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A B S T R A C T

Background: Diesel engine exhaust (DEE) exposure causes lung cancer, but the molecular mechanisms by which
this occurs are not well understood.
Objectives: To assess transcriptomic alterations in nasal epithelium of DEE-exposed factory workers to better
understand the cellular and molecular effects of DEE.
Methods: Nasal epithelial brushings were obtained from 41 diesel engine factory workers exposed to relatively
high levels of DEE (17.2–105.4 μg/m3), and 38 unexposed workers from factories without DEE exposure. mRNA
was profiled for gene expression using Affymetrix microarrays. Linear modeling was used to identify differen-
tially expressed genes associated with DEE exposure and interaction effects with current smoking status.
Pathway enrichment among differentially expressed genes was assessed using EnrichR. Gene Set Enrichment
Analysis (GSEA) was used to compare gene expression patterns between datasets.
Results: 225 genes had expression associated with DEE exposure after adjusting for smoking status (FDR q < 0.25)
and were enriched for genes in pathways related to oxidative stress response, cell cycle pathways such as MAPK/ERK,
protein modification, and transmembrane transport. Genes up-regulated in DEE-exposed individuals were enriched
among the genes most up-regulated by cigarette smoking in a previously reported bronchial airway smoking dataset.
We also found that the DEE signature was enriched among the genes most altered in two previous studies of the
effects of acute DEE on PBMC gene expression. An exposure-response relationship was demonstrated between air
levels of elemental carbon and the first principal component of the DEE signature.
Conclusions: A gene expression signature was identified for workers occupationally exposed to DEE that was
altered in an exposure-dependent manner and had some overlap with the effects of smoking and the effects of
acute DEE exposure. This is the first study of gene expression in nasal epithelial cells of workers heavily exposed
to DEE and provides new insights into the molecular alterations that occur with DEE exposure.
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1. Introduction

The use of diesel engines is widespread due to their robustness,
efficiency, and low operating costs, which explains their prevalence in
industrial settings such as mining, commercial transport, and con-
struction as well as in the general environment. Because of their ubi-
quity, but also due to their tendency to produce aerosols, diesel engines
contribute to 65–90% of vehicular secondary organic aerosol in urban
areas worldwide (Gentner et al., 2012; Resitoglu et al., 2015).

Diesel engine exhaust (DEE) is made up of gaseous and particulate
matter that includes nitro-polycyclic aromatic hydrocarbons (nitro-
PAHs), nitrogen oxides (NOx), and sulfides, as well as other hydro-
carbons. DEE and its components is classified by the International
Agency for Research on Cancer (IARC) as a human carcinogen based on
sufficient evidence of carcinogenicity to the lung (IARC, 2014). Me-
chanistic studies of how DEE exposure may lead to lung cancer or other
airway diseases have focused on cellular and molecular effects. DEE and
its various components have genotoxic effects that occur as a result of
oxidative DNA damage and are thought to be important in the devel-
opment of an inflammatory response and lung cancer (Attfield et al.,
2012; Benbrahim-Tallaa et al., 2012; IARC, 2014; Neumeyer-Gromen
et al., 2009). In a recent cross-sectional epidemiology study of factory
workers in China, we showed that the number of CD4+, CD8+, and B
lymphocyte subsets were increased in DEE-exposed workers from a
diesel engine factory compared to those from factories with no known
diesel exposures (Lan et al., 2015). Additional analyses from this study
have also shown significant alterations in specific inflammatory mar-
kers and serum cytokine levels that have been linked to an increased
lung cancer risk (Bassig et al., 2017; Dai et al., 2018).

The broad study of gene expression is also an important approach to
identifying potential mechanisms of action for DEE in lung cancer pa-
thogenesis. Experimental studies (Grilli et al., 2018; Jaguin et al., 2015;
Koike et al., 2002; Kowalska et al., 2017; Li et al., 2009; Rossner et al.,
2016; Verheyen et al., 2004; Zarcone et al., 2016) have shown that
epithelial cells exposed to both the organic and particulate phases of
DEE, or solely the particulate phase of DEE, known as diesel exhaust
particulates (DEP), have altered expression of genes involved in xeno-
biotic metabolism (e.g., cytochrome P450 1A1 and 1B1), the DNA da-
mage response (e.g., GADD45), response to hypoxia (e.g., HIF1a) and
responsive to oxidative damage (e.g., NFE2L2). Previous gene expres-
sion studies of humans exposed to DEE have largely focused on Per-
ipheral Blood Mononuclear Cell (PBMC) gene expression with short-
term exposure (Peretz et al., 2007; Pettit et al., 2012) or relatively low-
level environmental exposure (Espín-Pérez et al., 2018) that may not be
directly transferrable to what would be observed in an occupational
setting. A previous study of the effect of DEE and allergen exposure on
the bronchial airway epithelium profiled the expression of a panel of
immune-related genes (Rider et al., 2016).

To our knowledge, no study has yet performed genome-wide tran-
scriptome profiling of the airway epithelium of humans chronically ex-
posed to relatively high levels of both organic and particulate phases of
DEE in an occupational setting. Based on the previously described con-
cept of the airway field of injury (Steiling et al., 2008), we have observed
that sampling the nasal epithelium reflects the transcriptomic changes
that occur throughout the airway in response to smoking (Zhang et al.,
2010), lung cancer (Perez-Rogers et al., 2017), and Chronic Obstructive
Pulmonary Disease (COPD) (Boudewijn et al., 2017). We previously
conducted a study of workers in China exposed to a wide range of DEE
levels compared to a group of unexposed controls. Exposure was char-
acterized in detail and nasal epithelial cells were collected and stored to
optimize analysis of mRNA. Here, our purpose is to identify tran-
scriptomic alterations in nasal epithelium of DEE-exposed factory
workers relative to subjects without occupational DEE exposure to better
characterize the cellular and molecular effects of DEE.

2. Methods

2.1. Study population

The design of the study has been described (Lan et al., 2015). In
brief, 54 healthy male subjects were recruited from the testing facility
of a factory that manufactured diesel engines, and 55 healthy male
control subjects were recruited from the same geographic region from a
beer bottling plant, a water treatment plant, a meat packing facility,
and an administrative facility. A detailed walk-through survey was
performed to determine that none of the latter workplaces contained
any DEE sources. Subjects unexposed to DEE (controls) were frequency-
matched to exposed workers on age (± 5 years) and smoking status
(current, former, never). Former smoker status was defined as not being
a current smoker and having smoked at least 20 cigarettes. Demo-
graphic and lifestyle characteristics were obtained for each worker
through a questionnaire as part of a health examination conducted by
the local Center for Disease Control.

Participation in the study was voluntary for all sampled subjects
enrolled in the study, and written informed consent was obtained. The
demographic data and nasal brushing sample collection was performed
by the local Center for Disease Control (CDC) in China during the ad-
ministration of a regular health exam. This study was approved by the
US National Cancer Institute (NCI), as well as by the National Institute
of Occupational Health and Poison Control in the Chinese Center for
Disease Control and Prevention (CCDC).

2.2. Exposure analysis

Air monitoring was used to assess exposure to DEE. Assessment of
repeated full-shift personal air exposure was measured using personal
cyclone air sampling equipment attached to the lapels of diesel factory
workers near the breathing zone. The methods for obtaining measure-
ments of elemental carbon (EC), a major component of DEE particulate
matter that has been used as a quantitative measure of DEE exposure in
occupational settings, organic carbon (OC), soot, and particulate matter
less than 2.5 μm in diameter (PM2.5) has been previously described for
this cohort (Lan et al., 2015). For DEE-exposed workers, exposures were
quantified as the amount of each exposure metric (EC, OC, soot, and
PM2.5) measured in each individual. For workers without occupational
DEE exposure, each exposure metric was quantified as an average
across all control factories. Association between the DEE exposed and
unexposed groups with respect to Never, Former, and Current smoker
status groups was determined using a Fisher’s Exact Test p-value. Wil-
coxon Test was used to calculate the p-value between the DEE exposed
and unexposed group for age, BMI, average cigarette use per day, and
the four exposure metrics.

2.3. Nasal turbinate sample collection

One nasal brushing from each nostril (2 total) was obtained from
each participant as previously described (Zhang et al., 2010). Each
brush that was used to gently scrape the nasal epithelium of the vo-
lunteer subjects was placed into an individual tube with 1 ml of RNA-
Later (Qiagen, Valencia, CA) immediately after sample collection and
then frozen at −80 °C and transported on dry ice. Material from the two
brushes from each subject were combined, and high molecular-weight
RNA was isolated using the miRNeasy Mini Kit (Qiagen, Valencia, CA).
A NanoDrop spectrophotometer was used to assess RNA purity, while
the Agilent BioAnalyzer was used to assess RNA integrity (RIN). After
Quality Control (QC) analysis, 94 samples with at least 200 ng of RNA
were selected for microarray analysis.

2.4. Microarray processing

At least 200 ng of analyzable RNA was obtained from 94 of the 109
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study subjects and hybridized to Affymetrix Human Gene 1.0 ST
GeneChips (Affymetrix, Santa Clara, CA) according to the manufacturer’s
protocol (Gene Expression Omnibus accession: GSE124267). Samples
were split into 2 batches, which maintained an even distribution of
samples handled by each of the two technicians processing the RNA, as
well as evenly matched RIN scores in both batches. Three of the samples
processed on microarrays were collected during field training and used to
assess quality of laboratory assay and were not included in further ana-
lysis, leaving 91 total samples. Affymetrix Expression Console software
(version 1.4.1.46) was used to normalize the arrays using the Robust
Multiarray Average (RMA) procedure with the default Affymetrix pro-
beset mappings in order to compute detection above background (DABG)
and Area Under the Receiver Operating Characteristics Curve (AUC)
statistics for QC analysis. For the main analysis, a Chip Definition File
(CDF) containing 19,718 Entrez Gene identifiers (hugene10stv1hsen-
trezgcdf and hugene10stv1hsentrezg.db packages) (Dai et al., 2005) was
utilized for RMA (Gautier et al., 2004; Irizarry et al., 2003) normalization
and probe-level summarization using the Affy package (Gautier et al.,
2004), and using the R programming language (http://r-project.org)
version 2.15.3. Additional data processing and statistical analysis was
also done using this version of R.

2.5. Quality control and statistical analyses

Quality of the 91 arrays was determined using Relative Log
Expression (RLE), Normalized Unscaled Standard Error (NUSE), and the
AUC values derived from the Affymetrix Expression Console software.
Arrays were deemed to have been of good quality if they had RLE va-
lues < 0.1, NUSE values < 1.05, and AUC values > 0.8. 12 samples
were excluded from further analysis for not meeting these criteria. The
remaining 79 samples (41 exposed, 38 controls) were renormalized.
Adjustment for batch effects was made using ComBat (Johnson et al.,
2007) in the Surrogate Variable Analysis (SVA) package for R.

A linear modeling approach was used to assess how gene expression
changes were associated with DEE exposure (categorical, n = 2 levels)
after adjusting for RIN (continuous), batch (categorical n = 2 levels),
and smoking status (current smoker vs. former or never smoker, cate-
gorical, n = 2 levels). The model was further used to assess the gene
expression changes associated with continuous diesel exposure metrics,
EC, OC, soot, and PM2.5. To recover gene expression effects specifically
associated with cigarette smoking, we performed additional linear
modeling for smoking status, adjusting for RIN, batch, and DEE ex-
posure. This linear modeling approach was also used to explore the
interaction effect between DEE exposure and smoking status by in-
cluding a DEE-exposure*smoking interaction term with diesel,
smoking, RIN and batch as covariates. t-statistics for each of the linear
model coefficients and their corresponding p-values were calculated for
each gene in each linear model using the lmFit function in LIMMA
(Ritchie et al., 2015; Smyth, 2005). The False Discovery Rate (FDR) at
each observed p-value was calculated using the method of Benjamini
and Hochberg (Benjamini and Hochberg, 1995).

Elemental Carbon is commonly used as a marker of diesel particu-
late matter exposure both in laboratory and occupational settings
(Schauer, 2003). Additionally, EC levels strongly correlated with levels
of Organic Carbon and soot for each individual (rho = 0.98). As DEE
was the only notable source of EC exposure, EC was considered for
further analysis. EC levels were divided into four groups based on
ranges of raw values described previously, with the unexposed control
group separate from the three subdivided DEE exposed groups and
assigned a value of 11.1 μg/m3 as described (Lan et al., 2015).

The dataset from a previously published acute diesel exhaust (DE)
exposure of PBMCs from healthy non-smokers in Peretz et al. (2007)
was used for comparison to our findings. A subset of 9 participants at 6-
hours post-DE exposure time point was selected for comparison of ex-
posure to either 200 μg/m3 or 0 μg/m3 of diesel exhaust. Similarly, we
also compared our results to another gene expression dataset from

Pettit et al. (2012) derived from PBMCs collected from participants
exposed acutely to either 300 μg/m3 DE or clean air. In both datasets, a
mixed linear modeling approach was used to assess exposure-associated
gene expression, accounting for study participants as a random effect.

2.6. Enrichment and pathway analyses

Genes differentially expressed with respect to DEE exposure were
divided into up and down-regulated gene-sets, which were used in
EnrichR (Kuleshov et al., 2016) to perform pathway enrichment ana-
lysis with pathway gene sets from BioCarta (NCI), Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000), WikiPath-
ways (Slenter et al., 2017), Gene Ontology (GO) Biological Process and
GO Molecular Function (Ashburner et al., 2000) databases.

Gene Set Enrichment Analysis (GSEA) was used to determine the
relationship between gene expression changes associated with DEE and
other diesel exposure as well as cigarette smoke exposure datasets.
Gene expression data from Peretz et al. (2007) and Pettit et al. (2012)
were used to generate respective ranked lists of genes, sorted by their
degree of differential expression in PBMCs between DE exposed and
unexposed study participants based on the mixed-effects model coeffi-
cients as described previously. A ranked list was similarly generated for
Beane et al. (2007) gene expression data in bronchial airway epithelium
comparing current and never smokers via Student’s t-statistic. Enrich-
ment of gene sets comprised of the genes increased or decreased in DEE-
exposed individuals at the top or bottom of this ranked list was then
evaluated by GSEA (Subramanian et al., 2005).

2.7. Exposure-response relationship analysis

Principal component analysis was performed on the 225 gene Diesel
signature to obtain the first principal component (PC1), which explains
35% of the variance in expression of the DEE signature genes, and
summarizes the expression of the entire signature in single value. The
PC1 scores were then analyzed relative to binned EC levels using
pairwise Student’s t-tests, and the Multinomial Cochran-Armitage test
for trend (via the multiCA package for R).

2.8. Quantitative real-time polymerase chain reaction (qRT-PCR)

qRT-PCR was performed on selected genes using 16 DEE exposed
and 16 unexposed control samples that were chosen based on avail-
ability of RNA. The genes selected were CYP1B1, CREBRF, CIR1,
OSGIN2, CDRT1, and GAPDH as an endogenous reference gene for
normalization. The RNA samples were reverse transcribed to cDNA
with a mix of random hexamers and oligo-dT primers using RT2 first
strand kit (Qiagen, Valencia, CA). The PCR amplification mixture
consisted of 9 ng of template cDNA, 12.5 µl of 2x RT2 SYBR Green
master mix, and 400 nM RT2 qPCR Primer Assays (Qiagen).
Amplification was performed for 40 cycles in a StepOnePlus Real-time
PCR thermocycler (Applied Biosystems), and data acquisition was
completed with StepOne software (version 2.2.2, Applied Biosystems),
with threshold determination performed automatically for each reac-
tion. The comparative CT method was used to obtain the gene expres-
sion levels for each gene relative to GAPDH, and fold changes were
computed from the average expression values across each experimental
group (Schmittgen and Livak, 2008). A linear modeling approach in-
cluding DEE exposure and smoking status was used to assess the effect
of DEE on gene expression in the qRT-PCR data. A linear modeling
approach including DEE exposure, smoking status, and their interaction
was used to explore the DEE-exposure*smoking interaction effect in the
qRT-PCR data, specifically for CYP1B1 and CREBRF. Of the genes se-
lected for qRT-PCR analysis, the microarray data for these two genes
displayed a significant DEE-exposure*smoking interaction effect, and
were representative of the two major trends observed among all 8 genes
with a significant interaction effect.
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3. Results

3.1. Study population

After quality control, 79 microarrays from individual subjects were
retained for further gene expression analysis. Demographic and ex-
posure information for the subjects are shown in Table 1. The subjects
from the diesel factory worked an average of 18.5 years there, while the
subjects from other factories worked an average of 12.8 years at their
respective facilities. The subjects in each group were comparable based
on age, body mass index (BMI) and smoking status. EC air levels were
strikingly higher in DEE exposed workers compared to controls (median
60.7 vs 11.1 μg/m3, respectively), whereas PM2.5 levels were strongly
elevated in the DEE exposed vs. unexposed workers (median 0.4 vs.
0.2 mg/m3).

3.2. Differential gene expression associated with diesel engine exhaust
exposure

We identified 225 genes at an FDR q-value cutoff of 0.25 that were
differentially expressed in the nasal epithelium between the exposed
and unexposed subjects (Diesel signature; Fig. 1 and Supplemental
Tables 1A–C). Genes observed to be up-regulated include CYP1B1,
NFE2L2, and HIF1a, which are involved in the xenobiotic metabolism,
oxidative stress response, and hypoxia response pathways, respectively.
The up-regulated gene set is also enriched for genes with functions in
cell cycle maintenance, DNA repair, and circadian rhythm main-
tenance. Among the downregulated genes were the chloride channel,
CFTR, as well as other genes responsible for transmembrane movement
of solutes. Furthermore, the downregulated genes included calcium
dependent genes and modification mechanisms, such as phospholi-
pases, ribonucleases, and sulfotransferases.

Three genes from the DEE signature with the greatest statistical
significance in the linear model, CIR1, CDRT1, OSGIN2, and
CYP1B1were selected for analysis with RT-PCR in 32 subjects. The
expression of these genes was analyzed using the linear modeling ap-
proach as described for the microarray data above. Genes OSGIN2 and
CYP1B1 had p < 0.05 in the linear model for the effect of DEE, while
genes CIR1 and CDRT1 showed a trend consistent with results from the
microarray analysis (Supplemental Fig.1).

With the same linear modelling approach and covariates, the mi-
croarray data was analyzed for gene expression differences associated
with other exposure metrics, including EC and PM2.5. Notably, at FDR
q < 0.25, there were no genes associated with PM2.5, while there were
120 genes associated with EC (Elemental Carbon signature). Of the 120

genes in the Elemental Carbon signature, 86 genes were also present in
the Diesel signature. Among the DEE-exposed subjects only, no genes
were associated with increasing magnitude of exposure at FDR
q < 0.25 in the analysis of any of the exposure metrics, suggesting that
beyond some minimum threshold of exposure, the physiological re-
sponse to DEE is saturated (Table 2).

3.3. Exposure-response relationship between the diesel signature and
elemental carbon levels

We evaluated the exposure-response relationship of the DEE sig-
nature and levels of elemental carbon, by summarizing the expression
of the genes in the DEE signature into a single value using the first
principal component. As expected, the values of the first principal
component are substantially higher in the DEE exposed workers vs. the
unexposed controls. Moreover, each tertile of DEE exposure is sig-
nificantly different from the control samples, and there is a significant
increasing trend across all four groups (p = 8.11E−11; Fig. 2).

3.4. Validation of gene expression differences associated with DEE

The gene expression findings were compared to two previously
published studies that compared PBMC gene expression of acutely DE
exposed and unexposed volunteers Peretz et al. (2007) and Pettit et al.
(2012). We observed that the genes that increased in expression with
DEE exposure in our dataset were significantly enriched among the
genes that increased in expression in the PBMCs of the acutely DE ex-
posed study participants in the Peretz et al. dataset (GSEA q < 0.001),
but not in the Pettit et al dataset (GSEA q = 0.1) [Supplemental Fig. 2a
and c]. The genes that decreased in expression with DEE exposure were
enriched among the genes that decreased in expression with DE ex-
posure in both Peretz et al dataset (GSEA q = 0.04) and Pettit et al
dataset (GSEA q = 0.03) [Supplemental Fig. 2b and d].

3.5. Comparisons between diesel engine exhaust and cigarette smoke
exposures

To examine the relationship between the effects of DEE and cigar-
ette smoke exposures on airway gene expression, we used GSEA to
determine whether genes in our nasal DEE signature are among the
genes that have previously been found to be altered in the bronchial
airway of smokers (Beane et al., 2007). We found that the genes in-
creased with DEE exposure are significantly enriched among the genes
that are most increased in current smokers (GSEA q < 0.001, Fig. 3a),
while the genes decreased with DEE exposure are not significantly

Table 1
Descriptive characteristics of factory workers enrolled in the study and that were either exposed to diesel engine exhaust (Diesel) or unexposed (Control).

Subjects (n = 79) Control (n = 38) Diesel (n = 41) p-value

Age, mean (SD) 41.3 (6.8) 41.0 (7.0) 0.95♢

BMI, mean (SD) 25.1 (4.2) 24.6 (3.2) 0.78♢

Smoking Status
Never, n (%) 5 (13.2) 8 (19.5) 0.72∇

Former, n (%) 9 (23.7) 10 (24.4)
Current, n (%) 24 (63.2) 23 (56.1)
Avg. cigs/day (SD), Current 11.4 (6.6) 11.1 (5.5) 1♢

Exposure Metrics

Mean (SD) Median (range) Mean (SD) Median (range)

Elemental Carbon, μg/m3 11.1 (1.34) 11.1 (9.9–12.6) 57.54 (21.1) 60.7 (17.2–105.4) 5.38E−16♢

Organic Carbon, μg/m3 68.7 (4.03) 68.7 (65.0–73.1) 136.66 (25.7) 131.3 (95.6–209.1) 5.38E−16♢

Soot, abs coefficient in 10−5/m 6.8 (0.64) 6.8 (6.2–7.5) 49.57 (14.6) 52.3 (23.0–77.3) 5.38E−16♢

PM2.5, mg/m3 0.2 (0.07) 0.2 (0.2–0.3) 0.36 (0.1) 0.4 (0.2–0.5) 1.27E−14♢

♢ Wilcoxon Test.
∇ Fisher’s Exact Test.
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enriched among the genes down-regulated in the smoking dataset (FDR
q = 0.43; Fig. 3b).

3.6. Interaction between diesel exhaust exposure and cigarette smoke
exposure

Among all measured genes, we identified eight genes where the
pattern of gene expression indicated a significant interaction between
the effects of DEE and current smoking (Benjamini-Hochberg FDR
q < 0.25; Supplemental Table 2). Of these, HOMEZ and CYP1B1 were
also in the DEE signature. We observed two patterns of expression
among the eight interaction-effect genes by exposure status (Fig. 4).
First, both DEE and current smoking increased expression of CYP1B1,

CYP1A1, and MAP3K8, but the combined impact of both exposures
resulted in expression levels that were lower than what would be ex-
pected if the independent effects of each exposure had a linearly ad-
ditive effect. Second, and in contrast, DEE, but not smoking, altered the
expression of CREBRF, HYAL2, ESRP2, HOMEZ, and FKBP4; moreover,
the effect of DEE on the expression of these genes seemed to be atte-
nuated in current smokers. We validated the interaction effect between
smoking and DEE for CREBRF (p = 0.03), but not for CYP1B1
(p = 0.13) by RT-PCR using a subset of the RNA samples (n = 32), and
observed similar expression patterns to those observed in microarray
data for each gene across the different DEE and smoking subgroups
(Supplemental Fig. 3).

4. Discussion

We conducted a cross-sectional study of healthy workers exposed to
relatively high DEE levels with a wide range of exposure, compared to
unexposed controls, and identified a DEE gene expression signature in
epithelial samples from the nasal turbinate. To our knowledge, this is
the first study to evaluate nasal airway epithelial gene expression of
individuals heavily exposed to diesel engine exhaust.

Some of the genes that were increased with DEE exposure are in-
volved in pathways known to be activated in response to oxidative and
endoplasmic reticulum stress (CYP1B1, NFE2L2, GABPB1, MAPK8 [also
known as JNK-1], CIR1, OSGIN2), hypoxia (HIF1a, BARD1, BHLHE40),
and DNA damage (GADD45, RRM2B, SPRTN, SMC3). We also observed
increased expression of genes involved in the circadian rhythm (FBXL3,

Fig. 1. Differential gene expression in subjects exposed to DEE (n = 41) compared to DEE unexposed controls (n = 38). Unsupervised hierarchical clustering of 225
genes significantly associated with DEE-exposure status after adjusting for RIN, batch, and smoking status (FDR q < 0.25). Each column represents a sample
(n = 79) and each row represents each one of the 225 differentially expressed genes. The color bar on the left describes two clusters of gene expression patterns
associated with DEE exposure. Genes with increased or decreased expression in DEE exposed individuals are designated as UP or DOWN in Diesel, respectively.

Table 2
Summary of the number of differentially expressed genes in linear models as-
sociated with diesel exposure, elemental carbon, or PM2.5 at various statistical
cutoffs in all samples or in diesel exposed samples only.

n (Exposed/
Unexposed)

Statistical
Cutoff

Diesel Elemental
Carbon

PM2.5

All samples 41/38 p < 0.05 1869 1529 1101
FDR
q < 0.25

225 120 0

Diesel exposed 41 p < 0.05 – 518 296
FDR
q < 0.25

– 0 0
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LSM3, CRY1, BHLHE40), which is similar to effects that have been
observed for cigarette and electronic cigarette exposures (Lechasseur
et al., 2017). Finally, we observed increased expression in genes in-
volved in the cell cycle and MAPK/ERK-related pathways (MAP3K2,
MBIP, MAPK8, RRM2B, TBK1, ETS2, DUSP11, CAD). In particular, al-
teration in expression of each of the genes GADD45, MAPK8, NFE2L2,
CYP1B1, and HIF1a have been previously reported in one or more ex-
perimental studies of DEE exposure (Grilli et al., 2018; Kowalska et al.,
2017; Li et al., 2009; Rossner et al., 2016). Genes involved in molecular
modification, such as phospholipases, ribonucleases, and sulfo-
transferases, were among those with decreased expression in DEE-ex-
posed individuals. Genes that code for cross-membrane solute carriers
and other transmembrane proteins, including the chlorine channel in-
volved in cystic fibrosis, CFTR, were down-regulated as a result of DEE
exposure. These findings suggest that DEE exposure affects the ex-
pression of genes whose expression is commonly observed to be altered
in other environmental exposures and in lung cancer.

The gene expression changes that we observed in this study are
significantly concordantly enriched among the genes previously ob-
served to be most altered in PBMCs of human volunteers following
acute 200 μg/m3 DE exposure (Peretz et al. (2007), as well as with the
genes most decreased in expression following a 300 μg/m3 acute ex-
posure (Pettit et al., 2012). This suggests that the gene expression dif-
ferences associated with long-term occupational exposure to DEE
identified in our study at least in part reflect an ongoing acute response

to DEE exposure. Further analysis or time course studies would be re-
quired to parse out the differences between acute and chronic exposures
at different doses.

Both diesel engine exhaust and cigarette smoking are causally as-
sociated with lung cancer (IARC, 2012, 2014). Additionally, some of the
genes and pathways that we found to be altered as a result of DEE
exposure are also altered in current smokers across various datasets.
Consistent with this observation, we found that the genes that were
increased with DEE exposure were enriched among the genes increased
in current smokers relative to never smokers in a previously published
dataset (Beane et al., 2007). We did not observe this relationship for the
genes that were decreased with either exposure. This suggests that
physiological responses corresponding to genes upregulated by DEE
relative to controls, such as the oxidative stress response, are similar
with both exposures. However, this finding also indicates that there
may exist physiologic responses that are specific to DEE exposure re-
presented among the genes downregulated by DEE, which were not
similarly altered in comparison exposures such as cigarette smoke.

We identified several genes that showed an antagonistic interaction
of DEE and tobacco smoking on gene expression, where the joint impact
of both exposures was less than the sum of the effects observed for each
exposure individually. Two of these genes, CYP1A1 and CYP1B1, were
previously found to be induced by exposure to DEE or diesel particulate
matter (Rossner et al., 2016). These results provide some potential
biological insight into results from a nested case-control study of lung

Fig. 2. DEE exposure alters gene expression
in a dose-dependent manner. a. The first
principal component (PC1) of the DEE sig-
nature genes differs between samples from
diesel exposed (n = 41) and unexposed
(n = 38) individuals. b. PC1 of the DEE
signature increases with increasing ele-
mental carbon (EC) exposure (Cochrane-
Armitage trend test p < 0.0001). The DEE-
exposed individuals were divided based on
tertiles of EC exposure levels (with the
ranges given below each box) as described
previously (Lan et al. (2015). The 38 non-
DEE exposed individuals were assigned an
EC exposure level of 11.1 μg/m3 based on
the mean of values measured at the control
factories (Lan et al., 2015). Pair-wise com-
parisons were made using Student’s t-test.
**** p < 0.0001. For each boxplot, the
edges of the box are the 25th and 75th
percentile of the data and the whiskers are
the minimum and maximum values that do
not exceed 1.5X the inter-quartile range.

Fig. 3. Relationship between DEE and smoking-re-
lated gene expression. All of the genes measured on
the microarray were ranked according to their de-
gree of smoking-associated gene expression from
most decreased (blue) to most increased (red). a.
The position of the genes with increased expression
in DEE-exposed individuals (n = 41) within the
smoking-ranked list is indicated by the vertical
lines, with the height of the line proportional to the
GSEA running-enrichment score. The genes with
increased expression in DEE-exposed individuals
are significantly enriched among the genes most
increased in current smokers (GSEA q < 0.001).
The lines colored in purple represent the leading-
edge gene set which comprised the most enriched
genes. b. As in (a) but showing the position of the
genes with decreased expression in DEE-exposed

individuals (n = 41) within the smoking-ranked list. Significant enrichment of the genes with decreased expression in DEE-exposed individuals was not detected
among the genes with smoking-associated expression levels (GSEA q = 0.43).
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cancer among miners exposed to DEE, which found evidence of nega-
tive interaction between tobacco smoking and DEE in that each ex-
posure attenuated the lung cancer risk of the other (Attfield et al.,
2012). A similar negative interaction between tobacco and particulate
exposure was also suggested in a study of the exceptionally high lung
cancer incidence in Xuanwei, China, which has been causally linked to
use of bituminous (i.e., “smoky coal”), where use of coal for home
cooking and heating attenuated the effects of tobacco smoking on lung
cancer risk (Kim et al., 2014). Our observations here may provide some
insight into molecular mechanisms that play a role in the apparent
antagonistic relationship between tobacco and other particulate ex-
posures on risk of lung cancer. However, these interaction effects be-
tween DEE and smoking may be specific to the context of high amounts
of DEE exposure as observed in the present study’s participants, and it is
possible such patterns would not be observable at lower levels of ex-
posure.

The sample size of our study was relatively small, but was composed
of workers who were exposed to relatively high levels of DEE compared
to many current workplace settings and well above environmental le-
vels, as noted above. Important benefits of the study lie in the profiling
of tissues that are directly exposed to DEE, as well as the minimally-
invasive nature of sample collection in the nasal epithelium. The ability
to obtain findings using the present techniques in this population that
validate and extend previous in vitro and in vivo findings demonstrates
the feasibility of the approach in understanding the effects of occupa-
tional exposures on the airway epithelium. Larger studies of individuals
with the same exposure patterns would help to evaluate the presence
and nature of interactions between DEE and other exposures, such as
cigarette smoke, which may play a significant role in determining the
likelihood of developing an airway malignancy. A larger study of
workers exposed to lower levels of DEE would also be helpful to de-
termine to what extent this signature is present in less exposed popu-
lations.

All of the workers at the diesel factory from which DEE exposed
individuals were recruited were male. This limits the generalizability of
our study, and future studies should include both men and women.

In conclusion, we identified a DEE gene signature in nasal epithelial
cells among workers exposed to DEE compared to controls in China.
The study has particular strengths in that the exposure was character-
ized in detail, exposure levels were relatively high compared to the
typical levels studied in cross-sectional molecular epidemiology studies
of DEE conducted in the West (Chiu et al., 2016), and unmeasured co-

exposures that could have contributed to gene expression patterns were
likely to be minimal.
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Fig. 4. Expression pattern of 8 genes across 79 samples in which there is a synergistic effect of DEE and cigarette smoking on gene expression levels (linear-model
interaction effect FDR < 0.25). For the identified genes, the magnitude of the difference between the observed expression level of the DEE-exposed smokers and the
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75th percentile of the data and the whiskers are the minimum and maximum values that do not exceed 1.5X the inter-quartile range.
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