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Abstract

The paper addresses the capabilities and limitations of extrafoveal processing during a categorical
visual search. Previous research has established that a target could be identified from the very first
or without any saccade, suggesting that extrafoveal perception is necessarily involved. However, the
limits in complexity defining the processed information are still not clear. We performed four exper-
iments with a gradual increase of stimuli complexity to determine the role of extrafoveal processing
in searching for the categorically defined geometric shape. The series of experiments demonstrated
a significant role of extrafoveal processing while searching for simple two-dimensional shapes and
its gradual decrease in a condition with more complicated three-dimensional shapes. The factors of
objects’ spatial orientation and distractor homogeneity significantly influenced both reaction time and
the number of saccades required to identify a categorically defined target. An analysis of the individ-
ual p-value distributions revealed pronounced individual differences in using extrafoveal analysis and
allowed examination of the performance of each particular participant. The condition with the forced
prohibition of eye movements enabled us to investigate the efficacy of covert attention in the condition
with complicated shapes. Our results indicate that both foveal and extrafoveal processing are simul-
taneously involved during a categorical search, and the specificity of their interaction is determined
by the spatial orientation of objects, type of distractors, the prohibition to use overt attention, and
individual characteristics of the participants.
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1. Introduction

Categorizing and identifying stimuli out of the fovea poses a challenge in the field of visual
search investigation. Although perceptual mechanisms have been studied for a long time,
there still exist a lot of theoretical controversies, little interpretation consensus, and a number
of methodological challenges. These limit the possible answers to the question of what can be
processed without foveal attention under different conditions. Moreover, in many situations,
we cannot unambiguously ponder what is perceived without foveal vision, given the vari-
ety of objects that could be classified into different classes in terms of their complexity for
perception. Clearly, some information is easier to identify without thorough foveal analysis,
while processing other information requires the help of a direct gaze.

While researchers continue to argue over the features that can be considered high level,
they agree on those that are broadly accepted as low level—including color, shape, spatial
orientation, and motion (Wolfe, 2018; Wolfe & Horowitz, 2017). The low-level features for
selecting relevant information were given a central role in feature-integration theory, proposed
by Treisman and Gelade (1980). It assumes two stages in the work of attention, being closely
connected and working one after another. During the first stage, visual features are processed
in parallel in a pre-attentive, independent, and simultaneous manner; that is, in a bottom-up
fashion. During the second stage, the most relevant features defined at the previous stage are
studied in a serial manner with overt attention. A similar idea was suggested by Wolfe in his
guided search model, who proposed that visual features guide attention in both bottom-up
and top-down manners (Wolfe, 1994).

It is not only low-level visual features that can guide overt attention. Semantic information
about an object category, through a word label, can control overt attention in a top-down fash-
ion (e.g., Chen & Zelinsky, 2006; Malcolm & Henderson, 2010; Zelinsky, 2008; Zelinsky,
Adeli, Peng, & Samaras, 2013). Moreover, recent research shows that this semantic guid-
ance may happen outside the fovea (Cimminella, Della Sala, & Coco, 2020; Strasburger,
Rentschler, & Jüttner, 2011).

Traditionally, the visual field is divided into three regions extending from the retina center
to the periphery: (i) the fovea, covering a visual angle of 1° eccentricity and providing a
vision of high resolution; (ii) the parafovea, stretching out to 4–5° of eccentricity; and (iii) the
periphery, embracing the rest of the visual field (Larson & Loschky, 2009). For the purposes
of this work, extrafoveal vision will be defined as the processing of information appearing in
the parafovea or periphery. Despite a pronounced decrease of visual acuity outside the fovea,
different sorts of higher-level information can be accrued in extrafoveal vision (Cimminella
et al., 2020) as soon as the stimuli appear (Auckland, Cave, & Donnelly, 2007).

The ability to identify semantic information and guide early overt attention within
extrafoveal vision contradicts the principles of the traditional feature-integration theory
(Treisman & Gelade, 1980) as well as its more recent updates (Evans & Treisman, 2005;
Treisman, 2006). In recent work, Cimminella et al. (2020) checked the contribution of
extrafoveal vision to searching for stimuli in real-world scenes and revealed that object
semantics can be processed extrafoveally and then used to guide saccadic programming in
a top-down manner. Their findings contribute to the debate concerning the role of semantic
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information on eye movement guidance and open up perspectives for investigating
extrafoveal processing while searching for various kinds of stimuli, including complex
ones.

One of the methodological challenges in the research of extrafoveal processing has been the
difficulty in empirically dissociating between pre-attentive processing and covert attention,
both of which participate in preparing eye movements and thus guiding overt attention. It is
reasonable to consider pre-attentive processing as a specific type of processing that functions
before selective attention is guided to a particular object (Wolfe, 2018) and that detects some-
thing visible and identifiable before secective attention has been applied (Wolfe & Utochkin,
2019). Moreover, in some models, pre-attentive and attentive types of search are considered
to be the same process differing only in the degree of spreading attention. For example, in
Treisman and Gormican (1988), pre-attentive search is defined as a “search in which atten-
tion is distributed widely over the whole display” (p. 43). After the object of interest has
been chosen, selective attention can be attracted to it either overtly (with eye movements) or
covertly (without eye movements; Posner, 1980, 2016). Then, the visual field is investigated
through all types of attention according to the task. In this situation, when both pre-attentive
processing and covert attention behave tacitly, invisibly for the researcher, their clear disso-
ciation from each other presents a tricky methodological issue that cannot be settled within
our study. Therefore, in the current work, we use the term “extrafoveal processing,” which
comprises both types of covert processing for identifying features or objects outside the fovea
region before their analysis by overt attention begins.

1.1. Categorical search

While a lot of research concerns the question of how attention is guided by visual features
(i.e., direct targeting), we focus on semantic information (i.e., indirect targeting) and aim to
identify the limit of extrafoveal processing. The latter type of search is called categorical
search. In this case, the target object is defined only by its category, so an observer does
not know its exact features. Searching for some object when we know only its name and
presuppose some typical features is quite common and ecologically relevant. Although this is
the kind of search we most naturally exploit in our daily lives, it is not as studied as the visual
feature-based search due to obvious complexities in organizing experiments. Still, categorical
search has been examined for the past 50 years.

Investigations of categorical search date back to a pioneering study by Jonides and Gleit-
man (1972), who highlighted the importance of categorical search and the influence of feature
similarity relationships on categorical search effects. Subsequent research efforts tried to dis-
tinguish between the roles of a category with a distinct pool of semantic information and
visual features (Dahan & Tanenhaus, 2005). They revealed that observers tended to fixate on
distractors that resembled typical members of the target category; for example, while looking
for a snake they fixated on a rope. Yet this preference turned out to be asymmetrical: While
looking for a rope, the participants hardly preferred to look at the snake. This asymmetry
indicated that the search was guided by the target category and not by the visual similarity to
an exact template.
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Despite numerous findings that searching for pictorially previewed targets is much more
efficient as compared to a text label (e.g., Vickery, King, & Jiang, 2005; Wolfe, Horowitz,
Kenner, Hyle, & Vasan, 2004), in real life, we often do not know exactly what an object looks
like. Still, some studies report an above-chance guidance of eye movements to categorically
defined targets (Yang & Zelinsky, 2006, 2009; Zelinsky et al., 2013). For instance, Yang
and Zelinsky (2009) compared the target preview and categorical conditions and showed that
although the observers in the categorical condition had been looking for teddy bear targets
longer and made more eye movements, they still fixated targets far sooner than would have
been expected in the case of fixating the objects randomly. This study indicated that such
guidance uses a categorical model that consists of specific features common to the target
category. Another study (Schmidt & Zelinsky, 2009) demonstrated that the guidance was
gradually proportional to the information available from the target cue. These results confirm
that complex objects can be effectively identified through their category in extrafoveal vision.

Research using different kinds of complex stimuli (e.g., real-world scenes) in a dual-task
paradigm has demonstrated no decrement in identifying a vehicle or an animal shown in
the periphery while performing a challenging task at fixation (F. F. Li, VanRullen, Koch, &
Perona, 2002). These results indicate that high-level object representations may be accessed in
a parallel manner, providing efficient categorization and identification even outside the focus
of attention (Greene & Fei-Fei, 2014; Koch & Tsuchiya, 2007; Poncet, Reddy, & Fabre-
Thorpe, 2012). Due to its high ecological validity, a categorical search task is relevant to
studying visual attention while looking for complex stimuli of different categories that also
include scientific categories and objects.

1.2. Why geometric shapes

Geometric shapes presenting mathematical concepts correspond to a great variety of cat-
egories with numerous members that can appear under different angles. Some of the first
eye movement experiments on visual search for simple geometric shapes were conducted by
Williams (1966). He measured search times in a number of conditions varying the features
of target objects, such as color, shape, and size. He found that color speeded up the search
process substantially, while the specification of size turned out to be much less effective, and
the shape specification provided almost no advantage. Later, these results appeared to be task-
specific as other studies (Gould & Dill, 1969; Viviani & Swensson, 1982) revealed the ability
to use shape information to guide eye movements. However, the above-mentioned research
also reported that distractors were also scanned, while Williams (1966) demonstrated that
saccadic eye movements could be made directly to the targets, thus revealing the capability
of extrafoveal processing.

In the context of investigating extrafoveal search limitations, geometric shapes can be use-
ful to manipulate the degree of difficulty, which is notably different in the case of searching
for a circle versus for a six-angled pyramid, revealing apparent differences in the shapes’
complexity, and identifying 2-dimentional (2-D) versus identifying 3-dimentional (3-D)
stimuli. These differences have been shown by Pilon and Friedman (1998) who found that the
stimulus complexity itself, rather than the depicted dimensionality, could explain different
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performances in 2-D and 3-D conditions. In contrast, the work of Brown, Weisstein, and May
(1992) provided evidence that simple 3-D shapes were not processed in parallel and showed
independent pathways during early visual processing. Moreover, attentional processing was
definitely required to differentiate one shape from another. Still, some 3-D shapes used in
their study had such dissimilar 2-D features that they always popped out from each other. So
visual search appeared to be based only on 2-D featural differences, and the authors could not
identify the relative contribution of 2-D and 3-D form differences from these results. How-
ever, it is important to differentiate these types of conditions, as they might present different
levels of stimuli complexity.

Pilon and Friedman (1998) also demonstrated a pronounced influence of practice with 2-D
displays on the following identification of the quasi-3-D shapes. The detected role of train-
ing allowed the authors to conclude that the mechanisms underlying pre-attentive processing
might differ from the mechanisms of simple training of automatic processing. In the con-
text of mathematical concepts, it may indicate that experts in this area can expose specific
patterns of attention and search because the initially high-level operations begin to function
automatically and influence low-level behavior including preparing and executing saccades.
Meanwhile, the question of whether new pre-attentive features can be learned through prac-
tice is still unresolved. The pertinent literature on the subject (Carrasco, Ponte, Rechea, &
Sampedro, 1998; Schneider & Shiffrin, 1977) provides only fractional data that previously
the inefficient conjunction (Ellisson & Walsh, 1998; Lobley & Walsh, 1998) or even categor-
ical (F. F. Li et al., 2002; Treisman, 2006) searches can be made more efficient with training.
The issue of expert abilities is closely connected to inter-individual variability and individual
perceptual strategies, which should also be considered while investigating extrafoveal pro-
cessing.

1.3. The purpose of the current study

Taken together, there are still a number of open questions concerning the capabilities of
extrafoveal processing during the categorical search. First, the difficulty level of objects that
necessarily requires overt attention remains unclear. Second, even though a lot of research has
revealed general attentional mechanisms, all individuals tend to utilize their own perception
strategies, which seem to be minimally investigated. Third, extrafoveal processing often takes
some time before passing the baton to foveal attention, so the capability of the extrafoveal
search when eye movements are prohibited presents a worthy research question.

The current study aims to examine the capabilities of extrafoveal processing while search-
ing for geometric shapes of different levels of difficulty. In the series of experiments, we used
geometric shapes, which become more and more complicated with each experiment, vary-
ing from simple geometric shapes (a cross or a circle) to very difficult 3-D shapes (three-
to six-angled pyramids). We aimed to test the capabilities of early pre-attentive processing
of categorically defined stimuli and document the specific level of the shapes’ difficulty that
makes it impossible for the participants to identify the target shape without overt attention.

The present study used a novel methodological approach based on the works of Zelinsky
et al. (2006, 2009, 2011, 2013), who used the percentage of trials when the very first saccade
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landed on the target. We modified this parameter and calculated a more sensitive indicator
considering the order number of the target area visit, which was then compared with the
random search value. This parameter allowed us to investigate extrafoveal processing that
detects the most likely location of a target object.

Although the general tendencies of interaction between attention and eye movements dur-
ing a categorical search for geometric shapes are quite intriguing, here, we also pay attention
to individual differences and search strategies, which vary widely across individuals. We used
a novel statistical method that allowed us to analyze not only the mean performance values of
the whole sample but individual measures of search efficacy as well.

In light of the above-mentioned knowledge gaps, we ran a series of experiments and ana-
lyzed under-investigated categorical processing, while searching for a geometric shape of
various difficulty. The purpose of the study was therefore threefold: (i) to investigate the
dependence between the efficacy of extrafoveal processing and the degree of stimulus diffi-
culty while searching for a categorically defined geometric shape; (ii) to describe individual
search strategies and the degree of pre-attentive, extrafoveal processing involvement during
categorical search; and (iii) to study the plasticity of extrafoveal processing by triggering it in
an experiment that forced the prohibition of eye movements.

Experiment 1 served as a pilot study investigating pre-attentive, extrafoveal processing in
the condition of simple geometric shapes such as a circle, a square, a triangle, and a cross.
Experiment 2 included more complicated shapes such as rectangles and squares among homo-
geneous or heterogeneous distractors and two spatial orientations for all shapes. Experiment 3
involved even harder 3-D stimuli, such as prisms and pyramids. Finally, in Experiment 4, we
used the most challenging condition of three- to six-angled pyramids at an angle that had their
bases concealed from the observer. Working at the edge of extrafoveal processing capabilities,
we investigated its plasticity depending on expertise level and individual training. Experiment
4 contained two series with any eye movements away from the screen center prohibited, with
training series in between them to reveal the ability of developing covert attention abilities. In
Experiment 4, we invited two groups of participants to take part—psychologists as “novices”
and mathematicians as “experts”—in order to check if some initially higher-level perceptual
processing could have become automized with the relevant practice. Traditional categorical
search studies aim to construct a computational model that would predict group performance
in a particular task (Zelinsky et al., 2013). Contrary to this research program, we focused on
individual differences and idiosyncratic strategies, which organize the processes of attention
and saccade execution during visual search.

2. Experiment 1: Extrafoveal processing of simple geometric shapes

2.1. Method

2.1.1. Participants
Twenty subjects (12 females, 8 males, aged 18–66) took part in the experiment. All par-

ticipants reported normal or corrected to normal vision. The sample size in this as well as
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Fig. 1. Schema of the frame sequence in a typical trial. The target category name was exposed at the beginning of
the trial. After pressing the space button, a fixation cross appeared that needed to be fixated for 500 ms to trigger
the presentation of the object array. When the participants found the target, they were to press the space button.
After that, the object array was replaced with masking shapes. The participants had to name the letter of the sector
with the target shape. Note that all instructions were in Russian; here, we translate them for clarity.

in all following experiments was chosen based on previous studies investigating categorical
search (we used the similar sample sizes as in Alexander, Zelinsky, 2012; Chen, Zelinsky,
2006; Maxfield, Zelinsky, 2012). All experiments were conducted according to the princi-
ples of the Declaration of Helsinki and approved by the local ethics committee (Faculty of
Psychology, Lomonosov Moscow State University). All participants gave informed consent
before the investigation.

2.1.2. Apparatus
We used SMI RED 120 Hz for eye movements fixation and iViewX software for their

recording. The stimuli were presented on a 19-inch monitor with a 60 Hz refresh rate using
Experiment Center 3.3.

2.1.3. Stimuli and experimental design
The stimuli comprised simple geometric shapes: a circle, a triangle, a square, and a cross

that were positioned at four areas on a screen as illustrated in Fig. 1. Each area was labeled:
A, B, C, and D. Shapes had 4–6° size and their centers were located with the eccentricity of
12° of visual angle from the center of the screen; that is, each was located in the extrafoveal
visual field. The stimuli were presented on a white background with a viewing distance of
60 cm.
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Fig. 2. The areas of interest for analysis.

The experiment contained 24 trials grouped by blocks of four with the same target.
The target could be a circle, a triangle, or a square depending on the experimental block.
The cross was not used as a target since it is a peculiar geometric shape distinct from
all the common ones and it is not convex, which is rare for the everyday environment.
All combinations of the shape locations were varied, and each target appeared twice in all
sectors.

2.1.4. Procedure
Before the experiment, each participant underwent a 12-point calibration; an accuracy

of 0.5° or less was considered as appropriate. Each trial began with the target category
name, which the participants were asked to read, then to press the space button and to
fixate their gaze at the center of the screen (i.e., the fixational cross; see Fig. 1). After
500 ms of fixating the gaze, stimuli appeared. The task was to find the target as quickly
and accurately as possible, press the space button, and pronounce the letter of the tar-
get area (A, B, C, or D). After pressing the space button, the shapes were changed
to specially drawn masking stimuli with all shapes mixed, preventing recognition based
on after-image processing. The researcher recorded all answers to check their accuracy
afterward.

2.1.5. Data processing
All answers of all participants were correct. The only parameter of our interest was the

efficiency of extrafoveal search for the target. It was calculated as follows. Using BeGaze
3.3 software, the screen was divided into five areas of interest (AOI): A, B, C, D, and cen-
ter (Fig. 2). Then we considered the fixation sequence of the AOI in each trial. The main
parameter for all series of the experiment named FirstT (i.e., the FIRST visiting of Target)
was the number of the first target sector name appearance in the sequence. The first fixation
at the center as well as the repeated fixations at the same sectors was not taken into account
thus identifying how many other shapes a participant had gazed at before the target shape was
attended. For example, the fixations ran in the following way: “Center, A, B, B, A, C.” This
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means that if the target is in the C sector, FirstT equals 3 as we do not count the center and
the repeated fixations on sectors B and A.

The FirstT parameter was chosen to refer to a predicted mean number of visited sectors
under the assumption that the shapes were not processed extrafoveally. If we assume that
a participant does not use extrafoveal vision while searching, the target area could be vis-
ited first, second, third, or fourth in the stochastic sequence of all visited sectors, and con-
sequently the mean number of the target area visits (FirstT) would be 2.5. Theoretically, a
participant does not need to visit the fourth sector when all three previous ones have not
revealed the target and could just name the last sector as a target. However, this situation
was never observed: in such a situation the participants always visited the target sector and
confirmed the target presence before pressing the space button. Unlike the FirstT parameter,
the total number of fixations before visiting the target could be unpredictably large, as the
participant could resample each shape many times. Thus, introducing the FirstT parameter
allowed us to test if extrafoveal analysis had been involved by comparing the FirstT value with
2.5.

Preliminary data processing was performed using Python, and statistical analyses were
conducted using IBM SPSS software version 21.

2.2. Results and discussion of Experiment 1

The total number of trials in all participants was 24 x 20 = 480 trials. The main focus of our
research was the efficacy of extrafoveal processing. We revealed that in 371 trials (77.5% of
total amount), the target was found without any eye movements away from the central sector,
and in 73 trials (15% of total amount), the target was reached from the very first saccade.

Even though the task turned out to be very easy, we observed pronounced individual dif-
ferences in the extrafoveal processing data (Crosstable Respondent × FirstT: χ2 = 258, df
= 76, p < .0001: One of the participants gave only three answers without any saccades, and
14 answers from the very first saccade, while three other participants managed to find the
target without any eye movements in all trials. These findings reveal that some participants
mainly relied on the extrafoveal guess about the target location and answered immediately
without eye movements, whereas the others, although correctly choosing the direction of the
first saccade, still made this confirming saccade to be sure the target was indeed there. This
reflects different search strategies in different participants, which can be observed even in
such a simple experiment.

3. Experiment 2: Categorical search for 2-D shapes

In Experiment 1, the simple geometric shapes were easily identified extrafoveally; in
Experiment 2, we raised the task difficulty to check whether extrafoveal analysis would
change while performing the categorical search for more complicated shapes. We also
aimed to observe the influence of the distractor and spatial orientation factors on the search
efficacy.
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Fig. 3. Examples of the stimuli used in Experiment 2: (a) a rectangle on its base among dissimilar distractors; (b) a
square on its base among dissimilar distractors; (с) a rectangle at an angle among similar distractors; (d) a square
at an angle among similar distractors.

3.1. Method

3.1.1. Participants
Thirteen subjects (9 females, 4 males, aged 18–25) with normal or corrected-to-normal

sight participated in this experiment.

3.1.2. Apparatus, procedure, and data processing
The apparatus, experimental procedure, and data processing were identical to

Experiment 1.

3.1.3. Experimental design and stimuli
The experimental design was similar to Experiment 1, yet the number of trials for each

participant was 96. We used a 2 × 2 × 3 design with three factors: target-distractor similarity
(whether the distractors were more or less similar to the target), the shapes’ spatial orientation
(on its base or at an angle), and target type which was either (1) a square, (2) rectangle, or
(3) a square named rectangle—the instruction was to find a rectangle, but the target was a
square (being a special case of a rectangle). The trials were grouped into blocks of eight trials
with the same target. Each block had all combinations of the factors, and the target sector was
varied quasi-randomly to appear twice in each position.

The stimuli comprised both targets and a set of distractors. Squares and rectangles were
used as targets. General quadrilaterals were used as dissimilar distractors for both squares
and rectangles. Rhombi were used as similar distractors for squares, while parallelograms
were used as similar distractors for rectangles (see Fig. 3).

3.2. Results and discussion of Experiment 2

We acquired 1241 trials from 13 participants (Table 1); some of the trials (0.56%) were
excluded due to technical reasons. We also excluded the trials of Participant K1 due to a high
number of mistakes (12.5% vs. 3%–4% in other participants, SD = 3.4%). Interestingly, this
participant gave the majority of answers without any eye movements, reflecting a dominant
guessing strategy that could lead to randomly correct answers and could not be used to infer
any deeper about the overall use of foveal processing.

We analyzed the results of all participants (except for K1) in all trials and received the
mean value of FirstT that equaled 1.12. We also considered individual results and found that
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Table 1
The number of the first target visit distribution in Experiment 2

Participant ID The Number of the Target First Visit Mean FirstT

0 1 2 3 4

А1 77 10 5 0 3 0.34
A2 31 40 18 4 3 1.04
A3 20 37 30 6 3 1.32
D 61 23 9 2 1 0.53
G 51 33 8 3 1 0.65
I 31 36 22 6 0 1.03
K2 11 63 13 9 0 1.21
K3 36 30 23 5 2 1.36
L 63 22 7 2 1 0.50
M1 8 28 29 18 9 1.91
M2 5 34 38 16 3 1.77
M3 8 33 33 15 7 1.79

Total 402 389 235 86 33 1.12

Note. FirstT, the FIRST visiting of Target.

all participants showed significant differences in FirstT from the hypothetical mean value 2.5.
The individual mean values varied from 1.91 (t(91) = –5.04; p = .00002 (with four trials
spoiled for this participant)) to 0.34 (t(95) = –24.9).1 An analysis of the results provided in
Table 1 shows that 402 of 1145 trials (35%) were solved correctly without any eye move-
ments away from the screen center, and in 389 trials (almost 34%), the very first saccade
was directed toward the target. This means that in most cases, the identification task was
performed using solely extrafoveal processing. Table 1 clearly demonstrates that the ability
of extrafoveal processing and/or strategy of its use vary significantly across the participants
(crosstabs participant × FirstT: χ2 equals to about 500, df = 48, p < .000001). We can also
see that the Participants M1, M2, and M3 performed a relatively small number of trials with-
out eye movements away from the screen center, and the mode of their FirstT distributions
was 2. On the contrary, Participants A1, В, and L gave answers without any eye movements in
more than half of the trials, so the mode of their FirstT distributions is equal to 0. Furthermore,
these three subjects had a very small number of incorrect answers (3, 3, and 1, respectively).
The latter indicates that they relied mainly on extrafoveal processing.

This experiment also aimed to check what factors would deteriorate extrafoveal processing
and make the participants perform one or more saccades toward the stimuli. In this experi-
ment, we had 3 factors in 3 × 2 × 2 experimental design for the target and distractors: the
shape of the target (a rectangle and two kinds of tasks with a square as a target) as the first
factor, the spatial orientation of the stimuli as the second factor, and the type of distractors
(more or less similar to the target) as the third factor. After conducting Mauchly’s sphericity
test, we performed a repeated measures three-way ANOVA. The dependent variable was the
mean individual measures for every of 3 × 2 × 2 conditions of FirstT. The independent vari-
ables in both analyses were: “Target type,” “Spatial orientation,” and “Distractor type.” There
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Fig. 4. The dependency of mean FIRST visiting of Target (FirstT) from target-distractor similarity and spatial
orientation factors.

was almost no influence of the “Target type” on FirstT, so we report the dependence of FirstT
on the two other factors. Fig. 4 presents the dependency of FirstT from the spatial orientation
and distractor type factors.

One can observe the increasing FirstT indicating less extrafoveal processing in the case
of an “unusual” spatial orientation as compared to the shapes’ orientation on their bases:
the influence of the spatial orientation factor was F(1, 11) = 45.1, p = .00003, partial η2 =
0.82. This result might be explained by a prototypical phenomenon in geometrical concepts
related to the frame of reference, such as page or screen sides (Hershkowitz, 1998). Another
explanation might derive from brain mechanisms of processing horizontal and vertical direc-
tions in comparison with oblique directions (B. Li, Peterson, & Freeman, 2003), thus making
identification of the right angles in the shapes easier in the case of horizontal bases.

Similar tendencies were revealed for the factor of distractor type, which increased FirstT
in the condition of similar-to-the-target distractors as compared to the dissimilar ones: F(1,
11) = 38.5, p = .00007, partial η2 = 0.79. The interaction of these two factors was F(1,
11) = 10.6, p = .008 (Fig. 4), partial η2 = 0.49. The results of Experiment 2 are largely
consistent with the literature data exploring the influence of a distractor on the efficiency of a
search (Alexander & Zelinsky, 2011, 2012; Chun & Potter, 1995; Reingold & Glaholt, 2014;
Töllner, Conci & Müller, 2015). Particularly, Reingold and Glaholt (2014) demonstrated that
the extrafoveal processing of similar distractors required only 24–58 ms, which is too fast to
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be provided by foveal vision. Therefore, extrafoveal analysis plays the main role in saccade
programming and defining whether foveal processing is necessary (p. 629).

The findings of Experiment 2 revealed pronounced individual differences in perception
processes and task solving. These individual differences can influence extrafoveal process-
ing, which has already been shown in other works (Frömer et al., 2015; Gandini, Lemaire, &
Dufau, 2008), while the current study provides evidence for essential individual differences
particulary in the way categorical information guides overt attention. Subjective factors, such
as motivation, situation aspects, and personality traits could form and modify the search strate-
gies. They could vary from the extremely “careful” strategy when each extrafoveal guess was
checked in the fovea (cases M1, M2, M3) to the “guessing” strategy when the answer was
based only on some preliminary extrafoveal analysis (case A1).

Considering the results of Experiments 1 and 2, we can observe a high avaliability of
extrafoveal processing, which allows participants to direct a single saccade to the target shape
or to identify the target location without any eye movements at all. The factors of distractor
type and spatial orientation significantly influenced the first target visit and deteriorated the
extrafoveal processing. The results revealed that simple geometric shapes and 2-D shapes are
quite easy to detect extrafoveally, so in the following experiment, we complicated the stimuli
to check the limit of extrafoveal processing.

4. Experiment 3: Categorical search for 3-D shapes

We have documented that extrafoveal processing participates in the identification of simple
2-D geometric shapes differently depending on conditions, but oftentimes such stimuli can be
easily detected without any saccades or from the very first saccade. We also aimed to investi-
gate eye movements during the search for more complex three-dimensional shapes. Here, we
intend to find the level of target complexity that makes extrafoveal analysis difficult or even
impossible; thus, we varied the factors that we expected would influence difficulty, such as
the similarity between the target and distractors, orientation, and type of the target shape. We
also hypothesize that individual differences may be expressed in qualitatively different strate-
gies of solving the task with or without extrafoveal analysis in such a complicated case. One
additional research question concerns the influence of training on extrafoveal processing. To
address this question, we studied the dynamics of extrafoveal processing involvement from
the beginning to the end of the experiment in different participants.

4.1. Method

4.1.1. Participants
Twelve students and graduates (8 females, 4 males, aged 19–27) with normal or corrected-

to-normal sight participated in the study.

4.1.2. Design and stimuli
The experiment included 128 trials each comprising four stereometric shapes (regular

prisms and pyramids) with three, four, five, or six base angles. Every shape was presented
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Fig. 5. Examples of the stimuli in Experiment 3: (a) a target prism among pyramids; (b) a target pyramid among
prisms; (c) a target prism among prisms; (d) a target pyramid among pyramids.

as a projection of a 3-D scene to the screen plane. The angle between the view axis and the
base plane in the 3-D scene was 35°; the prism/pyramid was quasi-randomly rotated around
the view axis to the angle of ±45° or left unrotated. The target and the distractors could be
either a pyramid or a prism. In every trial in which the three- to six-angled shapes were pre-
sented, the target could have only four or five angles. The experiment was designed so that
the target type could be either the same as or different from the distractor type in half of all
trials. Each set of 16 trials were united into series with eight trials in a row containing the
target prisms and eight trials in a row with the target pyramids. The target area (A, B, C, or
D) was quasi-randomly varied for each eight trials (see Fig. 5).

4.1.3. Data processing
Given the four different task conditions, we assumed that people would have different

strategies in the degree of involvement of extrafoveal processing. So we expected that some
respondents would use a strategy close to stochastic foveal viewing of stimuli, while others
would use extrafoveal analysis in a different form before planning saccades.

Analyzing diverse strategies that can be based on individual p-values raises a problem of
multiple comparisons. When testing many individuals, we would inevitably find some devia-
tions from the stochastic strategy. So we elaborated a special criterion that allows to test the
global null hypothesis,2 thus demonstrating the non-occasional occurrence of diverse strate-
gies. This criterion may be called “meta-criterion of significance distribution” (MCSD). Here,
we provide a very short explanation. Let X be the feature inherent to some respondents from
the set. The global null hypothesis on the participants’ X is as follows: All participants have
a zero level of X. Alternative hypotheses may include the following: (Hypothesis 1) all par-
ticipants have a (maybe weak) tendency to positive (negative) X level; (Hypothesis 2) only
some participants have a definite tendency to positive (negative) X level; and (Hypothesis 3)
some participants have positive X level, and others have negative X level. To test all three
alternatives, for each participant we calculated p-values of t by a one-sample t test, compar-
ing FirstT with 2.5 as we did in the previous experiments. For the global null hypothesis (in
this case, it would state that all participants do not use extrafoveal processing at all), the the-
oretical distribution of p-values would be uniform at (0, 1). To take into account that extreme
values on two sides of the t test distribution signify opposite individual strategies, we did not
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analyze p-values of two-sided tests, but the one-side p-value (exactly the weight of the left
“tail”), which could vary from 0 to 1. Taking together the entire set of p-values, we eval-
uated the difference between the empirically cumulated p-values distribution function and
their theoretical uniform distribution function, using Kolmogorov–Smirnoff (KS) statistics.
For the alternative Hypothesis 1, traditional approaches, such as the t test, which tests the
average of mean FirstTs by subject, would correctly reject the null hypothesis. For the alter-
native Hypothesis 2, MCSD would be more powerful than the criteria working with the mean
or median, since it allows us to detect that some participants have particular (non-random)
strategies, even although these strategies are not universal for populations. For the alterna-
tive Hypothesis 3, any criterion working with the mean or median might provide evidence in
favor of the null hypothesis while at least some participants have a definite tendency toward
a positive X level and some toward a negative one (see an example of such a case in Fig. 11).

Therefore, opposite individual strategies may compensate each other and diminish the t-
value, thus putting us at risk of following the null hypothesis when it is not true. On the
contrary, MCSD allows us to distinguish whether these opposite strategies are the results of
random variability or represent significantly different tendencies.

In the following text, we provide graphs of the p-distribution, illustrating the specific kind
of alternative to the H0. The difference between the empirical cumulated distribution function,
which is represented by circles in the figures below, and the theoretical distribution function,
which is represented by a diagonal line, characterizes the difference between the empiri-
cal distribution and the uniform one. By evaluating the maximum of this difference, the KS
statistic shows the significance of the alternative hypothesis, stating whether the H0 may be
rejected globally (though not always on average). In some cases, we report on particular sub-
jects who showed results withstanding the Bonferroni correction. By “withstanding the Bon-
ferroni correction,” we mean that the corrected p-value is less than 0.05 (fully understanding
the conditionality of this boundary). Nevertheless, we consider this information to be useful.

4.2. Results and discussion of Experiment 3

In this experiment, we analyzed extrafoveal processing in four task conditions representing
different combinations of the target and distractors: (1) prism among pyramids; (2) pyramid
among prisms; (3) prism among prisms; and (4) pyramid among pyramids. We excluded
trials with incorrect answers, without fixations on the target area (0.5%). We also excluded
two participants’ data in Conditions 2 and 4 and one participant’s data in Condition 3 due to a
very high number of incorrect answers (more than two standard deviations). One of the four
data sections described below contains the data of 12 participants, one of 11, and two of 10
participants. We acquired 1535 trials for the further analysis.

4.2.1. Target prism among pyramids (Fig. 5a)
This condition turned out to be the easiest for our participants. The average of individual

participants’ mean FirstTs was 1.44 (t(11) = 11.17, p < 0.00001. Individual mean FirstTs
varied from 0.97 (t(31) = 12.9, p < .00001) to 1.91 (t(31) = 3.8, p = .001), so they were
significantly lower than 2.5 (Fig. 6a, on the left), and p-values of the t-statistics did not exceed
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Fig. 6. Individual mean FirstT distribution in all participants (on the left) and cumulative distribution of t test p-
values of the difference between mean FirstT and 2.5 in each participant (on the right) in the conditions (a) “target
prism among pyramids,” (b) “target pyramid among prisms,” (с) “target prism among prisms,” and (d) “target
pyramid among pyramids.”
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.001 in any participant (Fig. 6a, on the right). Our meta-criterion MCSD demonstrated that
D(12) = 0.99, p < .00001. The visualization of MCSD shows the corresponding p-values
of the difference between individual mean FirstTs and tested value 2.5; and one can see that
in this easy condition, p-values (circles) are all located on the left side near 0 (Fig. 6a, on
the right). All participants demonstrated a high involvement of extrafoveal processing, which
was reflected in the very first saccade being directed to the target—or even the absence of any
saccades—in more than half of the trials. Additionally, only one answer of one participant
was incorrect.

4.2.2. Target pyramid among prisms (Fig. 5b)
This condition was also simple for almost all participants, but two of them made multiple

mistakes (surprisingly, about a half of the trials within this type), so we excluded them from
the analysis. The average of individual mean FirstTs was 1.76 t(9) = 9, p < .00001, and
it varied from 1.38 (t(31) = 8.9, p < .00001) to 2.24 (t(31) = 1.46). Our criterion MCSD
showed D(10) = 0.92, p < .00001 (Fig. 6b, on the right), indicating the apparent involvement
of extrafoveal processing while solving this type of task.

The analysis of 95% confidence intervals (CI) for each participant’s FirstTs in this condi-
tion showed that almost all participants successfully used extrafoveal processing since their
CIs did not include 2.5 (Fig. 7). The CI of only one participant (Il) included this critical value,
so it is interesting to consider this case as opposed to the case of Participant V as having the
most “extrafoveal” strategy. Even in this very easy condition, we can observe two opposite
cases in Participants V and Il: the mean FirstT in V was 1.38, and the mode of their distri-
bution was 1 (Fig. 8, on the left), whereas the mean FirstT in Il was 2.24, and the mode of
their distribution was 2 (Fig. 8, on the right). So while participant V’s first saccade almost
always hit the target sector, the target sector was visited first, second, third, or even fourth by
Participant Il.

4.2.3. Target prism among prisms (Fig. 5c)
Visibility of the prism bases allowed participants to calculate the number of base angles,

so the number of mistakes was very small. Still, this condition turned to be more difficult
than the previous two since it used the same type of object for the target and distractors. This
difficulty was reflected in a higher average of mean FirstTs by subject equaling 2.19 (t(10) =
3.78, p = .004), which varied from 1.58 (t(30) = 5.15, p = .0002) to 2.59 (t(31) = –0.5, p
= .61), meaning that some participants might not have used extrafoveal processing (Fig. 6c,
on the left). MCSD showed D(11) = 0.546, p = .001, evidence for the differences among the
participants: Fig. 6c (on the right) clearly shows that while some participants certainly involve
extrafoveal vision (three p-values close to 0), others do not (p-values tending to stretch along
the diagonal representing the theoretical uniform p-value-distribution); here, MCSD is more
powerful than Student’s t test.
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Fig. 7. 95% confidence intervals (CI) of mean FirstT in all participants in the “target pyramid among prisms”
condition. Participants Il and V (in circles) were chosen for the further analysis.

Fig. 8. FirstT distribution in trials of the “target pyramid among prisms” condition in Participant V (on the left)
and Participant Il (on the right).
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4.2.4. Target pyramid among pyramids (Fig. 5d)
This condition turned to be so challenging that only two participants made a few mistakes

(0 and 4), while the others gave a lot of wrong answers (M = 13.8; SD = 7.3). Though the
further analysis does not have much significance due to the small number of trials with correct
answers, still, we repeat the previous logic of presenting results. The average of mean FirstTs
by subject exceeded 2.5 (M = 2.75; SD = 0.14), t(9) = 1.36, p = .207) and did not improve
during the experiment, so it was the most complex condition. The participants’ mean FirstTs
varied from 2.08 (t(9) = 1.5, p = .09 to 2.94 (t(17) = –0.14, p = .193; Fig. 6d, on the left).
The MCSD demonstrated that D(10) = 0.44, p = .021 (Fig. 6d, on the right). This result
indicated the necessity of repeated foveal analysis for some participants.

The findings of Experiment 3 revealed a pronounced influence of the distractor factor on
extrafoveal analysis efficiency while searching for three-dimensional geometric shapes. In
the condition with heterogeneous targets and distractors, the order number of the target sector
visit was less than 2.5, as it would be in the case of solely foveal analysis. This result points
to the presence of an extremely fast parallel processing of all stimuli and the decision to guide
overt attention only to a few of the most relevant objects or confined only to extrafoveal anal-
ysis. By contrast, in the condition with the homogeneous targets and distractors, we observed
a decrease in the efficiency of extrafoveal analysis. In the case of the target prism among
prisms, however, extrafoveal processing still contributes to the analysis—perhaps due to the
visible bases of the shapes and therefore the number of angles that can be identified with-
out overt attention. Recognizing the target pyramid among the distractor pyramids was much
more complicated since their bases were hidden and there were no obvious cues. In this case,
the participant has to rely on the mental image of the target shape, as well as its parameters
relative to the other stimuli.

We also revealed individual differences in involving extrafoveal processing while solving
the search task. The differences were most evident in the condition with the target prisms
among distractor prisms, a task of medium complexity. In this condition, some participants
obviously relied on extrafoveal processing, whereas others tended to use mostly overt atten-
tion (see Fig. 6c). In the most complicated condition with the target pyramid among distractor
pyramids, most participants made a lot of fixations and comparisons before answering and
scarcely used extrafoveal data. This means that we got close to a limit of extrafoveal analysis
capabilities in this task. Further, we conducted a new experiment with the most challenging
condition to investigate the limits of extrafoveal processes in depth.

5. Experiment 4: Categorical search for pyramids

In the fourth experiment, we investigated in depth the extrafoveal analysis in the most com-
plex condition of the previous trial—the target pyramid among distractor pyramids. We had
already found that extrafoveal processing poorly contributes to the analysis of such stimuli,
so in this experiment, we intended to understand if and to which degree extrafoveal processes
might join the categorical search in this difficult task, depending on a variety of factors. We
investigated whether extrafoveal vision could be trained and whether it can contribute to the
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categorical search in restricted conditions with eye movements prohibited. To study the plas-
ticity of extrafoveal processing and its dynamics across trials in detail, we used four mea-
sures: (1) the dynamics of mean FirstT from the beginning to the end of the experiment for
each participant, (2) the dynamics of the general time (GenT) of task solving in each trial, (3)
the dynamics of the number of correct answers, and (4) performance in the restricted condi-
tion with the prohibition of eye movement and its dynamics. We also hypothesized that the
relevant educational profile could contribute to more efficient extrafoveal processing of stere-
ometric shapes. Thus, in this experiment, two groups took part: Mathematicians, physicians,
and programmers were considered to be “experts” (since they passed challenging mathematic
exams including geometry), and psychologists were considered to be “novices.”

5.1. Method

5.1.1. Participants
The sample included two groups: 13 “experts” and 16 “novices” (20 females, 9 males, aged

19–28). All participants had normal or corrected-to-normal vision.

5.1.2. Design and stimuli
The stimuli involved only the pyramids of the previous experiment, but they were rotated

to quasi-random angles from –45 to 45 degrees (see Fig. 5d). The experiment consisted of
nine series of 16 trials. In the first series, participants were introduced to the procedure and it
was not taken into account in the analysis. In series 2 and 9, participants were instructed to
maintain their gaze at the center of the screen, so any eye movements were prohibited. Series
3–8 were given for training and participants could freely move their eyes. We modified the
stimuli in series 2 and 9 in comparison to 3 and 8 to make sure that the training influences
categorical search rather than perceptual familiarity with the shapes: The angles between the
view axis and base plane were 25° for the training series and 35° for the series with prohibited
eye movements.

5.1.3. Data processing
The data processing was identical to what was used in the previous experiments, with the

additional analysis for the FirstT and GenT dynamics, which were calculated as the regres-
sion coefficients of the FirstT and GenT with the trial order number. We also compared the
efficiency of categorical search in the trials with prohibited eye movements before and after
the training. In this condition, trials with fixations out of the center sector were excluded from
the analysis.

5.2. Results and discussion of Experiment 4

There were 4162 trials from 29 participants. The between-group analysis failed to show
any differences between the “experts” and “novices” in the number of correct answers: The
first group gave 74.2% correct answers and the second gave 70.1%. The absence of significant
differences between the two groups may indicate that this task requires some specific skills
that are not directly connected with an educational profile. In post-experimental interviews,
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psychology students with better results (more than 80%) discussed their experience with
schematic representations of three-dimensional shapes at school or art/design classes. Since
there was no significant difference between the groups, we then analyzed both groups
together.

Considering the results of the training sessions 3–8, we compared the average of mean
FirstTs in each participant with 2.5, using the one-sample t test, and received 2.28, t(28) =
4.9, p = .00004. While analyzing mean values, we considered only the trials with correct
answers, though one could object that correct answers are given for easier trials. However,
if we analyzed all the trials independently of their answer correctness, the results would be
even stronger: t(28) = 5.3. Therefore, we can state that extrafoveal processing was involved
in performing the categorical search in this experiment, despite its similarity with the cases
of target pyramid among pyramids in the third experiment (paragraph 4 in the results), where
extrafoveal processing was not observed. We explain this difference by the fact that in Exper-
iment 3, the trials with target pyramid among pyramids were quasi-randomized with the oth-
ers. The participants in Experiment 3 did not have a chance to develop an efficient strategy of
categorical search that would involve extrafoveal vision since the three other conditions were
relatively easy and it could have been challenging to create a separate efficient strategy for the
most difficult condition. In Experiment 4, there were many trials with target pyramid among
pyramids stimuli, so efficient utilization of extrafoveal vision could emerge. This result might
speak to the plasticity of extrafoveal processing involvement in categorical search depending
on the broader set of surrounding tasks.

Notwithstanding the apparent mean measures, we also revealed individual differences. The
MCSD showed D(29) = 0.315, p = .005, thus revealing that some participants clearly used
extrafoveal vision. The results of the one-sample t test for each participant showed p < .001
in seven participants, and it was significant even after Bonferroni multiple comparisons cor-
rection for 29 comparisons. The distribution of individual mean FirstTs showed that the dis-
tribution mode was located near 2.5 (Fig. 9b), and the CI varied a lot (Fig. 9a). This may be
interpreted as corroborating that about half of participants might not have used extrafoveal
analysis when planning saccades, while the others clearly did use it (see the points with very
low p-values in Fig. 9c).

We also analyzed the dynamics of FirstT across the experiment: A negative correlation
between FirstT and the trial number would mean a gradually more effective use of extrafoveal
analysis during the experiment. The mean of these correlations across the group is equal to
0.0004 (SD = 0.16), thus revealing no progress in the use of extrafoveal vision in the sample
as a whole. However, there are some participants who clearly demonstrated an increased or
decreased use of extrafoveal processing (see Fig. 10, on the left). Including the trials with
both correct and incorrect answers, we obtained a noticeable negative correlation—a decrease
in the use of extrafoveal processing—for three participants whose correlations were –.271,
–.246, –.248 with corresponding p-values .009, .016, .016 (they do not withstand the Bonfer-
roni correction). A noticeable increase of FirstT was observed in two participants (r = .307,
p = .004 and r = .375, p = .0015; the latter withstands Bonferroni correction for 29 compar-
isons). For the whole group, a negative correlation between the participant’s FirstT dynamics
and mean FirstT was observed (see the scatter plot in Fig. 10, on the right). Spearman’s
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Fig. 9. Individual mean FirstT 95% CI (a), individual mean FirstT distribution (b), and p-value cumulative distri-
bution of mean FirstTs (c) in all participants in Experiment 4.

correlation coefficient was –.46 (p = .011), and Pearson’s provided a better result (–.5, p =
.006). This means that those participants who involved extrafoveal processing more tended
to decrease this involvement during the experiment and vice versa. It was Participant T who
showed the best mean FirstT had the most pronounced impaired FirstT across the experiment
(both significant after Bonferroni correction).

The dynamics of time paying for each task solving (GenT) are of additional interest. As in
the previous case, we measure this dynamic for each participant by GenT and trial number
correlation. Fig. 11 represents the empirically cumulated distribution function of these indi-
vidual correlation significances. The left side corresponds to GenT increasing, the right side
corresponds to GenT decreasing. The significance .995 at the X-axis indicates .005 one-tail
significance of negative regression coefficient for a participant.
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Fig. 10. The significance of mean FirstT dynamics across trials (on the left) and scatter plot of individual FirstT
dynamic (individual correlation coefficient of FirstT and Trial number) and individual FirstT means (on the right)
for 29 participants.

Fig. 11. The empirical cumulated distribution function of left-tail significances of the general time regression
coefficient. The left side corresponds to time increasing; the right side to time decreasing. The theoretical function
for uniform distribution is shown as a diagonal line.
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Fig. 12. Changing FirstT across trials in Participant T (on the left) and Participant Ir (on the right). Black circles
show correct answers and white circles show incorrect answers.

The right side of Fig. 11 presents ten participants’ significances that are less than .0015
(right one-tail, eight of them withstand Bonferroni correction); the left side also presents
four participants’ significances less than .0015 (left one-tail, three of them withstand Bon-
ferroni correction). MCSD is D(29) = 0.35, p = .0009. The difference between theoretically
cumulated distribution functions (diagonal line in the graph) and the empirically cumulated
distribution has two extrema (see Fig. 11). This difference has a maximum at the point cor-
responding to eight participants with the most pronounced GenT decrease (at the point p =
.9995) as well as a minimum of about .2 at the point p = .08.3

Thus, we obtained convincing evidence of opposite tendencies in GenT dynamics within
the sample, and they may correspond to different strategies for solving the task. The time
increasing may indicate not only participants’ fatigue but also their putting more effort
into giving a correct answer or a shifting of criterion in the speed-accuracy trade-off. The
correlation between the regression coefficient for GenT and the logistic regression coeffi-
cient of answer correctness is .3, so an increasing time of task solving is connected with
increasing the frequency of answering correctly, which is in favor of the criterion shifting
interpretation.

To illustrate the complexity of the dynamics and individual differences, we describe two
vividly opposite cases: One participant (T) tended to use extrafoveal processing more actively
at the beginning of the experiment and used it less and less toward the end (Fig. 12, on the
left), whereas the other participant (Ir) demonstrated an increase of involving extrafoveal
processing across trials (Fig 12, on the right).

For Participant T, the mean FirstT in training series 3–8 was 1.79, and the comparison with
2.5 showed p < .0001; the regression coefficient of the FirstT to the trial number was .0.38,
p = .0015 (both p-values withstand Bonferroni correction); and the percentage of correct
answers increased across the experiment (the logistic regression coefficient equaled .24, p
= .003). GenT increased during the training series (the regression coefficient was equal to
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31 ms/trial, which corresponds to a 3-s increase during the training series). This participant
chose to solve the task more accurately at the middle of the experiment after a series of very
quick unsuccessful guesses with FirstT equal to 0 around trial 75 (see Fig. 12, left).

For Participant Ir, the tendency was precisely the opposite: the mean FirstT was 2.24, p
< .013; the regression coefficient of the FirstT to the trial number was –.23, p = .009; and
the percentage of correct answers decreased (the logistic regression coefficient equaled –.17,
p = .029; Fig. 12, right). It took less and less time for this participant to solve the task (the
regression coefficient of the GenT for a trial to the trial number was equal to –8 ms/trial,
p < .00001; for the entire sequence it was –768 ms/96 trials). This subject seemed to be
increasingly less interested in the task and seemed to rely more and more on extrafoveal
analysis without attempts to solve the task accurately.

Other participants demonstrated various patterns of dynamics across the experiment. For
example, five respondents who revealed a pronounced decrease of time for task solving (more
than one was demonstrated by Participant Ir) had stable a FirstT and stable correct answer per-
centages. Thus, one can see that the involvement of extrafoveal processing and other related
variables could change over time due to different reasons, which we plan to investigate in
further research on the basis of participant interviews and qualitative analysis.

The most interesting results were obtained for series 2 and 9, in which any eye movements
away from the screen сenter were prohibited, and thus categorical search could be performed
only by covert attention. There were no differences between mathematicians and psycholo-
gists in the ratio of correct answers: 0.56 and 0.57 in the second series and 0.68 and 0.69
in the ninth, respectively. Further statistics are therefore reported for the two groups together.
We revealed that participants were able to identify the target shape using only extrafoveal pro-
cessing, and this ability turned out to improve with practice. There were more correct answers
in the ninth series as compared to the second: 0.68 and 0.56, respectively, t(28) = 2.71, p =
.011 (p = .027 for non-parametric test). The comparison of series 2 and 9 shows the forced
involvement of extrafoveal processes being trained. Comparing correct answers’ frequencies
with the random guessing value of 0.25 shows t(28) = 7.5 and t(28) = 16.4 in the second and
ninth series, respectively.

Moreover, taking into consideration an evident similarity between a three- and four-angled
pyramid, as well between a five- and six-angled pyramid, and the noticeable difference
between these pairs (see Fig. 5d), we also compared the frequency of correct answers with
0.5, reflecting random guessing, after the pair identification. As we already mentioned, in the
second series, the mean frequency was 0.56 (t(28) = 1.49, p = .15), while in the ninth it
was 0.68 (t(28) = 6.99, p < .000001). This result indicates successfully solving a categorical
search task by using only covert attention. Note that the correlations between the percent of
correct answers in both the second and ninth series and the mean FirstT in each participant
were small and equaled .085 and .11, respectively, which means that the potential ability to
involve extrafoveal processing, which we observe in categorical search with prohibited eye
movements, does not mean participants involve it in ordinary categorical search.

Evidence of training was also shown by the results of logistic regression, with the number
of correct answers in a trial being the dependent variable and the trial number being the
independent variable. The number of correct answers in a trial increased from series 3 to
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series 8: the regression coefficient was .008, p = .000002 (with the argument varying from 1
to 96); MCSD was D(29) = 0.41, p = .00007.

To summarize, the results from the series with prohibited eye movements allow us to con-
clude that (i) extrafoveal processing in the second series with prohibited eye movements is
quite effective; (ii) the participants somehow learned extrafoveal processing while performing
categorical search; and (iii) even though the participants improved their ability of extrafoveal
processing, they did not demonstrate the progress in using it in ordinary trials.

Another important finding of this experiment is the modification of strategies by most of the
participants in the course of the experiment, and these strategies changed differently in differ-
ent participants, as evident in a correlation of the extrafoveal involvement with the dynamics
in the change of this parameter. Some subjects demonstrated successful training in categorical
search, which was manifested in reducing the number of visited sectors and, consequently, in
an improvement of extrafoveal analysis effectiveness. Other participants, who initially distin-
guished stimuli more successfully and had a higher extrafoveal analysis efficiency measure,
demonstrated its deterioration in the course of the experiment. These differences were even
more pronounced for the dynamics of GenT in the categorical search. It can also be assumed
that such factors as the individual characteristics of participants, their perceptual and cogni-
tive strategies, and also situational motivation influenced search efficiency. These findings are
consistent with other works in the field (Gandini et al., 2008; Fromer et al., 2015), allowing
us to discuss individual differences in the strategies of visual search, as well as their specific
changes across the experiment.

Additionally, it was found that identifying pyramids, representing complex geometric
shapes, as well as the level of extrafoveal analysis effectiveness, is not directly connected
to the educational profile of the participants. Based on post-experiment interviews, specific
experience with three-dimensional objects, based on knowledge and skills in the fields of art
and architecture, may be more interrelated with success in this task.

We studied the organization of perceptual processing and showed that extrafoveal pro-
cessing is determined not only by low-level perceptual features but also by character-
istics of a higher level provided by mental categorization operations and possibly by
the experience in working with complex geometric stimuli. The influence of top-down
mechanisms on the perception process has been shown in previous works (Rosenholtz,
Huang, & Ehinger, 2012). As applied to our study, similar results were obtained by
Yang and Zelinsky (2009), who showed the effective categorical search for real-world
objects. Our study adds to these findings the involvement of categorical top-down pro-
cesses, both in overt attention and in extrafoveal analysis while processing complex geometric
shapes.

6. General discussion

The aim of the current study was to examine the capabilities of extrafoveal processing
during the categorical search for geometric shapes. More precisely, we aimed (i) to investigate
the dependence between the efficacy of extrafoveal processing in categorical search and the
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degree of stimulus difficulty; (ii) to describe individual search strategies; and (iii) to study the
plasticity of the covert attention involvement.

A gradual increase of stimuli difficulty allowed us to investigate how extrafoveal process-
ing changes depending on shape complexity. In this vein, Experiment 1 with simple geometric
shapes demonstrated that most of the participants gave correct answers based predominantly
on the extrafoveal analysis of all stimuli in parallel. Notably, even for such a simple task, we
observed strong individual differences reflected in either more “guessing” or more “careful”
strategies in different participants. Experiment 2 involved more difficult shapes such as rect-
angles and squares and confirmed the influence of two factors on overt attention, in line with
other studies: the distractor (e.g., Alexander & Zelinsky, 2011, 2012; Reingold & Glaholt,
2014) and spatial orientation (Gregory & McCloskey, 2010; Rosch, 1975). In our study, these
factors were shown to influence extrafoveal processing and categorical search efficacy as well.
Experiment 3 involved three-dimensional shapes and revealed conditions of increasing diffi-
culty with less contribution of extrafoveal processing as evidenced by the increased number
of fixated stimuli before reaching the target. This experiment also identified the most chal-
lenging condition with the target pyramid amidst distractor pyramids, which was investigated
in detail in Experiment 4. In the fourth experiment, we found that the categorical search for
pyramids was particularly difficult for all participants: They hardly relied on extrafoveal pro-
cessing during the search and they performed a lot of fixations on the stimuli before answer-
ing. However, the findings in the trials prohibiting any eye movements revealed the plasticity
of the perceptual strategies: if overt attention was not accessible, extrafoveal processing was
sufficient for categorical search with much higher accuracy than random search.

The present study provides fresh evidence that extrafoveal processing of the whole visual
field is involved in the categorical search from the array onset: In many cases, the very first
saccade was directed to the target stimulus or participants gave a correct answer without
any eye movements. This finding suggests that categorical search relies on the global func-
tioning of pre-attentive and covert attention mechanisms, as they are distributed across the
visual field and provide information relevant for the search from the very beginning of stimuli
presentation (Treisman, 2006). One possible explanation is that the observers could access
information about the stimuli-category relations through immediate and parallel processing
of definite sets of visual features that mostly define this category (Evans & Treisman, 2005).
For example, simple 2-D shapes like the circle and triangle in Experiment 1 differed greatly
due to the presence or absence of angles. A similar effect was shown for more complicated
3-D shapes like the pyramids and prisms in Experiments 3 and 4: They differed in visible or
invisible bases. An alternative explanation might be as follows: A substantial amount of infor-
mation including higher-level conceptual data can be preserved in visual form, such as pro-
totypical images (Hershkowitz, 1998) or perceptual symbols (Barsalou, 1999), and is avail-
able for comparison with the external data from extrafoveal vision, either pre-attentively or
covertly, before the overt attention deployment. Furthermore, our data could be considered as
evidence in favor of a conceptual load on visual attention. This makes a large set of visual
features and object-selective information accessible from peripheral vision prior to saccadic
eye movements (Melcher, 2007), meaning that this information can be used to guide saccadic
preparation in a top-down fashion (Moores, Laiti, & Chelazzi, 2003).
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In contrast with Brown et al. (1992), we observed evident differences in processing 2-D
and 3-D shapes as reflected in the increased number of fixated stimuli in the latter condition
and therefore a more frequent necessity to involve overt attention to identify the target. This
discrepancy can be explained by the more pronounced homogeneity of three-dimensional
stimuli in our study as compared to the cited one. Furthermore, in our experiments, we used
more realistic images of shapes as compared to the ones of the mentioned work, which could
also contribute to their better perception.

Although the issue of attention mechanisms has been the focus of a continuous debate for
decades, most studies have concentrated primarily on the general tendencies of categorical
search. This allowed predicting some specific search behaviors common to all participants
irrespective of their backgrounds. Still, many nuances were not covered in this mainstream
approach, leaving numerous potentially critical factors contributing to extrafoveal processing
beyond the scope of the study. Our research focused not only on the average characterization
but also on individual differences in perception and attention processing. This required some
modifications of the commonly applied methodology to distinguish individual strategies from
random variability to make these differences visible and accessible for analysis.

The methodological novelty of this study is its application of global hypothesis testing to
evaluate not only the mean measures of the sample but the performance peculiarities in each
particular individual, as well as the group characterization “globally,” as opposed to “on aver-
age.” The difference is extremely apparent where the participants showed different tendencies
throughout the experiment: There is no doubt that some participants used extrafoveal analy-
sis, and it seems that others did not use it (e.g., Experiment 4). This global hypothesis testing
allowed us to avoid multiple comparisons. Note that even if the tendency in any participant
cannot be accepted as statistically significant after the Bonferroni adjustment, the distribution
of individual p-values may verify the presence of (probably opposite) tendencies, since this
distribution differs from the uniform distribution presupposed by the global H0 hypothesis.

Our hypothesis about more efficient extrafoveal processing in a professional group com-
prised of “experts” was largely disproved. These “experts” performed just the same as the
“novices.” At the same time, post-experimental interviews bring some evidence that broader
relevant experience with three-dimensional shapes might contribute to a higher involvement
of extrafoveal processing. Further investigation of this hypothesis requires studies with other
relevant participant groups, such as architects, designers, and so forth.

Having documented that some of the participants used extrafoveal analysis intensively in
the ordinary trials, we also took the opportunity to examine the plasticity of extrafoveal pro-
cessing by introducing special trials prohibiting any eye movements away from the screen
center. Other works have already demonstrated that forced covert attention enhanced perfor-
mance in a texture segmentation task (Yeshurun & Carrasco, 1998), increased spatial resolu-
tion (Carrasco, Loula, & Ho, 2006), and heightened contrast sensitivity at the target location
(Pestilli & Carrasco, 2005). In line with the previous research, we revealed that forced covert
attention provides a significantly higher number of correct answers as compared to random in
the most complicated condition with pyramid shapes, even though most participants tended
not to use covert attention in ordinary trials. This forced condition presents a fundamental
ability to identify even the exceptionally challenging shapes in extrafoveal vision in most
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participants. Since most participants were able to use it successfully in the forced task, it
again highlights the individual strategies used in the free trials with more or less pronounced
involvement of extrafoveal processing.

The findings of the current study also suggest that the generation of the first saccade may
be quite an automatic process rather than requiring top-down control. However, in some par-
ticipants, changing the search strategy during the experiment may indicate a form of some
tactical override and strategic delays of saccade execution. Additionally, using the flexible
strategy for both easier and more difficult conditions in Experiment 3 prevents a develop-
ment of extrsfoveal processing in the most difficult condition. Experiment 4 included the
most difficult task and demonstrated effective extrafoveal processing in the condition with
the prohibition of eye movements as well as in the free trials. This finding is consistent with
Findley (1997) who assumed the same tendencies based on unexpectedly short latencies even
in challenging conditions.

To sum up, our findings, at least for simple 2-D geometric shapes, suggest that the target
category can be processed in extrafoveal vision very early and plays an important role in
guiding overt attention. This result is largely consistent with previous works showing that
overt attention guidance is fulfilled not only by low-level visual saliency (Chen & Zelinsky,
2006). However, the current study demonstrates that when increasing the shapes’ difficulty,
the role of extrafoveal processing declines, thus reflecting the necessity for foveal analysis
of the objects. Although we suppose categorical characteristics to be more influential as
compared to visual features, at least for more complicated shapes, it is still to be determined
whether effective categorical identification is based on a parallel detection of low-level fea-
tures defined for a category (Evans & Treisman, 2005; Walther & Shen, 2014) or on a holistic
perceptual representation of conceptual information critical for the object category (Seidl-
Rathkopf, Turk-Browne, & Kastner, 2015; VanRullen, 2009; Wyble, Folk, & Potter, 2013).
Therefore, further research is needed to more thoroughly investigate which processes are
involved in extrafoveal processing in a categorical search task.

7. Conclusion

The findings of the present study revealed a significant role of extrafoveal processing in the
categorical search for geometric shapes. This was reflected in the smaller number of fixated
objects prior to the target selection as compared to a random choice of fixated objects. In the
condition with simple geometric shapes and 2-D shapes, the target was identified from the
very first saccade or even without any saccades. With an increase of the shapes’ difficulty,
the role of extrafoveal processing declined as reflected in the increased number of fixations
at the stimuli, thus indicating the necessity for foveal analysis. Even for simple stimuli, we
observed individual differences resulting in various strategies with more or less pronounced
degrees of extrafoveal processing. The trials that prohibited eye movements away from the
screen center evidenced the principal ability to use covert attention and extrafoveal process-
ing and t efficacy in the most challenging condition with barely distinguishable geometrical
shapes. Moreover, we have shown the plasticity of extrafoveal processing, since it can be
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trained. Further research is necessary to examine the possibilities of extrafoveal processing
during a categorical search for other higher-level stimuli to differentiate bottom-up and top-
down tendencies in visual perception. Overall, the current study provides evidence of the
profound contribution of extrafoveal processing in the complicated process of categorical
search.

Notes

1 We understand that using a t test for asymmetric distribution can provide a vulnerable
result. Indeed, here we have the right distribution asymmetry that results in an under-
statement of p-values when the hypothetic mean exceeds the sample mean. Still, we
claim that the difference between the observed and hypothetical FirstT is reliable, given
that p-values are less than .0001.

2 Some general mathematical details on global testing may be found in Arias-Castro, Can-
dès, & Plan, 2011 and Candes, 2018.

3 For the minimum, the KS test one-side p-value is about .05. The simultaneous estimation
of both maximum and minimum differences of the distribution function with KS criterion
is in our case of opposite tendencies absolutely correct.
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