated Photon Data (Neumann et al.,
2019). The polar orbiting ICESat-2 satellite was launched
in September 2018 to continue the mission begun by ICE-
Sat (2003–2009) and bridged with the airborne Operation
IceBridge mission, namely to provide ice sheet mass balance
estimates at an unprecedented level of accuracy. ATLAS is
a photon-counting 532 nm laser altimeter on board ICESat-2
split into six beams which are divided into three pairs (sepa-
rated by 3.3 km), in which beams within each pair are sepa-
rated by 90 m. Within a single track, the beam pair is desig-
nated by a number, e.g., “3” in “gt3r”. Each beam pair con-
sists of a strong and weak beam, with the strong beam return-
ing 0.6–3.9 signal photons per laser pulse vs. 0.6–1.0 signal
photons per laser pulse for the weak beam (Neumann et al.,
2019). The beam is designated with “r” or “l” depending on
the orientation of the satellite, as in “r” in “gt3r”.

While the strong beam produces a stronger signal, we have
developed the Watta algorithm to work effectively with both
strong and weak beams. ATL03 produces a photon cloud
in which each photon is geolocated to within a 6.5 m accu-
racy and a footprint size of ∼ 11 m (Magruder et al., 2021)
with an associated height, as well as a confidence level (high,
medium, or low), and is produced at an along-track horizon-
tal resolution of 0.7 m. While the ATL06 product (Smith et
al., 2019) provides highly accurate surface height estimates
at a coarser resolution, the higher spatial resolution of the
ATL03 product can be used to deduce fine-scale surface char-
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acteristics, as with the Watta algorithm. Over water bodies,
ICESat-2 can produce returns both over the surface and over
the lake, as well as the bottom of the lake (Fair et al., 2020;
Fricker et al., 2020; Parrish et al., 2019); these dual returns
are used by Watta to extract supraglacial lake depths, as well
as lake surface characteristics.

2.2 High-resolution imagery near Sermeq Kujalleq

For imagery sources, in addition to freely available Landsat
Operational Land Imager (OLI; 30 m) and Sentinel-2 (10 m)
imagery, we incorporate very high-resolution imagery from
Planet Labs, including Dove-R (3 m) and SkySat (∼ 1 m).
The latter is used to validate surface types, while all imagery
sources are used to derive spectrally driven depth estimates
calibrated to ICESat-2-based depths. Additionally, the high
spatial resolution of SkySat imagery allows for the identifi-
cation of small-scale features on the surface and bottom of
supraglacial lakes, which we use to interpret the temporal
evolution of lake characteristics in a number of case stud-
ies. SkySat imagery did not include an atmospheric correc-
tion, and we therefore used TOA (top of the atmosphere) re-
flectance values from Landsat, Sentinel-2, and SkySat im-
agery to calculate supraglacial lake depth for the sake of
consistency. PlanetScope Dove-R data provided surface re-
flectance values only and are known to have issues with ra-
diometry (Saunier, 2020). However, because the method used
here derives lake depth values empirically (rather than phys-
ically), this work presents the opportunity to develop accu-
rate depth estimates using high-resolution data for which cal-
ibration is imperfect but the data availability is high. This is
particularly true for data from the PlanetScope constellation,
which are frequently captured multiple times within a single
day. Relative spectral response curves for the bands used in
this study are red, blue, green, and near infrared (NIR), as
shown in Fig. S1b in the Supplement. Finally, all imagery
was coregistered with ICESat-2 using the GIMP-2 digital
elevation model (DEM), which has a vertical accuracy (as
compared to ICESat) within ±1 m over most ice surfaces
and ±30 m over areas with high relief (Howat et al., 2014)
and is used for the geolocation of Landsat imagery (detailed
in Sect. 3.2).

As a part of this project, SkySat imagery was tasked for
repeat cycles of ∼ 4 d over the 2019 Greenland melt season
in selected locations, producing usable imagery at varying
intervals based on cloud cover. Each of the three areas of
interest presented here were approximately 600 km2. Repeat
imagery was specifically chosen to cover flowlines of fast-
flowing glaciers, including Sermeq Kujalleq, as in this study
(Fig. 1). In addition, repeat tracks were designed to coin-
cide with both (a) overpasses of the recently launched NASA
ICESat-2 laser altimeter and (b) several flights of the airborne
NASA Operation IceBridge (OIB) mission in the beginning
and end of the season. Here, we present the first work exploit-
ing this stacked dataset for method development, restricted

to available satellite imagery and altimetry. We note that for
Lake Julian, discussed in Sect. 5, OIB conducted a flight
on 15 May 2019, thus capturing observations from multi-
ple instruments onboard OIB, including CAMBOT imagery
and the Airborne Topographic Mapper (ATM). While ATM-
based lake depth estimates could potentially be compared
to the lake depths calculated from the near-simultaneous
ICESat-2 overpass, this is outside the scope of this study. We
discuss Lake Julian in detail in order to facilitate potential
future research at this site.

The final set of lakes used for the development of the Watta
method included 50 lakes captured by ICESat-2 (46 over Ser-
meq Kujalleq and Sarqardliup Sermia and 4 additional lakes
in the southwest, not shown here), 14 of which coincided
with very high-resolution imagery (SkySat) within a 3 d win-
dow. The date, time, and imagery IDs and ICESat-2 details
for all data sources are presented in Table S1 in the Supple-
ment.

3 Methods

We derive supraglacial lake volume from a given imagery
source in four steps. We first calculate lake depths along
an ICESat-2 beam using the Watta algorithm applied to
the ICESat-2 ATL03 photon cloud. Secondly, we coregister
Watta-based surface and lake bottom heights with the im-
agery source (itself coregistered to a common Landsat base)
and delineate lake boundaries in the process (methods de-
tailed in Sec. 3.2). Finally, we develop an empirical relation-
ship between ICESat-2-based depths and coincident imagery
which can be applied to calculate lake depths over the full
image. The empirical relationship is based on the exponential
decay of reflectance at water depth, as detailed by Box and
Ski (2007). In the original work, in situ depth estimates (D)
and reflectance values from imagery (R) were used to esti-
mate the α coefficients in Eq. (1), which were then applied
to calculate water depth over the full scale of imagery where
lakes are delineated:

D = α0/(R+α1)+α2. (1)

However, such in situ estimates are scarce in space and time,
and here we exploit the direct depths from the Watta algo-
rithm to derive time, location, and sensor-specific estimates
of the α coefficients.

3.1 Watta

Watta is an algorithm which takes ICESat-2 ATL03 photon
data as input and automatically detects supraglacial surface
features with an associated likelihood. In its current state,
the algorithm detects lakes and their associated surface, lake
bottom, and corrected depth estimates, as well as subsur-
face ice when present (Fig. 2). We also exploit the algo-
rithm for the detection of frozen streams in this study. The
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Figure 2. Diagram of the Watta methods described in main text.

codebase for Watta is divided into a module which calcu-
lates surface and bottom returns (“Surface Detection”) at
the native 0.7 m resolution of ICESat-2 and a second “In-
terpretive” module that resolves the calculated bottom and
surface to specific supraglacial features, in this case lakes.
The Surface Detection module determines, for a collection
of photons surrounding any individual photon (75 collected
before and 75 collected after; selected in step a), heights with
the three strongest peak probabilities within a kernel density
(step b). This provides estimates for (1) a height for the sur-
face or top of a lake or refrozen pond, (2) a lake bottom, and
(3) a third height value, which can potentially be subsurface
ice (Fig. 2, step a). We note that photons are selected without
regard to ATL03 confidence level. Although the bin width
(and therefore vertical resolution) used to calculate heights
is 0.1 m, we perform a second kernel density estimate calcu-
lation using a 0.3 m bin width to confirm robustness of the
initial bottom estimate, i.e., that a coarser calculation pro-
duces a bottom height near that of the finer-resolution (0.1 m
bin width) calculation. In post-processing step c, outliers are
identified in comparison to surface and bottom heights within
a larger horizontal window, whereby the number of standard
deviations used to detect an outlier and the number of pho-
tons used to calculate a mean (window) increase over several
steps. Where outliers are found, the kernel density estimate

(steps a and b) are recalculated with a larger number of pho-
tons (in multiples of 75) to account for any erroneous calcula-
tions generated by insufficient photon density. Where values
continue to be outliers, they are removed from the estimates
to be interpolated instead. The final output of the Surface
Detection module includes a calculated surface and poten-
tial lake bottom return at the native resolution of the ATL03
photon cloud.

The Interpretive module uses output from the Surface De-
tection module to automatically determine locations of sur-
face features (e.g., lakes or frozen streams), as well as charac-
teristics of a lake, e.g., the presence of refrozen ice at the sur-
face. First, remaining outliers are removed by calculating a
local background and surface photon density for each ATL03
photon, as determined from a 5000 photon-count window
surrounding the estimate location (step d). We then remove
those estimated heights for top (surface) and bottom (poten-
tial lake bottom) where the photon density more closely re-
sembles the background photon density than a surface den-
sity estimate. In step e, we detect breaks in the slope of the
top (surface) to divide the satellite pass into segments which
are potential lakes. For example, a semi-parabolic depression
in topography, with a high absolute value of the slope, is
broken by a lake surface where the slope approaches zero
(e.g., as for the lake shown in Fig. 2, step a). For each of
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Figure 3. Diagram of imagery processing steps accepting Watta outputs as input (top left panel) and producing lake depth estimates (bottom
left panel). The Watta lake depth profile shown is for Lake Ayşe using RGT 841 on 23 May and Planet SkySat imagery on 22 May.

these potential lakes, we then perform several steps both to
refine lake surface and bottom and to assign the lake a class
based on its properties. To produce a lake bottom value with
greater accuracy, we first perform a recalculation of the ker-
nel density estimate (step f, equivalent to the Surface Detec-
tion step b), except here we limit the kernel density estimate
to photons below the calculated surface and use 30 photons
rather than 75 photons to better capture the lake bathymetry,
which in general is more irregular than the lake surface. Sub-
surface ice layers near the edges of the lake are then reclas-
sified as lake surfaces, thus sealing the bottom of the lake
to the top at the lake edges (step g). In step h, we first per-
form a final smoothing, passing the resulting bottom photons
through an iterative robust quadratic local regression (rloess)
filter to remove outliers in the bottom estimates and then as-
sign physical meaning to each photon (e.g., lake surface, bot-
tom, surface ice, subsurface ice). The presence of surface ice
is determined based on the variability in thickness of the lake
surface (i.e., a bimodal distribution indicates surface ice at
some locations). We identify subsurface ice by the presence
of weak returns above the lake bottom but below the surface
(see Fig. 2, step b). The surface and bottom photons are then
used to derive lake depth, to which we apply a simple cor-
rection for refraction, described in Parrish et al. (2019), to

produce a real corrected lake depth. Finally, in step i, we as-
sign a final classification of a lake type using properties of the
local surface slope and the strength of the bottom return (Ta-
ble 1). For example, a segment with a surface slope smaller
than 0.03 %, as well as a distinct bottom (a photon density far
exceeding the density of a background return), is given a lake
classification of “highly likely”, whereas segments passing
the same slope threshold but not showing a strong bottom re-
turn are identified as “likely ice-covered” lakes. On the other
hand, segments with a slope exceeding 0.3 % and no signifi-
cant peak below the surface in the histogram are allocated to
the “highly unlikely” lake class.

Two potential sources of ambiguity with the subsurface
ice classification are (a) the possibility for specular returns
and (b) apparent multiple surface returns which result from
instrument echo. Specular returns over flat water (implying
high energy return) return a strong surface, as well as multi-
ple layers below the surface spaced according to the ATLAS
dead time (0.45 m below the surface and a potential tertiary
return below that). Echoes produced by electronic noise in
the instrument, which also frequently occur on very smooth
water surfaces, can similarly produce a strong return at the
surface with double echoes at ∼ 2.3 and ∼ 4.2 m below the
surface (Martino et al., 2020; Lu et al., 2021). The catego-
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Table 1. Definitions for Watta lake classes.

Class Slope Bottom Lake probability Lake characteristics
reflection∗

1 < 0.03 % Strong Highly likely Very flat open lake, dense bottom photon returns

2 0.3 %< slope< 0.3 % Strong Very likely Flat, open lake with presence of refrozen ice; dense
bottom photon returns

3 > 0.3 % Strong Likely Non-flat surface, possibly flowing water channel
on sloping surface; dense bottom photon returns

4 < 0.03 % Weak Very likely Very flat open lake; weak bottom photon returns

5 0.3 %< slope< 0.3 % Weak About as likely as not Flat open lake; weak bottom photon returns

6 > 0.3 % Weak Unlikely Non-flat surface; weak bottom photon returns

7 < 0.03 % None Likely Very flat refrozen lake; no significant bottom
photon returns

∗ Strength of the bottom reflection is defined by the ratio of the first two peaks in the 2 m interval histogram of non-surface photon heights within the segment.
Strong bottom reflection: peak ratio> 3.5; weak bottom reflection: 2.5< peak ratio< 3.5; no bottom reflection: peak ratio< 0.

rization of subsurface ice (as with Lake Ayşe in Fig. 3) is
reliant on visual inspection. In this case, we assume subsur-
face ice because the layer shows trailing photons towards a
weakly resolved lake bottom rather than a distinctive sharp
horizontal layer with no curved bottom return.

3.2 Imagery processing

A subsequent set of steps uses the lake depths extracted from
the Watta algorithm to produce lake volumes from concurrent
imagery, e.g., SkySat, PlanetScope, Sentinel-2, and Landsat
OLI, requiring geolocation, as well as the semi-automated
identification of lake edges. Coregistration between ICESat-
2 photon locations and imagery (Fig. 3, step j) is managed by
registering ICESat-2 elevations with the GIMP-2 DEM as an
intermediary step (GIMP-2 is also used for georeferencing
of Landsat) and by transforming the point cloud using the it-
erative closest point algorithm, which minimizes the square
error between the two datasets (Besl and McKay, 1992). The
point cloud ICESat-2 is chosen to include a 0.2◦ latitude win-
dow surrounding the lake resolved to include larger topogra-
phy in the region (and thus avoid errors presented by ice mo-
tion). The large lakes used here are all located in strong topo-
graphic depressions (which are resolved in both the GIMP-2
DEM and ICESat-2) and can therefore be assumed to remain
relatively fixed.

To register imagery sources to one another, we standard-
ize all imagery to the nearest Landsat image using the arosics
library in Python (Scheffler et al., 2017), which detects and
corrects misregistrations of an input image (based on a refer-
ence image) at the sub-pixel scale. However, the coregistra-
tion of all other imagery sources to Landsat OLI first requires
the delineation of lake boundaries in order to exclude regions
with moving surface water, which evolves rapidly and can be
mistaken for fixed topography (which is more useful for ge-

olocation). Here we calculated a normalized difference water
index (NDWI) for each image, using a standard NDWI (with
the green and NIR bands) to deliberately include regions with
ice layers (as these are also detected by Watta) rather than the
modified NDWIice (which uses the red and blue bands) per
Yang and Smith (2013). Boundaries of lakes (step l in Fig. 3)
are calculated by using adaptive thresholding (Bradley and
Roth, 2007) to generate a binary mask which is then used to
identify individual water bodies. The use of adaptive thresh-
olding avoids the limitations of any fixed NDWI threshold,
especially relevant to PlanetScope data which occasionally
produce negative NDWI values. However, we note that this
step has the potential to include partial ice layers (although
visual inspection suggests that this was avoided with the test
cases used here). To coregister ICESat-2 to each imagery
source, we also note that the ICESat-2 mission requirements
list a geolocation accuracy of 6.5 m and a footprint size of
∼ 11 m (Magruder et al., 2021), which may potentially in-
clude multiple pixels of high-resolution imagery. To calcu-
late a band value from imagery associated with a geolocated
photon from ICESat-2, we find pixels in imagery within a
6 m radius and calculate a mean. In Step k, we calculate an
empirical relationship between the depth estimate calculated
by Watta and a band value from coregistered imagery pixels.
Finally, we use this empirical relationship to produce a depth
estimate for the entire lake using Eq. (1).

4 Evaluating methodology

4.1 Physical constraints of the test dataset

The test dataset provides a diversity of lake types, with the
largest surface area calculated at 5.6 km2 and a maximum
Watta-calculated corrected depth at 10.3 m. A number of

https://doi.org/10.5194/tc-15-5115-2021 The Cryosphere, 15, 5115–5132, 2021



5122 R. T. Datta and B. Wouters: Supraglacial lake bathymetry automatically derived from ICESat-2

lakes contain substantial ice cover. In the following sections,
we discuss several lakes in greater detail, which present a di-
verse set of conditions with which to evaluate both the Watta
algorithm and the imagery sources used to extrapolate lake
volumes. Locations of the lakes can be found in Fig. 1.

Lake Ayşe was selected for closer examination because,
despite the dense photon cloud, its relief in surface and bot-
tom, combined with the presence of ice cover, pose a chal-
lenge for our detection algorithm. Additionally, multiple im-
agery sources were available within a 5 d window at this lo-
cation. Lake Zadie is chosen because it represents an ideal
case for the algorithm, while Lake Cecily is chosen because
two beams passed over the same lake with SkySat imagery
available 1 d afterwards. A basic assumption we make in this
study is that the lake bottom remains relatively consistent
over several days, although past research on two lakes in
western Greenland has estimated lake bottom ablation rates
at 6.5 cm d−1 on the bottom of the pond (Tedesco et al.,
2012). We assume that this is the primary physical source
of uncertainty in the empirical calculation as the relationship
will degrade with temporal distance from the ICESat-2 pass.
However, where changes in the bathymetry are not uniform,
we can potentially make inferences about drainage mecha-
nisms (e.g., the forming and deepening of crevasses). Cross-
sections of all lakes used for development showing the lake
top, bottom, and bottom value corrected for refraction as cal-
culated by Watta, along with lake top and bottom as calcu-
lated empirically from imagery, are shown in Fig. S4, and
their coordinates and relevant statistics are listed in Table S1.

4.2 Physical constraints of the test dataset

The most rigorous weighting system used for the algorithm,
using only lake classes 1, 2, 4, and 7 (see Table 1), suc-
ceeded in automatically detecting 49 out of the 50 lakes iden-
tified in the available imagery, with two likely false positives
(i.e., not confirmed by NDWI values exceeding 0.2 in the
imagery). A less rigorous weighting system, including lake
class 3, detected the 50th lake but resulted in a large num-
ber of false positives in areas of steep and rough topography
where abrupt changes in the photon elevations are misinter-
preted as bottom reflections by the algorithm.

In the absence of simultaneous in situ data, we evaluate
the performance of the algorithm based on visual inspection
(comparing ATL03 heights with Watta-calculated depths as
shown in Fig. S3). Additionally, where an empirical rela-
tionship with imagery is successful (a high correlation co-
efficient value between imagery-derived depths and Watta-
derived depths), we take this consistency for partial evidence
that ICESat-2 and imagery sources have detected bathymetry
correctly, although we note that this metric is only applica-
ble to the specific lake, not all the lakes in the region. The
most successful bottom retrieval occurred where ice cover
was minimal, the density of photons was high, and where
the bottom slope was relatively uniform (e.g., Lake Zadie).

The presence of ice near the surface (between the surface
and 1 m below the surface) frequently obscured lake bot-
tom detection (e.g., reference ground track – RGT – 1222,
Lake 3 in Fig. S3), although in some cases only partially;
however, the presence of subsurface ice did not always pre-
clude the presence of a strong bottom return (e.g., Lake 7,
RGT 1169, Fig. S3). The algorithm therefore indicates the
presence of surface and near-surface ice but does not auto-
mate the removal of the calculated bottom return due to am-
biguity. We can confirm the presence of an ice layer both by
visual inspection of the imagery and by comparing standard-
ized NDWI values calculated from imagery coincident with
the ICESat-2 track (Fig. S1a). We note that for at least one
case (RGT 1108, Lake 6, Fig. S3), the designation of “lake”
was ambiguous as this could be treated as either a shallow
lake containing a large amount of subsurface ice or as a slush
layer (a number of which were identified elsewhere).

4.3 Evaluating data sources for imagery-based depths

Total uncertainty for the empirically based depth estimates
from imagery is comprised of uncertainty in ICESat-2 ge-
olocation, uncertainty from the Watta algorithm itself (which
operates at a vertical resolution of 0.1 m), from the resolution
of the imagery, from the uncertainty in alpha coefficients cal-
culated from the empirical method, and finally from physical
changes in the lake occurring between the time that imagery
is captured and the ICESat-2 pass. The empirical calculation
is less likely to be affected by physical changes in the lake
when the lake surfaces calculated by imagery vs. altimetry
differ by less than a meter; here we estimate precision with a
simple R2 value.

Past work has considered either the red or green band
for developing depth estimates (Moussavi et al., 2020;
Williamson et al., 2018), though in situ validation was lim-
ited at the time (Pope et al., 2016). Figure 4 comparesR2 val-
ues from empirical estimates derived from the red vs. green
band for lakes classified according to the maximum lake
depth calculated by Watta. In agreement with Moussavi et
al. (2016), for Landsat 8 (Fig. 4d), Sentinel-2 (Fig. 4c), and
SkySat (Fig. 4a), the empirical depth estimates for the red
band showed higher fidelity with Watta-based depths for
shallow lakes, while the green band showed greater fidelity
for deeper lakes. Of six lakes where a maximum depth ex-
ceeds 7.2 m and where the imagery source is Landsat 8, two
lakes (RGT 1222, Lake 8, 12 in the Supplement profiles)
show both red- and green-band-based profiles being unable
to resolve the deepest points in the lake. For two additional
cases (RGT 1222, Fig. 4e, Lake Zadie, Lake 14, 17 in the
Supplement profiles), the green band was able to resolve very
deep lake depths, while the red band was not. This implies
that for SkySat, Sentinel-2, and Landsat 8, the green band
is able to resolve bathymetry at greater depths and empha-
size cracks at the bottom of the lakes. The major exception
is PlanetScope data (Fig. 4b), in which the red band consis-
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Figure 4. Comparing R2 values from empirical estimates calculated with the red band vs. the green band from multiple imagery sources,
with lakes classified by maximum lake depths as calculated by Watta. (a) Planet SkySat TOA reflectance. (b) Planet PlanetScope surface
reflectance. (c) Sentinel-2 TOA reflectance. (d) Landsat 8 OLI TOA reflectance. (e) Watta-calculated and imagery-derived depths: Lake
Zadie based on Landsat OLI.

tently showed greater fidelity to Watta-based estimates, while
green band estimates produced unrealistic depth estimates,
although there were a limited number of lakes where coin-
cident PlanetScope imagery was available. We note that be-
cause this method is empirical, future users would be able
to select bands or combinations, as with the average of the
panchromatic and red band used by Pope et al. (2016).

To demonstrate the robustness of the Watta algorithm, the
impact of band choice, and the sensitivity to absolute lake
depth, we show depths calculated from two beams passing
over Lake Cecily on 13 June, followed by retrieval of SkySat
imagery on 14 June and Sentinel-2 on 16 June (Fig. 5a and b
and RGT 1169 Lake 5, 6 in the Supplement profiles). Over
this spot, covered by the 3l beam on this pass, the green band
shows higher R2 values for both Sentinel-2 and SkySat but
lower R2 values for the red band. This is consistent with
the greater depths calculated from the 3l beam, which ap-
proach the 6 m depth where the performance of the green
band is expected to improve. The use of the green band in
both the 3l and 3r cases allows finer bathymetric relief to be
captured in both SkySat- and Sentinel-based depth estimates,
with the finer resolution of SkySat capturing substantially
greater detail (Fig. 5c, box). We note that even when high
R2 values are calculated between the empirical estimate and
Watta-calculated depths, unrealistic depths can result when
lakes drain or fill rapidly, and low-resolution imagery can
potentially resolve the height of a lake surface inaccurately
(Fig. S2).

Within Fig. 6, we show the depth evolution of Lake
Ayşe over 5 d, both along the ICESat-2 ATL03 and Watta-
calculated profile and the lake volume estimates then con-
structed from imagery using the empirical equation. Increas-
ing lake volume is demonstrated both by the expansion of the

surface area of the lake through time (right column) and the
rise in the lake level (cyan line, left column). Planet SkySat
estimates at a 1 m resolution (Fig. 6c) show the greatest level
of detail of crevassing at the bottom of the lake although
PlanetScope estimates at a 3 m resolution (Fig. 6d and e)
are comparable. We note that PlanetScope data showed vari-
ations in the fidelity to Watta-based estimates between the
green band vs. the red band depending on the instrument. The
bottom relief is maintained at depth with the PlanetScope res-
olution (3 m), and future work could generate more reliable
depth estimates by calibrating empirically based depths to
Sentinel estimates, which could provide very high-resolution
depth estimates while also leveraging the high temporal fre-
quency of PlanetScope data collection.

5 Capturing lake drainage over the melt season

Our improved ability to track lake depth and volumes us-
ing the combination of ICESat-2 and multi-sensor imagery
can potentially provide new insights into patterns of lake
drainage. Lake Julian (Fig. 7a) was selected for closer ex-
amination because on 15 May, both the airborne Operation
IceBridge mission and ICESat-2 passed over this region, pro-
viding a unique stack of both airborne and satellite data.
While we show only very high-resolution Operation Ice-
Bridge CAMBOT imagery here, other instruments on board
OIB could potentially provide valuable insight into the state
of both surface hydrology and firn characteristics in future
work. Additionally, there are cloud-free ICESat-2 RGT 727
passes over this lake both on 15 May and on 14 August 2019,
providing a profile of the lake both when it was filled and af-
ter drainage. A second lake, Lake Niels (Fig. 7a), is examined
briefly primarily to provide context. Although no altimetry
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Figure 5. Watta-calculated and imagery-derived depths: Lake Cecily based on Sentinel-2 (k, l) and Planet SkySat (m, n); Lake Cecily false-
color imagery from Sentinel-2 (a) and SkySat with ICESat-2 beam 3r and 3l (b); imagery-derived depths from Planet SkySat (c–f) and
Sentinel-2 (g–j) with band–beam combination as shown. Estimates from the green band are indicated by “G”, while those calculated from
the red band are indicated by “R”. The red box in (c) highlights region where underlying crevassing is captured.
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Figure 6. Lake Ayşe, filling over 5 d between 20 and 25 May
with ICESat-2 pass on 23 May. Left column panels: profiles with
Watta-calculated and imagery-derived depths from the green, indi-
cated by “G”, and red, indicated by “R”, bands (with correspond-
ing R2 values inset; legend same as Fig. 4a). Right column pan-
els: depth values derived from empirical estimate, with imagery
source, date collected, and band used for depth estimate shown.
Imagery source abbreviations are as follows: “LSat” for Land-
sat, “SSat” for Planet SkySat, “PS” for Planet PlanetScope, and
“Sent” for Sentinel-2. Path of ICESat-2 spot over Lake Ayşe is
shown in Fig. 1.

estimates are available over Lake Niels, imagery sources re-
veal a very different evolution and drainage pattern despite
its being located only 3500 m from Lake Julian and conse-
quently subject to many of the same atmospheric drivers.
Within the larger region shown in Fig. 7a (see also Fig. S4),
the percentage of the ice sheet surface covered in liquid wa-
ter, as measured by the percentage of the region where NDWI
ice values exceed 0.2, remains constant at around 3 % from
May through June, with meltwater being spread more uni-
formly (less visibly collected in large hydrological features)
over the ice sheet early in the season and shifting to larger
lakes later in the season (Fig. S4). We note that this mea-
sure of melt extent does not translate directly to consistent
meltwater volume; meltwater underneath the snow cover on
Lake Niels was not estimated earlier in the season, while the
deeper lakes which are present later in the season will contain
larger water volumes.

Although elevation decreases overall toward the north-
west, both lakes coincide with large-scale surface depres-
sions calculated from the GIMP-2 DEM (Fig. 7), and this
region experiences comparatively low ice velocities. Lake
Niels is located in a deep surface depression, whereas the
corresponding surface depression for Lake Julian is relatively
shallow. Because both imagery and ICESat-2 are coregis-
tered to the GIMP-2 DEM, we presume that all inaccuracies
will be consistent (i.e., even if geolocation is incorrect in ab-
solute terms, imagery and ICESat-2 should overlap).

5.1 Drainage mechanisms over Lake Julian from
airborne and satellite-based imagery

The volume of Lake Julian begins to increase substantially
on 9 May and reaches a maximum volume between 25 and
29 May (Fig. 8j–l). After 1 June, the lake begins to lose
volume until only remnants are present on 10 June, which
disappear almost entirely by 19 June (Fig. 8m–o). The sur-
rounding region (i.e., a kilometer to the north and west) con-
tain smaller bodies of water connected by streams. We note
that while larger streams can be captured by Sentinel-2 im-
agery (Fig. 8j), many of the smaller streams present later in
the season can only be reliably detected with imagery at a
1 m resolution or below (e.g., Figs. 8r and S5). The progres-
sion shown in Fig. 8 captures the development of an efficient
drainage system over the season.

Three potential drainage mechanisms can be observed
over Lake Julian. Firstly, we note a small stream ending in
a spray of snow (alternatively, an ice bridge) which is po-
tentially indicative of a moulin (Fig. 9b). However, an over-
flight of Operation IceBridge on 15 May (Fig. 9a) does not
definitively show a moulin at the end of the incision, allowing
for the possibility that the actual drainage occurred under the
overlapping ice bridge. We also identify the point labeled B
in Fig. 9a and b (also in Fig. 10d and e) as another poten-
tial drainage point. Presuming that drainage occurs at either
location, lake volume could still increase slowly (as it does
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Figure 7. (a) Lake Niels and Lake Julian shown on 14 May 2019 using Sentinel-2 imagery as described in the “Data sources” section.
(b) GIMP-2 DEM shown at same location with contours shown at 10 m intervals.

Figure 8. Imagery over Lake Julian shown from 20 April through 24 September 2019. All images use Planet SkySat Visual data unless
otherwise indicated by letter on bottom left, with S indicating Sentinel and L indicating Landsat.
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between 9 and 25 May) if the inflow rate exceeds the outflow
rate of the lake. This dynamic is captured in a previous in situ
study of lake drainage, which indicated that drainage through
a moulin decelerated as the hydraulic head between the lake
and the moulin declined (Tedesco et al., 2013).

However, following late May, SkySat imagery captures
the development of a second stream directly south of the
initial potential moulin (Fig. 9b). This small stream, which
flows downstream (Fig. 7b), deepens throughout the sea-
son (Fig. 9c) with a very deep incision shown distinctly in
imagery on 24 September (Fig. 8t). The development sug-
gests that the relatively slow initial drainage from the poten-
tial moulin or point B accelerated due to increased drainage
from a second small stream, draining Lake Julian almost en-
tirely between 1 and 10 June (Fig. 8m–n). While smaller pre-
existent streams to the right (Fig. 9b) may also have facili-
tated drainage, we assume that the newly incised stream to
the left is the most likely cause for the rapid drainage due to
the timing of its appearance. We note that smaller bodies of
water are still apparent on the surface after the drainage of
Lake Julian, some connected by very small stream networks
which appear to be frozen-over by 24 September (Fig. 8t).

5.2 Drainage mechanisms over Lake Julian captured
using Watta

Lake Julian reached a volume of 268 120 m3 on 14 May,
which was calculated using the green band from Sentinel-
2 imagery on 14 May in conjunction with a Watta-based
depth calculation from an ICESat-2 pass on 15 May (Fig. 10a
and b). The time lag introduces uncertainty due to possi-
ble lake ablation. We assume that this uncertainty is not due
to the discrepancy in dates (imagery having been captured
on 14 May, whereas a deeper lake depth was captured by
ICESat-2 on 15 May). This is because the methodology ac-
counts for changing lake depths, presuming minimal lake ab-
lation, matching Watta-calculated depth to the surface height
where the edge of the lake is indicated by imagery (see Meth-
ods). The depth values calculated for 14 May indicate a rela-
tively shallow lake (less than a maximum 4 m depth).

A comparison between the two passes of ICESat-2
RGT 727 (the second on 14 August) indicate uneven low-
ering in this region and potential slight ice motion, e.g., a
small southward shift in the lowest point of the depth pro-
file (point B) calculated on 15 May vs. on 14 August
(Fig. 10c). We estimate large-scale surface lowering around
∼ 1 m, based on the lowering calculated at higher elevations
(Fig. 10c and d, where the x axis, showing the distance from
an arbitrary start point, is greater than 800 m). By contrast, el-
evation changes where surface hydrology features exist show
enhanced incision of a pre-existent stream/drainage point, as
well as the development of a new stream (Fig. 10c and d, x-
axis value between 0 and 200 m). The deepening of the low-
est point in the lake could be the product of ice motion, but
we assume that the elevation change of 2–3 m at this location

is the effect of lake ablation. This is due to the locations of
ice layers being well-matched between imagery and Watta-
calculated features (discussed shortly), suggesting that any
ice motion was adjusted for in the geolocation step.

In addition to locations where Watta calculates a lake sur-
face (Fig. 10d and e, label “B”), Watta also identifies regions
where ice cover is probable. These are shown in cyan in
Fig. 10d at locations A, C, and D and in imagery in Fig. 10e.
Whereas lake surfaces are calculated at the horizontal reso-
lution of the ICESat-2 ATL03 photon cloud, the ice surface
class is assigned at a coarser resolution. This is because the
Interpretive module assigns the “ice surface” class based on
the presence of a flat surface under an overlying layer with
more varied topography. While currently the algorithm po-
tentially overestimates the extent of these regions, a first au-
tomatic pass can be used to identify larger regions where
ice surfaces exist, after which manual inspection can then
identify specific ice layers. Shown in Fig. 10d are lake B
and three additional points where we identify ice layers us-
ing both Watta and manual inspection (A, C, D). Point B is
also captured in Operation IceBridge CAMBOT imagery on
15 May (Fig. 9a). This is potentially a drainage point which
retains meltwater as late as 14 August. This location is also
covered by a floating ice layer on 14 May, suggesting that
an ice layer had formed at the same place and settled at this
point following drainage in the previous season. Point C cor-
responds to a deeply incised stream (which is not captured
in the Watta profile calculated on 15 May), while point D
corresponds to a smaller stream; both of these points were
covered by Lake Julian during the last half of May. We note
that the designation of point A is more ambiguous as it is
collocated with an incision which was previously a stream
but is weakly resolved in both Watta-based estimates and in
the SkySat imagery collected on 20 August. The Watta des-
ignation of “ice surface” here is likely, but not unambiguous,
as this method will capture both real ice surface and false
dual returns as detailed in Sect. 3.1. The main attributes typ-
ical of the false dual returns are a strong top surface over
surface water in a flat region, followed by weaker returns at
predictable intervals (∼ 0.45 m and possibly∼ 0.90 m for the
specular return, ∼ 2.3 and ∼ 4.2 m for the instrument echo).
In this case, a specular return would be the most likely cause
for a false dual return due to the spacing. However, we first
note that the surface in this region is not flat, and we do not
see the predicted strong surface return followed by a weaker
echo (“surface” and “ice” layers are of equal thickness). Ad-
ditionally (a) in the case of point B, the top layer contains
no dual return, and (b) in the case of C, a distinct gap occurs
in the surface. Both of these correspond to ice/water in im-
agery. For point A and point D, imagery suggests that these
points occur at a convergence of streams. These could, how-
ever, be either water or ice as no distinctive bottom return
is detected. With the current available information, the “ice
surface” detection will still require manual inspection; future
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Figure 9. Mechanisms of lake drainage over Lake Julian. (a) CAMBOT imagery from Operation IceBridge flight on 15 May 2019 (30 cm
resolution). (b) SkySat imagery (∼ 1 m resolution) on 10 June after large-scale drainage.

Figure 10. ICESat-2 RGT 727 over Lake Julian. (a) Sentinel-2-based imagery acquired on 14 May 2019 with ICESat-2 RGT 727 gt1l
(occurring on 15 May and 14 August 2019) overlapping in green. Operation IceBridge overpass on 15 May 2019 is directly coincident with
the ICESat-2 line. (b) Lake depth derived from Watta (c) and Sentinel-2 (a) imagery. (c) Watta calculated from ICESat-2 on 15 May and
14 August. (d) Watta-calculated surface features over photon cloud on 14 August. Points A–D discussed in text. (e) Points A–D shown over
Planet SkySat imagery collected on 5 and 20 August.

improvements to the code may account for the known issue
with false dual returns as knowledge in this area develops.

5.3 Lake Niels, partial drainage and refreeze

In comparison to Lake Julian, Lake Niels begins and ends the
melt season as a frozen lake. By 9 May, the ice surface be-
gins to melt, and the lake surface area expands substantially.
However, by 13 May (Fig. 11d), imagery captures an insulat-
ing layer of snow, after which the lake expands until 26 June.
By 20 July, slow lake drainage is evident via a stream which
is identified in Fig. 11a and is first observed to contain a sub-

stantial quantity of liquid water on 19 June (Fig. 11h). We
observe that the stream is clearly incised both on 20 April
(Fig. 11b) and on 24 September (Fig. 11m), when the lake is
likely frozen over, based on imagery. In comparison to Lake
Julian, which was located in a relatively shallow depression,
Lake Niels is located in a deep depression (Fig. 7), and nei-
ther drains early in the season nor connects to an efficient
drainage system. Although these lakes are subject to simi-
lar atmospheric drivers, the differences in drainage patterns
highlight how local topography and the corresponding depth
of lakes can influence how meltwater is either retained on
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Figure 11. Lake Niels shown between 20 April and 4 September 2019. Panel (a) shows stream detail from 20 August (main panel) with
stream detail on 20 April (inset, with region indicated in panel b). All imagery is from Planet SkySat Visual imagery except on 9 May (when
Sentinel-2 imagery is used, indicated with “Sent”).

the ice sheet or drained downstream or into englacial or sub-
glacial pathways. We note that surface topography, in turn,
is strongly influenced by basal topography, thus linking total
runoff to surface expression of bed topography (Ignéczi et
al., 2018).

6 Conclusions

This study represents initial work developing the Watta algo-
rithm for lake depth estimates, as well as subsurface ice de-
tection, using a unique stacked dataset over western Green-
land during the intense 2019 melt season. We demonstrate
the potential of ICESat-2 for automated lake detection and
depth estimation, as well as how empirically derived depths
derived from a combination of imagery sources can comple-
ment each source’s strengths and weaknesses. For example,
while Landsat is only available at a low resolution, it pro-
vides a rich historical record, as well as high geolocational
accuracy (at 5 m), which is leveraged here to better geolocate
imagery from Planet Labs. Similarly, while PlanetScope data
contain several known issues with radiometry and geoloca-
tion, imagery is available at a high spatial and temporal res-
olution. As demonstrated in our test cases, a time series con-
structed from multiple sources can provide valuable infor-
mation about the evolution of ice cover and drainage mech-
anisms in addition to volume estimates. Given the accelerat-
ing sophistication of altimetry-based observations, ongoing
efforts to improve geolocation, radiometric quality, or tem-
poral frequency of high-resolution imagery are crucial. Addi-
tionally, the availability of simultaneous imagery and altime-
try would enhance the capabilities of other satellite imagery

sources to fill out the time series by providing a calibration
standard.

While this initial study focused on lakes in grounded ice
in Greenland, Watta can potentially be applied to Antarctic
melt lakes as well. Additionally, lake depths calculated em-
pirically can potentially be used to calibrate physically based
methods towards developing ice-sheet-wide time series for
the evolution of surface hydrology.

Our algorithm successfully detects a wide variety of lake
types automatically and can be applied to the growing set of
ICESat-2 and imagery data over large sections of Antarctica
and Greenland. Identification of narrow stream features on
sloping surfaces, however, still needs visual verification due
to a large number of false positives. This will be addressed
in future work, together with adding features to the interpre-
tive layer, including slush layers as well as cracks, using the
Planet SkySat imagery dataset for testing purposes. In addi-
tion to these improvements, Watta, which is currently written
in MATLAB, is available in GitHub with documentation but
will eventually be moved to an open-source language.

Code availability. Code for Watta can be found here:
https://doi.org/10.5281/zenodo.5655860 (Datta and Wouters,
2021).

Imagery, IDs for which can be found in the Supplement, can be
accessed at the following urls:

– for Planet imagery: https://www.planet.com/ (Planet Labs,
2020);

– for Sentinel-2 and Landsat 7 and 8 imagery: https://
earthexplorer.usgs.gov/ (USGS, 2021);

– for ICESat-2 ATL03: https://doi.org/10.5067/ATLAS/ATL03.003
(Neumann et al., 2021).
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