
Atmospheric Pollution Research 12 (2021) 101205

A
1
l

Contents lists available at ScienceDirect

Atmospheric Pollution Research

journal homepage: www.elsevier.com/locate/apr

External validation for statistical NO2 modelling: A study case using a
high-end mobile sensing instrument
Meng Lu a,∗, Ruoying Dai b, Cjestmir de Boer c, Oliver Schmitz b, Ingeborg Kooter c,
Simona Cristescu d, Derek Karssenberg b

a Department of Geography, University of Bayreuth Universitaetsstraße 30, 95447 Bayreuth, Germany
b Department of Physical Geography, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands
c Netherlands Organization for Applied Research, TNO, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
d Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

A R T I C L E I N F O

Keywords:
Nitrogen Dioxide
Statistical modelling
Model validation
Hyperparameter optimisation
High-end mobile sensing instruments
Spatial prediction

A B S T R A C T

Statistical learning models have been applied to study the spatial patterns of ambient Nitrogen Dioxide (NO2),
which is a highly dynamic, traffic-related air pollutant. Commonly, the validation process in most studies
is based on bootstrapped split-sampling of training and test sets from fixed ground station measurements.
As the ground stations distribute mostly sparsely over a region or country, this kind of cross-validation
validation method does not consider how well models are capable of representing spatial variations in air
pollution mostly occurring over distances shorter than the ground station sampling spacing. This may lead
to inadequate hyperparameter optimisation and bias when comparing different statistical models. External
mobile measurements are therefore needed for more reliable model evaluations as these provide detailed
and spatially continuous information on air pollution patterns. However, most current designs of mobile
NO2 sensing instruments suffer from the trade-off between flexibility and measurement accuracy, as high-
end sensors are commonly too heavy to be carried by a person or on a bike. In addition, sufficient repetitions
over time are needed so that the measurements are representative to concentrations over a relatively long-term
period. In this study, we installed a mobile air quality station onboard a cargo-bike to collect a dataset suitable
for external validation. With the external validation dataset the model hyperparameter setting and statistical
model comparison results alter. Our model comparison results also differ from previous studies relying only
on ground stations for cross-validation.
1. Introduction

Chronic exposure to air pollution poses a threat to public health.
The World Health Organisation estimated air pollution to contribute to
7 million deaths worldwide in 2016 (Organization et al., 2018). From a
medical perspective, common air pollutants such as particulate matter
and Nitrogen Dioxides (NO2) damage the cardiovascular and respira-
tory systems (Anderson et al., 2012; Pascal, 2009). In the Netherlands,
the NO2 concentration limit set in 2017 was exceeded several times in
areas with busy traffic (Atlasleefomegeving, 2020). Spatial prediction
of NO2 is needed for making scientific-based recommendations to re-
duce NO2 emissions and meet the Goal 13 (topic: Atmosphere) of the
Sustainability Development Goals 2030 (SDGs, 2017). Emissions from
traffic can be direct and indirect. Atmospheric NO2 is mostly traffic-
related as an indirect secondary emission of an oxidation result of
emitted NO, while the direct primary emission as NO2 is minor (UK

∗ Corresponding author.
E-mail address: meng.lu@uni-bayreuth.de (M. Lu).

Department for Environment and Affairs, 2004; Atlasleefomegeving,
2020).

Ground monitoring stations of NO2 can be routinely run or are
project-oriented, which involves considerable investments (Hoek et al.,
2008b). Recent studies show a rise in urban low-cost sensors in air qual-
ity studies (Spinelle et al., 2015; Schneider et al., 2017; Isiugo et al.,
2018). Low-cost sensors for NO2 mainly include electrochemical and
metal oxide sensors, the former is based on chemical reactions between
gases in the air and electrodes in the liquid in a sensor and the later is
based on conductivity change of the sensing material. Low-cost ground
sensors have been used to monitor air quality (Rai et al., 2017) and to
understand spatiotemporal variations of air pollutant (Nagendra et al.,
2019) and the relationships between the spatiotemporal variation of air
pollutants and the urban environment (Miskell et al., 2018). They are
used independently (Hasenfratz et al., 2015; Marjovi et al., 2015; Apte
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et al., 2017) or fused with ground monitoring stations (Gressent et al.,
2020) for more accurate prediction (than using ground monitoring
stations alone) of air pollution in space–time. Meanwhile, the deficits of
low-cost sensors are obvious. Measurements from low-cost sensors are
subject to sensor drift and interference effects. Sensor drift denotes the
growing bias of sensor response due to the ageing electrochemical cell.
Interference effects refer to the sensors’ response to other pollutants,
gases, temperature and relative humidity, leading to the measurements
being presented lower (negative interference effects) or higher (pos-
itive interference effects) than the actual concentrations (van Zoest
et al., 2019). For instance, an application of low-cost sensors in the
Netherlands carried out in Amsterdam showed a significant signal drift
over a period of two months. Calibration with temperature and relative
humidity however improved the fit with ground stations (Mijling et al.,
2018).

Methods for spatiotemporal mapping of NO2 include dispersion
odels (Holmes and Morawska, 2006; Health Effects Institute, 2010),

tatistical models (Chen et al., 2019b), or hybrid models (Mölter et al.,
010b; Marshall et al., 2008; Beelen et al., 2010; Dijkema et al.,
010; Akita et al., 2014). Dispersion models simulate the emission,
ransformation, transportation and deposition of atmospheric particles,
ut require detailed emission inventory data and are computation-
lly intensive; scaling a dispersion model towards larger areas can
e at the cost of computational intractability. Statistical models aim
t finding relationships between ground monitor station observations,
atellite measurements, and ancillary NO2 data, called geospatial pre-
ictors (Rivera et al., 2013; Park and Kwan, 2017; Kharol et al., 2015;
siugo et al., 2018; Chen et al., 2019b; Lu et al., 2020a; Li et al.,
020; Chan et al., 2021). The geospatial predictors are variables that
elate to the emission sources (e.g., transport network) and dispersion
rocesses (e.g., meteorological data) of the pollutants (Briggs et al.,
000). The statistical approach has been used to predict high-resolution
O2 at various spatial scales. Conventionally, linear regression methods
ave been used (Hoek et al., 2008a; Larkin et al., 2017) for map-
ing and analysing the pollutant sources. More recently, ensemble
ree-based (Dou et al., 2021; Song et al., 2021) and neural networks-
ased (Li et al., 2020; Shams et al., 2021) machine learning methods
ave shown to be capable of further improving the prediction accuracy
or the spatial and spatiotemporal prediction of NO2. Environmental
pidemiological studies have shown that mapping temporally resolved,
ong-term NO2 climate, e.g. NO2 of each hour of a day aggregated
ver multiple years (Lu et al., 2020b), to be preferable to account for
uman space–time activities in personal exposure assessment (Lu et al.,
019). However, validation thus far is mostly done against ground sta-
ion measurements, which does not enable extensive validation of the
patial pattern of air pollution predictions. To validate spatiotemporal
redictions regarding spatiotemporal patterns, external measurements
roviding more detailed spatiotemporal information is necessary.

Several studies compared the accuracy of high-resolution NO2 map-
ing of various statistical models, including standard and regularised
inear regression (Briggs et al., 2000), ensemble tree-based models (dos
antos et al., 2020), transformation-based (e.g. support vector ma-
hine), and artificial neural networks (Chen et al., 2019b; Kerckhoffs
t al., 2019; Lu et al., 2020a). Kerckhoffs et al. (2019) modelling
FP (Ultra Fine Particles) and Chen et al. (2019b) modelling NO2
ver several European countries, concluded that the ensemble tree-
ased and linear regression models obtain similar prediction accuracy.
owever, neither of these two studies showed or evaluated the gridded
rediction (i.e. the predicted continuous surface of NO2). Also, in the
lobal NO2 modelling study of Lu et al. (2020a), it is found that vari-
us ensemble tree-based methods obtaining almost the same accuracy
ased on Cross-Validation on Ground Stations (CVGS) may give very
ifferent prediction patterns. There is thus a need to evaluate prediction
odels by comparing modelled and observed spatial patterns of NO2

nd preferably use observed patterns also in model building additional
2

o CVGS. c
Using external air pollution measurements that measures local spa-
ial variation for validating air pollution models (both statistical and
umerical) has been shown to be necessary for a reliable model evalu-
tion (Khreis et al., 2018), however, remains a challenge due to limited
ir pollution measurements and the selection of an external validation
ataset (Liu et al., 2018; Khreis et al., 2018). Most studies used external
round monitoring measurements for external validation. Liu et al.
2018) used ground station measurements to correct numerical models
hrough the application of a correction factor to the ground station
easurements. Mölter et al. (2010a) used air dispersion model output

o LUR models and ground monitoring stations for validation. Ren et al.
2020) used monitoring stations that do not fulfil the 75% completeness
riteria (i.e. less than 25% of data is missing) as external validations
dditional to other cross-validation strategies for a comparison between
achine learning and LUR models. Similarly, Chen et al. (2019b) used

xternal ground station measurements to evaluate different statistical
ir pollution models for comparison and concluded the strengthened
odel evaluation by the use of an external evaluation dataset. Khreis

t al. (2018) evaluated the impact of using different ground measure-
ents to validate statistical and numerical to the model evaluation

esults. The use of low-cost sensors in model validation are less fre-
uent, likely due to the challenge in quality control and assurance. Lu
t al. (2019b) used low-cost sensors (PurpleAir sensors) to evaluate
LUR (Land Use Regression) statistical PM2.5 model. They compared

lock-level LUR predictions with PurpleAir sensor measurements and
ound higher values of the PurpleAir sensors and that the LUR pre-
ictions explain on average 20% of the variations from the PurpleAir
ensor observations.

The objectives of our study are to (1) design a study to collect high
uality measurements of air pollutants that are suitable for validating
tatistical models, and (2) use these measurements to evaluate and
ompare statistical NO2 models built using the official national ground
ir quality monitoring network. We will answer the question if we can
etter optimise hyperparameters (parameters whose values are used to
ontrol the model training process and are not obtained from model
raining) in the models using these measurements and whether model
omparison results differ from those based on CVGS.

We monitor NO2 concentrations by installing a mobile air quality
tation onboard a cargo-bike to evaluate temporally resolved NO2
odels based on different statistical algorithms. Specifically, we fo-

used on comparing three methods, Lasso (Tibshirani, 1994), Random
orest (RF, Breiman, 2001), and eXtreme Gradient Boosting (XGBoost,
GB, Chen et al., 2019a). These methods are selected as they are
epresentative for the most recent spatial prediction techniques for
O2 mapping, with Lasso and Random Forest compared in Chen et al.

2019b), Kerckhoffs et al. (2019) and Lu et al. (2020a). We compared
he Lasso, RF, and XGB models of the corresponding hours with the
argo-bike measurements to understand the amount of spatial variabil-
ty a statistical model could capture, and to compare different models
nd hyperparameter settings beyond CVGS accuracy of the models.

. Materials and methods

.1. Data

.1.1. Cargo-bike and instruments
The cargo-bike (Fig. 1) was designed to carry reference apparatus

n a compact package, to operate with optimal freedom of movement
hile providing reliable measurement data. It was equipped with two
2,8 V/100 Ah LiFePo4 batteries (Victron), a high-efficiency MultiPlus
ompact inverter/charger (Victron) and a 150Wp solar panel. The
argo-bike and the instruments onboard weight 160 kg, has an e-bike
upport motor, and can operate 3–5 h continuously.

The air quality monitoring apparatus were: 42i NO𝑥 monitor, 49i
3 monitor (Thermo Fisher Scientific), model 3321 APS (TSI), WXT536

limate sensor (Vaisala), MI70 + probe GM70 CO2 sensor (Vaisala),
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GPS, a PC and several low-end air quality sensors. The housing was
custom-made from sandwich panels and extruded aluminium profiles.

The cargo-bike covered a route shown in Fig. 2, in Nijmegen, the
Netherlands, from July 16 to 19, 2019. The total route length is 29
km. The cargo-bike measured NO2 every morning from 8 am to 11 am,
the route was repeated daily. A two-point calibration was performed
on the Thermo 42i NO𝑥 monitor using synthetic zero gas (0 ppb) and
calibration gasses of NO (410 ppb) and NO2 (366 ppb).

We compared the cargo-bike measurements with ground station
sensor measurements for validation. Along the cargo-bike route, there
are two national ground stations established, one is the Nijmegen-
Graafseweg station (called Graafseweg station, Latitude: 51.941372,
Longitude 5.857777), which monitors mainly air pollution from traffic.
The other is Nijmegen-Ruyterstraat station (called Ruyterstraat station,
Latitude: 51.838221, Longitude: 5.856938), which monitors mainly
background pollution. The stations are managed by RIVM. Over the
period of the cargo-bike measurements considered, the mean NO2 level
is 23.25 μg/m3 and 14.03 μg/m3, respectively, for the Graafseweg
and the Ruyterstraat stations. We acquired minutely ground station
measurements and did the comparison using the cargo-bike and ground
station measurements 2 min before and after when the cargo-bike
was at the national ground stations (we cycled slower when we were
close to the two ground stations), to account for differences in sam-
pling duration and frequency between the cargo-bike and the ground
stations. To facilitate the comparison, we also averaged the ground
stations and cargo-bike measurements, respectively. Fig. 3 shows that
the cargo-bike measurements matches better with the measurements
from the Ruyterstraat station than the Graafseweg station. This could be
explained by the much higher traffic intensity around the Graafseweg
whereas the Ruyterstraat is in a neighbourhood away from the larger
busy street. The cargo-bike is closer to the emission outlets of vehicles
and has a higher sampling rates. These may explain that they show
higher variations compared to the ground station measurements. A
notably high value of a cargo-bike measurement on 17-07 may be
caused by a heavy-emission vehicle passing by.

To use the cargo-bike measurements as external validations of statis-
tical models, which are trained on ground station measurements in unit
μg/m3 (micrograms per cubic metre). The cargo-bike measurements are
converted from ppb to μg/m3 under the assumption of the ideal gas
behaviour. Specifically, we firstly use the ideal gas law to determine
the molar volume at the pressure and temperature that were measured
during the bike-ride sampling:

𝑀𝑜𝑙𝑎𝑟𝑉 𝑜𝑙𝑢𝑚𝑒NO2 = 𝑛𝑅𝑇 ∕𝑃

where n is 1 mol, R is the gas constant (0.082057366080960), T is
temperature in Kelvin and P is pressure in atm. Then the NO2 in μg/m3

is calculated as:

NO2[μg/m3] = NO2[ppb] ∗ (𝑀𝑜𝑙𝑎𝑟𝑊 𝑒𝑖𝑔ℎ𝑡NO2∕𝑀𝑜𝑙𝑎𝑟𝑉 𝑜𝑙𝑢𝑚𝑒NO2)

The cargo-bike measurements are aggregated in space–time to every
minute and in each (25 m) grid cell of the prediction map. The mea-
surements are also aggregated over the four days, to eliminate effects
from random vehicles to represent general emission patterns.

2.1.2. Ground monitor stations used for statistical modelling
In the Netherlands (41,543 km2), the national air quality ground

monitoring network consists of 66 ground stations. These ground sta-
tions are managed by the National Institute for Public Health and the
Environment (RIVM, National Institute for Public Health and the Envi-
ronment, 2017). We further incorporated the ground monitor network
from Germany (357.386 km2, 376 stations) to better identify NO2-
predictors relationships using machine learning models. The ground
monitoring station measurements are from the European Environment
Agency (2021) for the Netherlands and the Umweltbundesamt (2021)
for Germany. Three stations with inadequate measurements (i.e. miss-
ing values at certain hours) are neglected. The measurements are
3

Fig. 1. The cargo-bike and instruments that are used to sensor the NO2 in our study.

Fig. 2. Routes taken by the cargo-bike, the background map is from OpenStreetMap
(OpenStreetMap contributors, 2019). The start and end of routes were at the same
location, indicated by the point ‘‘A’’.

downloaded for the same days as the cargo-bike measurements and
from 7:00 am–11:59 am.

The ground station measurements used for prediction are aggre-
gated in two ways, one is the mean of all hours and days measured
by cargo-bike, called NEDL-avg dataset, and the other the mean of each
hour of the days corresponding to the time of cargo-bike measurements,
called NEDL-hr dataset. The NEDL-avg is used for XGB and RF hyper-
parameter optimisation and to identify the grid resolution for mapping.
The NEDL-hr is used for building hourly statistical models.

2.1.3. Geospatial predictors
The geospatial predictors (Table 1) were calculated at 25 m reso-

lution. They are either spatial attributes aggregated within a circular
ring centred at each sensor or prediction location, called buffered
predictors, or values of the spatial attribute at the observation or
prediction location, called gridded variables. The buffered predictors
include industry areas, roads, VIIRS (Visible Infrared Imaging Radiome-
ter Suite) Nighttime Day/Night Band (DNB) radiance values (night-
light, NOAA, 2021) and population. Gridded variables include wind
speed and temperature (Dee et al., 2011), elevation (Amante and
Eakins, 2009), mean of the NO column density from TROPOMI level
2
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Fig. 3. Comparing the cargo-bike measurements with the Dutch national ground
monitoring stations in the region. (a) Locations of the two ground stations, blue
block is around the Graafseweg station and yellow the Ruyterstraat station. Bounding
boxes (min latitude, max latitude, min longitude, max longitude) for the Graafseweg
station are (51.84126, 51.84151, 5.85753, 5.85786) and for the Ruyterstraat station are
(51.83810, 51.83830, 5.85701, 5.85719). The red line indicates the cargo-bike route.
Within the two blocks the cargo-bike measurements are compared with the ground
station measurements at the corresponding times. (b) The cargo-bike and ground station
measurements while the cargo-bike was close to the ground stations. (c) Average values
of the ground stations and the cargo-bike measurements.

3 product (Google Earth Engine, 2019) in July 2019 (3.5 × 7 km2

resolution). The buffered predictors of road and industry are calculated
from OpenStreetMap (OpenStreetMap contributors, 2019). For detailed
descriptions of the sources of geospatial predictors and how they are
calculated please refer to Lu et al. (2020a).

2.2. Research design

The methodological framework is designed as follows:

1. A set of statistical learning methods is applied to DENL-avg
to identify hyperparameters for DENL-hr and to identify grid
resolution for mapping based on variable importance.

2. The statistical learning methods and optimised hyperparameters
are applied to DENL-hr to model hourly NO2. These statistical
learning models are evaluated using CVGS.
4

3. Hourly NO2 is predicted for the study area with each of the
statistical models using DENL-hr. XGB hyperparameters are ad-
justed while observing the prediction pattern.

4. The predictions from hourly models using the hyperparame-
ters optimised in step (1) and for XGB additionally the pa-
rameters optimised in step (3) are compared to the cargo-bike
measurements.

2.3. Random forest, extreme gradient boosting, Lasso

Lasso is a linear regression algorithm that uses an L1 norm to
shrink variable coefficients to zero to reduce model variance. RF and
XGB are ensemble tree-based methods, which mitigate two negative
effects of a single tree model: instability and coarse separation. Large
trees are subject to instability, while small trees are inaccurate for
their piece-wise constant approximations. Bagging overcomes these
two constraints by using small trees to add stability and avoid coarse
approximation by averaging over small trees (Friedman, 2001). RF is
based on Bagging, which grows trees independently while XGB is based
on gradient boosting, which grows trees subsequently based on current
model residuals. RF extends from bagging by choosing the variable to
split from a subset a of variables. XGB is a scalable gradient boosting
algorithm, which enables multiple penalisation paths to control model
complexity to prevent model over-fitting, including regularisation on
tree width and terminal node values, as well as dropping trees.

The variable importance is calculated for XGB and RF. We use the
averaged ranking in 20 times bootstrapping for each method (Lu et al.,
2020a). For the XGB the gain scores (Chen and Guestrin, 2016) are used
and for the RF the permutation test is used to calculate the variable
importance.

2.4. RF and XGB hyperparameter optimisation

The NLDE-avg dataset is used for hyperparameter optimisation,
through grid search, with 5-fold CVGS. For XGB, the learning rate (eta),
number of iterations (rounds), maximum tree depth (max.tree.depth)
and gamma are tuned, each time 70% of data is drawn from the training
set. The search grid for the number of iterations (rounds) was from 200
to 3000, with a step of 200; maximum tree depth (max-depth) from 3
to 6 with a step of 1, learning rate (eta) from 0.001 to 0.1 with a step of
0.05, the penalty term gamma (Chen et al., 2019a) from 1 to 5 with a
step of 1. The 5-fold CVGS result indicates the optimal hyperparameters
to be eta = 0.051, rounds = 200, max-depth = 3, gamma = 1. For
RF, the minimum number of trees on the end nodes (min.node.size),
and number of variables that are randomly drawn for each tree (mtry)
are optimised. The optimal setting for RF is min.node.size equals 5 and
mtry equals 12, the number of trees is set to 1000 for random forest,
which is a safe choice as the high number of trees will not negatively
affect model performance.

2.5. High setting of XGB hyperparameters

As the spatial pattern of XGB can vary greatly with different hyper-
parameter settings despite the CVGS accuracy remaining the same (Lu
et al., 2020a), we observed spatial prediction patterns from multiple
XGB hyperparameter settings. We tested increased learning rates of
0.002, 0.001, and 0.0005, and estimators (i.e. the number of trees) of
300, 3000, and 5000. We found altering the learning rate from 0.002
to 0.0005 only affect the prediction patterns subtly but setting the
learning rate to 0.002 and 0.051 (original setting optimised by CVGS)
makes a considerable difference in their predicted NO2 patterns. The
CVGS accuracy is optimised at 3000 trees with this new learning rate,
which remains approximately the same compared to the original setting
(Table 4). We also increased the L1 norm (lambda) from 2 to 10, with a
step of 2, and gamma (Chen and Guestrin, 2016) to 5, to further control
respectively extreme values at the terminal node and model complexity.
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Table 1
Predictors used in this study. ‘‘_mon’’ indicates months, (mon = 1, . . . ,12). ‘‘_buf’’ indicates the buffer radius for road density
and industry areas. The buffered predictors with buffer radii of 25 m, 50 m, 100 m, 300 m, 500 m, 800 m, 1000 m, 3000
m, 5000 m are calculated. ‘‘_bufnl’’ indicates the buffer radius for the nightlight. The buffer radii of 450 m, 900 m, 3150 m,
4950 m, are calculated. The original resolution is provided for gridded (raster) variables and data types for vector variables.

Predictor Variable name Unit Resolution/data type

Monthly wind speed at 10 m altitude. Wind_speed_10m_mon km/h 10 km
Monthly temperature at 2 m altitude. temperature_2m_mon Celsius 10 km
TROPOMI July 2019 mean vertical column density. TROP0719; Tropomi mol/cm2 0.01 arc degrees
Population in 5 km grid population_5000 Count 5 km
Population in 3 km grid population_3000 Count 3 km
Population in 1 km grid population_1000 Count 1 km
Nightlight nightlight_bufnl W cm−2 sr−1 500 m
Total length of highway road_1_buf m Polygon, lineString
Total length of primary roads road_2_buf m Polygon, lineString
Total length of local roads road_M345_buf m Polygon, lineString
Area of industry I_1_buf m2 Polygon, lineString
.

With these settings the spatial prediction patterns of XGB, as well as
their correlations with cargo-bike measurements change subtly. We will
show the result of XGB with the maximum tree depth set to 5, learning
rate 0.002, number of estimators 3000, lambda 2, and gamma 5. We
refer to this hyperparameter setting of XGB as ‘‘high setting’’ (XGB
hs); compared to the original setting, it searches the gradient much
more slowly, correspondingly with more iterations, and uses additional
penalties to control model over-fitting.

2.6. Accuracy assessment

The RMSE (Root Mean Squared Error, 𝑅𝑀𝑆𝐸 =
√

1
𝑁

∑𝑁
𝑖=1(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 )2) provides a general insight into the vari-

ance and magnitude of the error. In addition, we calculated the MAE
(Mean Absolute Error, 𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 |)) for the
magnitude of the error and the IQR (Inter-Quartile Range, 𝐼𝑄𝑅 =
𝑄3 − 𝑄1) for the variance of the error. To make the accuracy assessed
at different times comparable, we calculated the 𝑅2 (R-squared, 𝑅2 =
1−𝑚𝑒𝑎𝑛((𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 )2)∕𝑣𝑎𝑟(𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 )), where var(.) indicates the
variance function. We used 80% of the dataset for modelling and 20%
for validation. A 20-time bootstrapped cross-validation was used. Thus,
the accuracy metrics described above were calculated on validation
datasets 20 times, and the median of these 20 results was used as the
final accuracy measure.

3. Results

3.1. Models trained on NLDE-avg

Table 2 compares the variable importance obtained by the RF and
XGB models trained on the NLDE-avg dataset. The top three ranked
variables are the same, which consists of the emission-related variables
primary road length within 25 m buffers. This indicates the maps can
capture spatial variability at 25 m resolution. Therefore, the statistical
modelling is based on 25 m resolution grids. Other emission-related
variables include primary roads in 50 m and 100 m buffers and local
roads in 100 m buffers. The variables are ranked similarly between RF
and XGB. Over the study area, the Pearson’s correlation coefficients
between XGB and RF predictions is 0.97, between RF and Lasso 0.94,
XGB and Lasso 0.90.

3.2. Hourly models

The results of XGB, XGB hs, RF, and Lasso models built respectively
for 8–9, 9–10, and 10–11 am (referred to as 8 am, 9 am, and 10
am, respectively), averaged over 4 days, using the NLDE-hr dataset,
and a comparison of variability with the cargo-bike measurements at
corresponding hours are shown in Tables 4 and 6 and Figs. 5 and 7. In
all the time slots, the XGB (i.e. with the hyperparameters tuned based
5

on grid search using k-fold CV), XGB hs and RF obtained similar CVGS
Table 2
Ranking of the top 15 most important variables of XGBoost and Random Forest, using
NLDE-avg. Please refer to Table 1 for the variable description.

Rank XGBoost Random Forest

1 population_3000 population_3000
2 road_class_3_3000 road_class_3_3000
3 road_class_2_25 road_class_2_25
4 radiation population_5000
5 population_1000 road_class_2_50
6 population_5000 road_class_3_5000
7 road_class_2_100 road_class_2_100
8 road_class_3_5000 population_1000
9 road_class_2_50 nightlight_3150
10 nightlight_450 elevation
11 elevation wind_speed_10m_9
12 road_class_1_5000 nightlight_450
13 TROP0719 TROP0719
14 road_class_3_100 nightlight_4950
15 temperature_2m_2 road_class_3_100

Table 3
20 times bootstrapped cross-validation results of the XGB, RF, and Lasso using NLDE-avg

RMSE IQR MAE R-squared

XGB 7.8 6.9 5.4 0.65
RF 7.8 6.9 5.4 0.65
Lasso 8.3 8.5 6.0 0.61

accuracy, and both outperformed Lasso. Fig. 4 shows the impact of
learning rate and compared XGB and XGB hs prediction patterns. It
could be observed that a too high learning rate leads to sporadic spatial
patterns and the spatial prediction from XGB is noisier compared to
XGB hs. The R2 of the linear regression between model predictions and
the cargo-bike measurements (Table 6) also indicated the XGB hs hav-
ing a higher correlation with the cargo-bike measurements compared to
the XGB at 8 am and other times similar. Therefore, for the rest of the
comparisons between models and with the cargo-bike measurements,
we used XGB hs instead of XGB.

The spatial predictions of the three models at the three time slots
and the corresponding cargo-bike measurements are shown in Fig. 5.
All the models predicted highest NO2 along the primary road and show
a decreasing trend away from the city centre to the suburban areas. The
Lasso prediction shows the least spatial variation and the XGB the most.
At 9 am, the highest NO2 is measured near the river Waal (Fig. 2), this
is captured by XGB and RF predictions but is completely missed by the
Lasso prediction. At 10 am, the cargo-bike measurements are higher
along the roads, and this is consistent across the model predictions.

The XGB hs, RF, and Lasso predictions along the cargo-bike track
are compared to the cargo-bike measurements (Fig. 6). The mean
(Table 5) at 8 am between model predictions and the cargo-bike
measurements are the closest. The mean of model predictions at 9 and
10 am are higher than the cargo-bike measurements (less than 25%
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Fig. 4. Spatial predictions (μg/m3) of XGB using different hyperparameter settings. From left to right: original hyperparameter setting with learning rate 0.5, original hyperparameter
setting (learning rate 0.051), high-setting hyperparameters (learning rate 0.002).
higher). To facilitate visualising the spatial variations of the statistical

model predictions compared to cargo-bike measurements, we regressed

three model predictions along the cargo-bike track each against the

cargo-bike measurements (Fig. 7). The model predictions along the

cargo-bike track vary more similarly between each other compared to

the variations in the cargo-bike measurements. The best match between

the cargo-bike measurements and the three model predictions occurs

at 10 am, all the models are capable of predicting the peaks between
6

points 7500–9000 at 10 am, when the cargo-bike left the main road.
This may be the reason that the 𝑅2 (Table 6) between model predictions
and cargo-bike measurements are the highest at 10 am. Compared
with RF and XGB, the Lasso model prediction obtained the highest
correlation with cargo-bike measurements at 10 am despite the lowest
CVGS R2. At 8 am, the cargo-bike is mostly in an area with less traffic.
The R2 of the XGB hs against cargo-bike measurements (0.27) is notably
higher compared to that of Lasso (0.00) and RF predictions (0.1). At 9
am, the cargo-bike is mostly on the main road. The R2 are similarly low
in all model comparisons.
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Fig. 5. Maps of cargo-bike measurements and predictions from XGB hs, RF, Lasso, hourly models. The dashed lines in the prediction maps indicate the cargo-bike routes.
Table 4
20 times bootstrapped cross-validation results of the XGBoost (original hyperparameter
setting), XGBoost-hs (high-setting XGBoost), Random Forest, and Lasso using NLDE-hr.
The units of RMSE, IQR, and MAE are μg/m3.

Method Time RMSE IQR MAE R-squared

XGBoost 8 am 7.8 8.1 5.6 0.70
9 am 8.7 7.5 6.0 0.60
10 am 8.7 7.3 5.8 0.57

XGBoost-hs 8 am 7.9 7.0 5.6 0.67
9 am 8.6 7.1 5.7 0.63
10 am 8.7 6.8 5.9 0.57

Random Forest 8 am 8.0 7.2 5.7 0.66
9 am 8.4 7.1 5.8 0.63
10 am 8.7 7.7 6.0 0.60

Lasso 8 am 9.0 10.0 6.6 0.58
9 am 9.7 10.1 7.0 0.53
10 am 9.6 9.1 6.6 0.51

4. Discussion

In this study, we used a cargo-bike with various air quality sensors
and high-end instrumentation for gathering spatially more detailed
ground validation data. The high-end monitors we used are equivalent
7

Table 5
Mean NO2 of cargo-bike, RF, Lasso, high-setting XGB (XGB hs) and cargo-bike
measurements.

Time Cargo-bike RF Lasso XGB hs

8 am 21.25 21.9 22.0 20.0
9 am 22.5 28.6 25.6 27.2
10 am 20.0 25.3 24.4 23.9

Table 6
𝑅2 between each RF, Lasso, high setting of XGB (XGB hs) and cargo-bike
measurements.

Time XGB RF Lasso XGB hs

8 am 0.1 0.09 0.00 0.27
9 am 0.1 0.16 0.09 0.09
10 am 0.51 0.48 0.55 0.48

to those used for official air quality monitoring. With high-end moni-
tors, i.e. apparatus, we can measure as accurate as reasonably possible
in (most) circumstances, not or minimally affected by temperature,
humidity and other cross-reactivity (e.g., NO2 sensors can be cross
reactive to NO and O3). As these monitors are usually quite large (19′′

rack form factor or comparable), until now this equipment (as far as we
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Fig. 6. Cargo-bike measurements and the XGB (high setting), RF, Lasso predictions and the cargo-bike measurements, visualised in the 1-D view. The point_id on the 𝑥-axis refers
to the position on the track followed by the cargo bike.
know) has only been used stationary or on a car or van. With the cargo-
bike we could reach considerably more areas in a city, still using this
high-end equipment. High-end equipment onboard a cargo-bike gives
the possibility to measure right at the place of interest such as densely
populated areas (e.g., city centre) or where events occur.

With our unique cargo-bike dataset, this study provides a strong
indication that the hyperparameter optimisation and model evaluation
results based solely on CVGS may be misleading. In this study, the XGB
and RF models with hyperparameters optimised based on k-fold CVGS
obtained similar modelling CVGS accuracy. However, a comparison of
spatial patterns in NO predictions and cargo-bike NO measurements
8

2 2
as well as the validation of predictions against cargo-bike data indicate
the RF model is more favourable. Using a lower learning rate for the
XGB gives similar CVGS results compared to RF, but very different
and seemingly more detailed spatial prediction patterns. The cargo-bike
measurements provide a quantitative measure to understand which
model gives the most realistic spatial predictions, and in our study
this was the high-setting XGB model. The conventional CVGS-based
model evaluation and hyperparameter optimisation lack this informa-
tion and may lead to wrong conclusions regarding model comparison.
We demonstrated that it is important to consider spatial prediction
patterns when evaluating model predictions of NO . In addition, we
2
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Fig. 7. Cargo-bike measurements and the fitted values of a linear regression between respectively the XGB (high setting), RF, Lasso predictions and the cargo-bike measurements,
visualised in the 1-D view. The point_id on the 𝑥-axis refers to the position on the track followed by the cargo bike.
have shown that spatially-continuous measurements are a valuable
source of information to improve the hyperparameter tuning and model
evaluation. Importantly, external measurements provide us with an
objective, quantitative measure to involve the spatial prediction pattern
in the hyperparameter tuning and modelling processes. The route track
taken at 8 am by the cargo-bike is mostly far away from major traffic
roads (further than 500 m away from ‘‘primary roads’’ defined by
OpenStreetMaps), and the route track taken at 9 am and 10 am are
mostly in a traffic area. Among the prediction models, XGB hs obtained
the highest 𝑅2 with the cargo-bike measurements at 8 am, which shows
the least variations compared to other times (Fig. 6). This may indicate
9

that the XGB is less prone to over-fitting when its hyperparameters are
properly set. The best match between all the models and the cargo-bike
measurements is at 10 am. This indicates that the statistical models
are capable of capturing the traffic emission related variations. The
inconsistency between the R2 of CVGS (Table 3, i.e. the lowest for Lasso
and for 10 am) and when comparing with the cargo-bike measurements
(Table 6 the highest for Lasso and 10 am) may be explained by that
Lasso captured an "on and far-away from the main road" pattern with
ground station measurements and this pattern is presented in this part
of the trip. This pattern is not everywhere as evidenced by the low
CVGS obtained by the Lasso. Future studies need to include traffic
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volumes to better understand the amount of local variations that could
be captured with statistical models as well as using the designed mobile
sensing technique to sample in more areas to better understand the
spatial heterogeneity in model predictions.

The hyperparameter that affects the prediction pattern of XGB the
most is the learning rate. If the learning rate is too high, the model
may miss the minimum of the objective function and not fully learn
the patterns in the data, causing sporadic effects. When the learning
rate is optimal, the sporadic effects diminish and will only change min-
imally when the learning rate is further reduced. In this study, further
reducing the learning rate from the optimal learning rate identified by
cross-validation led to a clearer pattern (Fig. 4). Moreover, other model
over-fitting control strategies, such as increasing gamma, lambda, and
reducing sub-sampling do not considerably alter the prediction patterns
and the CVGS accuracy, which may indicate that the model is not
subject to over-fitting.

An important difference between the validation on cargo-bike and
CVGS is that the CVGS measurements include all scales of spatial
variations (short range, medium range, large range), while the cargo-
bike measurements include only local variations. This means testing
with CVGS evaluates the model also on its capability to predict pat-
terns of different scales, while testing on the cargo-bike measurements
mainly evaluates the model on its capability to predict detailed lo-
cal variations. A model trained on a dataset that includes all scales
of variation (based on CVGS) is likely not the model that performs
best when mapping the detailed local variations. To the other side,
satellite imagery (e.g. Tropomi instrument measurements) can be used
to evaluate how the model is scalable to regions where dense ground
monitoring networks are not available.

5. Conclusion

In this study, we designed a novel high-end instrument to measure
detailed NO2 not only along the primary roads but also in the city
centre and used the measurements to further evaluate and compare
high-resolution statistical NO2 models. The spatially dense measure-
ments from the cargo-bike allow us to compare different statistical
methods and hyperparameter settings accounting for their spatial pat-
terns. This is complementary to the CVGS-based accuracy assessment.
As the ground truths are scattered, ignoring the spatial prediction
patterns in hyperparameter optimisation and model evaluation may
lead to one-sided model evaluation and comparison. The accuracy of
model predictions is spatially heterogeneous. We showed that while
the CVGS accuracy stays the same, the XGB model predictions vary
non-trivially with different hyperparameter settings, particularly the
learning rate. With advanced mobile sensing techniques, this study
provides an approach for a more in-depth look into NO2 statistical
modelling and model comparison and highlights the possible pitfall
of exclusively depending on CVGS accuracy in model hyperparameter
optimisation and comparison.
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