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We present an experimental and numerical study of the nonlinear dynamics of an
inertial wave attractor in an axisymmetric geometrical setting. The rotating ring-shaped
fluid domain is delimited by two vertical coaxial cylinders, a conical bottom and a
horizontal wave generator at the top: the vertical cross-section is a trapezium, while the
horizontal cross-section is a ring. Forcing is introduced via axisymmetric low-amplitude
volume-conserving oscillatory motion of the upper lid. The experiment shows an
important result: at sufficiently strong forcing and long time scale, a saturated fully
nonlinear regime develops as a consequence of an energy transfer draining energy towards
a slow two-dimensional manifold represented by a regular polygonal system of axially
oriented cyclonic vortices undergoing a slow prograde motion around the inner cylinder.
We explore the long-term nonlinear behaviour of the system by performing a series of
numerical simulations for a set of fixed forcing amplitudes. This study shows a rich
variety of dynamical regimes, including a linear behaviour, a triadic resonance instability,
a progressive frequency enrichment reminiscent of weak inertial wave turbulence and the
generation of a slow manifold in the form of a polygonal vortex cluster confirming the
experimental observation. This vortex cluster is discussed in detail, and we show that it
stems from the summation and merging of wave-like components of the vorticity field.
The nature of these wave components, the possibility of their detection under general
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conditions and the ultimate fate of the vortex clusters at even longer time scale remain to
be explored.

Key words: internal waves, waves in rotating fluids

1. Introduction

Energy transfer in rotating fluids has received significant attention due to its relevance
to geo- and astrophysical fluid dynamics and due to the rich complexity of the nonlinear
multi-scale interplay between coherent vortical structures, inertial waves and background
small-scale nearly isotropic turbulence (Greenspan 1968; Hopfinger & van Heijst 1993;
Davidson 2013; Godeferd & Moisy 2015). Inertial waves supported by rotating fluids, with
the Coriolis force acting as restoring force, represent an essential ingredient of the transfer.
The crucial role of inertial waves is assured by (i) the specific form of the dispersion
relation, which contains no length scale, and (ii) the possibility of a cascade of wave–wave
interactions due to nonlinear terms in the Navier–Stokes equations governing the dynamics
of rotating fluids.

The dispersion relation of inertial waves obtained by seeking plane-wave solutions
of the linearised inviscid Navier–Stokes equations reads ω = fkz/k = f cos α, where
ω is the wave frequency, f = 2Ω is the Coriolis parameter with Ω the rate of the
background rigid-body rotation of the fluid and kz (respectively k) is the vertical
component (respectively magnitude) of the wave vector k inclined at angle α to the
vertical z-axis, which is taken as the axis of rotation. A similar type of dispersion relation
ω = Nkh/k = N sin α holds for internal waves in a stratified fluid, with the buoyancy
frequency N replacing f , and kh the horizontal wavenumber. The absence of any length
scale in the dispersion relation for inertial and internal waves implies that the global
large-scale wave pattern depends on the geometry of wave generators and on the geometry
that delimits the fluid volume – in particular, for the ocean, its bathymetry. Therefore, a
rich variety of wave motions is encountered in rotating and stratified fluids as identified
in early pioneering studies, and explored in detail in the subsequent literature: normal
modes in bounded domains of simple geometry (sphere, axial cylinder, rectangular box)
(Aldridge & Toomre 1969; McEwan 1970, 1971; Maas 2003; Bewley et al. 2007; Lamriben
et al. 2011; Boisson et al. 2012), wave beams emanating from isolated oscillatory sources
(Görtler 1943; Mowbray & Rarity 1967; Hendershott 1969; Thomas & Stevenson 1972)
and webs of wave beams (wave attractors) in bounded domains with sloping walls (Stern
1963; Bretherton 1964; Stewartson 1971, 1972; Maas & Lam 1995; Maas et al. 1997;
Manders & Maas 2003; Klein et al. 2014; Wu, Welfert & Lopez 2020b). Of particular
interest is the latter configuration in the context of the present paper.

Due to the form of the internal and inertial wave dispersion relations, wave reflection
on a solid boundary follows a very specific law and is, in general, non-specular
(Phillips 1963; Eriksen 1982; Manders & Maas 2004; Maas 2005). To be more specific,
in two-dimensional domains, this law leads to a focusing or a defocusing effect of
wave beams upon reflection at sloping walls (Dauxois & Young 1999). In bounded
or quasi-bounded two-dimensional domains, focusing prevails: the iterative process of
subsequent wave reflections leads to the formation of a limit cycle, called a wave attractor,
where the wave energy is concentrated (Maas & Lam 1995; Maas et al. 1997; Sibgatullin
& Ermanyuk 2019). Relevant to the topic of the present study is the first experimental
observation of an inertial wave attractor in an elongated trapezoidal tank that showed the
generation of a persistent mean flow, right above the location where the attractor was
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Axisymmetric inertial wave attractors drive vortex clusters

being focused over the sloping bottom. This mean flow was speculated to be the result
of the breaking of focused inertial waves, leading to the mixing of the background radial
stratification in angular momentum with which the solidly rotating, homogeneous-density
fluid is endowed (Maas 2001). In a three-dimensional setting, the variety of possible
configurations is significantly enriched, involving the possibility of wave-energy trapping
on a limit cycle located at certain preferential planes of motion, provided that there is
a billiard pathway connecting this plane and the initial direction of the wave-energy
propagation (Hazewinkel, Maas & Dalziel 2011; Pillet et al. 2018). The inertial-wave-ray
billiard corresponding to the geophysically important case of a rotating spherical shell
favours the formation of an attractor in the meridional plane (Bretherton 1964; Stewartson
1972; Friedlander & Siegmann 1982; Maas & Harlander 2007; Rabitti & Maas 2013).
Accordingly, the rich literature on the linear dynamics of inertial wave attractors in rotating
spherical layers considers the motions in ring-shaped meridional slices (Friedlander &
Siegmann 1982; Dintrans, Rieutord & Valdettaro 1999; Rieutord, Georgeot & Valdettaro
2000, 2001; Rieutord & Valdettaro 2010) and disregards the azimuthal coordinate.

It is noteworthy that the purely geometrical mechanism of iterative focusing, which is
linear, is at the origin of a spectacular forward energy cascade in wave attractors: the
energy injected into the system at global scale (i.e. at the scale of the system itself) is
transferred to the scale corresponding to the width of the attractor branches, which, even
in laboratory experiments, can be an order of magnitude smaller than the global scale
(Brouzet et al. 2017b). This small scale, or width of the inertial and internal wave beams in
the linear regime, is set by the balance between geometric focusing and viscous dissipation
and can be theoretically predicted with good agreement to experimental observations
(Rieutord et al. 2000; Grisouard, Staquet & Pairaud 2008; Hazewinkel et al. 2008). Other
wave-damping mechanisms such as interaction of waves with convective motions, ohmic
damping in the presence of a magnetic field in conducting fluids and nonlinear parametric
decay into secondary waves of shorter wavelength have also been proposed by Ogilvie
(2005), where a generic case with a weak inviscid ‘frictional’ damping force has been
considered. Further, it has been shown experimentally that, at sufficiently high level of
injected energy, internal wave attractors are prone to triadic resonance instability (TRI)
(Scolan, Ermanyuk & Dauxois 2013). The replacement of purely viscous damping by the
flux of energy carried by small-scale secondary waves (generated via TRI) away from
the primary waves (i.e. from the beams of attractor) introduces a new nonlinear scaling
for the beam width (Brouzet et al. 2017b). Similar effects in inertial waves have been
observed in numerical simulations (Jouve & Ogilvie 2014). Let us note in passing that
Jouve & Ogilvie (2014) considered a two-dimensional setting, physically corresponding
to a torus of infinite radius having a tilted-square ‘meridional’ cross-section, so that any
three-dimensional effects occurring in ‘equatorial’ planes were completely excluded. The
development of the energy cascade in wave attractors with the increase of injected energy
leads to wave turbulence, with a significant occurrence of overturning events generating
irreversible mixing (Brouzet et al. 2016a, 2017a; Davis et al. 2020), and such a cascade
reaches a statistically steady state when a balance is established between the injected and
dissipated energy (Jouve & Ogilvie 2014; Davis et al. 2019). This is to be put in context
with some recent development on the understanding of inertial wave turbulence in rotating
flows (see, for example, the recent works of Le Reun, Favier & Le Bars (2019) and Brunet,
Gallet & Cortet (2020) on the competition between the saturation of rotating turbulence in
three-dimensional (3-D) wave turbulence and in 2-D geostrophic turbulence).

It should be stressed that the overturning events and subsequent mixing are important
constituents of the full energy cascade in internal wave attractors, and that they clearly
fall apart from the wave turbulence formalism. Similarly, inertial wave turbulence plays
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an important but not exclusive role in the nonlinear dynamics of inertial wave attractors
described in the present paper. The full scope of dynamic events constituting the energy
transfer in inertial wave attractors extends well beyond the wave turbulence framework and
should be discussed in the rich context of the literature on turbulence in rotating fluids.
The wealth of this literature is such that, in this paper, we restrict ourselves to a cursory
discussion of effects directly relevant to the present study. The reader interested in the
current state of the art is referred to Davidson (2013) and Godeferd & Moisy (2015).

The focus of the interest in rotating wave turbulence (Galtier 2003; Bellet et al. 2006;
Davidson 2013; Godeferd & Moisy 2015) lies in the anisotropy of scales along the
directions parallel and perpendicular to the axis of rotation, the presence of direct and
inverse cascades of the key dynamically important quantities (energy, enstrophy, etc.),
nonlinear wave–wave interactions among inertial waves and the development of coherent
vortex structures aligned with the axis of rotation. The importance of these issues has
been identified in early experimental studies with grid-generated turbulence in rotating
tanks and their numerical counterparts (see for e.g. Hopfinger, Browand & Gagne 1982;
Godeferd & Lollini 1999).

In order to study in isolation the effect of rotation on (initially isotropic) turbulence,
considerable attention has been focused on theoretical investigations in domains of infinite
extent and numerical simulations in triply periodic boxes (e.g. Waleffe 1993; Cambon,
Mansour & Godeferd 1997). It has been shown that the anisotropy develops due to
nonlinear wave–wave interactions modified by rotation and concentrates energy in the
plane normal to the rotation axis at a slow 2-D manifold (Cambon et al. 1997). The
relevance of the wave turbulence formalism and results of numerical simulations in triply
periodic boxes to the experimental reality involving secondary currents, wall-induced
vorticity and the formation of Ekman and Stewartson boundary layers remains an
open issue. Indeed, various saturated turbulent regimes ranging between quasi-2-D and
wave turbulence can be obtained in numerical simulations in triply periodic domains
depending on the damping mechanism imposed on the geostrophic component to mimic
the interaction with rigid boundaries (see, e.g. Le Reun et al. 2017). Therefore, the
experimental and numerical investigation of saturated turbulence regimes in a confined
volume of a rotating fluid attracts significant interest. For such studies, the choice of
the range of parameters and of the geometric set-up remains a non-trivial issue (see e.g.
Godeferd & Moisy 2015). Typically, to ensure the development of a fully nonlinear energy
cascade one needs to ensure a low value of the Ekman number E = ν/(2ΩL2), where ν is
kinematic viscosity and L is the global length scale, which for the bounded fluid has the
meaning of the container size. Further, the effect of rotation must be sufficiently strong
and therefore the global Rossby number RoL = U/(2ΩL) (here U is a velocity scale)
must be sufficiently low. However, RoL cannot be vanishingly small since it is responsible
for triggering nonlinear effects. The micro-dynamics of the emerging vortex structures
can be conveniently quantified by the micro-Rossby number Roξz = ξz/(2Ω), where ξz
is the perturbative vertical vorticity measured in the rotating frame. The skewness of the
probability density functions (PDFs) of micro-Rossby numbers is known to reflect the
symmetry breaking of cyclonic/anticyclonic motions, which is a well-known property of
rotating systems (Bradshaw 1969; Pedley 1969; Hopfinger & van Heijst 1993).

The goal of our joint experimental and numerical investigation is to study the nonlinear
fate of an inertial wave attractor in an axisymmetric setting under experimental conditions
which are compatible with the formation of a slow 2-D manifold coupled to the genuinely
3-D inertial wave field. This is achieved by designing a set-up in the form of a rotating
annulus having a trapezoidal (vertical) cross-section, thereby admitting a wave attractor
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Axisymmetric inertial wave attractors drive vortex clusters

structure in meridional planes and coherent vortex structures in the equatorial plane. Note
that this geometry is similar to the one considered in Klein et al. (2014), which describes
in great detail the formation of wave attractors and the role of the Stokes and Ekman
boundary layers in an annular rotating domain with a central frustum under forcing due
to libration. In the present paper we chose a configuration with a sloping (conical) bottom
since, potentially, it may give rise to a topographic β-effect, consisting of the support of
topographic Rossby waves (Rossby 1939).

This work has been preceded by a preliminary numerical simulation of Sibgatullin
et al. (2017) performed with the help of the spectral element method. The preliminary
simulation has been run at a relatively weak forcing and qualitatively demonstrated the
loss of axial symmetry and gradual build-up of inertial wave turbulence, but the saturated
state, corresponding to the formation of a slow 2-D manifold, has not been reached. In the
present paper, we address precisely this intriguing and previously overlooked issue. This
manuscript is organised as follows. The experimental apparatus is described in § 2. In § 3
we describe the reference experiment demonstrating the emergence of a slow manifold in
the form of a polygonal pattern of cyclonic vortices in the equatorial plane, which co-exists
with a wave attractor (superimposed with wave turbulence) in the meridional plane. In
§ 4 we describe the results of direct numerical simulations performed with the help of
the spectral element method for a set of forcing amplitudes. By using post-processing
diagnostic tools we identify the key dynamic regimes, ranging from linear behaviour to
TRI, and the generation of a slow manifold in the form of a polygonal vortex cluster (PVC).
The latter regime reproduces the essential features of the reference experiment described
in § 3. In § 5 we summarise the key findings of the paper.

2. Experimental apparatus

Figure 1 presents a schematic of the experimental apparatus in the vertical and horizontal
cross-sections. The region of interest is bounded by two vertical acrylic cylinders, by the
wave generator at the top and by an acrylic conical surface at the bottom. The outer and
inner radii of the domain are R1 = 20.2 cm and R0 = 5.0 cm, respectively. The generatrix
of the conical bottom surface has an inclination of 45◦, and the apex of the cone points
upwards. Note that this cone can also be reversed if needed: the choice taken in the present
study is explained in § 3.

In a vertical (meridional) cross-section of the set-up, two trapezoidal domains are facing
each other as shown in figure 1: note that the amplitude of the wave generator is greatly
exaggerated and the upper bound of the fluid domain is actually nearly flat. The depth of
fluid measured along the generatrix of the outer cylinder is H = 40 cm. In a horizontal
(equatorial) cross-section, the experimental domain is a ring of width L = R1 − R0. The
whole set-up is inserted into a square acrylic tank of 100 cm × 100 cm horizontal section
and 65 cm height, as used in Boury, Peacock & Odier (2019). Each part of the facility
is rigidly fixed to prevent any parasitic vibration when the whole set-up, mounted on the
rotating table, is brought to rotation at angular velocity Ω = 2π/T where T is the rotation
period. The axis of rotation of the table coincides with the symmetry axis of the set-up.

The axisymmetric wave generator (Maurer et al. 2017), adapted from a previous planar
version (Gostiaux et al. 2006), is used to produce inertial waves via a prescribed motion
of ring-shaped elements discretising the annular upper bound of the fluid domain. This
device has been slightly modified to fit our needs, by lowering the cylinders with 20 cm
long aluminium rods. In the configuration presented in figure 2, the five inner cylinders
have been removed. The motion amplitudes of the remaining eleven outer cylinders (grey
boxes in the cross-section in figure 1a) have been adjusted to preserve the volume of fluid
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z
Ω

r

40 cm

Inner cylinder
Outer cylinder

Wave
generator

Motor

r
R0 R1

θ

Ω

Inner cylinder
Outer cylinder

(b)(a)

Figure 1. Schematic of the experimental apparatus in (a) a vertical cross-section and (b) a horizontal
cross-section. The hashed area is out of the experimental domain. The trapezoidal region of interest in the
vertical plane is located between the inner and the outer cylinders, of radii R0 = 5 cm and R1 = 20.2 cm,
respectively.

displaced during its motion, such that the profile z(r) of the generator satisfies∫ R1

R0

z(r)r dr = 0. (2.1)

In order to preserve the boundary condition of non-pumping fluid at the cylinder edges,
the radial velocity vr has to be zero at R0 and R1. This condition writes, in terms of the
profile z(r), as

dz
dr

(r = R0) = dz
dr

(r = R1) = 0. (2.2)

As shown in Boury et al. (2019), this facility is efficient in producing modes 1 to 3
Bessel-shaped profiles, although the discretisation of the wave generator leads to lower
resolved modes at high order. We therefore looked for the closest approximation of a radial
mode 1 profile in such a confined geometry. The selected profile is a cubic-shaped profile,
as shown by the dashed line in figure 2, that sets the cam motion amplitudes. The highest
amplitude for a cam is a = 2.5 mm next to the inner cylinder, low enough to ensure a
gradual growth of nonlinear effects.

The commonly used particle image velocimetry (PIV) technique was implemented to
visualise the velocity fields. Horizontal and vertical laser planes were created using a 2 W
Ti:sapphire laser (wavelength 532 nm) and a cylindrical lens. While filling the tank, hollow
glass spheres and/or silver coated spheres of 10 μm diameter were added for the purpose
of visualisation. Particle displacements were recorded at 40 Hz using a camera located
either on the side of the tank (vertical-plane visualisation) or down below facing a 45◦
mirror placed under the tank (horizontal-plane visualisation). The CIVx algorithm was
subsequently used to process the PIV raw images and extract the velocity fields (Fincham
& Delerce 2000). An additional filtering of the wave fields is often performed, in order
to isolate the component at a given discrete frequency peak ω = ωi, e.g. at the forcing
frequency ω = ω0. This post-processing is performed as follows: first, we compute the
Fourier transform of the temporal signal associated with the wave field in each space
point; the requested frequency is then isolated using a narrow Hamming window; finally,
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 R1R0

–a/2

–a
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a
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A
m
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de
s 

(m
)

Cubic profile

Figure 2. Configuration of the generator. The amplitude a of cam number 6 is set to 2.5 mm. Out of the
experimental domain, the first five cams have their amplitude set to zero. The two dash-dotted vertical lines
indicate the locations of the inner and outer cylinders.

we compute the inverse Fourier transform, giving us the filtered wave field around the
frequency of interest. The slow motions are isolated using a low-pass filter, with a cutoff
frequency ωc defining the width of the filter. It is important to note that the parameters of
the frequency filters applied to the experimental and numerical data are identical. Below,
we explicitly discuss the role of the width of the filters when appropriate. This issue is
particularly relevant to the analysis of the numerical data.

3. Experimental results

Before getting to the description of the experimental results, let us make a few notes on
the geometry of the set-up and the choice of the parameter range. As discussed in the
introduction, the set-up is designed to allow for the nonlinear coupling between (i) inertial
wave attractors in vertical (meridional) cross-sections and (ii) a slow 2-D manifold in the
horizontal (equatorial) cross-section. We chose the geometric configuration of the conical
bottom with the apex pointing upwards because, in such a geometry, the inertial waves
undergo an additional focusing due to geometrical convergence of waves propagating from
larger to smaller radial coordinates besides a primary focusing due to the reflection on the
cone. This additional focusing favours the onset of instability close to the inner cylinder, as
can be seen in the preliminary numerical study of Sibgatullin et al. (2017). Furthermore,
in the saturated regime we expect to localise the slow 2-D manifold in the vicinity of the
inner cylinder, thereby facilitating the observation of a ‘vortex condensate’ on top of an
inertial wave background.

To reduce the effect of viscosity on the nonlinear energy transfer we chose a rather
high rotation rate of the set-up, Ω = 2.093 rad s−1, so that the relevant value of the
Ekman number E = ν/(2ΩL2) in the present experiments is reasonably low – considering
ν = 10−6 m2 s−1, Ω = 2.1 rad s−1, L = (R0 − R1) = 0.15 m or 0.4 m (max depth H),
leads to E = 1.1 × 10−5 or E = 1.5 × 10−6. The Ekman dynamics typically relates to
axial vertical processes, yielding a preference for the latter value. The global a priori
Rossby number based on the horizontal scale of the fluid domain, RoL = U/(2ΩL), can
be defined using the maximum vertical speed of the generator rings as the velocity scale
so that U = aω0, where ω0 is the forcing frequency. For our experimental conditions, the
amplitude a = 2.5 mm and frequency ω0 = 1.7 rad s−1 yield RoL = 7 × 10−3 so that the
system is expected to be strongly affected by the Coriolis force. This low value of the global
Rossby number, however, corresponds to a developed nonlinear energy transfer so that the
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observed saturated regime is more appropriately characterised by a relevant micro-Rossby
number based on vertical component of vorticity, as discussed below.

Moreover, in this experimental section, we discuss only a single experiment that has
been run at these parameters (a = 2.5 mm and ω0 = 1.7 rad s−1). The reasons for this are
multiple. First, the range of accessible parameters is very narrow given our experimental
apparatus: a ray tracing theory indicates that the forcing frequency should be between 1.47
and 2.14 rad s−1 in order to observe a wave attractor, and the amplitude set for the generator
profile is the optimum we can do. Indeed, on the one hand, since the cam amplitudes are
set with a given error, the exact volume-conserving form of the forcing becomes difficult
to prescribe as the amplitude decreases: the local amplitudes of several cams may fall
within the error margin. On the other hand, at high forcing amplitudes the nonlinearity sets
in too fast to allow the observation of the transient behaviour. At the instrumental level,
additional limitations are imposed, especially in the horizontal plane, due to deposition of
visualisation particles at the bottom of the test tank which decreases the imaging quality for
visualisations in the horizontal plane. We therefore describe in detail only the experiment
for which we have a complete data set. Nonetheless, we checked that the phenomenon is
reproducible by performing experiments at different frequencies (ω0 = 1.81 rad s−1 and
ω0 = 1.92 rad s−1), at a higher rotation rate (Ω = 2.723 rad s−1 with ω0 = 2.21 rad s−1,
to keep the same ratio ω0/f ), in addition to many experiments at the same frequency and
rotation rate as the one discussed and analysed below. In all these experiments, the same
behaviour is qualitatively observed. To propose a more detailed study of the phenomenon,
we then proceed with direct numerical simulations (DNS), as presented in § 4, notably by
investigating lower forcing amplitudes.

3.1. Linear regime
In the linear regime we recover the classical dynamics: at the time scale of order 10T0
after the start of the forcing, where T0 = 2π/ω0 is the forcing period, iterative focusing
downscales the wave motion from the global scale L to the scale associated with the width
of the wave beams (Rieutord et al. 2000; Grisouard et al. 2008; Hazewinkel et al. 2008).
Typical wave patterns observed in the quasi-linear regime at t = 17T0 in horizontal and
vertical planes are presented in the upper rows of figures 3 and 4 in terms of the quantities
filtered at ω = ω0 and ω = 0, respectively.

Note that the width of the low-pass filter is set by the upper cutoff frequency, i.e. ωc =
ω0/3. As discussed later, the essential low-frequency content of the experimental signal
(see figure 8) lies well below the chosen cutoff frequency. The choice of the width of the
low-pass filter is important for a unified description of numerical and experimental results
(see §§ 4.4 and 4.5 for details). For the experimental results as such the choice of the cutoff
frequency is less important (i.e. a lower value of ωc could be prescribed). For the sake of
brevity, the result of the low-pass filtering is below referred to as the ‘signal filtered at
ω = 0’.

For clarity, we visualise the fields of radial vr and azimuthal vθ velocity, vertical
vorticity ξz in the horizontal (equatorial) plane and the corresponding field of vertical
velocity in the vertical (meridional) plane. It can be seen that the wave pattern observed
at the forcing frequency (figure 3) in the horizontal plane is to a good approximation
axisymmetric, while in the vertical trapezoidal cross-section we recover a classic pattern
of the (1, 1) wave attractor (Maas et al. 1997; Maas 2001) in agreement with the ray
tracing, whose branch width is due to an equilibrium between wave focusing and viscous
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Figure 3. Fields of radial vr and azimuthal vθ velocity and vertical vorticity ξz in the horizontal plane (at
�20 cm depth) and of vertical velocity vz in the vertical plane. The presented quantities are filtered around
ω = ω0. Positive vorticity corresponds to cyclonic motion. The parallelogram with arrows in the vertical plane
shows the theoretical attractor in which the energy propagates clockwise.

dissipation (Rieutord et al. 2000; Grisouard et al. 2008; Hazewinkel et al. 2008). The
experimental signal filtered around ω = 0 remains weak at t = 17T0 (see figure 4).

3.2. Nonlinear regime
The development of the fully saturated nonlinear regime is illustrated in figures 3 and 4 by
snapshots corresponding to t = 50T0 and t = 150T0. The full vortex pattern representing
the slow 2-D manifold is formed at the time scale of 100T0. It can be clearly seen that
the initial axisymmetry observed at t = 17T0 is lost while the slow manifold is gradually
formed. The latter is represented by a regular polygonal system of eight cyclonic vortices.
The vortices are nearly invariant in the vertical direction as attested by the right column of
images in figure 4, representing the vertical velocity component. These vortex structures
are reminiscent of the Taylor columns usually found in rotating systems but there is,
however, a crucially important distinction: while the Taylor columns are normally formed
as a consequence of a slow motion of a perturbation imposed on the rotating fluid, the
coherent structures seen in figure 4 arise due to a nonlinear process which drains energy
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Figure 4. Fields of radial vr and azimuthal vθ velocity and vertical vorticity ξz in the horizontal plane (at
�20 cm depth) and of vertical velocity vz in the vertical plane. The presented quantities are filtered around
ω = 0 with the low-pass filter having the upper cutoff frequency ωc = ω0/3. Positive vorticity corresponds to
cyclonic motion.

from the wave field toward the slow 2-D manifold. We note that the vertical velocity in the
cyclonic vortices is directed downwards, corresponding to Ekman pumping, in agreement
with existing experimental and numerical data (e.g. Hopfinger et al. 1982; Godeferd &
Lollini 1999). Interestingly, Lopez et al. (2002) observed a similar breaking of a flow,
axisymmetrically forced by a counter-rotating surface lid introducing azimuthal shear, into
a discrete pattern of vortices distributed with an azimuthal periodicity. In their experiment,
they relate the formation of such a manifold to the linear instability of the shear layer
producing an azimuthal wave-like structure and, although much of the dynamics following
the development of this instability is similar to the one we describe – e.g. the formation of a
polygonal pattern of cyclonic vortices, intensified due to vortex stretching – the mechanism
is different. In our set-up, the forcing introduces vertical motion in the fluid, and very little
azimuthal motion is present at the beginning. As we will show in the numerical section,
the instability observed in the nonlinear regime (figures 3 and 4) is then likely due to a
triggered TRI that grows and becomes itself unstable. An internal boundary layer is formed
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Figure 5. Temporal evolution of the radial velocity as a function of azimuth, θ , obtained by taking profiles of
radial velocity at radius r = 8 cm in the horizontal plane at �20 cm depth. To guide the eye, we added a solid
line showing that the cluster rotates half a turn (π rad) in (88 ± 2)T0.

around the attractor, which is prime candidate for the mixing of angular momentum,
resulting in a sheared mean flow. It is worth mentioning that even in the fully saturated
regime one can still identify the branches of the inertial wave attractor in the signal filtered
around the forcing frequency ω = ω0 (see figure 3). The relevance of such experimental
regime (where a wave attractor in the meridional plane co-exists with a polygonal vortex
system in the equatorial plane) to geo- and astrophysical systems admitting the existence of
inertial wave attractors (Dintrans et al. 1999; Rieutord et al. 2001; Rieutord & Valdettaro
2010) represents an interesting direction for future research.

The visual evidence of the vortices is seen in figure 5 which presents the temporal
evolution of the radial structure measured by sampling the azimuthal distribution of radial
velocity at the radius r = 8 cm corresponding to the position of centres of vortices seen in
figure 4. Figure 5 shows that coherent structures start to appear after approximately 25T0,
and that, further, the vortex pattern self-organises so that new structures gradually appear
and join the ensemble. After approximately 100T0 all structures move at the same rate in
cyclonic direction. This rate corresponds to half a turn of the vortex cluster around the
inner cylinder which lasts approximately (88 ± 2)T0.

The vertical vorticity field in the horizontal plane can be characterised statistically, by
measuring the PDF of the micro-Rossby number Roξz = ξz/(2Ω). The typical PDFs of
Roξz corresponding to different stages of development of the coherent vortex structures
are shown in figure 6. We calculate the PDFs for the raw signal and for the signal filtered
around the forcing ω = ω0 and ω = 0 frequencies. The PDFs are calculated over the
surface of the ring-shaped zone between the inner and outer cylinders, and over the time
span of ±2T0 around the time instances indicated in figure 6. It can be seen that at the
beginning of the process, when the motion is represented essentially by the axisymmetric
waves, the PDFs of Roξz have a sharp symmetrical form. As the nonlinear energy transfer
towards coherent vortex structures develops, there is a progressive evolution of the
vorticity PDFs toward the shape characterised by asymmetric ‘shoulders’, which indicates
a well-pronounced cyclonic/anticyclonic asymmetry. This asymmetry is clearly seen in
the PDFs calculated over the raw signal and the signal filtered around zero frequency
ω = 0 (figure 6a,c), suggesting that a few strong cyclonic vortices seen in figure 4 are
responsible for the asymmetry of the PDFs. The PDFs calculated for the signal filtered at
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Figure 6. The PDFs of the vertical vorticity component at different times in the experiment. The curves (a–c)
correspond to processing of the raw signal, and the signal filtered around ω = ω0 and ω = 0.

the forcing frequency (figure 6b) remain approximately symmetrical at any time. A slight
asymmetry visible in the curve corresponding to time around t = 30T0 and 40T0 can be
tentatively attributed to the process of genesis of the regular polygonal vortex pattern: new
cyclonic vortices are emerging in the plane of visualisation and are joining the ensemble.
Nonetheless, since the asymmetry is weak one cannot exclude also a minor contribution
from experimental noise.

4. Numerical results

4.1. Numerical procedure
The experimental section of this paper provides an important reference result: we explicitly
show that, under sufficiently strong forcing, the motion in the system represents a nonlinear
combination of a complex inertial wave field, with an identifiable wave attractor at the
forcing frequency, and a slow quasi-2-D manifold represented by a PVC. In the numerical
simulations described below, we faithfully reproduce the geometry of the set-up shown
in figure 1, and we use the experimental value of the rate of background rotation Ω =
926 A12-12
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2.093 rad s−1 and the forcing frequency ω0 = 1.70 rad s−1. We explore the effect of the
forcing amplitude a on the long-term nonlinear evolution of the inertial wave field in the
set-up. Our purpose is to identify a sequence of observed regimes, ranging from the linear
to the nonlinear regimes with a PVC described in the previous section.

The mathematical formulation of the problem consists in the Navier–Stokes equations
and the continuity equation

∂v

∂t
+ (v · ∇) v = −∇p̃ + ν
v + 2Ω × v, (4.1)

p̃ = p
ρ

− 1
2

|Ω × r|2 , (4.2)

∇ · v = 0, (4.3)

with v the velocity field and p̃ the pressure field. The governing equations are written
in the Cartesian system (x, y, z), co-rotating with the set-up, where the z-axis points
upwards and coincides with the axis of rotation. The origin of the coordinate system is
taken at the centre of the upper lid. Note that the fixed lid has no inherent rotation in
the rotating system (x, y, z). In the fixed inertial non-rotating reference frame we define
the anti-clockwise background rotation Ω as positive. In the rotating reference frame the
cyclonic vorticity is positive, and the sense of the prograde motion is positive – cyclonic is
by definition in the direction of rotation; here we take a right-handed Cartesian coordinate
system such that in cylindrical coordinates, (r, θ, z), the azimuthal coordinate θ increases
in cyclonic direction. With this convention the cyclonic vortices appear in red colour both
in numerical and experimental vertical vorticity patterns. If the motion in a vertical radial
plane is considered (e.g. plane y = 0) we use the notations (r, z). Throughout the paper we
visualise the fluid motion in the horizontal plane located at mid-depth of the fluid volume.

To complete the mathematical statement of the problem we prescribe the boundary
conditions as follows: the no-slip condition is imposed at all rigid boundaries except
at the fixed flat horizontal upper lid where a specific harmonic forcing is applied to
simulate the experimental one. We thus require that both horizontal components of the
fluid velocity vector at the upper lid are equal to zero as in standard no-slip condition,
while the vertical component is prescribed as explained below. Figure 2 shows the
discrete experimental profile of the amplitude of motion of the rings in the generator.
This discrete stepwise form approximates the smooth profile z(r) shown in figure 2
by the dashed blue line. The forcing imposed in the numerical experiments at the
upper lid is axisymmetric, with the vertical component of the fluid velocity given by
vz(r, t) = az̃(r)ω0 exp(ω0t) where a is the forcing amplitude and z̃(r) is a non-dimensional
profile (of unit amplitude at r = R0) such that z(r) = az̃(r) corresponds to the dashed
blue curve of figure 2. Since we consider a small-amplitude input perturbation (more
precisely, a/(R1 − R0) � 0.0167), such an approach seems to be justified. In the case of
internal wave attractors with similar implementation of the input forcing, we observed a
good qualitative agreement between numerical and experimental results (Brouzet et al.
2016b). However, an extension to rotating fluids stratified in angular momentum, and
not in density, and driven by Coriolis force (which does no work), and not by gravity
(which does), is not fully evident. Both this issue and the difficulty of precise evaluation
of the efficiency of the experimental wave generator leaves a considerable margin of
uncertainty regarding the possible correspondence between the experimental amplitude
and its numerical counterpart.

The numerical simulations have been performed for the following set of 7 forcing
amplitudes: a = 0.2, 0.5, 1.0, 1.8, 2.0, 2.4, 2.5 mm, the latter value corresponding to
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the experimental case. This corresponds to Rossby numbers RoL ranging from 5 × 10−4

to 7 × 10−3. Below, we use a reduced representative set of amplitudes to describe the key
regimes observed. The typical duration of the numerical experiments was approximately
200T0, and in some cases up to 350T0 (e.g. at a = 2.4 mm).

As evident from the experimental part of the paper, we need to model a strongly
nonlinear dynamical problem, where both viscosity and nonlinearity play a role. The
numerical simulation of transient and turbulent regimes is a challenge as we have to
follow the development of small-scale structures during long time intervals. In this
context, spectral or Galerkin decomposition is known to be a robust approach to tackle
the nonlinear effects without parasitic effects due to numerical viscosity. Classically, such
a decomposition is possible only for simple geometry and boundary conditions. In the
present work the direct numerical simulations are performed with the help of the spectral
element method, using the open source code Nek5000 (see Fischer & Ronquist 1994;
Fischer 1997; Deville, Fischer & Mund 2002). This method combines the advantages
of high-order decomposition with geometric flexibility, and permits to run long-term
simulations of strongly nonlinear dynamics. In the present study, we have used meshes
with up to 100 thousand elements, with eighth-order polynomial decomposition within
each element (up to 50 millions degrees of freedom).

4.2. Energy spectra: a preliminary classification of the observed regimes
The snapshots of the simulated inertial wave fields in horizontal and vertical planes are
shown in figure 7 for a set of forcing amplitudes a = 0.2, 1.0, 2.0, and 2.4 mm at t = 100T0
(all images correspond to the same phase of the forcing). As the amplitude increases, one
observes the increasing complexity of the inertial wave fields, in broad agreement with the
known literature on the onset of TRI (Bordes et al. 2012; Bourget et al. 2013) and wave
turbulence in internal and inertial wave attractors (Brouzet et al. 2016a,b). In particular,
one can see (i) visible broadening of the attractor branches at higher forcing (Brouzet et al.
2017b), (ii) the signature of discrete azimuthal symmetry in the vertical vorticity pattern
in horizontal plane at a = 1.0 mm in agreement with preliminary simulations described
in Sibgatullin et al. (2017) and (iii) the emerging signature of discrete patches of vertical
vorticity in the horizontal plane at a = 2.4 mm which are reminiscent of the experimental
observations described in § 3. Below, we apply a set of post-processing tools to analyse
the numerical data in some detail.

The nonlinear regimes observed in the numerical simulations of an axisymmetrically
forced inertial wave attractor can be roughly classified by considering the development of
the signal spectra with time for a set of forcing amplitudes. The typical time–frequency
diagrams obtained at different values of a are shown in figure 8. These diagrams are
calculated similarly to Bourget et al. (2013), as follows

Sr(ω, t) =
〈∣∣∣∣

∫ +∞

−∞
vr(r, θ, τ )eiωτ h(t − τ) dτ

∣∣∣∣
2
〉

rθ

, (4.4)

where h is a Hamming window and vr is the radial component of the velocity field,
and subscript rθ denotes a ring-shaped domain around the inner cylinder (θ ∈ [0, 2π],
r ∈ [5, 10] cm). The calculations are performed with the Matlab toolbox described in
Flandrin (1999). The time–frequency diagrams were also calculated for other variables
(e.g. azimuthal velocity, vertical vorticity), demonstrating similar qualitative behaviour.

The signatures of inertial wave turbulence can be detected by analysing the energy
spectra (Yarom & Sharon 2014). Note that the original approach implying 4-F Fourier
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Figure 7. Snapshots of the vertical vorticity field, obtained by numerical simulations, in horizontal plane at
mid-depth z = −20 cm (a–d) and corresponding vertical velocity fields in vertical plane y = 0 (e–h) taken
at t = 100T0 at different values of the forcing amplitude a. Note that both in experiments and in numerical
computations we denote cyclonic vorticity and prograde azimuthal velocity as positive. Thus the experimental
and numerical patterns have the same colour coding and can be directly compared regardless of the direction
of the background rotation.

analysis (three dimensions for space and one for time) has been proposed by Yarom
& Sharon (2014) for a rotating system where the energy is injected via decorrelated
random forcing thereby creating well-developed fully 3-D wave turbulence possessing no
information on initial orientation of the input wave vector. In the present paper the energy
is injected via axisymmetric deterministic forcing (with prescribed amplitude, length and
frequency) producing a variety of dynamic regimes ranging from regular to turbulent (see
figure 7). In order to adapt the method of post-processing to the observed wave patterns,
we perform the analysis described in Yarom & Sharon (2014) in a vertical radial plane
similar to Brouzet et al. (2016a), and, in addition, calculate the spatial energy spectrum in
a horizontal plane. The latter is done to clarify the role of the integer-number azimuthal
modes at different values of the forcing amplitude. Note that owing to different design
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Figure 8. Time–frequency diagram of the logarithm (colour) of the normalised spectrum of the radial velocity,
Sr(ω, t)/〈S0〉, where 〈S0〉 is the time averaged spectrum at ω/ω0 = 1, calculated with the help of (4.1) for a
ring-shaped region around the inner cylinder (r ∈ [5, 10] cm). The last image in the lower row corresponds to
the time–frequency diagram calculated for the experimental data obtained at a = 2.5 mm. The white dashed
line indicates the cutoff frequency f .

of the experimental set-up such modes were not present in the case studied by Yarom &
Sharon (2014). Before computing the energy spectra, the numerical results are re-sampled
to yield the spatial resolution of 0.2 cm × 0.2 cm and the temporal resolution of 0.2 s.
This is done to reduce the amount of data and to match the typical experimental resolution.
The wave-energy spectra in the vertical radial plane are computed using the 3-D Fourier
transforms of the horizontal and vertical velocity fields, v̂r(kr, kz, ω) and v̂z(kr, kz, ω). The
corresponding energy spectrum is defined as

E‖(kr, kz, ω) = |v̂r(kr, kz, ω)|2 + |v̂z(kr, kz, ω)|2
2A‖T

, (4.5)

where A‖ = 40 × 15 cm2 is the area considered in the vertical plane and T = 50T0
is the duration of the time-history sample. The calculations for all the cases shown
below in figure 9 are performed for the numerical data obtained for t ∈ [100T0, 150T0].
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Figure 9. The upper four images present the normalised energy spectra (E‖(α, ω)/E‖(ω)) at different values
of the forcing amplitude. Colours indicate the levels of normalised energy spectra. The white dashed lines
correspond to the dispersion relation ± cos α = ω/f . Note that the energy peaks are not always localised at the
dispersion curve, owing partially to the departure of the wave vectors from (r, z) plane and to the contribution
of slaved (evanescent) waves (see discussion in the text). The lower four images show the energy spectra in the
horizontal plane E⊥(kr, nθ ) on a logarithmic scale at different values of the forcing amplitude. By combining
information from the spectra calculated in the vertical and horizontal planes one can see the evolution of wave
regimes from nearly linear at a = 0.2 mm to wave turbulence evolving from a ‘discrete’ form at a = 1.0 to a
more ‘continuous’ form at 2.0 and a = 2.4 mm. The latter is particularly well seen in terms of E⊥(kr, nθ ). In
all cases the axisymmetric component of the wave field (corresponding to nθ = 0) is most significant.

The spatial resolution of re-sampled data and the size of the fluid domain provide
respectively the upper and lower bounds in wavenumbers, of order kmax = 8 rad cm−1

and kmin = 0.2 rad cm−1. Interpolation is performed to express the energy spectrum
E‖(kr, kz, ω) as a function of E‖(k, α, ω), with k, the norm of the wave vector. Then, we
perform integration over the entire range of resolved wave vectors [kmin, kmax] as follows:

E‖(α, ω) =
∫ kmax

kmin

E‖(k, α, ω)k dk. (4.6)

The calculated energy density E‖(α, ω) is normalised by the frequency energy density
E‖(ω), obtained by integrating E‖(α, ω) over all directions. It should be stressed that it
is only for a purely axisymmetric wave perturbation that E‖(α, ω), defined by (4.6), is
a function of the true angle α between the vector of the phase speed and the horizontal
plane. In the axisymmetric case, the vector (kr, kz, kθ ) has kθ = 0, where the direction of
the component kθ is defined by a vector orthonormal to the (r, z) plane. In the general
case, the vector (kr, kz, kθ ) is inclined at an angle α = arctan[kz/(k2

r + k2
θ )

1/2] to the
vertical axis. A projection of this vector onto the vertical (r, z) plane is seen at the
apparent angle α∗ = arctan[kz/kr]. Restricting, for brevity, our attention to small values
of α and α∗, the difference between the two angles can be quantitatively characterised as
[1 + (k2

θ /k2
r )]

1/2 − 1. For example, the relative difference |(α∗ − α)/α| < 0.1 translates to
|kθ /kr| < 0.46, thereby admitting the vectors whose azimuthal direction differs from the
(r, z) plane by less than ±25◦.

An additional analysis is performed in the horizontal plane located at the mid-depth
of the set-up. The wave-energy spectrum in the horizontal plane is computed using the
3-D Fourier transform of the horizontal components of the velocity field, v̂r(kr, nθ , ω) and
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v̂θ (kr, nθ , ω). Here, nθ = 2π/
θ is the non-dimensional azimuthal wavenumber, where

θ is the azimuthal wavelength (in radians). Note that using nθ is more convenient than
using kθ (measured in rad m−1) in view of the discrete azimuthal symmetry of the wave
patterns in the horizontal plane clearly seen in figure 7 at a = 1.0 mm. The corresponding
energy spectrum is defined as

E⊥(kr, nθ , ω) = |v̂r(kr, nθ , ω)|2 + |v̂θ (kr, nθ , ω)|2
2Ar,θT

, (4.7)

where Ar,θ is the area considered (r ∈ [R0, R1], θ ∈ [0, 2π]) and T = 50T0 is the duration
of the time-history sample. The spectrum is integrated over the frequency range ω ∈
[−f , f ] in which inertial waves can propagate, as follows:

E⊥(kr, nθ ) =
∫ f

−f
E⊥(kr, nθ , ω) dω. (4.8)

Using (4.4), (4.6) and (4.8), we obtain figures 8 and 9, which show the time–frequency
diagram of the logarithm of the normalised spectrum of the radial velocity, and the energy
spectra E‖ and E⊥ at different forcing amplitudes, respectively. From these figures we
can infer information on the qualitative evolution of the wave regime with amplitude.
It can be seen in figure 8 that for the lowest amplitude considered (a = 0.2 mm), the
frequency spectrum is monochromatic, with a weak but detectable component at twice
the forcing frequency. This is confirmed by the energy spectrum for this amplitude
represented in figure 9: the energy is localised on the linear dispersion relation at discrete
‘spots’ corresponding to ω0/f = 0.39 and 2ω0/f = 0.78. The perturbation is nearly
axisymmetric, a weak contribution of low azimuthal modes can be detected in terms of
E⊥(kr, nθ ).

At higher forcing amplitude (a = 1.0 mm), one can observe (see figure 8) a classic
signature of TRI. One can see signal components at the frequencies of two most energetic
secondary waves which satisfy the condition ω0 = ω1 + ω2, with ω1/ω0 = 0.32 and
ω2/ω0 = 0.68 (here, the subscripts 0, 1 and 2 denote the parameters of the primary
wave, and two secondary waves). Also there is a significant energy content at frequencies
ω1 + ω0, ω2 + ω0, and the multiples of the forcing frequency 2ω0 and 3ω0. Thus, both TRI
and the two-wave interactions (Beckebanze et al. 2021; Boury, Peacock & Odier 2021)
are present in the system and play a role. The corresponding energy spectrum shown
in figure 9 demonstrates that the linear dispersion relation attracts the energy maxima.
However, some energy content falls apart from the dispersion relation, producing a pattern
of weak horizontal stripes as consequence of the difference between angles α and α∗
arising from quasi-2-D analysis (4.6). In terms of E⊥(kr, nθ ) we observe a contribution
of low azimuthal modes, where significant peaks can be distinguished at nθ = ±12. As
it will be discussed in § 4.3, this is related with spiral waves propagating in retrograde
and prograde sense which are likely a consequence of triadic resonance. The data analysis
presented in figures 8 and 9 for a = 1 mm supports the idea that this regime corresponds
to the onset of weak (discrete) inertial wave turbulence.

As the forcing amplitude increases further (a = 2.0, 2.4, and 2.5 mm), one can observe a
significant increase of the energy content in the continuous part of the frequency spectrum,
accompanied by an enrichment of the discrete part (figure 8). The peaks corresponding to
TRI-generated secondary waves ω1 and ω2 (detected at a = 1.0 mm) remain persistent
at higher forcing amplitudes. In general, the overall trends seen in figure 8 at higher
forcing amplitudes correspond well to the effects described in the literature on internal
wave attractors in stratified fluids in the nonlinear regime (Brouzet et al. 2016a, 2017a).
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There is, however, an important distinction: in the case of rotating fluid we observe a highly
complicated frequency content of the signal at the low-frequency end of the spectrum
which does not have a straightforward interpretation in terms of TRI. In the context
of this paper this issue is of central interest (see § 4.5 for discussion). Note that some
discrete frequency components seen in the numerical calculations performed at a = 2.4
and 2.5 mm appear also in the experimental spectrum. In the numerical simulations, the
transients seem to have a significantly longer duration as compared with the experiment.
This issue is discussed in § 4.5.

The energy spectra for higher forcing amplitudes shown in figure 9 seem to be consistent
with the concept of inertial wave turbulence. As a increases, the character of wave
turbulence gradually evolves from a ‘discrete’ form at a = 1.0 to a more ‘continuous’
form at a = 2.0 and 2.4 mm. The latter is particularly well seen in terms of E⊥(kr, nθ ).
The presence of a significant continuous component in E⊥(kr, nθ ) is a direct consequence
of the loss of the discrete azimuthal symmetry observed in figure 7 at a = 2.0 and 2.4 mm.

As the energy spectra E‖(α, ω) are calculated in the vertical plane we can see that
the structure of the low-frequency zones (where the dispersion relation crosses the line
ω/f = 0) evolves considerably as a increases. In the quasi-linear case (a = 0.2 mm) there
is no detectable energy component at ω/f � 0. As a increases, a complex discrete structure
emerges in the vicinity of ω/f � 0. At higher a this structure evolves toward a smoothed
energy distribution, which can be interpreted as a trend toward merging of energy peaks
corresponding to discrete frequencies.

It has been already noted that some energy content falls apart from the dispersion
relation due to the difference between α and α∗ as a consequence of the 2-D analysis
in (4.6). Let us note that there is an additional mechanism for the concentration of such
peaks, namely along the vertical lines at fixed α corresponding to the forcing frequency
ω0. This means that forced higher harmonics are generated which propagate at an angle
belonging to that of the fundamental frequency, as opposed to free higher harmonics that
follow the dispersion curves. These ‘slaved’ higher harmonics have been encountered in
internal wave attractors before (Lam & Maas 2008). An interested reader is relegated to
Davis (2019), in which a similar phenomenon is observed and discussed in more detail.

4.3. Triadic resonant instability in a rotating annulus
Relevant to our study, let us consider in more detail the TRI in the rotating annulus. TRI
has been observed in various configurations of rotating flows involving precession, and
often led to symmetry breaking and to the formation of vortical structures distributed
periodically (Albrecht et al. 2015; Marques & Lopez 2015; Albrecht et al. 2018; Lopez
& Marques 2018; Wu, Welfert & Lopez 2020a). For example, in the case of a rotating
cylinder (e.g. Marques & Lopez 2015), this instability gives rise to structures aligned with
the rotation axis and distributed along θ .

The data presented in figure 8 for a = 1.0 mm show well-localised discrete frequency
components. Using the technique of Hilbert transform filtering introduced in Mercier,
Garnier & Dauxois (2008), one can separate the key components of the wave patterns
observed in vertical and horizontal planes as shown in figures 10 and 11. The filtered wave
field components seen in the vertical plane remind of the patterns already described in
literature for internal wave attractors (see e.g. Scolan et al. 2013; Brouzet et al. 2017a).
The length of the wave vector components can be evaluated with reasonable accuracy as
location of the maximum of corresponding PDFs calculated over the domain of interest.
The corresponding vector triad in vertical plane is shown in figure 12(a) together with
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the curves defining the admissible wave triads. It can be seen that the observed triad is
consistent with the theoretical curve, with reasonable experimental accuracy.

The pattern of triadic resonance in a ring-shaped domain seen in the horizontal plane
possesses a discrete symmetry as shown in figure 11. This is in agreement with earlier
observations described in Sibgatullin et al. (2017), and with raw snapshots shown in
figure 7 for a = 1.0 mm in the present paper. Thus, the azimuthal pattern in the horizontal
plane is reminiscent of ‘modal’ triadic resonance in a rectangular box described in
McEwan (1971). However, the modal pattern of internal waves in the vertical plane
(McEwan 1971) is clearly compatible with the dispersion relation, while we are not aware
of any theoretical work predicting the number of the expected azimuthal mode of the
secondary waves in a ring-shaped domain. Note, however, that Lin, Noir & Jackson (2014)
and Lagrange, Meunier & Eloy (2016) have looked at this in slightly different geometries
(such as a different orientation of the cylinder axis). Assuming the triadic resonance as
the underlying key mechanism and a discrete symmetry of the azimuthal wave pattern,
we can expect that the purely axisymmetric wave (i.e. zero azimuthal mode) at the
forcing frequency ω0 should give rise to two secondary waves propagating in the opposite
azimuthal directions (cyclonic and anti-cyclonic) and corresponding to the same azimuthal
mode. This is confirmed by the data presented in figure 11 and by the construction of
the projection of the wave vector triad on the horizontal plane shown in figure 12(b).
Both secondary waves seen in the horizontal plane correspond to 12-th azimuthal mode.
The secondary waves corresponding to ω1 and ω2 propagate in cyclonic and anti-cyclonic
directions, respectively.

Summing up, we can characterise each wave component by three numbers (kr, kz, nθ ),
where kr, kz are conventional wave vector components measured in r, z-plane (in
rad cm−1), while nθ = 2π/
θ is non-dimensional integer azimuthal mode number, where

θ is the azimuthal wave length (in radians). For the vector triads depicted in figure 12,
we have (1.38, 0.94, 0), (−1.88, −0.43, −12) and (3.02, 1.26, 12) for the primary and two
secondary waves, respectively. With reasonable accuracy we have k0

r ≈ k1
r + k2

r , k0
z ≈ k1

z +
k2

z and n0
θ = 0 = n1

θ + n2
θ . It should be stressed that the wave vector components can be

strictly defined only for spatially monochromatic fields (or approximately monochromatic
as in Bourget et al. 2013) while for narrow wave beams the objective measurement of wave
vector components raises some problems as discussed in Fan & Akylas (2020). However,
experimentally it is often possible to construct the PDFs for the wave vector components
measured in a zone of interest and estimate the length of the wave vectors from the
positions of PDF’s maxima. This approach is taken in the present paper. In light of the
results presented in figure 12, we note that the resonance conditions for TRI are satisfied
here. Moreover, it is interesting to point out that the primary wave is three-dimensional but
axisymmetric, and therefore mostly lives in a vertical plane, contrary to the two secondary
waves, which are non-axisymmetric and fully three-dimensional. At this stage, however,
the discussion of this 3-D TRI is purely exploratory. The reader interested in a more
thorough development is referred to Boury (2020) (§ 7.5.2).

4.4. Transition to a PVC
Let us now consider how the regime in which a PVC emerges in the numerical
simulations when we systematically increase the forcing amplitude. By considering the
results obtained at a = 1.0 mm we have already made an important observation that
the low-frequency behaviour of the system is represented by cyclonic propagation of a
secondary wave generated by triadic resonance. In other words, we can say that, after the
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Figure 10. The components of the inertial wave field (displayed in terms of the vertical velocity component)
filtered at frequencies ω0, ω1 and ω2 (a–c), with the corresponding phase patterns (d–f ). Only one branch of
the wave attractor is shown. The corresponding vector triad is shown in figure 12(a).
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Figure 11. The components of the vertical vorticity field ξz filtered at frequencies ω0, ω1 and ω2 (a–c), with
corresponding filtered wave fields as function of radial coordinate r and azimuthal coordinate θ , with amplitude
shown in (d–f ) and phase shown in (g–i). Note that the primary wave is axisymmetric and propagates radially,
while the secondary waves corresponding to frequencies ω1 and ω2 propagate azimuthally in the prograde
(cyclonic) and retrograde (anti-cyclonic) directions, respectively, and the azimuthal components of the wave
vectors have the same length. The corresponding vector triad is shown in figure 12(b).
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Figure 12. Verification of the triadic resonance: (a) curve of admissible wave vector triads in the vertical plane
(kr, kz) with superimposed measured wave vectors; (b) wave vector triad in the horizontal plane (kr, nθ ). The
wave vector triads shown in the left and right panels represent their projections on the vertical and horizontal
planes respectively, and correspond to the patterns depicted in figures 10 and 11. The solid, dashed, and
dash-dotted lines in panel (a) represent the locus of the tips of the resonant wave vectors according to the
dispersion relation.

onset of TRI, this low-frequency component of the wave field represents a ‘germ’ of the
slow manifold. Therefore, to compare the flow patterns representing the slow manifold in
the horizontal plane it is reasonable to use the low-pass filtering with the cutoff frequency
set around ωc = ω0/3. The width of this filter corresponds to the width of the filter used
in the experimental part of the paper to separate the low-frequency signal. Moreover,
the time–frequency diagrams shown in figure 8 allow us to conclude that this width of
the low-pass filter captures the essential features of the low-frequency behaviour of the
system. By applying this filter we can identify the variation of the structure of the vertical
vorticity field at different forcing amplitudes, as shown in figure 13. The snapshot of the
pattern is complemented by a video in supplementary material available at https://doi.org/
10.1017/jfm.2021.703. The snapshots and the video are taken in vicinity of the time instant
t = 100T0. It can be clearly seen that the cyclonic wave motion at a = 1.0 mm is replaced
by a highly complicated pattern which exhibits cyclonic/anti-cyclonic rotation close to
the inner/outer cylinder, respectively. We illustrate such a regime by the data obtained at
a = 2.0 mm. This regime is observed in a certain range of the forcing amplitudes (around
a ∈ [1.8 mm; 2.0 mm]). Thus, the transition from the regime with wave field possessing
discrete azimuthal symmetry (a = 1.0 mm) to the regime with PVC (a = 2.4 mm) is
highly non-trivial. The intermediate regime observed at a = 2.0 mm deserves a special
study which falls outside of the scope of the present paper.

As the forcing amplitude increases further, one can clearly identify the patches of
cyclonic vorticity arranged in polygonal fashion, with a slow drift of the vortex cluster
in prograde direction. This regime is shown in figure 13 for a = 2.4 mm. A very similar
regime is observed at a = 2.5 mm, which suggests that the regime is sufficiently robust
and can be reproduced in a certain range of the forcing amplitudes. The numerically
obtained vortex pattern with 7 vortices arranged at the vertices of a regular polygon
can be compared with the experimental vortex pattern with 8 vortices. We see that
qualitatively the patterns are similar, and, since the colour scale for both patterns is the
same, at quantitative level there is a reasonable agreement between the magnitudes of
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Figure 13. The low-frequency pattern of the vertical vorticity field filtered by low-pass filter with the cutoff
frequency ωc = ω0/3 at different values of the forcing amplitude in the DNS and for the experimental case.
The images correspond to the time t = 100T0. In the supplementary material we provide a short video of this
pattern demonstrating prograde motion of the wave pattern at a = 1.0 mm, prograde/retrograde motion close
to inner/outer cylinder respectively at a = 2.0 mm and prograde motion of the vortex cluster at a = 2.4 mm (in
numerical simulations) and at a = 2.5 mm (in experiments). Note that for experimental data we take a mirror
image, so that the background rotation and prograde motion are anti-clockwise. The numerically calculated
wave/vortex patterns are rotating around the central cylinder while interacting with the mean azimuthal currents
shown in the right panel of figure 17.

Forcing amplitude a 0.2 mm 1.0 mm 2.0 mm 2.4 mm 2.5 mm 2.5 mm (experiment)

Reynolds number Re 6 25 150 210 210 200

Table 1. Estimation of the Reynolds number Re, computed at the wave scale, at t = 200T0 in the numerics
and in the experiment.

the vertical vorticity. However, the mechanism of the formation of the vortex patches
and the long-term evolution of the pattern in the numerical calculations remain to be
identified. To do this we performed a long series of calculations specifically for this regime
at a = 2.4 mm. The results of these simulations are described below.

Our results point towards the existence of a transition between two different regimes,
one dominated by weakly nonlinear effects and the onset of TRI at low forcing amplitude,
and another one characterised by the existence of a PVC at higher forcing amplitudes.
As suggested by the numerical data presented in figures 8, 9 and 13, this transition is
likely to occur between a = 1.0 and a = 2.0 mm. The experimental results fall into the
second case with the fully developed PVC manifold. This transition is also evidenced by
the change in characteristic Reynolds number, computed at the wave scale, as shown in
table 1, since its order of magnitude changes from 10 to 100 between these two regimes,
thus indicating stronger and more efficient energetic transfers between scales. However, no
obvious scaling of Re with a could be found, and a detailed study of this transition falls
beyond the scope of this study.
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(b)(a) (c)

Figure 14. Visualisation of the vorticity in the numerical simulation at forcing amplitude a = 2.4 mm using
λ2 isosurfaces, following the method detailed in Jeong & Hussain (1995). Snapshots are taken, from left to
right, at t = 13.5T0, t = 27.1T0 and t = 389.6T0.

4.5. Long-term fate of the PVC in numerical simulations
As previously mentioned, at relatively high forcing amplitudes the system evolves in a state
where the formation of vertical vortices organised periodically around the inner cylinder
becomes the characteristic feature. We present in figure 14 a 3-D numerical visualisation
of this transition in the case of the forcing amplitude a = 2.4 mm, using λ2 isosurfaces
computed based on the method proposed by Jeong & Hussain (1995). The snapshots are
taken at three different times and show the laminar regime (panel (a), at t = 13.5T0), the
transitional small-scale turbulent state (panel (b), at t = 27.1T0) and the developed regime
(panel (c), at t = 389.6T0). Shortly after the beginning of the simulation, the flow becomes
weakly turbulent and small-scale features can be detected close to the inner cylinder, before
being reorganised into the well-defined vertical vortices consistently observed both in the
DNS and in the experiments.

The long-term time–frequency diagram corresponding to this forcing amplitude (a =
2.4 mm) is presented in figure 15. The diagram is calculated over 350 forcing periods.
Window 6 shows schematically the domain where the low-pass filter with the cutoff
frequency ωc = ω0/3 has been applied to obtain the vortex pattern depicted in figure 13
for a = 2.4 mm. This pattern remains virtually the same over a long time span. In
particular, the 7-vortex cluster can be observed when window 6 is shifted in time to cover
the narrow peaks 3 and 4. These peaks 3 and 4 are well localised, making possible a
narrow-band filtering of the corresponding wave components of the vertical vorticity field.
The result of such filtering is represented in figure 15 by the patterns corresponding to
ω3 = 0.36 rad s−1 (ω3/ω0 = 0.21) and ω4 = 0.16 rad s−1 (ω4/ω0 = 0.09). The former
represents a wave of seventh azimuthal mode propagating in the cyclonic (prograde)
direction in the close vicinity of the inner cylinder, the positive and negative patches
of vorticity in this wave have the same magnitude. The latter represents a wave of the
fifth azimuthal mode propagating in the anti-cyclonic (retrograde) direction. Note that the
wave corresponding to ω4/ω0 = 0.09 is significantly weaker in magnitude than the wave
corresponding to ω3/ω0 = 0.21. Apart from this well-defined discrete components there
is also a contribution from the continuous part of the spectrum. Thus, the 7-vortex pattern
seen in figure 13 can be interpreted as azimuthal wave of seventh mode propagating in
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Figure 15. The time–frequency diagram corresponding to the case a = 2.4 mm (a). (b–d) Show the snapshots
of the vertical vorticity fields filtered in narrow frequency windows 3 and 4 around t = 170T0, and via low-pass
filter schematically shown as 5 around t = 310T0. Patterns 3 and 4 propagate in prograde and retrograde
directions, respectively. Note that the discrete low-frequency components seen in the time–frequency diagram
exhibit a trend toward merging at t > 225T0, and filter 5 is applied to the result of the merging process. The
result of filtering with 6 (low pass-filter, earlier times) is shown in figure 13(c).

prograde sense over weak background vorticity pattern. In this background pattern we can
identify fifth azimuthal retrograde wave mode while other discrete wave contributions are
difficult to identify. The observable result of such superposition is the polygonal 7-vortex
pattern.

It should be noted that at long time scale the observable vortex pattern evolves. It can
be seen in figure 15 that after approximately 225T0 the discrete frequency components at
the low-frequency end of the spectrum exhibit a strong trend towards merging. Towards
the time around 275T0 it becomes difficult to distinguish individual low-frequency
wave components. The low-pass filtering applied to the domain schematically shown
by rectangle 5 returns the vorticity pattern which develops as result of merging of the
low-frequency discrete wave components. The resulting slow manifold is represented by
a PVC with 8 cyclonic vortices drifting in cyclonic direction. This pattern is very similar,
in terms of strength and spatial arrangement of vortices, to the experimental pattern
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Figure 16. Same as experimental figure 5 but computed from the numerical data. It can be seen that in the
numerical simulations the prograde motion of the vortex cluster is significantly faster than in the experiment
case. The three lines indicate, from left to right, an azimuthal drift of the vortex cluster at the rate of half a turn
in (15 ± 2)T0, (22 ± 2)T0 and (28 ± 2)T0. The rate of the azimuthal drift thus decreases with time.

shown in figure 13. The evolution of the azimuthal drift of the vortex cluster with time
is illustrated in figure 16 representing the numerical counterpart of figure 5. It can be seen
that numerical simulations yield 6 to 3 times faster drift than the experimentally measured
one. Note that the time–frequency diagram itself shows some discrepancies between the
experimental and the numerical data, possibly due to dissipative effects, but overall the
correspondence gets better towards the end of the data sets and, asymptotically, the same
peaks are observed.

An important remark should be made regarding the slow background azimuthal current
observed in the horizontal plane at mid-depth of the set-up. The evolution of this current
is shown in figure 17 which represents the time history of the radial distribution of the
mean azimuthal velocity component 〈Vθ 〉θ,t (measured in cm s−1). Here, 〈·〉θ,t denotes the
azimuthal averaging performed over θ ∈ [0, 2π] and the temporal averaging performed
in a moving window of width 20T0. The corresponding non-dimensional quantity is
introduced as Vθ = 〈Vθ 〉θ,t · T0/(2πr), which physically corresponds to the portion of
the full circle passed by the mean azimuthal current during one forcing period. The time
history covers the same span of time as figures 15 and 16. Figure 17(b) shows the radial
distribution of mean non-dimensional azimuthal velocity corresponding to t = 100T0 in
the numerical simulations performed at different values of the forcing amplitude a =
0.2; 1.0; 2.0; 2.4 mm. This time t = 100T0 corresponds to the patterns shown in figure 13.
The profiles displayed in figure 17(b) show that the mean azimuthal ‘wind’ in the system
considerably increases with the forcing amplitude. This effect is quantitatively investigated
in figure 17(c), showing that the maximum of |Vθ | increases proportionally to the square
of the forcing amplitude a, a result consistent with other studies (see, e.g. the recent work
of Cebron et al. 2021). No relevant scaling could be found, however, for the radial location
of these maxima. There exists a significant literature on the effect of the mean current on
TRI in 2-D problems, where the wave vectors and the mean velocity vector belong to the
same vertical plane (see e.g. Richet, Muller & Chomaz 2017; Fan & Akylas 2019). In our
case the mean azimuthal flow is perpendicular to the primary wave motion which occurs
in a vertical (meridional) plane. We conjecture that a sufficiently strong mean azimuthal
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Figure 17. (a) Spatio-temporal diagram representing the numerically computed time history of the
radial distribution of mean non-dimensional azimuthal velocity component Vθ = 〈Vθ 〉θ,t · T0/(2πr).
Positive/negative values correspond to prograde/retrograde current. Black dots show the mean radial position of
the centres of vortices in the vortex cluster. (b) Radial distribution of mean azimuthal velocity corresponding to
fixed moment of time t = 100T0 in numerical simulations performed at different values of the forcing amplitude
a. The ‘slow manifold’ patterns shown in figure 13 and in supplementary material correspond to t = 100T0.
These patterns are slowly rotating while interacting with the mean azimuthal current. In (b), for a = 2.4 mm
we present also the radial profile of the azimuthal current taken at t = 310T0 (purple dashed line): note the
presence of the prograde current corresponding to the yellow ‘tongue’ in the left panel (a). The measurement
times t = 100T0 and t = 310T0 are indicated by white dashed lines in the left panel. In both panels, a grey
rectangle is added to represent the fluid domain at rest contained in the inner cylinder. (c) Scaling of the
maximum of |Vθ | with the square of the forcing amplitude, a2.

flow has an important effect on the radial extent of the observed azimuthal wave modes
depending on the prograde/retrograde sense of motion of the flow and the waves.

In figure 17(a), we superimpose the evolution of the mean position of the vortex centres
(marked by black dots) on the spatio-temporal diagram of the mean azimuthal flow. It can
be seen that vortices are initially close to the surface of the inner cylinder as shown in
figure 13 for the case a = 2.4 mm. At t around 150T0 a narrow zone of prograde current
starts to develop near the inner cylinder (visually it corresponds to the yellow ‘tongue’
seen in figure 17(a), see also the dashed profile in (b,c)). Owing to interactions with this
current, the vortex centres gradually move away from the inner cylinder while sitting
at the radial coordinate roughly corresponding to the border between the prograde and
retrograde currents. When the mean radial position of the vortex centres increases, the
7-vortex cluster evolves toward the 8-vortex configuration.

Let us note that the data presented in figures 16 and 17 permit us to quantify that the
prograde propagation speed of the vortex cluster, varying from 1/30 to 1/56 cycle per
period T0, is approximately equal to or smaller than the prograde average flow speed

926 A12-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

70
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
U

tr
ec

ht
, o

n 
14

 D
ec

 2
02

1 
at

 1
0:

01
:3

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2021.703
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Axisymmetric inertial wave attractors drive vortex clusters

observed in the narrow yellow ‘tongue’ (see figure 17a) toward the end of the simulation.
This observation carries the suggestion that the components of the vortex cluster can
be identified as topographic Rossby waves propagating in the retrograde direction with
respect to the current (while in prograde direction with respect to the rigid boundaries of
the rotating set-up).

In the experimental part of the paper (§ 3) we have demonstrated that the
cyclonic/anti-cyclonic asymmetry can be conveniently illustrated by the PDFs of the
vertical vorticity components. Indeed, the vertical vorticity PDF provides a diagnostic
from which the importance of redistributing processes can be obtained; its width
(variance) tells how much vorticity is present in vortices and in inertial and topographic
Rossby waves relative to the background (‘planetary’) vorticity, its skewness testifies
about the dominance of concentrated strong cyclonic vorticity (in cyclones) relative to
a more widespread background of weak anticyclonic vorticity. As seen in figure 6, in the
experiment, the key contribution to the asymmetry is due to the low-frequency component
of the vorticity field filtered with the help of the low-pass filter. In figure 18 we show
the PDFs calculated for the numerically simulated vertical vorticity field. Note that the
PDFs of the experimentally measured vertical vorticity component at a = 2.5 mm (black
line) are fully consistent with the PDFs obtained for the numerically simulated vertical
vorticity component obtained for a = 2.5 mm (green line) and a = 2.4 mm (purple
line). Interestingly, the widest PDFs are obtained in numerical simulations performed at
a = 2.0 mm, which is consistent with the snapshots shown in figures 7 and 13 (note that a
larger range of the colour bar is used in these figures precisely for this amplitude).

The result of the DNS is satisfying in the sense that the experimental pattern is
successfully reproduced. It means that formation of a PVC in the geometric set-up under
consideration is a robust phenomenon. Moreover, the numerically observed merging of
low-frequency wave components into a regular pattern of cyclonic vortices seems to be a
plausible physical scenario for the formation of a slow manifold.

Many important issues remain unclear. In particular, it is not clear why the time scale of
transient evolution of the flow toward a regular vortex cluster in the numerical simulations
appears to be significantly longer than in the experiments. This is evident from the
comparison of figure 16, where we show the temporal evolution of the instantaneous radial
velocity as function of the azimuthal angle, with its experimental counterpart, figure 5. The
formation of the 7-vortex cluster in numerical calculations takes approximately 100T0,
approximately twice the time needed for formation of the experimental 8-vortex cluster.
The 8-vortex cluster in simulations appears after approximately 300T0. This also raises
a question: do we observe a fully saturated regime in the physical experiment and in the
numerical simulations? Also note that the rate of slow cyclonic drift of the vortex cluster
around the inner cylinder in numerical calculations is approximately 6 to 3 times higher
than in experiment. Considering numerical calculations, we also notice that the rate of
cyclonic drift systematically decreases with time, and the precession rate of the 8-vortex
cluster is significantly lower (by approximately 20 %) as compared with that of the 7-vortex
cluster. This decrease may be attributed to slow evolution of the mean radial position of
vortices sitting at the border between the prograde and retrograde currents as illustrated in
figure 17.

In the description of the numerical set-up (see § 4.1) we have mentioned that the
boundary condition (imposing a prescribed vertical velocity component at the fixed
horizontal upper lid of the fluid domain) is not fully identical to the experimental situation
with the deformable upper lid. This issue requires further investigation.
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a = 2.5 mm (exp)

PDFs at t = 100T0

101

100

10–1

10–2

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

102

101

100

10–1

10–2

–0.5 –0.4 –0.3 –0.2 –0.1 0

ξz/2Ω

0.1 0.2 0.3 0.4 0.5

Figure 18. The PDFs of the vertical vorticity components calculated for the time instant of approximately
t = 100T0 at different values of the oscillation amplitude: (a) corresponds to the raw signal, and (b) corresponds
to the signal filtered via the low-pass filter. The PDF for the experimental data obtained at a = 2.5 mm is shown
in light blue. The PDFs for the numerical data obtained at a = 2.5 mm (green) and a = 2.4 mm (purple) are
fully consistent with the experimental result (drawn in black).

5. Conclusions

The investigation of inertial wave attractors in rotating fluids offers a number of
possibilities concerning the geometric set-up of the problem. A number of experimental
studies (Maas 2001; Manders & Maas 2003, 2004; Brunet, Dauxois & Cortet 2019)
consider a rectangular box with one sloping wall placed at a rotating table which is similar
to the geometry used to reveal the linear (Maas et al. 1997) and nonlinear (Scolan et al.
2013; Brouzet et al. 2016a, 2017a; Davis et al. 2020) dynamics of internal wave attractors
in stratified fluids. It has been realised that the inherent three-dimensionality of inertial
waves is responsible for considerable secondary currents (Maas 2001; Manders & Maas
2004) and for a number of notable changes in the scenario of TRI (Maurer, Joubaud &
Odier 2016; Brunet et al. 2019). In contrast, there is a rich theoretical literature which
considers linear viscous regimes of inertial wave attractors in spherical liquid shells, where
the flow is studied in the meridional cross-section only while the structure of the flow in
the equatorial cross-section is supposed to be trivial (Rieutord & Valdettaro 1997; Rieutord
et al. 2001; Rieutord & Valdettaro 2010).

In the present paper, we consider numerically and experimentally the geometric set-up
which builds a bridge between the two above statements: the experiments are carried out
in a (horizontal) annular and (vertical) trapezoidal domain which admits the existence
of inertial wave attractor structures in meridional planes while leaving the freedom for
the formation of a slow 2-D manifold which drains energy from the genuinely 3-D
inertial wave field as result of an energy transfer. The experimental system is subject to
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axisymmetric forcing, and experiments are performed at low values of the global Rossby
(Ro is of order 10−3) and Ekman numbers (E is of order 10−5). The main finding of the
experimental part of the present study is the formation of a slow 2-D manifold in the
saturated regime in the equatorial plane, which co-exists with an inertial wave attractor in
the meridional plane. The 2-D manifold is represented by an ensemble of eight cyclonic
vortices in a regular polygonal arrangement. The vortex cluster undergoes a slow cyclonic
motion around the axis of rotation of the experimental system.

In the numerical part of the paper we reproduce the experimental set-up and perform
a series of simulations for a set of forcing amplitudes in order to obtain the experimental
reference result. We observe a sequence of regimes: (i) linear regime with axisymmetric
inertial wave attractor, (ii) onset of TRI, (iii) wave turbulence, (iv) formation of the slow
manifold in the form of a regular polygonal vortex cluster and (v) the slow cyclonic drift of
the cluster. The triadic resonance instability is observed both in the vertical plane (where
it appears to be compatible with the existing knowledge) and in the horizontal plane
where the secondary waves form the patterns possessing discrete azimuthal symmetry,
with the secondary waves propagating cyclonically/anti-cyclonically. The concept of wave
turbulence appears to provide a useful general framework for interpretation of the observed
phenomena. However, there is an interesting specific feature: the motion observed in the
meridional vertical planes seems to correspond to classic wave turbulence, evolving from
‘discrete’ to ‘continuous’ form, while the motion seen in the horizontal (equatorial) planes
shows a strong trend toward development of discrete clearly defined azimuthal modes.
An important issue for further investigation is the possible cross-interaction between
prograde/retrograde azimuthal modes and prograde/retrograde mean azimuthal currents
in the case of strong forcing when the currents are appreciable. It is noteworthy that
the probability density functions of vertical vorticity calculated for experimental and
numerical data are fully consistent, showing significant cyclonic/anti-cyclonic asymmetry.

Special attention has been paid to the development and long-term behaviour of the
vortex cluster, which was analysed with the help of low-pass and, where appropriate,
narrow-band filters. The results of the analysis support the idea that the vortex cluster
emerges as the result of summation and/or merging of wave-like vorticity components in
the presence of a mean current. We can speculate that the observed phenomena may be
related to topographic Rossby waves. Indeed, the presence of propagating vortices in a
typical topographic β set-up warrants a discussion in terms of topographic Rossby waves.
The issue is a bit delicate for two reasons. On the one hand, for the conical shape of
the bottom that we used (decreasing in depth inwards), the topographic Rossby waves
are expected to propagate in retrograde direction (against the rotation sense of the tank),
counter to what was actually observed in the laboratory experiment as well as in matching
numerical experiments. As in the classical case studied originally by Rossby in the Earth’s
atmosphere, these waves may still propagate in prograde direction when advected by
a strong background flow (Rossby 1939). The numerical computations that support the
laboratory experiments indeed show that at the radius where the vortices sit, a strong
prograde mean flow has formed. On the other hand, the mean flow is not necessarily
formed by the mixing of angular momentum due to breaking of focused and amplified
inertial waves, but could also be generated by nonlinear interactions of periodic flows
within a viscous boundary layer (see, e.g. the works of Busse 2010; Sauret et al. 2012).
In our study, it is important to highlight that this mean flow itself has a complex radial
structure that contains strong retrograde as well as eventually strong prograde parts. We
believe this aspect, the precise generation and evolution of the radial mean flow structure
by focused inertial waves, to be sufficiently complex to require further investigation. In
numerical simulations (not reported in this paper) we have also made a limited preliminary

926 A12-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

70
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
U

tr
ec

ht
, o

n 
14

 D
ec

 2
02

1 
at

 1
0:

01
:3

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2021.703
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


S. Boury and others

study on robustness of the observed effects by considering a conical bottom with a smaller
slope (30◦ instead of 45◦). The calculations have demonstrated that a PVC also arises at
comparable input forcing. Additionally, the form of forcing has been changed from the
cubic profile shown in figure 2 to a linear profile (under the condition that the forcing
should be volume conserving). Again, the computations have demonstrated the emergence
of a vortex cluster, and we can therefore conclude that the observed phenomenon is indeed
robust.

Although the experimental reference regime is numerically reproduced, and the role of
the forcing amplitude is clarified, the present study raises a number of interesting general
issues, in particular, (i) how the vortex cluster regime evolves when the key parameters of
the problem (Rossby and Ekman numbers, geometric aspect ratio and the particular type
of forcing) are varied in a broad range, and (ii) whether or not the observed regime might
be relevant to realistic geo- and astrophysical systems.

Cyclonic clusters arranged in the form of regular polygons have been reported for the
polar regions of large planets, e.g. Jupiter (Adriani et al. 2018), demonstrating remarkably
persistent long-term behaviour (Adriani et al. 2020). This phenomenon has a different
physical origin as compared with our experiments. It has been argued that the pattern is
captured by shallow-water models, e.g. Cho & Polvani (1996), Scott & Polvani (2007).
However, the key puzzle of vortex clusters remains (Adriani et al. 2018): ‘The manner in
which the cyclones persist without merging and the process by which they evolve to their
current configuration are unknown’. Recently, Reinaud (2019) has shown numerically that
a system of m quasi-geostrophic vortices equally distributed over a ring whose centre is
already occupied by a vortex can be stable under certain conditions. In our experiment,
the inner cylinder may play a similar role to this central vortex. Hence, the ‘toy system’
proposed here may help to shed light on the stability of PVCs and their possible existence
not only in a shallow ‘atmosphere’, but also in liquid interiors of rotating natural systems
geometrically compatible with the existence of inertial wave attractors.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.703.
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