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Abstract

We investigate fermions with Lifshitz scaling symmetry and study their entan-
glement entropy in 1+1 dimensions as a function of the scaling exponent z. Re-
markably, in the ground state the entanglement entropy vanishes for even values
of z, whereas for odd values it is independent of z and equal to the relativistic
case with z = 1. We show this using the correlation method on the lattice, and
also using a holographic cMERA approach. The entanglement entropy in a ther-
mal state is a more detailed function of z and T which we plot using the lattice
correlation method. The dependence on the even- or oddness of z still shows for
small temperatures, but is washed out for large temperatures or large values of
z.
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1 Introduction

In this paper, we study entanglement properties of Dirac-Lifshitz fermions, with dispersion
relations of the form:

ω2
k = α2k2z +m2 , (1)

with ω, k and m related to frequency, momentum and mass, with units specified in the next
section. Furthermore, α is a dimensionful constant and z is a parameter, and we mostly
consider cases where z is an integer in order to avoid issues with branch cuts (e.g. when
z = 1/4, negative k would yield two branches). For z = 1, equation (1) yields the standard
dispersion relation for a Dirac fermion with α = c, the speed of light. We call z the Lifshitz
exponent, and for m = 0, the theory has Lifshitz scaling symmetry acting as:

ω → Λzω , ~k → Λ~k . (2)

For this reason, they are called Lifshitz fermions. Besides the scale symmetry, there is rota-
tion and translation symmetry and together with the scale symmetry they form the Lifshitz
symmetry algebra. There are however no boost symmetries for z 6= 1, further discussions on
symmetries can be found in e.g. [1–3]. Some earlier papers considered Lifshitz fermions with
z = 2 and z = 3, see e.g. [4–6] in the context of the chiral anomaly, and [7, 8] where theories
with four-fermi interactions are included. Experimentally, larger than expected dynamical
exponents can be seen in heavy fermion systems [9, 10].

It is interesting to study properties of Lifshitz fermions as a function of the dynamical
exponent z, and in this paper we will focus on correlation functions and entanglement entropy
(EE), and in particular at the EE at the scale invariant point where m = 0. There is extensive
literature on EE for free quantum field theories and lattice models with fermions. Various
methods can be used, such as the correlation method in real space, the replica method, and
Multi-scale Entanglement Renormalisation Ansatz (MERA). For a review see e.g. [11]. The
strongest results exist for two-dimensional (1+1) relativistic conformal field theories, starting
with the celebrated works of [12, 13]. For this reason, we focus on two dimensions in this
paper as well, to see how the known results from relativistic CFTs change when changing the
value of z away from one. The holomorphic properties of relativistic CFTs do not, however,
apply for z 6= 1, and the techniques therefore have to be adapted. We will use two techniques:
the correlation method on the lattice [14–16], and the holographic cMERA approach [17].

On the lattice z denotes the range of the interactions: z = 1 is nearest neighbor, z = 2
next-to-nearest and large values of z imply longe range interactions as illustrated in figure 1.
The lattice spacing breaks conformal invariance, but our numerics are accurate enough to be
close to the continuum limit. Furthermore, on the lattice, one can study how the EE changes
in the presence of long-range interactions.

Entanglement entropy for Lifshitz bosons also have been studied, such as in the quantum
Lifshitz model with z = 2 in 2+1 dimensions (see e.g. [18–25] for a partial list of references),
and more generally for z = d+ 1 in [26–28]. More recently studies for generic z were carried
out in in e.g. [29–31], see also [32–34] for further references on related topics. The results
for bosons compared to fermions differ quite a lot. For even values of z, the EE for massless
fermions turns out to vanish in the ground state, whereas for bosons, it is nonzero. For
odd values, the EE is independent of z, i.e. all odd values for z give the same result as for
z = 1. Again, this is very different from Lifshitz bosons, where the EE grows with z as
expected from the lattice approach, since higher values of z indicate longer range correlators
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across the entanglement regions. For fermions, however, these correlations seem to cancel out
in the EE. The distinction between even and odd values of z is quite striking for fermions,
and indicate that one cannot simply extrapolate to continuous values of z, at least not in
an obvious way. This picture is also confirmed by the holographic cMERA approach [17],
which nicely reproduces our results obtained from the lattice correlation method. The use of
the holographic cMERA approach is therefore of independent interest, as was illustrated for
Lifshitz scalar fields in [31].

At finite temperature, we generate EE also for even values of z. We study both the small
and large temperature regimes on the lattice, and we show that the parity of z (even or odd)
does not play an important role anymore at high temperature.

This paper is organized as follows. In section 2 we introduce the basics, present the
Lagrangian for free Lifshitz fermions and we determine the two-point correlator. We also
review the exact results known for z = 1, and we make an ansatz for the EE for z > 1 using
Lifshitz scale invariance at m = 0. In section 3, we discretize the model and compute the
correlators on the lattice. We use the correlator method to compute the EE on the lattice
and present various cases. In section 4, we rederive the zero temperature results using the
cMERA approach for fermions. We end with some conclusions.

2 Lifshitz fermions in 1+1 dimensions

The Lagrangian for a two-component Lifshitz free fermion in two spacetime dimensions with
coordinates {x0, x1} = {t, x}, is given by

L = ψ̄(~γ0i∂0 + ~αγ1(i∂1)z − µα2)ψ , (3)

with ψ̄ ≡ ψ†γ0, and Dirac matrices satisfying the Clifford algebra {γµ, γν} = 2 ηµν I2×2. The
path integral is then weighted with the standard factor exp(iS/~) with S =

∫
dtdxL. Here,

α has SI-units mz/s and is the speed of light for z = 1, and µ has units kg/m2z−2 and is
the mass for z = 1. The units of ψ are m−1/2 and for z = 1 we recover the relativistic Dirac
Lagrangian. The Lifshitz scale transformations reads

t→ λzt , x→ λx , ψ → λ−1/2ψ (4)

and is only a symmetry of the Lagrangian for µ = 0. We will mostly consider the massless
case in this paper. Notice that the scaling weight for a fermion is independent of z (in any
number of dimensions!), in contrast with a free boson, whose scaling weight is (z−1)/2. This
fact has consequences for the EE which we discuss extensively in this paper.

Space time translation symmetry, together with the Lifshitz scale symmetry generate the
Lifshitz algebra in 1+1 spacetime dimension. There is no boost symmetry for generic z 6= 1,
but there is a U(1) symmetry acting as an overall phase on ψ. In the massless case, there is
also chiral symmetry.

Our conventions are as follows. With the (1 + 1)-dimensional metric η = diag(+1,−1) we
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l 𝑁𝐴

ε

𝑧 = 1 𝑧 = 2

(a) (b) (c)

Figure 1: The continuum system (a) of length L is partitioned in a segment of length l
and its complement. The lattice system (b and c) has N sites and a lattice spacing ε. The
interactions are depicted for z = 1 (b) and z = 2 (c).

choose our Clifford algebra to be1

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
. (5)

Furthermore, we can define chiral components using

P± =
1± γ5

2
, γ5 ≡ γ0γ1 =

(
1 0
0 −1

)
, ψ =

(
ψ+

ψ−

)
. (6)

The Lagrangian then becomes

L = ~ψ†+ (i∂0 + α(i∂1)z)ψ+ + ~ψ†− (i∂0 − α(i∂1)z)ψ− − µα2
(
ψ†+ψ− + ψ†−ψ+

)
, (7)

and only has chiral symmetry in the massless case, where ψ+ and ψ− transform with opposite
phases. One can easily check that the action is real upon partial integration. The equation
of motion is

(i /Dz −m)ψ ≡
(
γ0i∂0 + αγ1(i∂1)z −m

)
ψ = 0 , (8)

with m ≡ µα2

~ . Contrary to the z = 1 case, for z 6= 1, these chiralities do not correspond to
left or right movers which is why all holomorphic CFT techniques no longer apply. With the
plane wave ansatz

ψ(t, x) =

∫
dω dk ψ(ω, k)e−iωt−ikx , (9)

one derives the Lifshitz dispersion relation (1). After Fourier transformation, the action
becomes

S = (2π)2

∫
dω dk ψ†(ω, k)

(
~ω + ~αγ5kz − µα2γ0

)
ψ(ω, k) , (10)

1In our basis, the charge conjugation matrix is chosen C = iγ1 satisfying C† = C, C†C = 1, and CγµC−1 =
−(γµ)T . If we would impose the Majorana condition ψ†γ0 = ψT C, then it implies for the spinor components,
ψ∗± = ∓iψ±. The chiral Majorana components are not real, but this is because we are not in a basis with
purely imaginary gamma matrices. The reality condition does respect the chiralities however, so ψ± each are
Majorana-Weyl spinors.
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and the two-point correlator, for t ≡ t1 − t2 and x ≡ x1 − x2, is

GF (t, x) ≡ 〈ψ†α(t1, x1)ψβ(t2, x2)〉 = i

+∞∫
−∞

dω

2π

dk

2π

(ω − αγ5kz +mγ0)αβ
ω2 − α2k2z −m2 + iε

e−iωt−ikx ,

= γ0
(

(i /Dz)
† +m

)
GB(t, x) . (11)

Here, the Lifshitz-scalar Green’s function is given by

GB(t, x) = i

+∞∫
−∞

dω

2π

dk

2π

e−iωt−ikx

ω2 − α2k2z −m2 + iε
=

+∞∫
−∞

dk

2π

e−ikx

2ωk

(
eiωktθ(−t) + e−iωktθ(t)

)
, (12)

with ωk =
√
α2k2z +m2 the positive root. Notice the usual relation with the propagator of

a scalar field, this time a scalar field with a Lifshitz dispersion relation (1). The propagator
GF (t, x) satisfies the Lifshitz-Dirac equation with a delta function source because of the
identity (

i /Dz −m
)
γ0
(
i /D
†
z +m

)
= −γ0

(
∂2

0 + α2(i∂1)2z +m2
)
, (13)

and because the scalar field propagator satisfies the Lifshitz-Klein-Gordon equation for the
Green’s function. The γ0 appears because we are considering the propagator 〈ψ†ψ〉 instead
of 〈ψ̄ψ〉.

It is interesting to look at the case of a free massless scalar field with Lifshitz scaling. For
the equal time correlator, we get

〈φ(x1)φ(x2)〉 =

+∞∫
−∞

dk

2π

e−ikx

2ωk
=

1

2πα
2−z
√
π

Γ
(

1−z
2

)
Γ( z2)

|x|z−1 . (14)

Notice that this is consistent with the scaling weight (z − 1)/2 for a scalar field in 1+1
dimensions. The result for this Fourier transform is formally valid for all values of z by
analytic continuation of the Gamma function. If we restrict to integer values, we notice a

difference between even and odd values of z, since Γ
(

1−z
2

)
for even z = 2n produces a factor

Γ(1
2 − n) = (−4)nn!

(2n)!

√
π, whereas for odd z = 2n + 1, we get Γ(−n) which diverges as Γ(z)

has a simple pole at z = −n. In higher dimensions, a similar phenomena happens, as the

higher dimensional Fourier transform produces factors of Γ
(
d−z

2

)
. This divergence needs to

be regularized but we will not go further into this since it does not occur for fermions as we
see now.

Similarly to the bosons, the fermionic two-point correlator is,

GF (t, x) =

+∞∫
−∞

dk

2π

e−ikx

2ωk

[
e−iωkt

(
ωk − αkzγ5 +mγ0

)
θ(t)− eiωkt

(
ωk + αkzγ5 −mγ0

)
θ(−t)

]
.

(15)
We now focus on the massless case with ωk = α|k|z where the chiral components decouple,

and take the equal time correlator obtained from the limit t→ 0+, to get

〈ψ†±(x1)ψ±(x2)〉 =
1

2

+∞∫
−∞

dk

2π
e−ikx

(
1∓ sgn(k)z

)
. (16)
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The result for the integral depends again on the even- or oddness of z:

z even : 〈ψ†+(x1)ψ+(x2)〉 = 0 , 〈ψ†−(x1)ψ−(x2)〉 = δ(x1 − x2) . (17)

For odd values of z, we have sgn(k)z = sgn(k) and find

z odd : 〈ψ†±(x1)ψ±(x2)〉 =
1

2

[
δ(x1 − x2)± i

π

1

(x1 − x2)

]
, (18)

independent of z. This independence of z is consistent with the fact that the Lifshitz scaling
weight for a fermion is independent of z and equal to −1/2 in 1+1 dimensions. The expres-
sions for the correlators are the two possibilities consistent with the Lifshitz symmetries with
the correct scaling weight, as δ(λx) = |λ|−1δ(x).

2.1 Entanglement entropy and relation to known results

What we learn from the analysis above in the continuum, is that at zero temperature and
zero mass, the two-point function differs for even and odd values of z. In both classes, the
correlator does not depend on z. So for odd z, the EE is the same as for the relativistic case
with z = 1. In that case, the result for the vacuum EE in a subinterval of length l on the real
infinite line is well known from conformal field theory, namely [12,13,35]

S =
c

3
log

(
l

ε

)
, (19)

with c = 1/2 for a Weyl fermion and ε the UV cutoff which is the lattice spacing in the next
section. For even values of z, the spatial correlators produce zero or delta functions, and this
will not produce any entanglement. We show this explicitly using the lattice model and the
cMERA approach in subsequent sections.

We can consider finite size effects, and for a relativistic CFT on a line of total length L
and with periodic boundary conditions (see figure 1), we have [36]

S =
c

3
log
( L
πε

sin

(
πl

L

))
, (20)

up to some non-universal additive constant. This expression still obeys Lifshitz scaling prop-
erties, so it is a possible candidate for the Lifshitz EE for general values of z, but again only
odd values. We show on the lattice that for odd values of z, the finite size effects do not de-
pend on z, so we use the known results for z = 1. On a lattice with N sites and a subsystem
of NA sites, (20) becomes

S =
c

3
log
(N
π

sin

(
πNA

N

))
. (21)

For even values of z, finite size effects won’t affect the spatial correlators as we show in the
next section, so the EE still vanishes. Notice also the symmetry NA → N −NA which reflects
one of the properties of EE in a pure state.

We now add temperature, still keeping m = 0 and L → ∞. The result for the EE
should still obey Lifshitz scale invariance, provided we scale the temperature appropriately,
T → λ−zT . The only scale invariant and dimensionless quantities are

l

ε
,

εzkBT

α ~
≡ εz

β
, (22)

6
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and combinations thereoff such as the cutoff independent quantity lβ−1/z. For z = 1 the
result for the EE is known [36] and is given by

S =
c

3
log
( β
πε

sinh

(
πl

β

))
. (23)

This result holds when the system is infinitely long and in a thermal state.
At low temperatures, we obtain from (23),

S =
c

3

[
log

(
l

ε

)
+
π2l2

6β2
+O(l4/β4)

]
, l� β , (24)

consistent with the scaling properties for z = 1, for which l/β is scale invariant. Notice that a
linear term proportional to l/β is absent in this Taylor expansion. Such a term would produce
a volume law, which is what we expect at high temperatures. Indeed, the high temperature
regime computed from (23) yields

S =
c

3

(
π
l

β
− log

(
l

β

)
+ log

l

2πε
+O(e−2πl/β)

)
, l� β, (25)

and we see a volume law linear in l appearing as the leading term.
These temperature corrections however no longer have the right scaling behavior when

z 6= 1, but we use the scale invariant and dimensionless combinations (22) to make an ansatz
for the temperature corrections. At small temperatures, we make an ansatz generalizing (24):

S =
c

3
log

(
l

ε

)
+ f2(z)

l2

β2/z
+O(l4/β4/z) , l� β1/z , z odd, (26)

for some function f2(z) independent of any scale with f2(1) = cπ2/18. This expansion only
holds for odd values of z, because the leading term (the “area” term at zero temperature) for
even values of z is absent. Notice again the absence of a linear term in l. This time, there is
no a priori reason for it, but our lattice results will establish it. It in fact establishes that, for
odd z, there are no odd powers of lβ−1/z for small temperatures.

For even values of z, the lattice results show that all powers of lβ−1/z appear, and we can
make a low temperature expansion

S = f1(z)
l

β1/z
+ f2(z)

l2

β2/z
+O(l3/β3/z) , l� β1/z , z even, (27)

for some functions f1,2. The leading term in this expansion is already a volume law.
Similarly, at large temperatures, we generalize the z = 1 result to

S =
l

β1/z

(
g(z) +

Soff (z)

lβ−1/z
+O(β2/z)

)
, l� β1/z , (28)

for some function g(z) with g(1) = cπ/3 and a constant offset correction to the expansion
Soff (z). It is a non-trivial result that this is the leading term if we don’t assume that a volume
law should come out at large temperature, as any higher power of l/β1/z would be dominant.
There can be subleading terms similar as for z = 1, such as logarithmic terms, and we include
them in the next section. Again, the lattice approach supports the ansatz (28) for both even
and odd values of z, and in the next section, we give numerical values for g(z) and Soff (z).

7
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3 Lattice Results

In this section we study the entanglement of Lifshitz fermions on a finite lattice with N lat-
tice sites and lattice spacing ε. We discretize and rescale the localized wave functions ψj ≡
ε1/2ψ(jε) to make them dimensionless, and make the plane wave ansatz ψj = ck(ω)ei(jεk+ωt).
Then we discretize the spatial derivative by using the centered difference (to preserve her-
miticity of the Lagrangian) limit definition:

∂1ψj =
ψj+1 − ψj−1

2ε
=

1

2ε
(eikε − e−ikε)ψj =

i

ε
sin(kε)ψj . (29)

Hence

(i∂1)zψj = (−k̃(k))zψj , where k̃(k) =
1

ε
sin(kε). (30)

Note that this has the right continuum limit k̃ → k when ε→ 0. The equations of motion in
equation (8) yield the dispersion relation

ω2
k = α2k̃(k)2z +m2. (31)

Notice that when m = 0, ωk = α|k̃|z. Furthermore, because of the discretization, the disper-
sion relation is no longer a monotonic function of k, which means that there are in general
two modes associated with a given energy. This phenomenon is know as fermion-doubling
and results in a central charge c = 2 for the lattice Dirac fermions that is a factor 2 larger
than the central charge in the continuum system.

A general solution to the equations of motion is a superposition of plane waves which
satisfy boundary conditions with a phase shift: ψN = e2πθiψ0. This restricts the values of k
to

k =
2π(θ + κ)

L
, with κ ∈ {0, 1, ..., N − 1}, and L = Nε. (32)

As we are interested in the large N limit, whilst keeping L fixed, the value of θ becomes
irrelevant. Without loss of generality we consider periodic boundary conditions. We obtain

ψ±,j =
1√
2N

N−1∑
κ=0

1
√
ωk
eijκ

2π
N

(
±a†ke

iωkt
√
ωk ± α(−k̃)z + bke

−iωkt
√
ωk ∓ α(−k̃)z

)
. (33)

We have introduced the annihilation operators ak and bk, which satisfy the usual equal time
anti-commutation relations {ap, a†k} = δp,k = {bp, b†k}, which follow from the anti-commutation

relations of ψ and the Kronecker delta δij = 1
N

∑N
n=1 e

i 2πn
N
n(i−j). This reduces the Hamiltonian

to H =
∑N−1

κ=0 ωk(a
†
kak+b†kbk−1). For the case where m = 0, the dispersion relation is gapless

and the term ωk ± α(−k̃)z vanishes depending on the sign of k̃ and the parity of z:

ψ+,j =


1√
2N

∑N−1
κ=0 e

ijκ 2π
N

(
a†ke

iωkt
√

1− sgn(k̃) + bke
−iωkt

√
1 + sgn(k̃)

)
; z odd,

1√
N

∑N−1
κ=0 e

i(jκ 2π
N

+ωkt)a†k; z even.

ψ−,j =


1√
2N

∑N−1
κ=0 e

ijκ 2π
N

(
−a†ke

iωkt
√

1 + sgn(k̃) + bke
−iωkt

√
1− sgn(k̃)

)
; z odd,

1√
N

∑N−1
κ=0 e

i(jκ 2π
N
−ωkt)bk; z even.

(34)
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Inverting these relations, we express the a and b operators in terms of the spinor operators.
Then for even z one easily verifies that the ground state is equal to the direct product of an
occupied +-spinor state and empty −-spinor over all sites. As a consequence the EE must
vanish for even z. For m 6= 0 this argument no longer holds.

We distill the EE from the two point correlation functions [11,14]. The EE is given by

S = −
2N∑
n=1

(1− cn) log(1− cn) + cn log cn, (35)

where cn is the n-th eigenvalue of the correlation matrix restricted to our subsystem, i.e.
the matrix constructed by all correlations between the local spinor components. The general
equal time two point correlation functions of the spinor components are given by

〈ψ†±,iψ±,j〉 =
1

2N

N−1∑
κ=0

1

ωk
eiκ(j−i) 2π

N ((1− 〈Na,k〉)(ωk ± α(−k̃)z) + 〈Nb,k〉(ωk ∓ α(−k̃)z));

〈ψ†+,iψ−,j〉 = 〈ψ†−,iψ+,j〉 =
1

2N

N−1∑
κ=0

m

ωk
eiκ(j−i) 2π

N (〈Na,k〉+ 〈Nb,k〉 − 1),

(36)

where we introduced the fermion number operators Na,k = a†kak and Nb,k = b†kbk. Note that
we are not computing propagators here, i.e. we are not considering a time ordered product.
Of particular interest is the massless groundstate of the system, where the above correlators
reduce to

〈ψ†±,iψ±,j〉 =

{
1
2(1± 1)δi,j , for z even;
1

2N

∑N−1
κ=0 e

iκ(j−i) 2π
N

(
1∓ sign(k̃)

)
, for z odd.

(37)

Similar to the continuous case, we see that when m = 0 all explicit z dependence drops out
in these correlation functions, but the correlators still depend heavily on the parity of z. In the
case that z is even, the EE vanishes. This is due to the fact that the plus spinor correlation
sums over all holes but no particles, which yields a Kronecker delta function. The minus
spinor correlation sums over all particles, which are not present in the ground state. That is,
cn = 0 or cn = 1, which both yield zero EE from equation (35). Note furthermore that we have
not yet specified the partitioning of our system. Hence, for even z any partitioning will have
vanishing entanglement, whereas for odd z, regardless of the partitioning, the entanglement
will be independent on the value of z. This is a robust consequence of the scaling symmetry
of ψ, given in equation (4), being independent of z.

To connect the result for the i 6= j to the large N limit, we express

1

2L

N−1∑
κ=0

e2πi
xj−xi
L

κsign
(
k̃
)

=
N→∞
ε→0
Nε=L

1

2L

∞∑
κ=0

e2πi
xj−xi
L

κ =
1

2

1

1− e2πi
xj−xi
L

=
L→∞

−i
4π(xi − xj)

, (38)

for the continuous system of finite fixed size L, followed by the large L limit.
Recall that there is a factor of ε missing compared to the continuum result, because in this

section we made the wavefunction dimensionless. A second expectation to check is the area
law result for conformal field theory [13] which is validated in figure 2a. The central charge
is 2: Two times the central charge of a continuous Dirac fermion, which is a consequence of

9
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Lattice result
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Figure 2: (Color online) (a) The EE for odd z and zero mass as a function of the segment
size l (dots) of the total circular lattice, with N = 100 sites, follows the area law (solid
line). The value of the central charge is c = 2 which is a consequence of the fermion doubling
phenomenon. (b) The EE as a function of Lifshitz scaling parameter z for finite temperatures.
Note that turning on the temperature brings an explicit z dependence. For large temperatures,
as z increases, the EE approaches its maximum value Smax = 2NA log 2 (dashed black line).
For small temperature and small z the reminiscences of the zero temperature results are still
visible; the parity of z plays an important role (inset). The results are obtained with N = 1000
and NA = 50.

the fermion doubling mentioned earlier. The Dirac fermion has a central charge of 1 since it
is composed of two Weyl fermions with central charge 1/2.

Instead of considering the groundstate, one could also consider a thermal state. The
expectation value of the number operators then is given by the Fermi-Dirac distribution,
which reduces equation (36) to

〈ψ†±,iψ±,j〉 =
1

2
δi,j ±

1

2N

N−1∑
k=0

eik(j−i) 2π
N
α(−k̃)z

ωk
tanh

(
βωk
2α

)
,

〈ψ†±,iψ∓,j〉 = − 1

2N

N−1∑
k=0

eik(j−i) 2π
N
m

ωk
tanh

(
βωk
2α

)
.

(39)

Note that as T → ∞ the correlation matrix becomes diagonal with maximally degenerate
eigenvalue 1/2. From equation (35) it follows that this maximizes the entropy to its upper
bound 2NA log 2, yielding a volume law. In figure 2b the EE is plotted as a function of z for
different temperatures and zero mass. For low z the reminiscences of the parity dependence on
z (which we explored in the zero temperature regime) are still visible, but they blur out as z
increases and the entropy approaches its maximal value. This also follows from equation (39):
since |k̃| < 1, we have ωk → 0 as z →∞.

Furthermore, we study the temperature corrections to the area law as a function of z in
the high and low temperature regime as suggested in equations (25) to (27) by numerically
computing the EE as a function of temperature in both regimes and making fits for each value

10
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Figure 3: Fits to the functions S(β) = S(β = ∞) + f1(z)lβ−1/z + f2(z)l2β−2/z in the low
temperature regime, and S(β) = Soff (z)+g(z)lβ−1/z+h(z) log(εz/β) in the high temperature
regime. The results for the fit parameters are in figure 4a. The system size is N = 10000
and the subsystem size is NA = 100. For low values of z the high temperature regime is
inaccessible due to the finite system size, which bounds the EE as illustrated in figure 4b

f1 f2
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Figure 4: (Color online) (a) Fit parameters as a function of z. Note that for even z the
leading term in the low temperature regime (blue dots) is linear in lβ−1/z whereas for odd z it
is quadratic, i.e. f1 ∼ 0. The high temperature regime (red dots) is poorly accessible for low
z as illustrated in (b): For our results there are two relevant bounds when considering the fit
to equations (25) to (27): The temperature scale characterizing high and low temperatures
Tc = (εNA)−z and the EE saturation limit Smax = 2NA log 2 which is a finite size effect.
Since NA ≤ 100 is limited by computational capacity, the high temperature regime is poorly
accessible for low z (left figure). However, when z increases, Tc decreases such that for high
z there is a well accessible regime to fit.

of z. The results are given in figures 3 and 4a. The results again show a strong distinction
between even and odd z: For even z a linear dependence on lβ−1/z appears. The high
temperature regime is poorly accessible for low z as a consequence of computational power,
due to the upper bound of the EE for finite systems (see figure 4b).
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4 Holographic Entanglement Entropy

In this section we use a method of producing the EE through a combination of tensor networks
and holographic methods. First, we introduce briefly the continuous Multi-scale Entanglement
Renormalisation Ansatz (cMERA) which produces the elements necessary to calculate the EE
via holographic techniques. We note here that this method is only one candidate for producing
emergent spaces from field theories, another more recent approach comes from path integral
optimization, see e.g. [37, 38]. It would be interesting to test the compatibility of the results
that follow with these methods, however that is beyond the scope of this work.

Essentially, one produces a metric element for Anti-de Sitter space from information ex-
tracted from the Lifshitz field theory under the cMERA transformation. Using this metric we
calculate the area of a minimal surface which in the (1+1)d case is the length of a geodesic
on a fixed time slice. The EE of the field theory is then proportional to the size or “area” of
this minimal surface by the Ryu-Takayanagi conjecture [39].

4.1 Review of (c)MERA

At this point we introduce the ideas involved in bringing MERA into the continuum. This
section follows closely the presentation of the introductory work [40] and the subsequent work
which is relevant to the calculation of EE in this framework [17]. Before introducing the
continuous MERA method it should be made clear which view of the MERA we are taking,
which is the perspective of the MERA as a quantum circuit. In this context the MERA is
viewed in a “top-down” manner. Starting from an initial unentangled state the state is acted
upon by a local unitary operator

U1 =

N/2⊗
j=1

u2j−1,2j , (40)

which entangles adjacent sites. In this example local means that the full unitary operator
is comprised of 2-site unitary gates or operators. This is followed by a scale transformation
so that the lattice spacing and number of spins/qubits/sites are unchanged. We denote this
operation by R. It is equivalent to the coarse-graining/isometry step seen in the “bottom-up”
picture [41] but modified to be a unitary operation using auxillary qubits. If the depth of
the MERA is τ = T = log2(N), as would be the case for a binary MERA scheme, then the
output of the circuit is the state

|ΨMERA〉 = UTRUT−1R . . .RU1 |Ω〉 . (41)

The question at this point is how to translate the scale transformation, entangling opera-
tion and fiducial state to continuum analogues. In translating to the continuum it is necessary
to enforce an ultra-violet cut-off for the field theory, which we denote by: Λ = ε−1, where as
before ε is the lattice constant. The Hilbert space defined by the fields with such a cut-off
is denoted by HΛ such that |Ψ(u)〉 ∈ HΛ, where u parametrizes the fields and represents
the length/energy scale of interest. This parameter is taken such that the momentum k is
effectively cut-off as |k| ≤ Λeu. In connection to the discrete case, u effectively corresponds
to the layer index τ of the tensor network. By convention we have that u runs over (−∞, 0],
such that the ultraviolet (UV) and infrared (IR) limits are given by: uUV = 0, uIR → −∞.
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The states given at these limits are denoted as

|Ψ(uIR〉 ≡ |Ω〉 , |Ψ(uUV )〉 ≡ |Ψ〉 , (42)

such that |Ω〉 corresponds to an unentangled reference state and |Ψ〉 is the ground state in
which we compute the EE. Now, as in the lattice implementation we relate a state at any
layer or length scale of the MERA to the reference state by a unitary transformation as

|Ψ(u)〉 = U(u, uIR) |Ω〉 . (43)

Likewise an operator, O, can be defined at any scale u as

O(u) ≡ U(0, u)−1 · O · U(0, u), (44)

in particular, later, we define the Hamiltonian at different length scales by this action. The
form of this unitary operator [17,40] is

U(u1, u2) = P exp

[
−i
∫ u1

u2

(K(u) + L) du

]
, (45)

where K(u) and L are the continuum analogues of the entangling and scaling operations
respectively. P denotes a path ordering such that operators are ordered from large to small
values of u. The scale transformation acting on the IR state leaves it invariant since by
definition the IR state is unentangled so each spatial point is uncorrelated with any other
point. The entangling operator, K(u), is designed to generate entanglement but only for
modes with wave vectors |k| ≤ Λeu. This entanglement generation up to a cut-off is achieved
through a function g(k, u) which contains an appropriate cut-off function and the variational
parameters, g(u). Generically, g(k, u) is a complex valued function but in this setting it will
be real valued. Aside from this, the entangling operator is a quadratic functional of the fields.
The following form is taken for the entangling operator [40]

K(u) = i

∫
dk
[
g(k, u)ψ†+(k)ψ−(k) + g∗(k, u)ψ+(k)ψ†−(k)

]
. (46)

It will be useful in the following discussion to utilise the interaction picture for these unitary
operators. This amounts to using

U(u1, u2) = e−iu1L · P exp

(
−i
∫ u1

u2

K̃(u)du

)
· eiu2L, (47)

where K̃(u) ≡ eiuL · K(u) · e−iuL. The action of K(u) is essentially a generalised Bogoliubov
transformation of the fields.

While comparisons have been made [42, 43] between Anti-de Sitter space and the struc-
ture of a MERA network, it has been proposed [17] that by applying a continuous MERA
prescription to free field theories one can determine a holographic metric of a space dual to
the field theory. In this context, the metric element is given by

ds2 = guu(u)du2 +
e2u

ε2
d~x2 + gtt(u)dt2. (48)

13
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If we consider the ground state of the free field theory then the metric element correspond-
ing to the holographic direction, guu, is related to the variational parameters of the cMERA
procedure, g(u), by

guu(u) =
1

3
g2(u), (49)

for fermionic theories, in the bosonic case g2(u) appears [17] without a factor of 1/3. The
method of determining these parameters is different in both cases. For bosons the variational
function g(u) is directly determined from the dispersion relation of the theory. We detail
the relation for fermions in the next section. Regardless of this detail, by determining the
variational function g(u) using appropriate cMERA methods one may determine a dual metric.
Moreover, in the holographic context we compute the EE via the Ryu-Takayanagi proposal
[39, 44] meaning we do not require information of the time component of the metric here as
we calculate on a fixed time slice of the space.

Once we have obtained this metric element we are able to determine the functional form
of the EE by calculating the geodesic length for a subsystem A of length l on the boundary
provided that one can determine the correct geodesic for the resulting space.

4.2 AdS/cMERA Method

Here, we apply the continuous MERA procedure to a free fermionic theory with Lifshitz
scaling in (1+1)-dimensions. We proceed in a similar fashion to extant literature [17,30,31,40]
with the relativistic (z = 1) case having appeared in [40]. For this approach we require the
Fourier transformed Hamiltonian of the theory. The Hamiltonian here is obtained from the
Dirac-Lifshitz Lagrangian equation (3), and has the form:

H = −
∫
dk
[
~α(−k)z

(
ψ†+ψ+ − ψ†−ψ−

)
− µα2

(
ψ†+ψ− + ψ†−ψ+

)]
, (50)

where the fields are now functions of the momentum. The procedure [40] to find the EE is
as follows: firstly an infrared state, |Ω〉, is defined by the action of the spinor components
on the state. Next the cMERA operator is applied to the Hamiltonian which manifests as a
transformation of the fields. Following this, one extremizes the energy functional using the
definition of |Ω〉 with respect to the variational function g(u) which appears in the definition of
the angle that the field transformation depends on. This determines the angle, ϕk, associated
to the true ground state. Having determined ϕk we then determine the metric element guu(u)
which depends on the variational function g(u). The final step is to calculate the geodesic
length using the metric element found for a particular subsystem.

The reference state |Ω〉 is chosen such that

ψ+(x) |Ω〉 = 0 = ψ†−(x) |Ω〉 . (51)

The cMERA operation on the Hamiltonian amounts to replacing the fields in the Fourier
transformed Hamiltonian with the transformed fields such that

Ψ̃(k) = Mk(u)Ψ(e−uk) = e−
u
2

(
cos(ϕk(u)) − sin(ϕk(u))
sin(ϕk(u)) cos(ϕk(u))

)
Ψ(e−uk), (52)

where (see App. v1 [40]) the angle is defined as

ϕk ≡ lim
uIR→−∞

∫ uIR

0
dug(e−uk, u) = lim

uIR→−∞

∫ uIR

0
dug(u)

k

Λ
Γ

(
|k|
Λ

)
, (53)
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where Γ(|k|/Λ) implements the momentum cut-off and can be taken to be a Heavyside step
function, Θ(1 − |k|/Λ). Moreover, by inverting this relation using the Leibniz integral rule
we find an expression for g(u) using the form of g(k, u) shown above, the steps involved are
presented in [40] which we rederive in appendix A, but the result is that

g(u) =
|k|2

Λ
∂|k|

(
Λ

k
ϕk

)∣∣∣
|k|=Λeu

= −ϕk + |k|∂|k|ϕk
∣∣∣
|k|=Λeu

. (54)

After the transformation of the fields, the massive Hamiltonian is given by

H = −
∫
dk e−u{[~α(−k)z cos(2ϕk(u))− µα2 sin(2ϕk(u))][ψ†+(k̃)ψ+(k̃)− ψ†−(k̃)ψ−(k̃)]

− [~α(−k)z sin(2ϕk(u)) + µα2 cos(2ϕk(u))][ψ†+(k̃)ψ−(k̃)− ψ†−(k̃)ψ+(k̃)]}, (55)

where k̃ = ke−u. Now we determine the energy functional, E[g], by evaluating the inner
product 〈Ω|H |Ω〉 in the infrared limit. We then obtain the energy functional

E[g] =

∫
dx

∫
dk

2π
[~α(−k)z cos(2ϕk)− µα2 sin(2ϕk)]. (56)

Subsequently, after taking the functional derivative with respect to the metric function g(u)
one finds the condition which minimizes the energy to be

tan(2ϕk) = − m

(−k)z
. (57)

It should be noted here that this expression is valid for the range of scales u ∈ (−∞, 0] and as
a result the resulting expression for the angle is valid up to the momentum cut-off, |k| < Λ.
This should not be really thought of as a restriction since the cut-off Λ should be taken to
infinity in the end. As a result, we have the following expression after use of trigonometric
identities:

ϕk(u) =
1

2
arcsin

[
kz√

k2z +m2

]
− (−1)z

π

4

∣∣∣
k=Λeu

. (58)

One should keep in mind that here the momentum is set according to k → Λeu to obtain the
angle and should in this context be seen as a positive quantity. However, as a verification of
the lattice result, we look at the massless case here. By taking m = 0 at this point the angle
becomes a constant, differing only with respect to the parity of z and as such the function
g(u) is equal to the angle, ϕk, up to an overall sign:

g(u) =
π

4
((−1)z − 1). (59)

Given the constant ϕk value, the entropy calculation becomes rather direct which we produce
now. Essentially, for the massless case and z-odd, the entropy is found by the calculating the
geodesic length using the metric

ds2 =
g2

3
du2 +

e2u

ε2
dx2, (60)

Then, using the reparametrization 1/r = eu/ε and rescaling the x direction by x→ (
√

3/g)x ≡
x̃, this is a pure AdS metric for (2 + 1)-dimensions on a fixed time-slice

ds2 =
(g2/3)

r2

(
dr2 + dx̃2

)
. (61)
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The geodesic length is determined using the following parametrization of the curve

γ = {x̃(t) =
l

2
cos(πt), r(t) =

l

2
sin(πt)|t ∈ [0, 1]}. (62)

The length of such a curve is then obtained by calculating

|γ| =
∫ 1

0
dt
√
gµν γ̇µγ̇ν =

2πg√
3

∫ 1/2

0
dt

1

sin(πt)
, (63)

= − 2g√
3

[− log(cos(πt/2)) + log(sin(πt/2))]
t=1/2
t=0 , (64)

= − 2g√
3

log
(

sin
(πα

2

))
. (65)

A cut-off needs to be inserted of α � 1 on the lower limit of the integration to prevent
the integral diverging. The upper limit yields zero, leaving only the result. Considering the
parametrization of r, we have that for small t near the boundary of the space: r(t) ∼ lπα

2 .
However, we also have the UV cut-off r ∼ ε meaning that, α→ 2ε/πl, and thus we have the
result

|γ| ∼ 2g√
3

log

(
l

ε

)
. (66)

Hence, the EE is given by

Sz ∝
2g√

3
log

(
l

ε

)
, (67)

meaning that:

Sz ∝

{
π√
3

log
(
l
ε

)
, z odd, where g = π/2,

0, z even, where g = 0.
(68)

This is in agreement with the results from our correlation function based calculations up
to a multiplicative factor. Here that constant would be c/π

√
3 which we can determine

from comparison to the z = 1 known result. Inserting such a factor yields the two cases,
distinguished by the parity of z:

Sz =

{
c
3 log

(
l
ε

)
, z odd,

0, z even.
(69)

These two cases are confirmed by the prior results found by calculation using correlation func-
tion methods. One should note that the cMERA technology requires additional information
to determine the entropy and as yet produces only the functional form of the entropy. In
other words, the constant of proportionality in question is not manifestly determined in the
cMERA framework.

5 Conclusion

We have studied the EE between fermions with a Lifshitz scaling symmetry in both continuous
and discrete models. The results are quite different from the results for Lifshitz bosons
[29–31]. In the ground state, the most striking difference is that for fermions, there is a
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strong dependence on the parity of the scaling exponent z. For even z and zero mass, the
ground-state becomes a pure product state in the spatial spinor representation. Hence, there
is no EE. This is reaffirmed by results from the holographic cMERA approach. Other than
its parity, the value of z does not affect the EE of the massless ground-state. This indepence
on the value of z is a robust consequence of the scaling symmetry of the system and hence
extends to any partitioning. Considering the single interval partitioning, we find for odd z
that the area law is reproduced (see figure 2a) with a central charge that is twice the value of
continuous Dirac fermions due to the fermion doubling on the lattice.

In the thermal state a more explicit dependence on z emerges. However, the parity of z
remains a distinguishing factor for low values of z and low temperatures. The low temperature
power series expansion of the EE in the scale invariant quantity lβ−1/z does not contain odd
powers for odd z, corresponding to the known relativistic result for z = 1.

It would be interesting to have better analytic control of the continuum limit, and to
extend the analysis to non-integer, continuous values of z. Even for the free case that we
consider here, we expect this to be a nontrivial extension due to branch cuts in the Lifshitz
dispersion relation.

There are various further extensions one can consider, such as the mass deformed case
where Lifshitz scale symmetry and chiral symmetry is broken. Also, the presence of interac-
tions and extension to higher dimension are useful. For strongly interacting fermions, one can
make contact with Lifshitz holography, for which there are known answers for the EE from
the Ryu-Takayanagi formula. We leave this for further study.
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A Expression for g(u) in terms of ϕk

Recall the definition of the exact Bogoliubov angle ϕk (written as f(k) in the original work [40])

ϕk ≡ lim
uIR→−∞

∫ uIR

0
g(e−uk, u)du. (70)

To isolate the relevant function g(u) which comprises the variational part of g(k, u) we
need to note the form chosen for g(k, u) in this setting

g(k/Λ, u) = g(u)
k

Λ
Γ

(
|k|
Λ

)
, (71)
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where the cut-off function, Γ, is taken to be the Heavyside step function, Θ2. This form of the
function is chosen so that the k-dependence of g(k, u) is s-wave meaning that it only depends
on |k|. If instead the (dis)entangler were to depend on the vector ki then on the holographic
side this would correspond to excitations of higher spin fields in the dual higher spin gravity
theory. This point is commented on in [17]. Such a dependence on k in g(k, u) would therefore
constitute a generalization of current work. One such situation where this may be necessary
would be if one were to consider multiple copies of the fermion field thus describing a higher
spin theory.

The first step inverting the definition of ϕk is to use the change of variables: z = e−u to
give

ϕk = lim
uIR→−∞

∫ e−uIR

1
g(zk,− ln(z))

−1

z
dz,

= −
∫ ∞

1
g(− ln(z))

zk

Λ
Γ

(
z|k|
Λ

)
1

z
dz,

= − k
Λ

∫ ∞
1

g(− ln(z))Θ(1− z|k|/Λ)dz,

= − k
Λ

∫ Λ
|k|

1
g(− ln(z))dz,

=⇒ −Λ

k
ϕk =

∫ Λ
|k|

1
g(− ln(z))dz.

Next, with this relation we differentiate both sides with respect to |k| to remove the integral
using the Leibniz integral rule

d

dx

(∫ f2(x)

f1(x)
h(y)dy

)
= h(f2(x))f ′2(x)− h(f1(x))f ′1(x). (72)

Note that our lower limit is independent of |k| so we have a relatively simple result

d

d|k|

(∫ Λ
|k|

1
g(− ln(z))dz

)
= g

(
− ln

(
Λ

|k|

))
d

d|k|

(
Λ

|k|

)
. (73)

Combining this rule with our relation to ϕk yields

d

d|k|

(
−Λ

k
ϕk

)
= g

(
− ln

(
Λ

|k|

))(
−Λ

|k|2

)
,

g

(
− ln

(
Λ

|k|

))
=
|k|2

Λ

d

d|k|

(
Λ

k
ϕk

)
.

The final step is to express this relation in terms of u again which amounts to the replacement,
|k| → Λeu

g(u) =
|k|2

Λ

d

d|k|

(
Λ

k
ϕk

)∣∣∣
|k|=Λeu

. (74)

2This choice of cut-off function is for ease of the calculations, although a smooth function such as
exp

(
−|k|2/Λ2

)
could be chosen to ensure that the entangler K(u) is local. However, for the purposes of

this derivation it is not necessary.

18



SciPost Physics Submission

For the version used in the text we expand the RHS

g(u) =
|k|2

Λ

(
d

d|k|

(
Λ

k

)
ϕk +

Λ

k

dϕk
d|k|

)
|k|=Λeu

,

=
|k|2

Λ

((
−Λ

|k|2

)
sgn(k)ϕk +

Λ

k

dϕk
d|k|

)
|k|=Λeu

,

= − sgn(k)ϕk + k
dϕk
d|k|

∣∣∣
|k|=Λeu

.

For the purpose of determining the metric element, guu(u) = g2(u)/3, the sign of k is irrelevant
as k is set to the positive quantity Λeu in the end and the total expression of g(u) appears as
a squared quantity. As such we write

g(u) = −ϕk + |k|dϕk
d|k|

∣∣∣
|k|=Λeu

. (75)
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