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The Paris Agreement sets the framework for international cli-
mate action. Within that context, countries are aiming to hold 
warming well below 2 °C and pursue limiting it to 1.5 °C. How 

such global temperature outcomes can be achieved has been explored 
widely in the scientific literature1–4 and assessed by the IPCC, for 
example, in its Fifth Assessment Report (AR5; ref. 5) and its Special 
Report on Global Warming of 1.5 °C (SR1.5; ref. 6). Studies explore 
aspects of the timing and costs of emissions reductions and the con-
tribution of different sectors3,7,8. However, there has been critique 
that, with the exception of a few notable studies9–12, the scenarios in 
the literature first exceed the prescribed temperature limits in the 
hope of recovering from this overshoot later through net-negative 
emissions13–16. Some pioneering studies10–12 have explored implica-
tions of limiting overshoot through, for example, zero emissions 

goals, or have looked into the role of bioenergy with carbon capture 
and storage (BECCS) in reaching different temperature targets9. All 
these studies have relied on one or two models and/or a limited set 
of temperature targets.

We bring together nine international modelling teams and con-
duct a comprehensive modelling intercomparison project (MIP) on 
this topic. Specifically, we explore mitigation pathways for reaching 
different temperature change targets with limited overshoot. We do 
this by adopting the scenario design from ref. 11 and contrast sce-
narios with a fixed remaining carbon budget until the time when 
net-zero CO2 emissions (net-zero budget scenarios) are reached 
with scenarios that use an end-of-century budget design. The latter 
carbon budget for the full century permits the budget to be tem-
porarily overspent, as long as net-negative CO2 emissions (NNCE) 
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bring back cumulative CO2 emissions to within the budget by 2100. 
This approach dominates the current literature and leads to a tem-
porary overshoot of the associated temperature target. Importantly, 
the earlier introduced ‘net-zero budget scenarios’ limit cumula-
tive CO2 to a maximum without exceeding the emissions budget. 
These scenarios thus keep global warming below a certain threshold 
(without exceeding it) and stabilize the temperature thereafter.

The new pathways fill important knowledge gaps. First, they 
cover the range of carbon budgets consistent with low stabilization 
targets in a systematic way and across a wide range of diverse global 
models. The pathways thus explore important uncertainties, includ-
ing the attainable scenario space across different models and target 
definitions. This information is critical for international assessments, 
such as those by the IPCC17. Secondly, we explore the impacts of the 
country pledges from the post-Paris process for the attainability of 
overshoot and non-overshoot targets. Thirdly, we investigate salient 
temporal trade-offs with respect to mitigation costs; and finally we 
explore distinct differences in terms of the possible regional and 
global designs of net-zero CO2 emissions systems. The main narra-
tives of the pathways and assumptions are provided in Table 1.

implications for emissions pathways
Reaching stringent temperature targets with limited overshoot, 
requires a pronounced acceleration of the near-term transforma-
tion towards net-zero CO2 emissions. Staying within a budget of 
500 GtCO2 (consistent with a median warming of 1.44–1.63 °C), for 
example, requires CO2 emissions to reach net zero between 2045 and 
2065 (range across models). When an ‘end-of-century’ carbon bud-
get is used, the time of reaching net-zero CO2 emissions is delayed 
between 5 and 15 years (to 2060–2070). This delay, combined with 
the higher emissions over that period, results in 0.08–0.16 °C higher 
peak temperatures compared to scenarios that are identical in all 
but their allowance to overshoot the carbon budget.

A broad set of behavioural, biophysical, economic, geophysi-
cal, legal, political and technological factors render transforma-
tions to net zero more or less challenging18. The modelling exercise 
here informs primarily challenges related to economic, geophysi-
cal and technological feasibility. The lowest attainable net-zero CO2 
emissions budget (limiting overshoot) is 400–800 GtCO2 across 
the models (assuming immediate implementation of ambitious 
policies and a middle-of-the-road socioeconomic development19).  

Table 1 | Scenario narratives and the corresponding range of attainable 2030 CO2 emissions and the attainable carbon  
budgets (2020–2100)

Scenario 
name (no. of 
scenarios)

Narrative Near-term policy 
assumptions, 
2020–2030

Long-term climate policy 
assumptions

2030 GHG 
emissions range 
(GtCO2e)

Range of cumulative 
CO2 emissions 
(2020–2100, 
GtCO2)a

NPi (8) GHG emissions follow 
currently implemented 
national policies (NPi). No 
additional new policies are 
assumed in the future.

No additional policies 
compared to today.

No additional policies 
compared to those 
implemented today.

54.1–65 3,552–4,645

NDC (8) Development to 2030 guided 
by NDCs. No additional 
policies relative to NDCs are 
assumed after 2030.

Achievement of NDCs 
by 2030.

No additional policies after 
2030 beyond the NDCs 
(including emission (intensity) 
targets but also sectoral 
targets mentioned in NDCs).

46.8–56.3 2,162–3,872

End-of-century 
budget (a, 101; 
b, 84)

The ‘end-of-century budget’ 
scenarios assume long-term 
climate policies that limit 
cumulative CO2 emissions 
over the full course of the 
century. The scenarios may 
comprise high temperature 
overshoot and global NNCE in 
the second half of the century.

Two variants are 
explored with either (a) 
immediate introduction 
of climate policies as of 
2020 or (b) near-term 
policies follow the 
NDC to 2030 and 
more stringent policies 
are introduced only 
thereafter.

Long-term CO2 pathway 
constrained by cumulative 
CO2 emissions over the entire 
century, allowing temperature 
overshoot and NNCE. Non-CO2 
emissions are priced at the 
same level as CO2 except 
non-CO2 emissions in the 
agricultural sector, where GHG 
prices are capped at <US$200 
per tCO2e (limiting negative 
impacts on food security due 
to high GHG prices).

(a) NPi: 24.3–58.3
(b) Near-term 
emissions 
depend on NDC 
implementation 
(above)

Attainable range 
depends on 
near-term policy 
assumptions:
(a) NPi: 
200–3,000 GtCO2

(b) NDC: 
300–3,000 GtCO2

Net-zero budget 
(a, 88; b, 62)

The ‘net-zero budget’ scenarios 
assume climate policies that 
limit the remaining cumulative 
CO2 emissions until carbon 
neutrality (net-zero CO2 
emissions) is reached. These 
scenarios limit the temperature 
overshoot and do not rely 
on global NNCE to keep 
warming below the intended 
temperature limit.

Two variants are explored 
with either (a) immediate 
introduction of climate 
policies as of 2020 or (b) 
near-term policies follow 
the NDC to 2030 and 
more stringent policies 
are introduced only 
thereafter.

Long-term CO2 pathway 
constrained by maximum 
cumulative CO2 emissions 
until net-zero CO2 emissions 
are reached. No NNCE are 
thus required for warming 
to be limited to the intended 
maximum level. Non-CO2 
emissions assumptions are the 
same as in the end-of-century 
budget scenarios (above).

(a) NPi: 19.3–58.4
(b) Near-term 
emissions 
depend on NDC 
implementation 
(above)

Attainable range 
depends on 
near-term policy 
assumptions:
(a) NPi: 
400–3,000 GtCO2

(b) NDC: 
500–3,000 GtCO2

aNumbers represent the attainable scenario space by the models (Supplementary Tables 2.1-1 and 2.1-2). The radiative forcing, temperature change and emissions ranges are shown in Supplementary  
Figs. 1.1-1 to 1.1-3.
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This budget range corresponds to a median peak warming during 
the twenty-first century between 1.42 and 1.72 °C. Weak near-term 
policies that result in higher GHG emissions over the next decade, 
such as those implied by the current nationally determined contri-
butions (NDCs), will affect the lowest attainable carbon budget. We 
estimate that the NDCs (Methods) will lead to GHG emissions of 
46.8–56.3 GtCO2e by 2030, which is substantially higher than the 
range of cost-effective emissions pathways consistent with 2 °C 
(25–48.6 GtCO2e), let alone 1.5 °C, by 2030 (19.4–35.3 GtCO2e). We 
adopt the definition of 1.5 and 2 °C goals from the SR1.5 (Methods). 
Assuming NDCs are not tightened and comprehensive climate poli-
cies are thus delayed until after 2030, the lowest attainable net-zero 
CO2 budget across the models is 500–1,200 GtCO2, which corre-
sponds to a warming of 1.61 and 1.89 °C. Current NDCs thus put 
limiting warming to 1.5 °C out of reach on the basis of the biophysi-
cal, economic, geophysical, technological and economic feasibility 
dimensions reflected by the models applied here. Other feasibility 
dimensions, such as behavioural, legal, political or social aspects, 
can affect these ranges further, although this study does not explore 
their impact.

The pathways feature net-negative emissions from a few mega-
tons to ~500 GtCO2 across models, depicting a techno-economic 
potential for declining warming after its peak between 0.13 and 
0.34 °C by 2100 (Fig. 1b). This temperature reversal is mainly 
driven by NNCE but can also be partially the result of reductions in 
non-CO2 forcers20 (Methods; see Supplementary Figs. 1.1–6,9,10 for 
the relationship between peak temperature, overshoot and NNCE).

The net-zero budget scenarios allow for the systematic quanti-
fication of the residual non-CO2 emissions consistent with differ-
ent peak temperature levels (Fig. 1c). A large share of these residual 
non-CO2 emissions is caused by the agriculture, forestry and other 
land-use (AFOLU) sector, most prominently by enteric fermenta-
tion (CH4) and fertilizer use (N2O). The annual residual non-CO2 
emissions in the second half of the century range from slightly 
above 3 to >10 GtCO2e highlighting once more the dual importance 
of CO2 and non-CO2 mitigation measures (Fig. 1c). We emphasize 
that while our net-zero budget scenarios exclude NNCE, for many 
policy goals, including those of the Paris Agreement21 or the climate 
neutrality target of the EU22, NNCE are needed to balance residual 
non-CO2 emissions and reach net-zero greenhouse gas emissions16.

upfront costs and long-term economic benefits
The IPCC AR5 emphasizes that mitigation costs would rise over time 
as a result of efforts to limit climate change5. These mitigation costs 
traditionally reflect the impacts on gross domestic product (GDP) 
while ignoring the benefits of mitigation due to avoided impacts5. 
Typically, relatively smaller mitigation costs are reported in the near 
term through to 2030 compared to the medium term (2050) or the 
very long term by 21004,5,11,23. This evolution is primarily a result of 
most integrated assessment model (IAM) studies focusing on tar-
gets for the end of the century, which, by design, favours postpone-
ment of mitigation action until later in the century11,24.

Scenarios that limit temperature overshoot (that is, the net-zero 
budget scenarios), pace mitigation actions differently, requiring 
much more rapid emissions reductions in the near term (Fig. 1 and 
Supplementary Fig. 1.1-8). Avoiding overshoot is thus associated 
with higher upfront investments and higher near-term mitigation 
costs. We find that GDP in the near term is 0.5–4.8% lower in sce-
narios that keep warming below 1.5 °C with no or limited overshoot 
and 0.1 to ~1.6% lower in scenarios that limit warming to 2 °C with 
no or limited overshoot (compared to end-of-century budget sce-
narios with overshoot).

Once net-zero CO2 emissions are reached, however, the mitiga-
tion effort in the net-zero budget scenarios with limited overshoot 
can be relaxed, since no further emissions reductions are necessary. 
This results in a slow-down, or even decline, of carbon prices while 

keeping CO2 emissions constant at net zero (Supplementary Fig. 
1.1-6). During this phase (in the latter half of the century) the econ-
omy accelerates since lower mitigation expenditures are required 
and GDP growth is becoming higher in the net-zero budget scenar-
ios with no or limited overshoot (compared to the end-of-century 
budget scenarios).

Perhaps most importantly, we find this GDP rebound in the 
long term to be by far larger than the upfront dampening effects 
on GDP due to efforts to limit temperature overshoot. In other 
words, the higher near-term GDP losses of limiting overshoot are 
fully compensated by higher GDP growth in the second half of the 
century (Fig. 2a). The absolute GDP levels in the long term (2100) 
are thus higher across all models and mitigation scenarios that limit 
the overshoot (Fig. 2a), which is consistent with the reduced strin-
gency of the target at the end of the time horizon. This observa-
tion holds also on the regional level with relatively higher losses 
in the near term in fossil fuel-exporting regions (Supplementary 
Fig. 1.1-12). For a 1.5 and 2 °C target, the long-term GDP (2100) 
is about 1.2% higher (range 0.1–2.4%) in scenarios that limit over-
shoot. Similarly, the peak carbon prices over the course of the 
century—a relevant indicator measuring policy stringency and 
disruptiveness25,26—are substantially lower in most scenarios with-
out overshoot (Supplementary Figs. 1.1-6 and 1.1-7). The differ-
ence between net-zero budget and end-of-century budget becomes 
smaller at weaker temperature targets and diminishes fully at high 
budgets where CO2 emissions do not need to become net zero over 
the course of the century (depending on the model this corresponds 
to a budget of 1,000–2,500 GtCO2).

Across all IAMs we find that accelerating the transforma-
tion towards net-zero CO2 emissions would have benefits for the 
long-term GDP, even without considering the benefits of avoided 
impacts that are traditionally not included in the type of scenario 
analysis presented here.

From a methodological perspective, it is important to emphasize 
that our results are not suggesting that avoiding overshoot is leading 
to lower ‘overall’ cumulative mitigation costs over the entire century. 
The perceived overall cumulative cost of each pathway depends crit-
ically on the discount rate and how one weights the near-term GDP 
losses against the long-term GDP gains24. To explore the impact of 
the discount rate on the overall cumulative costs we conduct an 
ex-post-sensitivity analysis, systematically varying the discount rate 
between 0 and 5% (and apply them to the existing cost pathways 
of the scenarios). We find that discount rates of less than about 2% 
would make the perceived cumulative costs of most 1.5 and 2 °C 
scenarios overall less costly without overshoot (see Fig. 2c for the 
cumulative GDP losses and Supplementary Fig. 1.1-13 for the net 
present value (NPV) of the carbon price). Assuming higher discount 
rates on the other hand would favour relatively delayed mitigation 
with overshoot. Perhaps most importantly, irrespective of the dis-
count rate, we find long-term GDP in 2100 to be higher in scenarios 
with limited or no overshoot (Section 1.2 of the Supplementary 
Information gives a discount-rate sensitivity analysis).

Another important cost factor is the NDCs. Their modest miti-
gation effort in the near term leads to relatively reduced costs in 
2030 (Fig. 2b). The NDCs, however, have negative economic effects 
from 2040 onwards, where the acceleration of the mitigation effort 
for limiting temperature to 2 °C would result in relatively higher 
GDP losses for the entire century (Fig. 2b).

Net-zero CO2 emissions systems
Our study explores a range of diverse net-zero CO2 emission sys-
tems. The distribution of the emissions reductions across sectors, 
space and time depends critically on a number of factors, including 
relative abatement costs, the inertia of sectors against fundamental 
structural changes and the ability to reduce emissions in different 
sectors to zero or even further to NNCE. In a zero CO2 emissions 
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system, some sectors and regions continue to act as sources of resid-
ual emissions, which are balanced by sinks in other sectors/regions 
that remove CO2 from the atmosphere to achieve overall net-zero 
emissions (Fig. 3).

The magnitude of the sinks differs across the assessed models, 
ranging globally from ~5 GtCO2 per year (REMIND-MAgPIE and 
GEM-E3 models) to >10 GtCO2 per year (POLES and WITCH, Fig. 
3). Afforestation and reforestation, as well as BECCS (see also sen-
sitivity analysis in Section 1.6 of the Supplementary Information), 
are responsible for the bulk of the gross negative emissions in the 
scenarios. Their contributions vary markedly though. AFOLU and 
energy supply sectors act as sinks, while the demand-side sectors 
(transport, buildings and industry) are primarily responsible for any 
of the remaining residual emissions sources. The results emphasize 
the importance of addressing the residual emissions in these demand 
sectors, which in turn would lower the pressure on supply-side 
transformations, including the need to enhance the anthropogenic  

sink. In some models (for example, REMIND-MAgPIE and 
GEM-E3), industrial processes, feedstocks and/or the buildings sec-
tor reach zero emissions or contribute smaller amounts of NNCE. 
Electrification, efficiency and demand reductions play a critical role 
across all demand sectors.

The sectors differ with respect to the timing of when they 
achieve net-zero CO2 emissions. Globally CO2 emissions reach 
net zero around 2050–2075 and 2055–2100 in 1.5 °C pathways 
with low overshoot and 2 °C pathways, respectively (Fig. 1d and 
Supplementary Fig. 1.1-4). However, in most scenarios, the AFOLU 
sector is fully decarbonized 10–40 years earlier and the energy sup-
ply sector often 10–20 years earlier (Fig. 3c). The demand-side sec-
tors on the other hand (buildings, industry and transport), with 
many small dispersed and difficult-to-abate emissions sources, do 
in many instances not reduce emissions to zero throughout the cen-
tury when considered as part of an integrated net-zero strategy (Fig. 
3c). Across demand sectors, limiting demand through improved 
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Fig. 1 | Emissions and temperature characteristics. a, GHG emissions in NDC scenarios (grey) compared to stringent mitigation scenarios that reach 
peak temperatures below 2 °C with limited overshoot (net-zero budget scenarios, blue) and mitigation scenarios with the same long-term carbon budget 
with temperature overshoot (end-of-century budget scenarios, red). b, Residual non-CO2 emissions after the point of reaching net-zero CO2 emissions 
for specified temperature stabilization levels. The box shows the quartiles of the dataset while the whiskers extend to show the rest of the distribution. c, 
Relationship between cumulative NNCE and resulting temperature drawdown after peak temperature (that is, overshoot). Net-zero scenarios (red) and 
end-of-century scenarios (blue). d, Timing of when net-zero CO2 emissions are reached. Net-zero budget scenarios consistent with 1.5 °C (low overshoot) 
and 2 °C respectively (blue bars) are compared to scenarios with the same end-of-century carbon budget with net-negative emissions (red bars). The 
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efficiency and behavioural change, as well as rapid electrification, 
play an important role. Avoiding non-CO2 emissions is critical in 
the agricultural sector where reductions of N2O and CH4 emissions 
are achieved. Carbon dioxide removal (CDR) plays three important 
roles in all scenarios (also in scenarios that avoid NNCE): (1) help-
ing to accelerate emissions reductions early in the century, (2) off-
setting residual emissions to achieve net-zero CO2 and (3) achieving 
net-negative emissions in the long term to reduce warming after the 
peak (if necessary). See also Section 1.3 on the role of CDR in the 
Supplementary Information.

Also the timing of when different regions reach net-zero CO2 
emissions varies considerably (Fig. 3c). Regions with a larger low-cost 
CDR potential and large-scale availability of land resources, such 
as Latin America and the Reforming Economies including Russia, 
tend to decarbonize first and much earlier than the world average 
(Supplementary Figs. 1.1-14 to 1.1-16). This sequence in the timing 
of decarbonization is because the pathways describe a cost-effective 
response across regions, implicitly assuming that there is some 
degree of coordination and financial collaboration that allows 
regions to tap into mitigation options that stretch across regions 
(when needed). Regions with high projected economic catch-up and 

continued population growth in the future and/or lower CDR poten-
tials, such as Africa, parts of Asia and the Middle East, thus tend 
to reach net-zero CO2 emissions relatively later. In some scenarios, 
these regions even maintain some residual emissions throughout the 
century. Generally, today’s rich economies of the Organisation for 
Economic Co-operation and Development (OECD) reach net-zero 
CO2 emissions domestically about the same time as the global aver-
age if climate change mitigation is to be achieved cost-effectively. In 
a world in which rich OECD economies aim at taking up a climate 
leadership position, or to reflect higher historic responsibility, their 
net-zero CO2 timing could well be set earlier.

Discussion
We have shown that scenarios with an accelerated transition 
towards net-zero emissions avoid a systematic (discounting) bias in 
favour of temperature overshoot. Furthermore, we identify sectors 
and regions that may provide an entry point for rapid and deep cuts 
towards zero CO2 emissions and illustrate that avoiding overshoot 
would be associated with economic gains in the long term (even 
without considering benefits of avoided climate impacts). Our study 
uses a net-zero carbon budget design which is a close proxy for 
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In contrast, first following NDC pathways
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Fig. 2 | Economic implications of scenarios with increased near-term stringency and limited temperature overshoot. a, Development of GDP in 
mitigation scenarios with limited overshoot and no NNCE relative to scenarios with overshoot and NNCE in the second half of the century. In the near 
term, the GDP of net-zero budget scenarios is relatively lower, but this is compensated in the second half of the century where GDP in net-zero budget 
scenarios grows bigger. b, Development of GDP in immediate-action scenarios relative to scenarios with an equivalent carbon budget, following the NDCs 
until 2030. In the near term, the GDP of the NDC scenarios is higher because mitigation action is delayed, but this is compensated by 2040 when GDP in 
the NDC scenario falls below the immediate-action scenarios (and never catches up). c, The ratio of cumulative GDP loss (NPV, 2020–2100) assuming 
different discount rates (0–5%). The discount rates are applied exogenously to the GDP pathway of each scenario. The perceived overall costs of each 
scenario (cumulative GDP loss from mitigation policy) differ for each discount rate, reflecting the different weights of costs over time. The panel shows 
the NPV price ratio between net-zero budget scenarios with limited overshoot and their corresponding end-of-century carbon budget scenarios (ratio 
<100 means that scenarios with limited overshoot are perceived to be overall less costly under the specific assumptions). Each dot represents the ratio 
for a pair of scenarios with a specific carbon budget (x axis). See Supplementary Fig. 1.1-13 showing the same ratios for the NPV of the carbon price. The 
development of the GDP in the baseline scenarios is shown in Supplementary Fig. 1.1-11.
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peak warming. Other scenario designs, for example, limiting global 
temperature directly or using different metrics for the temperature 
equivalence, are possible as well10,12 and would affect the substitu-
tion dynamics of different greenhouse gases.

Net-zero CO2 emissions systems imply the deployment of CDR 
measures with very different implications for the sustainability 
of the overall mitigation portfolio. BECCS may lead to possible 
trade-offs with sustainable development, depending on the scale of 
deployment, implementation practice and local context18,27,28. The 
CDR portfolio thus varies across models, providing policy flexibility 
with respect to technology choices. Some pathways rely on BECCS 
(for example, REMIND-MAgPIE), while other pathways rely more 
heavily on nature-based solutions or use more balanced approaches 
across these options (WITCH, POLES and MESSAGEix-GLOBIOM). 
The IAMs do not include all possible CDR options29. CDR can serve 
three purposes in mitigation pathways: it can help to accelerate 
early emissions reductions, thus supporting achieving net-zero CO2 
emissions as soon as possible; it can offset residual emissions from 
sectors that might be difficult to decarbonize completely; and it can 
provide a long-term risk-hedging strategy to generate net-negative 
emissions and gradually reverse warming if desired. In all three 
instances, deep reductions in gross CO2 emissions remain crucial.

The importance of demand-side measures cannot be overem-
phasized30–32. Generally, efficiency, behavioural change and the 
deployment of granular and small-scale technologies is enabling 
rapid technology diffusion and substitution processes33–35. In addi-
tion, demand-side mitigation is key for reducing residual emissions. 
Bottlenecks include particularly the industry sector’s demand for 

carbonaceous fuels and the transport sector, as well as the materials 
and consumption goods sectors. Particularly, material substitution 
and options for demand-side electrification need to be represented 
in a more bottom-up and granular fashion in the models.

The regional scenario results indicate opportunities for miti-
gation and do not imply political feasibility, which would need to 
consider a diverse set of ethical and other considerations36. In fact, 
we find large differences across regions to reach net-zero CO2 emis-
sions and the pathways suggest that, from an economic perspective, 
it will be most attractive if some regions act as sources while others 
act as sinks. Achieving such an effective solution, however, poses a 
major challenge because it requires international collaboration and 
markets for cross-regional policy frameworks. In this context, it is 
encouraging to observe that net-zero emissions targets in a number 
of key countries/regions, like China37, the European Union (EU)38, 
Japan39 and South Korea40 are broadly consistent with the pace of the 
transformation as depicted by our study.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
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Methods
The nine IAM frameworks, drawn on in this study are AIM-Hub (refs. 41,42), 
COFFEE (ref. 43), GEM-E3 (refs. 44,45), IMAGE (ref. 46), MESSAGEix-GLOBIOM 
(ref. 47), TIAM-ECN (ref. 48), POLES (ref. 49), REMIND-MAgPIE (refs. 50,51) and 
WITCH-GLOBIOM (refs. 52,53). The models span a wide range from least-cost 
optimization to computable general equilibrium models and from game-theoretic 
to recursive-dynamic simulation models. Such diversity is beneficial for shedding 
light on those model findings that are robust to diverging assumptions and model 
structures. Of particular importance for the current study is that all models have 
a detailed coverage of the energy sector and seven out of the nine models in 
addition represent land-use changes and related mitigation measures in detail. All 
models, however, represent land-based negative emissions options related to either 
bioenergy production and/or reforestation. Some of the models consider in addition 
the possibility of negative emissions through feedstocks in industrial products 
(GCAM and COPPE) and three models (POLES, WITCH and REMIND-MAgPIE) 
in addition also considers direct air capture. Cost assumptions of different 
technological CDR options are summarized in Section 1.4 of the Supplementary 
Information and a sensitivity analysis on BECCS is provided in Section 1.6 of the 
Supplementary Information. In terms of macroeconomic representation, our study 
considers a number of general equilibrium models where price-induced effects on 
GDP and productivity are computed (for example, GEM-E3, REMIND-MAgPIE, 
MESSAGE-MACRO and AIM-Hub). These models assume an exogenous reference 
path for GDP as the basis of which price-induced and path-dependent GDP losses 
are calculated. The models account for the macroeconomic path-dependency in 
terms of shifts in capital stocks, investments, saving and consumption patterns.

A common scenario design and modelling protocol was implemented by all 
models (Supplementary Information Section 2 on modelling protocol). For the 
mitigation scenarios, the models explored the full scenario space of cumulative 
CO2 emissions limits of <3,000 GtCO2 (2018–2100) in 100 GtCO2 increments 
(Supplementary Tables 2.1-1 and 2.2-2). We thus assess the lowest attainable budget 
for each model. In scenarios with no NNCE, sources and sinks across sectors and 
regions may balance each other out but total CO2 emissions are not allowed to 
become net negative. Mitigation of non-CO2 GHGs follows the same equivalent 
carbon price as for CO2 (driven by the cumulative CO2 emissions budget constraint). 
GHG mitigation on the land sector will hinge on appropriate policy designs that 
avoid competition over land for food or other basic ecosystem services, water 
resources and/or biodiversity54–57. To account for such possible trade-offs, the models 
in this study limit land-based mitigation and cap the GHG price effect on the 
agricultural sector to <US$200 per tCO2e. Some models include, in addition, explicit 
biodiversity protection constraints (MESSAGEix-GLOBIOM). Peak and decline 
of temperature due the reduction of non-CO2 emissions is between 0 and 0.14 °C 
across the models by 2100 (blue dots in Fig. 1b). In contrast to the CO2-induced 
temperature overshoot, the effect of non-CO2 on overshoot is relatively limited.

The NPi (baseline) scenario broadly incorporates middle-of-the-road 
socioeconomic conditions based on the second marker baseline scenario from 
the Shared Socioeconomic Pathways (SSP2)4. It also assumes that climate, energy 
and land-use policies that are currently ratified are implemented (cut-off date 
1 July 2019). The NDC scenario builds on the NPi and assumes that the NDCs 
(both unconditional and conditional NDC actions) as submitted by April 2020 
are implemented by 2030. In addition, we have explored a sensitivity analysis 
with an update of the NDCs for big emitting countries as submitted in December 
2020 (China, EU and Brazil) and find the implications for the emissions and 
the long-term results to be very small (see Supplementary Information Section 
1.5 for a sensitivity analysis). For the NPi and NDC scenarios, a continuation of 
effort in the long term was assumed. This was implemented by extrapolating the 
‘equivalent’ emissions reductions or carbon price in 2020/2030 (see Supplementary 
Information, Section 2.2 on NPi and NDC extrapolation methods). We have 
not considered the impact of the COVID-19 pandemic in a comprehensive way, 
effectively assuming a full recovery without substantial impact on long-term global 
emissions58. Sensitivity analysis based on selected scenarios indicate only a small 
impact on mitigation (Supplementary Information Section 2.1). The scenarios 
explored here, however, can inform governments that aim for ‘green’ recovery 
packages59, by illustrating the required pace and contribution of key mitigation 
sectors to reach net-zero CO2 emissions.

The wide range of mitigation costs reflect parametric and structural 
differences across the models and their resulting marginal abatement cost curves. 
A classification of the models with respect to abatement costs is provided in ref. 
60. Note that the marginal abatement costs increase rapidly when approaching the 
(model-specific) attainability frontier and thus reported carbon prices increase 
considerably (>>1,000 US$ per tCO2).

GHG emissions here always refer to the gases of the Kyoto basket (that is, CO2, 
CH4, N2O, HFCs, PFC and SF6, aggregated with 100-yr global warming potentials 
from the IPCC AR5.

The GHG emissions resulting from the different scenarios by the IAM models 
were fed into the probabilistic reduced-complexity carbon-cycle and climate model 
MAGICC for the estimation of global mean temperature projections consistent 
with the scenarios. MAGICC61,62 is used in a setup that captures the IPCC AR5 
climate sensitivity uncertainty assessment61,63,64, as used in the IPCC SR1.5 (ref. 6). 
If not otherwise specified, the definition of the temperature goals follow the IPCC 

SR1.5, that is, limiting the exceedance probability to <0.34 for 2 °C and limiting 
the exceedance probability for 1.5 °C (with low overshoot) to <0.67 for the peak 
temperature and <0.34 for the year 2100. Through this methodology we assess 
the resulting global warming of different pathways and the corresponding peak 
warming that is associated with the cumulative emissions (budgets) of the scenarios.

Data availability
The underlying data are available at ref. 65. All scenarios are made accessible online 
also via the ENGAGE Scenario Portal: https://data.ece.iiasa.ac.at/engage

Code availability
The models are documented on the common integrated assessment model 
documentation website (https://www.iamcdocumentation.eu/index.php/
IAMC_wiki) and several have published open source code (for example, REMIND, 
https://github.com/remindmodel/remind; MESSAGE, https://github.com/iiasa/
message_ix). The code that was used to generate the figures is available at GitHub. 
For a brief documentation of the models and main concepts see Section 3 of the 
Supplementary Information. A GitHub repository for the source code of the figures 
is available at https://github.com/iiasa/ENGAGE-netzero-analysis
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