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Abstract: Snow cover on sea ice is the most important factor controlling light availability for sea
ice algae, but it is predicted by climate models to become more variable and stochastic. Here,
we document effects of a sudden, complete loss of the entire snow cover on first-year sea ice at
Kangerlussuaq Fjord, West Greenland, due to a natural Föhn wind event that caused a ca. 17 ◦C
air temperature increase over 36 h. We applied Imaging-PAM fluorometry to examine effects of
snow cover on algal distribution and photobiology and observed a rapid decrease in algal biomass
associated with loss of the skeletal ice crystal layer on the underside of the ice that had supported
most of the visible algae. Furthermore, the remaining algae were photobiologically stressed, as seen
in a significant decrease in the dark-acclimated fluorescence yield (ΦPSII_max) from 0.55 before snow
loss to 0.41 after. However, recovery in the dark suggested that non-photosynthetic quenching was
successfully dissipating excess energy in the community and that there was little photodamage. An
observed decrease in the photosynthetic efficiency α from 0.22 to 0.16 µmol é m−2 s−1 is therefore
likely to be due to photoacclimation and the change in community composition. Centric diatoms
and flagellates were the main taxa lost in the snow loss event, whereas the sea ice specialist Nitzschia
frigida increased in numbers. These observations are similar to those seen in artificial snow-clearing
experiments and consistent with snow clearing being a useful approach for investigating the complex
interactions between snow cover, irradiance fluctuations, and ice algal performance.

Keywords: ice algae; Greenland; optics; photobiology; snow cover; stress

1. Introduction

Primary production in seasonally ice-covered polar oceans is driven by ice-associated
and planktonic algae. While the proportional contributions of these two communities to
primary production is variable [1], there is widespread support for the view that ice algae
represent a significant source of carbon, not least because they are available in early spring
before ice break-up allows planktonic algae to develop [2,3]. Although sea ice productivity
often decreases greatly after spring, the remaining biomass persists throughout the season
and continues to provide carbon to food webs well into the autumn [3,4]. The timing
and flux of carbon flow during this process is an important coupling in the Arctic marine
ecosystem [5]. In recent years, climatic warming has reduced the thickness and area of
Arctic sea ice, which has led to concerns over the impacts of shifting patterns of primary
productivity on Arctic ecosystems [6,7]. Sea ice algal biomass is generally dominated by
diatoms concentrated at the ice–water interface [8,9], and these cells become available to
seed phytoplankton [10] and to support higher trophic levels either by grazing within the
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ice matrix or when they are released to the water column [1]. The timing of such release of
ice algae to the water column is potentially significant, as it may change how and when
other organisms can exploit the ice algae food resource [11] and when seeding of spring
phytoplankton growth occurs [10].

Snow cover is a key variable affecting sea ice algae biomass and photosynthetic
parameters but can have complex effects. Small reductions in thick snow cover can enhance
ice algal accumulation, but rapid reduction in snow cover often results in equally rapid
loss of ice algae [12]. Loss of algal biomass following sudden snow loss can be both
physical, due to increased basal ablation increasing loss rates, and biological, through
photoinhibition reducing growth [13,14]. Biomass can also fall after sudden increases
in irradiance due to emigration of motile taxa, including flagellates and many pennate
diatoms [14]. The amount of light transmitted through the snow–ice matrix and the ability
of algal photobiology to acclimate to sudden changes in light intensity over different
time scales are therefore critical to understanding increases, decreases, and losses of algal
biomass in response to a changing Arctic snow cover.

Climate modelling has predicted both increased and decreased thicknesses of snow
cover in the Arctic Ocean [15]; warmer air temperatures may make the coverage period
much shorter, and the snow cover more dynamic with more frequent, sudden snow loss
events. Most recent modelling suggests increased precipitation but less snow accumulation
and more rainfall as the atmosphere warms [16]. There is considerable evidence of general
declines in the duration of the snow-covered period in the Eurasian Arctic [17–19]; thus
understanding the responses of ice algae to rapid shifts in snow cover has therefore become
more important to understanding possible trajectories of change in the Arctic. At the local
scale, however, snow trajectories are highly variable spatially and there is considerable inter-
annual variability. For any given site, it is therefore important to compare responses across
a range of snow thicknesses and hence irradiance scenarios to develop a complete insight
into whether algal biomass is likely to change in response to broader climatic changes.

There are generally two approaches for studying effects of snowmelt on the ice algae
community: first, manipulative field experiments involving complete or partial artificial
snow removal, following effects from a subsequent time series [12,20], and second, mea-
surement of selected parameters such as biomass or primary production as a function
of natural variation in snow depth over space or time [21–23]. The limitations of these
two approaches for understanding large-scale, rapid increases in irradiance in response to
sudden snowmelt are evident. For logistical reasons, most snow-clearing experiments can
only treat relatively small areas (a few square metres) and are not accompanied by realistic
changes in air and sea ice temperatures during weather events, and therefore they may
not accurately mimic whole-ecosystem algal responses during snowmelt events. Natural
gradients, on the other hand, allow algae to acclimate to the prevailing irradiance and
do not provide the sudden photoinhibitory stress driven by rapid snowmelt. Regrettably,
researchers have few opportunities to study photobiological responses to snowmelt during
the large-scale snowmelt events that sea ice algae often experience in nature.

In this paper, we are able to present a fortuitous account of a sudden weather-driven
warming and large-scale snow loss event impacting an ice algal community on an entire
fjord during the spring growth season at Kangerlussuaq, a Greenland fjord. This is, to the
authors’ knowledge, the first study of its kind, addressing the photobiological consequences
of a rapid, wholesale natural loss of the snow cover over an entire fjord system. This type
of event—sudden warming, with rainfall precipitation reducing snow cover—is very
specifically a prediction of the most recent climate modelling [16]. In addition, there are
still relatively limited data in the literature on in situ photosynthesis–irradiance parameters
describing acclimation to under-ice irradiance, even though these are important in most
current models relating ice algal biomass to snow cover and sea ice properties [24,25]. The
specific objectives were therefore to study the effects on the photophysiology of ice algae
following sudden snow loss, as well as the role of a ca. 17 ◦C air temperature increase
within 36 h.
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2. Materials and Methods
2.1. Site Description and Sampling Design

Our observations were made from 12 to 19 March 2013 at 66◦56.780 N; 50◦52.853 W, in
Kangerlussuaq (Figure 1), a 180 km long, narrow (1–5 km) Arctic fjord located on the Arctic
Circle on the west coast of Greenland, about 25 km from the Greenland ice sheet. It consists
of a relatively shallow (30 to 40 m depth) outer part that connects with the open ocean and
a deep-water inner part with depths up to 280 m [26]. Water depth at the sampling site
was ca. 130 m. The tide is diurnal with a maximum tidal range of about 2–4 m [27]. The
area has a continental climate with low average winter temperatures of −15 to −25 ◦C and
low precipitation of ca. 5 mm per month during December–July (www.dmi.dk (accessed
on 1 July 2021)). The fjord is ice-covered between October and early June to a thickness of
about 0.5–1.0 m.
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Figure 1. Map showing location of Kangerlussuaq study area in south-west Greenland and location
of the sea ice station used in the study (map adopted from Nielsen et al. 2010).

The sea ice station shown in Figure 1 was established on 12 March 2013 (Julian Day
71), at which time a near-uniform ca. 10 mm thick snowpack covered the entire fjord
(Figure 2A). High air temperatures and rainfall over Days 74 and 75 caused the entire snow
cover of the fjord to melt by Day 75, with the meltwater on the ice preventing access on
Days 75 and 76. By Day 77, the warm event had removed all snow from the entire fjord
including the study area (Figure 2B).

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 2. Photos showing change in snow cover on the fjord between (A) Day 71 and (B) Day 77 of 
the study due to sudden increase in air temperature and rainfall from Days 74–75 (photos by au-
thors). 

 
Figure 3. Time series at the sea ice station of (A) air temperature and (B) irradiance (photosyntheti-
cally active radiation, PAR) at the ice surface (blue) and under-ice (red). The periods of cold, snow-
covered ice, melting snow during the storm event, and post-snowmelt warm ice are shown in (A), 
with black arrows marking the sampling events (Days 71 and 73 with snow cover, Days 77 and 78 

Figure 2. Photos showing change in snow cover on the fjord between (A) Day 71 and (B) Day 77 of
the study due to sudden increase in air temperature and rainfall from Days 74–75 (photos by authors).

www.dmi.dk


J. Mar. Sci. Eng. 2021, 9, 814 4 of 14

Sea ice was sampled twice during the cold pre-snowmelt period (Days 71 and 73),
which was followed by the melting event (Days 74 to 76), during which the ice station was
inaccessible (Figure 3A). After the snowmelt, ice cores were again collected twice (Days 77
and 78). In situ fluorescence imaging was performed on Days 73 (cold, pre-snowmelt) and
78 (warm, post-snowmelt). Sampling was carried out on a 5 m-wide × 10 m-long sampling
area, marked out during the initial establishment of the experiment on Day 71.
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Figure 3. Time series at the sea ice station of (A) air temperature and (B) irradiance (photosynthetically
active radiation, PAR) at the ice surface (blue) and under-ice (red). The periods of cold, snow-covered
ice, melting snow during the storm event, and post-snowmelt warm ice are shown in (A), with black
arrows marking the sampling events (Days 71 and 73 with snow cover, Days 77 and 78 without snow
cover). (C) Spectral irradiance under the ice before (blue line) and after (red line) snowmelt. The
black line is the ratio of irradiance without:with snow.

2.2. Under-Ice Irradiance

Throughout the experiment, air temperature (sun-screened Campbell 107 temperature
probe), downwelling and upwelling photosynthetic photon flux density (PAR) (Id and Iu)
at 0.5 m above the surface (Li-COR Li-191 PAR sensor), and under-ice PAR (Ii) (Li-COR
–Li-192 submersible PAR sensor) were recorded at the sea ice station at five-minute intervals
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using a Campbell CR10X data logger. The under-ice sensor was mounted on a black pole
and lowered through a hole in the ice to a measuring position just below the ice and
allowed to freeze in place. Transmittance (τ) was calculated as the ratio between under-ice
PAR (Ii) and downwelling PAR at the surface (Id), and albedo was calculated as [Iu/Id].

To quantify how snow cover affected the spectral distribution of light available to the
algae, spectral irradiances were obtained below the ice both with and without snow cover,
using a TriOS Ramses ACC VIS cosine-corrected hyperspectral radiometer, measuring from
320 to 950 nm with a 3.3 nm resolution (www.trios.de (accessed on 1 July 2021)). The sensor
was mounted on an articulating arm that was lowered through a 90 mm hole in the ice,
and once there, the arm unfolded to allow measurements to be obtained just below the ice
at a horizontal distance of about 70 cm from the hole. Measurements were taken around
local noon with a clear sky.

2.3. Collection, Processing, and Analysis of Ice Cores

Eight ice cores were obtained on each sampling occasion using a 90 mm diameter
Kovacs ice corer driven by a battery-powered drill. Their lengths were measured to the
nearest 1 mm. Two of the cores were immediately placed in a horizontal cradle and
temperature measured to 0.1 ◦C precision in 3 mm diameter holes drilled every 2.5 cm to
the centre of the core. These cores were then cut into 50 mm sections, and each section was
sealed in a polyethylene bag and placed in insulated boxes for transportation back to the
laboratory within 4 h. The sections were then thawed in individual pots at 4 ◦C in the dark,
and salinity was measured on the thawed sample with a YSI handheld CTD (PRO30) to
nearest 0.1 precision. Brine salinity and volume were estimated according to the formulae
of Cox and Weeks [28].

Three of the cores from each sampling were used for biological analysis. The lower
30 mm of these cores was removed and immediately used in the field for fluorescence
imaging (see next section). The remainder of the core was cut into 50 mm sections. All
sections were then sealed in an opaque plastic container to minimise exposure to ambient
irradiance and low temperatures and transported to the laboratory. At the laboratory,
these biological core sections were placed in individual pots to thaw at 4 ◦C for ca. 12 h
in the dark and to ensure dark adaptation of photosystems before Phyto-PAM analysis
(Section 2.5), with an additional two volumes of pre-filtered seawater to prevent osmotic
shock [20]. Each sample was immediately subsampled for the Phyto-PAM and filtered as
soon as the last visible ice had disappeared, thus ensuring minimum time for any biological
degradation or grazing of the algae in the thawed sample. An exact volume of thawed ice
(0.25 to 0.5 L) was filtered for estimation of chlorophyll a (Chl a) through glass fibre filters
(GF75 Advantec, nominal pore size 0.7 µm), using a vacuum of <30 kPa, and the filters
packed in aluminium foil and frozen at −20 ◦C.

Chl a was extracted in 5 mL of 96% ethanol at 5 ◦C for at least 6 h. Samples were
centrifuged and the fluorescence of the supernatant measured with a Turner Design fluo-
rometer (TD-700) using excitation of 430 and emission of 665 nm and converted into Chl a
concentrations using a calibration series of pure pigment.

Three of the non-biological cores were analysed for dissolved organic carbon (DOC),
on the lower 30 mm. The lower 30 mm was returned to the laboratory in acid-washed
containers for thawing at 4 ◦C. Subsamples (50 mL) were filtered with a syringe filtration
system through pre-combusted (450–500 ◦C for 2 h) GF/F filters into acid-washed 60 mL
HDPE-bottles and preserved by addition of ultrapure 2 N HCl to a final concentration
of 0.1%. DOC was later measured using a TOC-VCPH Total Organic Carbon Analyzer
(Shimadzu). Deep-water reference Batch 9 Lot # 09/09 (Hansell Laboratory, University of
Miami), a four-component freshwater standard series with exactly known C concentration,
and freshly produced Milli-Q water as blank were used as reference material. Chl a and
DOC concentrations were corrected for brine volume.

www.trios.de
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2.4. In Situ Variable Chlorophyll Fluorescence of Photosystem II—Imaging-PAM

Stress on the photosystems of the sea ice algae from the rapid increase in irradiance
after snowmelt was examined through the variable fluorescence of photosystem II (PSII),
determined by pulse amplitude modulated (PAM) fluorometry. Variable chlorophyll
fluorescence was measured in the field on the intact lower 30 mm section of ice cores using
a Walz Imaging-PAM fluorometer. Imaging PAM fluorometry allows resolution of the
distribution of pigment systems and the activity of PSII in two dimensions, and full details
of methods applied here are given in Hawes et al. [9]. In brief, the instrument was fitted
with a lens imaging an area of 30 mm × 24 mm, and the saturation pulse method was used
to determine ambient (F) and maximum (Fm’) fluorescence yields of samples adapted to
under-ice light. From these, we derived the effective quantum yield of PSII (ΦPSII), which
is a unitless ratio that is a proxy for the quantum efficiency of photosystem II in electron
transfer at the prevailing irradiance; further details are given by Schreiber et al. [29]. We
calculated average values of ΦPSII for the entire area of each image obtained as described
previously [14].

Our approach was designed to determine ΦPSII in freshly collected ice cores to provide
insights into the degree of high-light-induced down-regulation of photosynthesis under
the prevailing irradiance regime and to compare this with maximum quantum yield of
PSII after overnight dark acclimation (ΦPSII_max) to discriminate down-regulation from
persistent photodamage. Fluorescence imaging was carried out in a darkened tent on
the sea ice immediately after sampling in the field. Two types of measurements were
made: a single value from triplicate cores collected at local noon on each of Days 73 and
78 and a time course from 09:00 to 17:00 on Day 78. For the time course, each ice core
was retained after imaging and thawed overnight (12 h) at 4 ◦C in the dark as described
above for determination of subsequent dark-adapted maximum yield (ΦPSII_max) using the
Phyto-PAM, as described below.

2.5. Variable Chlorophyll Fluorescence of Photosystem II—Phyto-PAM

Triplicate subsamples of the dark-adapted thawed samples as described in Section 2.3
were taken for variable chlorophyll fluorescence estimates in a Phyto-PAM System II
Emitter-Detector (Phyto-ED) unit with Phyto-WIN software (www.walz.com.de (accessed
on 1 July 2021)), taking care to maintain samples in darkness or very dim light. Measure-
ments of ΦPSII_max were performed as described previously [20] on all core sections from
the three biological cores. There was no detectable chlorophyll fluorescence in ice sections
further up in the core, nor was there any measurable Chl a or DOC beyond the lower
30 mm.

In addition, rapid light curves (RLCs) were made for each subsample. RLCs are
primarily designed to determine the photophysiological status of cells under a given light
regime by exposing cells to short periods of gradually increasing actinic irradiance and
measuring ΦPSII by providing a saturation pulse at the end of each irradiance. The product
of ΦPSII and actinic irradiance is taken as a measure of electron flow through PSII at that
irradiance and referred to as relative electron transfer rate (rETR). From the curves of rETR
vs. irradiance, we derived rETR_max, the maximum rate of electron flow at light saturation,
α, the slope of the light-limited portion of the RLC, and Ek, the irradiance at which rETR
was light-saturated, using the algorithms within the Phyto-PAM software. Values of all
photobiological parameters for each replicate were the mean of the three subsamples.

2.6. Taxonomic Analysis and Relative Abundance

Samples (100 mL) of thawed bottom ice collected pre-snowmelt on Day 73 and after
the snowmelt on Day 77 were preserved with acidic Lugol’s solution and stored in the
dark for species identification. The ice algae were enumerated according to the Utermöhl
method [30]. The samples were allowed to settle in 50 mL settling chambers for 48 h
before counting using a Zeiss Axiovert 135M (40×) inverted microscope. A total of four
diagonals were counted in each sample. Identification of species and morphological groups

www.walz.com.de


J. Mar. Sci. Eng. 2021, 9, 814 7 of 14

were primarily based on the work by Tomas [31], the relative abundance of algae was
estimated as percent of total count, and the algal biomass was calculated according to the
ALGESYS protocol.

2.7. Statistical Analysis

All statistical analysis was performed using JASP Version 0.11.1. Differences between
sampling dates were compared with repeated-measures ANOVA. Post hoc multiple com-
parisons were conducted with a Bonferroni procedure. The assumption of sphericity was
tested with Mauchly’s test for all repeated-measures ANOVAs. If violated, the degrees
of freedom were corrected using Greenhouse–Geisser estimates of sphericity. For the diel
experiment, comparisons were between in situ and dark-acclimated fluorescence yields
with time of day as a fixed factor. Data were tested for normality and for heterogeneity of
variances with Levene’s test and log10-transformed where necessary.

3. Results
3.1. Physical and Optical Properties

From Days 71 to 73, the air temperature fluctuated between −12 ◦C nocturnally and
just above freezing point diurnally (Figure 3A). From Day 74 onwards, air temperatures
increased rapidly due to the Föhn wind effect and consistently approached or exceeded
+10 ◦C during the day and rarely fell below the freezing point for the remainder of the
study, even at night.

During the cold, snow-covered period, the under-ice light intensity reached a maxi-
mum value of 56 µmol photons m−2 s−1 at noon on Day 73, with an average albedo of 0.64
and transmittance of 0.33 (Figure 3B). After the melting of snow and warming of the ice,
PAR albedo decreased to 0.21, transmittance increased to 0.48, and under-ice irradiances
were as high as 183 µmol photons m−2 s−1 on Day 76, four times higher than prior to
snowmelt despite similar incident irradiance at the surface of the sea ice. Spectral com-
position was dominated by blue-green wavelengths, with maximum transmittance close
to 480 nm but with a higher absorption in the red part of the spectrum with snow cover,
consistent with how peak irradiance absorption by snow occurs at ca. 670 nm (Figure 3C).

3.2. Effect of the Snowmelt on Sea Ice Temperature and Brine Volume

The ice thickness was uniform at the field station, being 0.74 ± 0.01 m (n = 4 cores)
before snowmelt, and identical (0.74 ± 0.01 m, n = 8) after snowmelt. On Day 73, the ice
temperature profile showed a surface ice temperature of −6 ◦C, rising to −1.8 ◦C at the
ice–water interface (Figure 4A). Subsequently, during the snowmelt event, the ice became
almost isothermal and at the ice–water interface was −1.4 ◦C. Brine volume increased with
the warming of the ice over this time, with the increase in volume greatest in the upper
part of the ice column (Figure 4B).

3.3. Chl a and DOC Concentrations

The snowmelt event had significant effects on Chl a concentrations and DOC in the
lower 30 mm of the ice (Table 1). Before the snowmelt, Chl a and DOC did not differ
significantly between Days 71 and 73. Chl a then decreased approximately two-fold under
snow-free conditions in response to the melting event. The decrease in DOC was similar in
magnitude to that of Chl a.
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Figure 4. Ice temperature (A) and brine volume (B) profiles during the cold (pre-snowmelt, Day 73, red line) and warm
(post-snowmelt, Day 77, blue line) phases of the experiment. Values are means at each depth from two cores.

Table 1. Mean ± SD (n = 3) for Chl a, DOC (dissolved organic carbon), ΦPSII_max, α, rETRmax, and Ek for the lower 30 mm of
the ice before (Days 71 and 73) and after (Days 77 and 79) snowmelt on the fjord. F values from repeated-measures ANOVA
shown with significant tests identified as p < 0.05 *, p < 0.01 **. Different letter superscripts within rows identify means
that differ significantly where ANOVA is significant. Chl a and DOC were sampled on all four occasions; photobiology
(Phyto-PAM) was not performed on Day 71 (n.d. = not determined). Degrees of freedom are 3, 9 for Chl a and DOC, and 2,
6 for photobiology.

Day 71 Day 73 Day 77 Day 78 F

Chl a (mg m−2) a 1.75 ± 1.11 a 0.85 ± 0.13 b 0.35 ± 0.08 b 0.37 ± 0.05 33.87 **
DOC (µmol L−1) a 100 ± 33 a 122 ± 35 b 60 ± 8 b 59 ± 6 9.63 *

ΦPSII_max n.d. a 0.55 ± 0.03 b 0.40 ± 0.03 b 0.41 ± 0.05 15.90 **
α (mol é mol−1 photons) n.d. a 0.22 ± 0.01 b 0.16 ± 0.01 b 0.17 ± 0.02 10.71 *

rETRmax (µmol é m−2 s−1) n.d. 10.6 ± 3.9 8.3 ± 3.2 5.3 ± 1.0 1.89
Ek (µmol photon m−2 s−1) n.d. 49 ± 19 54 ± 22 33 ± 10 0.87

3.4. Variable Chlorophyll Fluorescence

Table 1 shows that some ice algae photosynthetic parameters in the lower 30 mm of the
ice also changed significantly following loss of snow cover. After overnight dark adaptation
of thawed samples, ΦPSII_max measured by Phyto-PAM analysis was significantly lower
in post-snowmelt samples than pre-snowmelt samples, and α also declined, while Ek and
rETRmax did not change significantly.

Comparison of fluorescence (F) images of the underside of the bottom sections, ob-
tained immediately on collection of ice cores in the field, also showed distinct differences
before and after snowmelt. Prior to the loss of snow cover, F images show algae orga-
nized in distinct aggregates, associated with the tops of ridges in the crystalline ice matrix
(Figure 5A). These parallel elongated structures of high F in the snow-covered ice occur
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where ice algae are attached to the ice crystals, which develop a dendritic structure at
the bottom of the ice. In contrast, there were fewer and less organized algal aggregates
and visibly lower F after snowmelt (Figure 5B). Data from analysis of images of ice col-
lected at local noon (n = 3 cores) showed F = 0.071 ± 0.005 before snowmelt, falling to
F = 0.023 ± 0.002 after snowmelt. This decrease in F between the cold and warm periods
parallels the decrease in Chl a (Table 1).
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Figure 5. Examples of in situ fluorescence images of F (A,B) and ΦPSII_max (C,D), comparing chloro-
phyll distribution and activity from base of ice cores on Day 73 before snowmelt (A,C) and Day 78
after snowmelt (B,D). The false colours indicate relative fluorescence intensity of F and ΦPSII_max as
per the corresponding scales, and all images were taken at the same instrument measuring light and
gain settings. All images are 30 × 23 mm.

There was also a clear reduction in the operational quantum yield (ΦPSII) at local noon,
comparing the pre-snowmelt community (Figure 5C) to post-snowmelt cores (Figure 5D).
Image analysis (n = 3 cores) gave ΦPSII = 0.36 ± 0.02 before snowmelt, falling to 0.12 ± 0.01
after snowmelt.

3.5. Diel Photobiology and Dark Recovery (Day 78)

The mean value of ΦPSII_max was 0.52 before sunrise and showed a circadian rhythm,
decreasing in the middle of the day, before rising in the evening. ΦPSII was similar to
ΦPSII_max before dawn. By local noon, cells showed a down-regulation of photosynthesis,
with ΦPSII falling to 0.20 ± 0.01 from pre-dawn (06:00) values of 0.45 ± 0.03. The diel cycle
of ΦPSII (Figure 6) followed the in situ irradiance. Following overnight dark adaptation,
there was effective recovery to near pre-illuminated values in all samples.
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Figure 6. Diel cycles in yield of PSII for sea ice algae on Day 78 after loss of snow cover on fjord. Black line shows ΦPSII

measured immediately after collection by Imaging-PAM fluorometry, red line shows ΦPSII_max after subsequent thawing
in dark measured by Phyto-PAM fluorometry. Mean values ± 1SD, n = 3. Significant differences between time points at
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Blue line shows continuous monitoring of irradiance as photosynthetically active radiation (PAR) immediately under ice.

3.6. Ice Algae Cell Numbers, Species Composition, and Relative Abundance

There was no significant difference in total algal abundance (t = 1.78, p = 0.15) before
(18,250 ± 5992 cells L−1) and after (21,797 ± 4164 cells L−1) the snowmelt, but the species
composition changed. In the pre-snowmelt samples (Day 73) diatoms (38 ± 10%) and
small, unidentified flagellates (55 ± 7%) dominated species composition. After snowmelt
(Day 77), both were still present, but the proportion of diatoms had increased to 67 ± 19%,
whereas relative abundance of flagellates nearly halved to 23 ± 13%. Despite the change
in species composition, the total algal biomass was unchanged, from 1468 ± 923 µgC L−1

before snowmelt to 1756 ± 896 µgC L−1 after snowmelt.
The pennate diatoms Nitzschia closterium, N. longissima, and N. frigida were common in

all ice algal samples, both before and after snowmelt. The chain-forming pennate Fragilaria
sp. and the centric Thalassiosira spp. were also common under snow cover but largely
disappeared from the community after snowmelt. Nitzschia frigida was the only taxon to
significantly increase its relative abundance after the melting event, when it became the
dominant species.

4. Discussion

Snow-clearing experiments are commonly used for investigating effects of snowmelt
on polar sea ice algae [12,14,32]. The fortuitous weather event documented in this paper
has allowed us to explore how the results of such experiments compare against a natural
snow loss event featuring a 17 ◦C atmospheric warming. In contrast to snow-clearing
experiments in which air temperature remains unchanged, the main effect apart from
increased irradiance is removal of the insulating effect of snow. Exposure to warmer air
temperatures may lead to increased brine volume and potentially brine drainage and
ultimately heat loss and melting of the sea ice. The general findings of snow-clearing
experiments are that sudden increases in irradiance when snow is cleared cause rapid loss
of shade-adapted taxa, leading to immediately lower sea ice algal biomass, and subsequent
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increases in taxa tolerant of higher irradiances [12,14,20]. A similar response was seen here
in the overall response of Kangerlussuaq Fjord to wholesale snow loss, suggesting that these
large weather events produce similar effects to smaller-scale snow-clearing experiments.

Snow loss can lead to reduced sea ice algal biomass through both physical mechanisms
and photobiological effects. Snow is a very effective thermal insulator, protecting sea ice
from atmospheric temperature fluctuations. Loss of snow cover increases thermal exchange
between ice and atmosphere; in this case, the sudden atmospheric warming increased
heat transfer into the ice, leading to melting and loss of the millimetre-thin crystalline
skeletal layer on the underside of the ice. A large fraction of the ice algal biomass is often
associated with this crystalline layer [8] as it provides a large surface area for colonisation,
especially when actively growing [33]. Documenting developments in the structure of the
underside of the ice and its relation to biomass and photobiology is one of the benefits of
the Imaging-PAM method. With this method, we were able in this study to observe the
loss of the crystalline structure and replacement of its well-organised ice algal aggregates
with a poorly defined ice surface and much smaller clumps of algae. Comparing the F
and ΦPSII_max images before and after snow loss illustrates the change in distribution and
activity caused by the cold–warm event and confirms physical ablation of the skeletal layer
as an important mechanism in the algal loss observed here. The corresponding decrease in
Chl a content and DOC confirms a substantial change in the community after snow loss.
Brine drainage is an additional physical mechanism that can lead to loss of ice algae when
air temperatures warm the ice and increase brine permeability. However, this mechanism
was unlikely to be important for the measured photophysiological variables in the current
study as all of the algae before the snowmelt were associated with the crystals of the
skeletal brine layer in the lowest 10–15 mm, as seen in the fluorescence images (Figure 5).

PAM fluorometric techniques are also valuable in establishing the extent of photoin-
hibition stress suffered by the ice algal community and its role in ice algal loss. Rapid
changes from low to high irradiance cause photoinhibition in sea ice algae because they are
characteristically extremely shade-adapted organisms [1] and photoacclimate to the very
low irradiances under snow-covered sea ice [32,34]. ΦPSII_max is now well-established as an
extremely sensitive indicator of photoinhibition that often responds rapidly and before any
observable loss of biomass [20,35]. Here, as also seen in snow-clearing experiments [20], its
decrease immediately when the snow disappeared confirms the rapid onset of photoin-
hibition in the community. It is important, when interpreting these data, to note that the
photobiological data from Day 77 after the snowmelt represents those algae that persisted
or colonised in spite of increased irradiance. The flagellates and diatoms lost between
Days 73 and 77 were either physically lost, killed by excess photostress, or migrated out of
the ice. The remaining community—dominated especially by N. frigida—is able to remain
active and grow despite the photoinhibition evident from the lower ΦPSII_max. In particular,
rETRmax was not significantly lower in the post-snowmelt community, confirming that
high-light-tolerant taxa remained active and may even have grown in the increased irradi-
ance. The fact that the algal cell numbers and carbon content of the lower 30 mm did not
change after the snowmelt even though Chl a decreased suggests that the post-snowmelt
community consisted of cells with a lower Chl a content, due either to the change in taxo-
nomic composition or acclimation by the pre-snowmelt taxa that persisted after snow loss.
The contribution of N. frigida is particularly interesting here. N. frigida is known as a sea-ice
specialist [12,36] and well-established as highly shade-tolerant species [37]. Our study
suggests that its adaptation to the sea ice habitat comes not only from being shade-adapted
but also from an ability to tolerate higher light intensities and be robust in response to the
rapid light fluctuations that are a feature of sea ice.

In this study, we applied two PAM fluorescence methods that provided comple-
mentary information on the nature of photoinhibition in the community after snowmelt.
Imaging-PAM data measured in the field immediately after collection of cores illustrated
the operational fluorescence yield ΦPSII under the prevailing PAR at the time of collection,
whereas Phyto-PAM data measured after thawing of core slices provided ΦPSII_max after
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all reaction centres had had more than 12 h to relax in the dark in optimal conditions. The
Imaging-PAM ΦPSII data show a typical diurnal cycle of yield associated with photosyn-
thetic activity and non-photosynthetic quenching with the diatinoxanthin–diadinoxanthin
cycle. The post-snowmelt community was not showing any signs of photodamage, given
that ΦPSII before sunrise at 06:00 h in the fresh cores was not significantly lower than
in the same cores after thawing overnight for the Phyto-PAM. Some non-photosynthetic
quenching associated with energy dissipation is implied by the diurnal cycle in ΦPSII_max
observed in the Phyto-PAM, but there is apparently not any severe photodamage, and it
is likely that the community would continue to acclimate to the higher irradiance as the
higher irradiance persisted. There was also no indication of any decline in rETR at higher
irradiances that would indicate photodamage. We have previously observed recovery
of ΦPSII_max and other photobiological parameters at this site after an initial decrease, in
conjunction with colonisation of larger, higher-light taxa [14,20]. This is also a typical
feature of the seasonal development of the ice algal community during a spring bloom
in landfast seasonal ice, where early-season flagellates and small taxa are gradually re-
placed by the pennate diatom community [22], climaxing in the larger taxa that are most
high-light-tolerant [38], before summer snowmelt.

This study, along with the snow-clearing experiments it can be compared and con-
trasted with, confirms the prime importance of snow cover as the predominant factor
controlling the composition, timing, and productivity of the ice algal community [39].
Comparing against two other studies from the same site and the same time of year (March,
spring bloom) in 2011 [14] and 2016 [20], both the pre-snowmelt/snow-clearing and post-
snow-removal communities were different. In 2011, under ca. 8 cm snow, the pre-bloom
community was dominated by Fragillariopsis oceanica, which was the main species lost
after snow removal [14]. F. oceanica was rare or absent at all times in the current study,
whereas N. frigida was rare in 2011 both before and after snow loss/removal. In 2016,
flagellates were rare to begin with, but N. frigida and other Nitzschia spp. increased after
snow removal. Light history can certainly explain these taxonomic differences: in both of
those years, the under-ice irradiance was considerably lower than the ca. 60 µmol photons
m−2 s−1 in 2013. Early-season communities dominated by small diatoms and flagellates
can photosynthesise and grow at light intensities <10 µmol photons m−2 s−1 [32,40]. The
inter-annual variability at this site, despite having a very uniform landfast ice structure
and similar water temperature and unlimited nutrient availability at the time of the spring
bloom, is testimony to how small differences in snow cover can have dramatic effects on
the ice algal community. Although snow thickness is important, the high albedo of snow is
its main property giving a high light attenuation, and thus presence or absence of snow
cover is particularly important. In the present study, we can see a dramatic change when
even a very thin snow cover is removed. Predicting the future of sea ice communities is
therefore challenging, given the increasing frequency of wind and warming events with
climate change, but one robust conclusion is that disruption of the normal progress of the
spring bloom is likely to become more common. On the other hand, the results of this
study and others suggest that some ice algal taxa, although briefly stressed when snow
disappears, are capable of acclimating and recovering and continuing production even
under greatly increased irradiances.

In conclusion, by documenting algal biomass, species composition, and photobio-
logical responses to this whole-fjord snow loss event, we observed similar responses to
artificial snow clearance. Photobiological effects of changes in irradiance appear to remain
central to these effects, irrespective of the scale or cause of snow loss. Finally, we provided
additional information here on the photobiological properties of first-year sea ice algae,
which are highly dynamic features of the community. Many models exist that relate Chl a
to snow depth and ice thickness [23,39], but only recently have models begun to include
photobiological parameters [24]. Snow-clearing experiments, particularly longer-term
experiments that allow both photostress but also include time for recovery, will remain an
important tool for exploring the future of sea ice ecosystems.
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