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A new technique to derive delay models from
systems of partial differential equations, based on
the Mori–Zwanzig (MZ) formalism, is used to derive
a delay-difference equation model for the Atlantic
Multidecadal Oscillation (AMO). The MZ formalism
gives a rewriting of the original system of equations,
which contains a memory term. This memory term
can be related to a delay term in a resulting
delay equation. Here, the technique is applied to an
idealized, but spatially extended, model of the AMO.
The resulting delay-difference model is of a different
type than the delay differential model which has been
used to describe the El Niño Southern Oscillation. In
addition to this model, which can also be obtained
by integration along characteristics, error terms for
a smoothing approximation of the model have been
derived from the MZ formalism. Our new method
of deriving delay models from spatially extended
models has a large potential to use delay models to
study a range of climate variability phenomena.

1. Introduction
To better understand climate variability and climate
change often conceptual climate models are used. These
models capture the dominant physical processes behind

2021 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. The AMO index for the last 160 years. The index is computed as the deviation of the area-weighted average SST over
the North Atlantic. In black, the 12-monthly running mean is shown. Index computed by Enfield et al. [5] using the Kaplan SST
dataset provided by the NOAA/OAR/ESRL PSD, Boulder, CO, USA (https://www.esrl.noaa.gov/psd/).

climate phenomena, allowing for an improved understanding. Delay equation models form one
class of conceptual climate models. These type of models are infinite dimensional, but often
depend on only a few variables and parameters. This means that they can potentially describe
more complex behaviour than ordinary differential equation (ODE) models, while still being
easier to study than multi-dimensional partial differential equation (PDE) models.

Delay models have already been used to describe certain climate phenomena, particularly
for the El Niño Southern Oscillation (ENSO) and Earth’s energy balance [1]. A new method of
deriving delay equation models has been proposed [2], allowing for a potential extension of the
use of delay models to study other climate phenomena. This method of deriving delay models is
based on the Mori–Zwanzig (MZ) formalism, which allows for the reduction of high-dimensional
systems to reduced-order models [3]. These reduced-order models are simpler to study, while
still describing the physical processes present in the original high-dimensional model. So far the
method in [2] has only been applied to a PDE model of ENSO, for which ad hoc delay models
were already proposed [4]. Here, we apply the MZ formalism to a PDE model of the Atlantic
Multidecadal Oscillation (AMO) to investigate whether this phenomenon can be described by a
delay model as well.

The AMO is a pattern of variability in the North Atlantic sea-surface temperature (SST) with
a dominant period of 50–70 years [5]. In figure 1 an index for the average SST deviations in
the North Atlantic Ocean is shown over the last 160 years. Although the instrumental record is
somewhat limited for identifying the dominant time scale and spatial pattern [6], such variability
has been detected in proxy data [7] and in global climate models [8–11]. In most theories of the
AMO [12] variations in the Atlantic Ocean circulation play a major role. The relevant component
of this circulation is the Atlantic Meridional Overturning Circulation (AMOC) [13,14], which
is basically the zonally averaged volume transport. The Gulf Stream is part of the AMOC,
transporting warm water northwards (and eastwards) which loses heat on its way. At high
northern latitudes, the relatively heavy water sinks and flows southwards at larger depths.

One of the proposed physical mechanisms for the AMO, as described in §3, is based on the
propagation of so-called thermal Rossby waves [15,16]. The role of these waves in the AMO
motivates us to investigate whether its dynamics can be described by a delay model, since the
propagation of waves underlies the delay in the ENSO model studied in [2]. Here, we thus apply
the MZ formalism to a PDE model of the AMO, using a procedure inspired by [2], with the aim
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of deriving a delay model describing the same AMO dynamics. The MZ formalism is general,
can be applied to all types of equations (including nonlinear and non-hyperbolic systems) and
provides a more formal justification for the use of a conceptual delay model in analysing climate
phenomena. This means the method discussed can be applied to other models in which there is a
physical mechanism that could cause delayed effects.

The aim of the following study is twofold: to derive a conceptual model with delay for the
AMO and to demonstrate the utility and accuracy of doing this with the MZ formalism. We start
with a brief description of the MZ formalism in §2, tailored to the problem at hand. Section 3
presents the PDE model of the AMO by Sévellec & Huck [17], which is the starting point for our
study. The application of the MZ formalism to this model is discussed in §4, where the resulting
model with delay is introduced, as well as a model with delay that can be obtained for the simple
PDE system using the method of characteristics (MoC). This leads to a comparison of the delay
models and a discussion of the errors introduced by using the MZ formalism in §5. A summary
and discussion follows in §6.

2. Mori–Zwanzig formalism
The MZ formalism provides a way of reducing a high-dimensional model to a reduced-order,
more tractable system. The formalism is based on the work by Mori [18] and Zwanzig [19]
in statistical mechanics. It has been reformulated to be suitable for constructing reduced-order
models for systems of ODEs [3,20,21]. When studying applications in climate one often has to deal
with PDEs, making the application of the formalism challenging. In this section, we start with a
general overview of the MZ formalism based on [3], followed by a more detailed discussion of
the particulars of applying the formalism to PDEs.

For a vector of state variables φ(x, t) ∈ R
n which are continuously differentiable in t ∈ R+ and

initial conditions x ∈ R
n, we consider the system of ODEs defining the dynamics

d
dt

φ(x, t) = R(φ(x, t)), φ(x, 0) = x, (2.1)

where R : R
n → R

n is the vector-valued function of the specific system with components Ri. Now
consider the evolution of an observable u(x, t) := g(φ(x, t)) along a trajectory φ : R

n × R+ → R
n.

This observable satisfies the PDE

∂

∂t
u(x, t) =Lu(x, t), u(x, 0) = g(x), (2.2)

where L is the Liouville operator (or generator) [22] given by

[Lu](x) =
n∑

i=1

Ri(x)∂xi u(x). (2.3)

Note that, for a linear system where R is defined by a matrix A having elements Aij, the Liouville
operator reads [Lu](x) =∑n

i=1
∑n

j=1 Aijxj∂xi u(x).
To arrive at a reduced-order model for the dynamics governing φ(x, t), one needs to decide

on the resolved variables φ̂ ∈ R
m. In our illustration, we take φ̂ as a subset of m components φi

for some indices i. We also make a choice for an appropriate projection operator P : C(Rn, Rk) →
C(Rm, Rk) onto these variables. Examples of projection operators are the linear projection, setting
all unresolved variables to zero, and the conditional expectation [3]. Let Q = I − P denote the
complement of P (with I the identity operator). Furthermore, we use the notation [PRi](φ(x, t)) =
Ri([φ̂(x, t), 0]) = Ri(φ̂(x, t)). We consider the choice of setting unresolved variables to zero for
our projection P, such that, for an arbitrary observable g ∈ C(Rn, Rk) (with arbitrary k ≥ 1), the
projection P is defined as [Pg](φ(x, t)) := g([φ̂(x, t), 0]).

Having chosen a set of resolved variables and a projection operator P, the reduced-order model
corresponding to the full system (2.1) is given by the generalized Langevin equation (see Chorin
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et al. [3] for its derivation),

∂

∂t
φi(x, t) = Ri([φ̂(x, t), 0]) + Fi(x, t) +

∫ t

0
Ki([φ̂(x, t − s), 0], s)ds, (2.4)

where φi(x, t) is one of the resolved variables. The functions Fi and Ki are defined as

Fi(x, t) = [etQLQL](x) and Ki(x̂, t) = [PLFi](x̂, t), (2.5)

where x̂ denotes the resolved part of the initial conditions x. The terms on the right-hand side of
the Langevin equation are often referred to as the Markovian term Ri(φ̂(x, t)), the noise term Fi(x, t)
and the memory term, being the integral over Ki(φ̂(x, t − s), s). For a linear system, this memory
integrand is obtained by applying a memory kernel to the resolved variables, i.e. Ki(φ̂(x, t − s), s) =
K̂i(s)[φ̂(x, t − s)].

The main difficulty in the application of the MZ formalism is calculating the terms Fi, which
enter in the noise and the memory terms and which are the solutions of the orthogonal dynamics
equation

∂

∂t
Fi(x, t) = QLFi(x, t), Fi(x, 0) = QLxi. (2.6)

In general, it is not known if the system (2.6) is well posed. However, for specific cases it is possible
to find approximate solutions. The possibility and difficulty of finding these solutions strongly
depends on the choice of the resolved variables and projection operator. A suitable choice would
yield an orthogonal dynamics system which can be solved in a more straightforward manner than
the full system. In some cases the choice for the resolved variables and corresponding projection
can be motivated by physical arguments for the specific system. For other models the choice might
not be as straightforward and one cannot be certain that a suitable reduced-order model exists.

When the ODE system studied is linear, i.e. R(φ(x, t)) = Aφ(x, t), where A is a constant matrix,
finding a suitable set of resolved variables can be done by looking at the eigenvalues of the
orthogonal dynamics system. When the system (2.1) is linear, the behaviour of the orthogonal
dynamics can be obtained by studying the eigenvalues of AQ = A − PA. A set of resolved variables
is suitable if the eigenvalues of the orthogonal dynamics system show significantly more stability,
i.e. have more negative real parts than the full system. If this is not the case the problem of solving
the full system is transferred to the equally difficult problem of solving the orthogonal dynamics
system.

Up until now, we have not discussed the difficulties arising when the MZ formalism is applied
to a PDE system instead of ODEs. When the system is Hamiltonian some results exist (e.g. [20]);
however, when this is not the case often the system is expanded in a basis of typically orthonormal
functions (e.g. [21,23]) to numerically find a solution. If the aim of applying the MZ formalism is
to obtain a set of reduced-order model equations and not only a numerical result, this method
is not suitable. Another approach, relying on integration along characteristics, has been explored
by Falkena et al. [2] and yielded an exact reduced-order (delay) model for the system studied.
Here, we build on this work to see whether delay-type models can be derived for other systems
of wave equations. In particular, we focus on a PDE model that describes thermal Rossby wave
propagation related to the AMO. This model is introduced in the next section.

3. Atlantic Multidecadal Oscillation
The thermal Rossby wave mechanism, suggested to be responsible for the AMO [15,16], is
summarized in figure 2. When there is a positive temperature anomaly (T′) in the northern-
central part of the basin, the meridional temperature gradient becomes stronger with respect
to the background state. This results in a zonal overturning anomaly with westward surface
flow through thermal wind balance (figure 2a). The negative zonal flow transports the positive
temperature anomaly towards the western boundary, creating a zonal temperature gradient.
Again through thermal wind balance, this now leads to anomalies in the meridional overturning
circulation (figure 2b). This flow transports cold water from near the poles southwards, reducing
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the meridional temperature gradient. This smaller north–south temperature gradient causes a
positive (eastward) zonal flow, after which the same pattern as described above is followed with
a sign change. Hence, the variability associated with the AMO relies on the transport of heat and
the flow response through the thermal wind balance [24].

Low-order ad hoc ODE models of the AMO have been studied by, among others, Broer et al. [25].
More recently, Sévellec & Huck [17] developed an idealized PDE model of the AMO to which we
apply the MZ formalism. This PDE model roughly captures the thermal Rossby wave mechanism
described before, but with a simplification of the associated wave dynamics. In this section, we
present this model and briefly discuss its derivation. In addition, we investigate the effect of using
a more realistic strictly positive meridional overturning circulation as the background state on the
behaviour of the model introduced in [17].

(a) Model formulation
The AMO model by Sévellec & Huck [17] is a three-layer model describing the evolution of
temperature perturbations in the North Atlantic Ocean. The model describes the temperatures
(Ti, i = 1, 2, 3) as a function of longitude (x) and time (t). For convenience, we consider the non-
dimensional version of the model with longitude-scale W (basin width) and time scale Y (a
year).

The scaled model is

∂tT1 = a1∂xT1 + b1∂xT2 + c1∂xT3 + κs∂xxT1,

∂tT2 = a2∂xT1 + b2∂xT2 + c2∂xT3 + κs∂xxT2

and ∂tT3 = κs∂xxT3,

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

with boundary conditions

Ti(x|West = 0) = −Ti(x|East = 1), i = 1, 2, 3. (3.2)

The constants in the model are all positive for physically realistic values and are defined by

a1 = Y
W

(
αTg
2Hf

(
−h1(h2 + h3)∂yT̄ + β

2f
h2

1(h2 + h3)∂zT̄
)

− ū
)

,

b1 = Y
W

αTg
2Hf

(
−h2(h2 + 2h3)∂yT̄ + β

2f
h1h2(h2 + 2h3)∂zT̄

)
,

c1 = Y
W

αTg
2Hf

(
−h2

3∂yT̄ + β

2f
h1h2

3∂zT̄
)

,

a2 = Y
W

αTg
2Hf

(
h2

1∂yT̄ + β

2f
h2

1(h2 + 2h3)∂zT̄
)

,

b2 = Y
W

(
αTg
2Hf

(
−h2(h3 − h1)∂yT̄ + β

2f
(4h1h2h3 + h2

2(h1 + h3))∂zT̄
)

− ū
)

,

c2 = Y
W

αTg
2Hf

(
−h2

3∂yT̄ + β

2f
h2

3(2h1 + h2)∂zT̄
)

and κs = κ
Y

W2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

The values of the parameters needed to compute these constants are given in table 1.
The derivation of these equations can be found in [17]. Here, we briefly discuss that derivation

and assumptions made to get to the above system of equations (3.1). The derivation starts from
an advection–diffusion equation for temperature, geostrophic balance (a balance between the
horizontal pressure gradients and the Coriolis force), hydrostatic balance (a balance between
the vertical pressure gradient and gravity) and a linear dependence of density on temperature.
The equations for temperature are linearized around a fixed background state comprising zonal
flow ū and temperature gradients in the meridional ∂yT̄ and vertical ∂zT̄ (figure 3). Note that this
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Figure 2. Schematic diagram of the physical mechanism responsible for the AMOwith two phases a quarter period apart in (a)
and (b). Figure taken from [24].

Table 1. The values of the parameters in the AMOmodel by Sévellec & Huck [17].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

thickness layer 1 h1 600 m

thickness layer 2 h2 600 m vertical temperature gradient

thickness layer 3 h3 3300 m

total ocean depth H 4500 m ∂z T̄ = − 2C
h1+h2

(�T − αS
αT

�S)

zonal basin size W 4000 km

meridional basin size L 6500 km control parameter C

time scale (year) Y 3.1536 × 107 s standard C = 1

horizontal diffusivity κ 2 × 103 m2 s−1

acceleration of gravity g 9.8 m s−2

Coriolis parameter f 10−4 s−1

β effect β 1.5 × 10−11 (ms)−1 meridional temperature gradient

thermal expansion coefficient αT 2 × 10−4 K−1

haline contraction coefficient αS 7 × 10−4 psu−1 ∂y T̄ = 2
L (�T − αS

αT
�S)

meridional temperature difference �T −20 K

meridional salinity difference �S −1.5 psu

zonal velocity ū 10−2 m s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

means that the overturning circulation (v̄, w̄) is neglected because of its weakness with respect to
the zonal flow. The linearized temperature equation is then discretized over three layers assuming
no flow through the surface and bottom and no background flow or temperature gradients in the
bottom layer, which results in system (3.1).

As the model assumes geostrophic balance, (3.1) only describes the solution of the interior part
of the basin. The boundary conditions (3.2) are therefore derived by considering an additional
boundary layer at either end of the basin with free-slip conditions at the interface between the
interior flow and the boundary, and zero heat flux assumptions at the outer edges of the boundary
layer (ocean basin walls). The full derivation can be found in the appendix of [17]. Since the
boundary conditions at hand will prove essential for our results, we explain the physics behind
the coupling between the two boundaries. A signal, in the form of a Rossby wave, arriving at the
western boundary of the basin, travels south, along the equator and back up north in the form of
a Kelvin wave. Since the time scale of Kelvin waves is much shorter than that of the Rossby waves
present in the model, this adjustment is assumed to be instantaneous. This leads to the coupling of
the two boundaries and allows for waves to keep propagating through the basin. For the specifics
on the change of sign we refer the reader to the derivation of the boundary conditions in [17].
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Figure 3. A schematic diagram of the three-layer ocean basin considered in the AMO model. The dashed arrows show the
background AMOC, which is taken into account in the background state of the model discussed in §3b.

Table 2. The numerical values of the parameters in equation (3.4). We note that α is a free parameter of O(10−3) and
throughout this article we will useα = 0 to explore the undamped solutions of equation (3.4).

a1 a2 b1 b2
0.1479 0.0540 0.4187 0.2423

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Using, for example, a no-flux boundary is not valid here, as it would assume geostrophic balance
in the boundary layer and neglect these Kelvin waves, making the model no longer dynamically
accurate or suitable to study the AMO dynamics.

In this paper two additional simplifications to the model (3.1) are made. Firstly, we note that
the only term acting in the third layer is diffusion and the two top layers do not couple into it. As
a result any perturbation in that layer eventually damps out. For this reason, and to simplify the
mathematical treatment of the system, perturbations in the bottom layer are neglected (i.e. T3 = 0).
Secondly, we approximate the diffusion terms by linear damping with damping coefficient α. The
system (3.1) then simplifies to a two-layer system,

∂tT1 = a1∂xT1 + b1∂xT2 − αT1

and ∂tT2 = a2∂xT1 + b2∂xT2 − αT2.

}
(3.4)

This is the AMO model to which we apply the MZ formalism. Also note that this temperature
model explains changes in the overturning circulation as well, via thermal wind balance, the
continuity equation and Sverdrup balance, which is discussed in the electronic supplementary
material. The parameter values used for the numerical results in the remainder of this section and
the coming sections are given in table 2.

Before looking into the application of the MZ formalism to this AMO model, we illustrate its
behaviour by simulating it for α = 0. We use an upwind discretization scheme for the x-derivatives
and a forward Euler scheme in time. Note that this discretization introduces numerical diffusion,
leading to artificial damping effects. The result is shown in figure 4. Note the opposite sign of the
temperature in the two layers, which is due to the baroclinic nature of the waves [26]. The model
shows a combination of two oscillations with different periods. Firstly, there is a long period of
approximately 60 years, which corresponds to a thermal Rossby wave responsible for driving the
AMO. Secondly, there is a higher frequency oscillation with a period of around 5 years.

The occurrence of the shorter period is at first sight surprising as it is not found in more
detailed PDE models. This oscillation does not correspond to a planetary Rossby wave, as one
might expect, since decreasing β does not result in a disappearance of these oscillations. It is a
thermal Rossby wave, just as the one responsible for the oscillation associated with the AMO.
The dominant appearance of this thermal Rossby wave in the model is undesired when studying

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

03
 J

an
ua

ry
 2

02
2 



8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20200659

...........................................................

x
0

0.2

0.4

0.6

0.8

1.0
te

m
pe

ra
tu

re
 (

°C
)

T
1

(0,x)

T
2

(0,x)

time (years)

–1.0

–0.5

0

0.5

1.0

te
m

pe
ra

tu
re

 (
°C

)

T
1

T
2

0 50 100 150 2000.2 0.4 0.6 0.8 1.0

(a) (b)

Figure 4. Model simulation of the temperature anomaly in the AMO model (equation (3.4)) for an initial positive Gaussian
temperature perturbation in the centre of the basin in the first layer (�t = �x = 0.0005,α = 0). (a) The initial conditions.
(b) Evolution of model (3.4) at x = 0. (Online version in colour.)

the AMO. A possible improvement of the model, resulting in the damping of this high-frequency
mode, is discussed in the next section.

(b) Background overturning circulation
The AMO model by Sévellec & Huck [17] described in the previous section does not contain an
overturning circulation in the background state, as the background meridional (v̄) and vertical
(w̄) velocities are neglected. This means that in the model the overturning circulation, which can
be inferred from the temperature evolution (details are given in the electronic supplementary
material), can become negative. To prevent this from happening in the model, we consider an
extended background state which retains meridional v̄ and vertical w̄ flow (figure 3, dashed
arrows). With this different background state an extended two-layer temperature model for AMO
can be derived following the same steps as in [17]. The details of this derivation can be found in
the electronic supplementary material. The resulting system for temperature in the two upper
layers is

∂tT1 = a1∂xT1 + b1∂xT2 − (β1 + α)T1 − β2T2

and ∂tT2 = a2∂xT1 + b2∂xT2 − (β3 + α)T2,

}
(3.5)

where

β1 = Y ·
(

β

f
v̄ + 2

h1
w̄
)

, β2 = −Y
4
h1

w̄ and β3 = Y ·
(

β

f
v̄ + 2

h2
w̄
)

. (3.6)

The difference from (3.4) is that there are additional linear terms in both equations. Note that not
all the additional terms have a damping effect, as some of the βi-terms can be negative.

A model simulation for v̄ = 0.5 × 10−2 m s−1 and w̄ = −0.17 × 10−6 m s−1 is shown in figure 5,
where the values are chosen for plotting purposes within a realistic range. Note that, if
−2w̄/h1,2 � βv̄/f , we have that β1,3 become strongly negative, leading to possible unstable
solutions or at least amplifying effects within the solution. The result of adding the background
overturning circulation is a damping of the high-frequency oscillation, as can be seen in figure 5.
This short period oscillation is absorbed by the background overturning circulation while the
long period oscillation persists. The amplitude of the oscillation corresponding to the AMO is
not noticeably affected by the damping. This can be due to the presence of an amplifying effect
of the background overturning in some parts of the equations, as mentioned previously. For
simplicity, we apply the MZ formalism to the AMO model as given in equation (3.4) instead
of the extended model discussed here. The application of the MZ formalism to this extended
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Figure5. Simulations of the temperature in the two layerswithout (solid red T1, dashedblue T2) andwith (solid black TB1 , dashed
cyan TB2 ) a background overturning circulation (β1 = β3 = 1.156 × 10−3, β2 = 7.148 × 10−3, α = 0). (Online version in
colour.)

model can be found in the electronic supplementary material. This derivation follows the exact
same steps as discussed in the following sections. We note that the results are similar to those
discussed in the following, but for the extended model additional factors that lead to the decay of
the high-frequency mode emerge. This is discussed in more detail at the end of §4c.

4. Reduction to a delay model
The aim of applying the MZ formalism to the AMO model described in §3 is to arrive at a
projected model describing the same dynamics as the full model and analyse the effect of memory
in that system, with the potential of deriving a delay model for the phenomenon. A similar
procedure has been applied to a model of the ENSO by Falkena et al. [2]. A difference is that for
the AMO no previously proposed delay model is known. Therefore, it is not immediately clear
how to choose a projection, nor how to deal with solving the subsequent orthogonal dynamics
equation (2.6). Preferably, we arrive at an equation for the temperature at one location in space, to
remove the explicit dependency on x in the system, but it is not clear from the outset whether or
not this is feasible.

The way in which we proceed is to first convert the system of PDEs (3.4) into a set of ODEs
by discretization. To this high-dimensional system of ODEs, the MZ formalism is then applied.
This procedure is described in the following sections. After deciding on the discretization to use,
possible (sets of) resolved variables are explored, followed by a discussion of the different terms
in the Langevin equation (2.4).

(a) Discretization
The first step is to find a stable discretization of the AMO model in equation (3.4). A grid of (N +
1)-points in space with distance dx = 1

N is used. Because all parameters in the model are positive
we know that all waves travel westwards. Therefore, we use an upwind scheme to discretize the
model. The discretized equations are

∂tTn
1 = a1

dx
(Tn+1

1 − Tn
1 ) + b1

dx
(Tn+1

2 − Tn
2 ) − αTn

1

and ∂tTn
2 = a2

dx
(Tn+1

1 − Tn
1 ) + b2

dx
(Tn+1

2 − Tn
2 ) − αTn

2 ,

⎫⎪⎪⎬
⎪⎪⎭ (4.1)
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Figure 6. The eigenvalues of the discretized AMO model (α = 0.001) (a) for different N and (b) different sets of resolved
variables. Note that not all eigenvalues are shown (e.g. only one of the two eigenvalues for the projection onto T01 and T

0
2 ,

the second one is more negative). (a) Full model for N = 200 (blue, circles) and N = 400 (yellow, squares). (b) Full model for
N = 400 (blue, circles) and using a projection onto either T01 (yellow, squares) or both T

0
1 and T

0
2 (green, diamond). (Online

version in colour.)

for n = 0, . . . , N (such that Tk
i ≈ Ti(k/N)), with boundary conditions

TN
1 = −T0

1, TN
2 = −T0

2. (4.2)

By the circular nature of the boundary conditions this is a 2N-dimensional system (there
is no need to solve the dynamical equations for discretization points N). Letting N → ∞
recovers the PDE model exactly. This system (4.1) can be written as a matrix equation for
	T = (T0

1, T0
2, . . . , TN−1

1 , TN−1
2 ),

∂t 	T = M	T. (4.3)

The construction of M is straightforward from system (4.1).
The stability of the solution of this discretized system of ODEs is verified by computing the

eigenvalues of the matrix M. These are shown in figure 6a for N = 200 (blue circles) and N = 400
(yellow squares). For each N two sets of eigenvalues are visible, with the spacing between the
imaginary part of the eigenvalues in either set equal to the corresponding wave frequency. For
increasing N both curves of eigenvalues approach a line with real part −α, where the eigenvalues
of the continuous system are. Since all eigenvalues are negative for every N the discretization is
stable. In the following sections, we go into the application of the MZ formalism to this system
of ODEs.

(b) Projection
When applying the MZ formalism the first step is to choose the resolved variables and
corresponding projection. As discussed in §2, this is an essential choice determining the final
expressions in the Langevin equation (2.4). From the modelling perspective, the aim is to find a
system of equations for the temperature at one location in order to remove the x-dependency of
the system. With this in mind there are three possible choices for the resolved variables: T1, T2,
and both. Note that because all waves travel in the same direction without loss of energy it does
not matter on which location in space the temperatures are projected. For convenience, we choose
to project onto the western boundary (n = 0), but note that the result for any other location is the
same. The most straightforward way to project onto one of those sets of resolved variables is to
use the linear projection P that sets all unresolved variables to zero. Its complement Q thus sets
the resolved variables to zero since the system considered is linear. The corresponding orthogonal
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dynamics equation (2.6) can be written as a matrix equation

∂t 	TQ = MQ 	TQ, (4.4)

where 	TQ = (T1
1Q, T1

2Q, . . . , TN−1
1Q , TN−1

2Q ) represents the unresolved variables. The matrix MQ is the
same as the matrix for the full system M, but with the rows and columns corresponding to the
resolved variable(s) removed.

To assess the quality of the three possible projections, we study the eigenvalues of the
corresponding orthogonal dynamics systems. A sufficient decay of the eigenvalues of the
orthogonal dynamics system indicates that the corresponding resolved variables and projections
are suitable as discussed in §2. In figure 6b, the eigenvalues of the full system and projected
systems are shown for two different projections on boundary variables. When one projects onto
only T0

1 the eigenvalues are quite similar to those of the original system. Similar results are found
for projection onto only T0

2.
If both T0

1 and T0
2 are taken as the resolved variables the result is noticeably better. The

orthogonal dynamics system has only two eigenvalues, which become increasingly negative with
increasing N. Therefore, this projection onto both T1 and T2 at the boundary x = 0 is chosen, where
we note once again that the choice of the specific location is arbitrary. In the following section
we focus on the derivation of the noise and memory term in the MZ formalism (2.5). Here, we
briefly discuss the Markovian terms. They are given by the projection of the right-hand side of
the equations for T0

1 and T0
2 (equation (4.1) for n = 0),

P
[

a1

dx
(T1

1 − T0
1) + b1

dx
(T1

2 − T0
2) − αT0

1

]
= − a1

dx
T0

1 − b1

dx
T0

2 − αT0
1

and P
[

a2

dx
(T1

1 − T0
1) + b2

dx
(T1

2 − T0
2) − αT0

2

]
= − a2

dx
T0

1 − b2

dx
T0

2 − αT0
2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.5)

This simply is the right-hand side dependence of equation (4.1) on the resolved variables, as a
linear projection is used.

(c) Noise and memory terms
To compute the noise and memory term, we focus on the orthogonal dynamics system (4.4). For
the chosen resolved variables T0

1 and T0
2 with the linear projection the matrix reads

MQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− a1

dx
− α − b1

dx
a1

dx
b1

dx

− a2

dx
− b2

dx
− α

a2

dx
b2

dx

− a1

dx
− α − b1

dx
. . .

− a2

dx
− b2

dx
− α

. . .

. . . a1

dx
b1

dx

. . . a2

dx
b2

dx

− a1

dx
− α − b1

dx

− a2

dx
− b2

dx
− α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.6)

Note that this matrix is block upper diagonal with all blocks on the diagonal being the same.
To solve the orthogonal dynamics system, we have to find the eigenvalues and (generalized)
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eigenvectors of this matrix MQ. As discussed in §4b, there are only two eigenvalues

λ± = −α − l±
dx

, (4.7)

with

l± = 1
2

(
a1 + b2 ±

√
a2

1 + b2
2 − 2a1b2 + 4a2b1

)
, (4.8)

each of multiplicity N − 1. Note that l± yield the characteristics of the original PDE system (3.4).
The corresponding generalized eigenvectors for i = 1, . . . , N − 1 are

	vi
± =

(
dx
l±

)i−1
· (0, . . . , 0, w±, 1, 0, . . . , 0), (4.9)

where the non-zero values are located on the coordinates corresponding to location i. Here,

w± = 1
2a2

(
a1 − b2 ±

√
a2

1 + b2
2 − 2a1b2 + 4a2b1

)
. (4.10)

Having computed the eigenvalues and eigenvectors we can write down the solutions 	TQ of the
orthogonal dynamics equation (e.g. [27]). Here, we only note that 	TQ is a linear combination of
the eigenvectors, meaning it is relatively straightforward to identify the solution at one location.
The full expressions are given in the electronic supplementary material, together with the use of
initial conditions to determine the constants involved.

Now that we have the solution to the orthogonal dynamics equation we can write down the
noise terms and subsequently compute the memory terms of the discretized AMO system (4.1).
The noise terms are defined by

FT0
1
(t) = a1

dx
T1

1Q(t) + b1

dx
T1

2Q(t)

and FT0
2
(t) = a2

dx
T1

1Q(t) + b2

dx
T1

2Q(t).

⎫⎪⎪⎬
⎪⎪⎭ (4.11)

Note that only the terms of the solution 	TQ which contain the eigenvectors 	v1± contribute to the
noise term, as all other eigenvectors have zeros in the direction of T1

1Q and T1
2Q. The resulting

expressions, following the solution of equation (4.4), are

FT0
1
(t) = N

N−1∑
i=1

(
(a1w+ + b1) eλ+tci

+ + (a1w− + b1) eλ−tci
−
) ti−1

(i − 1)!

and FT0
2
(t) = N

N−1∑
i=1

(
(a2w+ + b2) eλ+tci

+ + (a2w− + b2) eλ−tci
−
) ti−1

(i − 1)!
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.12)

where

ci
+ =

(
l+
dx

)i−1
· Ti

1(0) − w−Ti
2(0)

w+ − w−

and ci
− = −

(
l−
dx

)i−1
· Ti

1(0) − w+Ti
2(0)

w+ − w−

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.13)

depend on the initial conditions of the unresolved variables.
To compute the memory terms (as defined in (2.5)), we first look at the effect of applying the

operator PL to each of the initial conditions. This is sufficient for computation of the memory
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terms because the noise terms (4.12) are linear in the initial conditions. We find

PL(T1
1(0), T1

2(0), . . . , Ti
1(0), Ti

2(0), . . . , TN−1
1 (0), TN−1

2 (0)
)

= P
(

· · · ,
a1

dx
(Ti+1

1 (0) − Ti
1(0)) + b1

dx
(Ti+1

2 (0) − Ti
2(0)) − αTi

1(0),

a2

dx
(Ti+1

1 (0) − Ti
1(0)) + b2

dx
(Ti+1

2 (0) − Ti
2(0)) − αTi

2(0), . . .
)

=
(

0, . . . , 0, − a1

dx
T0

1(0) − b1

dx
T0

2(0), − a2

dx
T0

1(0) − b2

dx
T0

2(0)
)

. (4.14)

We see that only terms that initially depend on TN−1
1 (0) and TN−1

2 (0) are non-zero after application
of PL. Combining this result with the noise term (4.12) and replacing dx by 1

N , the memory
integrand (2.5) becomes

KT0
1
((T0

1(0), T0
2(0)), t) = N2 tN−2

(N − 2)!
e−αt

(
(l+N)N−2 e−l+Nt(A1+T0

1(0) + B1+T0
2(0)

)
+ (l−N)N−2 e−l−Nt(A1−T0

1(0) + B1−T0
2(0)

))
,

KT0
2
((T0

1(0), T0
2(0)), t) = N2 tN−2

(N − 2)!
e−αt

(
(l+N)N−2 e−l+Nt(A2+T0

1(0) + B2+T0
2(0)

)
+ (l−N)N−2 e−l−Nt(A2−T0

1(0) + B2−T0
2(0)

))
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.15)

with

A1+ = (a1w+ + b1)(−a1 + w−a2)
w+ − w−

, A1− = −(a1w− + b1)(−a1 + w+a2)
w+ − w−

,

B1+ = (a1w+ + b1)(−b1 + w−b2)
w+ − w−

, B1− = −(a1w− + b1)(−b1 + w+b2)
w+ − w−

,

A2+ = (a2w+ + b2)(−a1 + w−a2)
w+ − w−

, A2− = −(a2w− + b2)(−a1 + w+a2)
w+ − w−

and B2+ = (a2w+ + b2)(−b1 + w−b2)
w+ − w−

, B2− = −(a2w− + b2)(−b1 + w+b2)
w+ − w−

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.16)

Now all components of the Langevin equation (2.4), being the Markovian terms (4.5), the noise
terms (4.12) and the memory integrands (4.15), are known. Thus we can write down the result of
applying the MZ formalism to the discretized AMO system (4.1)

∂tT0
1 = −a1NT0

1 − b1NT0
2 − αT0

1

+ N e−αt
N−1∑
i=1

(
(a1w+ + b1) e−l+Ntci

+ + (a1w− + b1) e−l−Ntci
−
) ti−1

(i − 1)!

+
∫ t

0
N2 (t − s)N−2

(N − 2)!
e−α(t−s)

(
(l+N)N−2 e−l+N(t−s)(A1+T0

1(s) + B1+T0
2(s)

)
+ (l−N)N−2 e−l−N(t−s)(A1−T0

1(s) + B1−T0
2(s)

))
ds,

∂tT0
2 = −a2NT0

1 − b2NT0
2 − αT0

2

+ N e−αt
N−1∑
i=1

(
(a2w+ + b2) e−l+Ntci

+ + (a2w− + b2) e−l−Ntci
−
) ti−1

(i − 1)!

+
∫ t

0
N2 (t − s)N−2

(N − 2)!
e−α(t−s)

(
(l+N)N−2 e−l+N(t−s)(A2+T0

1(s) + B2+T0
2(s)

)
+ (l−N)N−2 e−l−N(t−s)(A2−T0

1(s) + B2−T0
2(s)

))
ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.17)
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This system depends on the discretization or, more precisely, on the number of points N.
Ideally, we would like to find the equations for the continuous model. The limiting behaviour as
N → ∞, or 1/N = ε → 0, of the different terms is studied in the electronic supplementary material.
The equations obtained after taking this limit can be written as

ε
dT1

dt
= −a1T1(t) − b1T2(t) + A1+τ+ e−ατ+ T1

(
t − τ+

) + B1+τ+ e−ατ+ T2
(
t − τ+

)
+ A1−τ− e−ατ− T1

(
t − τ−

) + B1−τ− e−ατ− T2
(
t − τ−

) + εfε1(t) + O(ε2)

and ε
dT2

dt
= −a2T1(t) − b2T2(t) + A2+τ+ e−ατ+ T1

(
t − τ+

) + B2+τ+ e−ατ+ T2
(
t − τ+

)
+ A2−τ− e−ατ− T1

(
t − τ−

) + B2−τ− e−ατ− T2
(
t − τ−

) + εfε2(t) + O(ε2),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.18)

where
fε1(t) = −αT1(t) + A1+τ+ e−ατ+ gε+

(
T1

) + B1+τ+ e−ατ+ gε+
(
T2

)
+ A1−τ− e−ατ− gε−

(
T1

) + B1−τ− e−ατ− gε−
(
T2

)
,

fε2(t) = −αT2(t) + A2+τ+ e−ατ+ gε+
(
T1

) + B2+τ+ e−ατ+ gε+
(
T2

)
+ A2−τ− e−ατ− gε−

(
T1

) + B2−τ− e−ατ− gε−
(
T2

)
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.19)

for

gε±
(
T
)= τ 2±

2

((
(l± + α)2 − 7

6
l2±

)
T
(
t − τ±

) + 2(l± + α)T′(t − τ±
) + T′′(t − τ±

))
, (4.20)

with τ± = 1/l± and T′ and T′′ the derivatives of T. Note that we have dropped the superscript
0 in the notation, as the system found is valid at every location throughout the basin through a
simple coordinate transformation. In (4.18), the first two terms (without delay) in the equations for
T1,2 are the Markovian terms, while the terms including a delay result from the memory term. In
(4.19), the α-term comes from the Markovian part, while the terms including gε± can be attributed
to the memory term. This is the final result of the application of the MZ formalism to the AMO
model (3.4) as an expansion in terms of order ε. Letting ε → 0 a set of delay-difference equations
is found, giving the exact reduced model of the AMO.

When applying the MZ formalism to the extended AMO model as derived in §3b, the leading-
order terms change slightly. The e−ατ± terms change to e−(α+l1±)τ± with l1± the additional first-order
term of the eigenvalues of the orthogonal dynamics system for the extended AMO model. This
leads to additional damping of the high-frequency modes as l1+ is positive, i.e. reducing the effect
of the terms with a short delay time τ+. On the other hand, l1− is negative, weakening the damping
of the low-frequency mode (and making it weakly unstable for α = 0). This corresponds to the
observed weakening of the high-frequency modes as discussed in §3b.

(d) Delay model derived via wave characteristics
The MZ formalism is in principle applicable also when the coefficients aj and bj are space
dependent. However, in that case it may not be possible to derive explicit expressions for delays
and coefficients in (4.18). For spatially constant coefficients aj and bj and equal damping α in
all components, we may also derive the leading orders of (4.18) by integration along wave
characteristics. This approach is similar to that taken in [2] and we refer to it as the MoC. The
damped free-wave solutions of the two-layer system,

∂tT1 = a1∂xT1 + b1∂xT2 − αT1

and ∂tT2 = a2∂xT1 + b2∂xT2 − αT2,

}
(4.21)

can be split into the decoupled equations

∂tT̃± − l±∂xT̃± + αT̃± = 0, (4.22)
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Table 3. Parameters used in numerical computations of (4.28). Note that these are approximated from equation (4.23) using
the values in table 2.

l+ l− τ+ τ−
0.3527 0.0375 2.83 26.65

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

along the wave characteristics, where the characteristic speeds and delays

l± = 1
2

[
a1 + b2 ±

√
(a1 + b2)2 − 4a1b2 + 4a2b1

]
, τ± = 1

l±
, (4.23)

are the same as for the MZ formalism in (4.8). The new variables T̃± are related back to the original
variables through the transformation TP,

	T = TP

[
T̃+
T̃−

]
, where TP =

⎡
⎢⎣

a1 − l+
a2

a1 − l−
a2

1 1

⎤
⎥⎦ , T−1

P =

⎡
⎢⎢⎢⎣

−a2

l+ − l−
a1 − l−
l+ − l−

a2
l+ − l−

l+ − a1

l+ − l−

⎤
⎥⎥⎥⎦ . (4.24)

The damped wave equations (4.22) have the general solutions

T̃±(t, x) = T̃0
±(t + xτ±)e−αxτ± , (4.25)

where the arbitrary profiles T̃0± are constrained by the boundary conditions T̃±(t, 0) = −T̃±(t, 1).
These boundary conditions enforce the delay-difference equations for T̃0±,

T̃0
±(t) = −e−ατ± T̃0

±(t − τ±), (4.26)

after shifting t by τ± and multiplying both sides by e−ατ± in the boundary conditions.
Transforming T̃0(t) back using the transformation T−1

P gives the coupled delay equations

	T(t) = e−ατ+ C1 	T(t − τ+) + e−ατ− C2 	T(t − τ−) (4.27)

(dropping the superscript 0 of T̃ for ease of notation) with

C1 =

⎡
⎢⎢⎢⎣

l− − a1

l+ − l−
(l+ − a1)(l− − a1)

a2(l+ − l−)

− a2
l+ − l−

− l+ − a1

l+ − l−

⎤
⎥⎥⎥⎦ and C2 =

⎡
⎢⎢⎢⎣

− l+ − a1

l+ − l−
− (l+ − a1)(l− − a1)

a2(l+ − l−)

a2

l+ − l−
l+ − a1

l+ − l−

⎤
⎥⎥⎥⎦ .

The above is valid at every location in the basin according to the general solution form (4.25), as
discussed in §4c. The MZ derived system in equation (4.18) for ε = 0 can be rewritten to the above
system.

System (4.27) is a delay-difference system. In order to explore solutions of the delay-difference
system, we convert (4.27) to a system of delay differential equations (DDEs) by regularizing it
with a small time derivative εd	T/dt,

ε
d	T(t)

dt
= −	T(t) + e−ατ+ C1 	T(t − τ+) + e−ατ− C2 	T(t − τ−), (4.28)

with ε 
 1. The choice of ε is related to the discretization of the original PDE system (4.21) through
ε = 1/N, where N is the number of discretization steps using an ‘upwind’ scheme (discretizing in
the direction of the wave). Table 3 shows the approximate resulting wave speeds and delays when
using the parameter values in table 2 for our numerical solutions and spectral analysis, which are
discussed in the next section.
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5. Analysis of delay models
In this section, we analyse the solutions of the delay-difference models derived via the MZ
formalism (4.18) and the MoC (4.28). We start with a discussion of the asymptotic spectrum and
a spectral analysis of the MoC model (4.28). Next, we discuss the error terms as computed using
the MZ formalism, followed by a comparison of the MZ delay model, the MoC delay model and
the numerical PDE solution from which the MZ model is derived.

(a) Asymptotic spectrum of delay models
We observe that the delays occurring in the MoC system are of different magnitude: τ+ 
 τ−,
where τ+ is of order O(1) in the time scale of (4.28). For hierarchical large delays, Yanchuk and
co-workers [28,29] provide a simple approximation of the spectrum for (4.28), which captures the
range of possible curvatures of the curves along which the eigenvalues shown in figure 6 align.
Any eigenvalue λ of (4.28) satisfies

det
[
−ελI − I + C1e−(α+λ)τ+ + C2e−(α+λ)τ−

]
= 0, (5.1)

with ε 
 1, τ+ = O(1) and τ+ 
 τ−. Hence, the term e−(α+λ)τ− is negligibly small unless ατ− and
Re λτ− are of order 1 or less. If we assume that this is the case, we may introduce α− = α/τ−
(which is of order 1 or less) and look for eigenvalues λ of the form λ = γ /τ+ + iω/ε (called the
pseudo-continuous spectrum in [28]). Then (γ + α−)τ+/τ− and εγ /τ− are small. Dropping these
terms and introducing the phases φ± = ωτ±/ε and z = e−(γ+α−)+iφ− simplifies (5.1) to

det
[
−iωI − I + C1eiφ+ + C2z

]
= 0. (5.2)

Equation (5.2) is in our case a quadratic equation in the complex number z, giving two roots, each
depending on ω and φ+, which one may express as z±(ω, φ+). From this root pair, one may derive
the damping depending on the frequency, γ±(ω, φ+) = −α− + log z±(ω, φ+), and, in the original
scaling for eigenvalue λ,

Re λ = −α + τ+ log z±(εIm λ, φ+).

This relation determines the curves along which the eigenvalues align for positive small ε and
τ+ 
 τ−. The phase φ+ is treated here as an independent parameter. It is very sensitive with
respect to small changes of τ+ (since φ+ = ωτ+/ε) such that the location of the eigenvalue curves
will vary strongly depending on τ+ or ε within the range given by φ+ ∈ [0, 2π ]. Ruschel &
Yanchuk’s [29] analysis shows in general that for hierarchically large delays the spectrum ‘fills
an area’ of the complex plane under small parameter variations.

(b) Spectral analysis of trajectories
For the spectral analysis of the MoC delay model (4.28) (with α = 0), we compute the trajectories
of T1 and T2. To compute the history needed for the difference equation, the PDE system (4.21) is
solved numerically for an initial profile of the basin using an upwind discretization scheme for τ−
years. We take a Gaussian initial distribution profile (same as figure 4a). The DDE system (4.28) is
then evolved for a further 200 time steps. Figure 7 shows the results.

A spectral analysis is performed on the resulting trajectories to identify the most prominent
oscillation periods. A dominant signal of a 2τ− year cycle is obtained, along with a smaller signal
for a 2τ+ year cycle. These two most prominent signals correspond to period doubling of the
two delay values which arises naturally from the boundary conditions. There is a smaller peak
corresponding to a cycle of approximately 2

3 τ− years. The signals corresponding to 2τ− (53.07)
and 2

3 τ− (17.77) year cycles align with the literature regarding possible cycle lengths of the AMO
[7,9]. The signal corresponding to the 2τ+ year cycle is much less pronounced in the surface
temperature than in the subsurface temperature.
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Figure 7. Numerical results for (4.28) with parameters from table 3 andα = 0. (a) Trajectory for 200 years. (b) Power spectral
density. (Online version in colour.)

Table 4. Sensitivity analysis on basin length (W, km) and effect on dominant cycles (years) forα = 0.

latitude W 2τ− 2
3τ− 2τ+

10◦ N 6540 87.15 29.05 9.27
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20◦ N 6240 83.15 27.72 8.85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30◦ N 5760 76.75 25.58 8.17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40◦ N 5100 67.96 22.65 7.23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50◦ N 4260 56.77 18.92 6.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60◦ N 3360 44.77 14.92 4.76
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

70◦ N 2280 30.38 10.13 3.23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The length of the cycles will naturally be dependent upon the basin size chosen. Here, we use
a zonal basin size of 4000 km, which corresponds to the width of the basin at 52◦ N. The basin
was defined in [17] to have latitudinal boundaries of 10◦ N and 70◦ N. The zonal basin width
for a longitudinal extent of 60◦ varies between these latitudes. We have, therefore, performed a
sensitivity analysis on the basin width for a selection of latitudes and computed the resulting
dominant cycle lengths. The results of this are listed in table 4. The range of cycle lengths,
particularly those associated with 2τ− and 2

3 τ−, generally agree with the range of those identified
in observational products. Measurements of SST have shown oscillations with a period between
50 and 70 years [30,31], while an analysis of subsurface temperature identifies a 20–30 year
oscillation [32]. The first period of 50–70 years corresponds to 2τ−, while the shorter period of
20–30 years roughly matches 2

3 τ−, with the best correspondence found for latitudes around 40◦ N.

(c) Comparison of delay models
We start this section with an evaluation of the theoretical error terms fε,i for i = 1, 2
(equation (4.19)) as computed via the MZ formalism. An example of the evolution of these terms
has been plotted in figure 8a. Also shown is the decrease in their maximum amplitude with
increasing N (decreasing ε), which corresponds to the effect expected from increasing the number
of steps in a discretized PDE. Thus the theoretical error of the delay system derived using the MZ
formalism (4.18) indicates that the delay model exhibits an error similar to that of the discretized
PDE. In figure 8b the spectral density of fεi for i = 1, 2 is shown. We find a peak at a frequency
of 0.53 year−1, which emerges owing to second derivatives in the computation of fεi. The small
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Figure 9. (a) The real part of the eigenfunctions of the PDE and (b) the errors of the discretized PDE (plotted for ε = 1
N ), MoC

and MZmodel as calculated using the eigenfunctions (withα = 0). (Online version in colour.)

low-frequency peaks correspond to those of the exact delay model, as shown in figure 7b, as there
is a delayed contribution from the temperature itself (and its first derivative) to the error term as
well.

Next, we compare the performance of the two DDE models derived via the MZ projection
(§4a–c) and the MoC (§4d) with the exact and discretized PDE models. We do this through the
calculation of the eigenfunctions of the respective models. Figure 9a shows the real part of the
eigenfunctions for each component of the exact PDE calculated using the Chebfun open-source
software [33]. We also compute the eigenfunctions for each approximation to the exact PDE:
discretized PDE, delay via MoC, and delay via MZ. We scale all the eigenfunctions such that
V1(x = 0) = 1. In order to compare the relative approximations, we calculate the error with respect
to the eigenfunctions satisfying the PDE boundary conditions (3.2)

errori := |Vi
1(x = 0) + Vi

1(x = 1)| for i ∈ {disc PDE, MoC, MZ}. (5.3)

As the approximate systems approach the exact PDE, the eigenfunctions of the respective
models are expected to converge and therefore satisfy the PDE boundary conditions. We then
would expect (5.3) to approach zero as N (ε) is increased (decreased) if the models are good
approximations of the exact PDE. We calculate (5.3) for a range of N and ε values and plot the
respective errors in figure 9b. It can be seen that decreasing the ε term in the delay equations has
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the same effect on the approximation to the exact PDE as increasing N in the discretization. In
other words, the error introduced through the ε term in the ‘smoothing’ approximation of delay-
difference equations is proportional to the error introduced by discretization methods of wave
equation PDEs (ε ∝ 1/N).

6. Summary, discussion and conclusion
A delay model for the AMO has been derived from a three-layer model by Sévellec & Huck
[17] using the MZ formalism. This formalism gives a rewriting of a system of ODEs [3] which
contains a Markovian, a noise and a memory term. The advantage of this delay model, over,
for example, mode decomposition, is that it precisely shows the propagating wave nature of the
AMO, through the (inverse) travel times l±, hence providing more support for the thermal Rossby
wave mechanism proposed in [16]. In a similar way to the ENSO delayed oscillator model [4,34],
this model can also be used to study the effects of background state, non-stationary forcing, noise
and possibly state-dependent delay versions on the behaviour of the AMO [35,36].

The derived model for the AMO is a first-order delay-difference model, in contrast to the
delay differential model for ENSO [2]. This means that the current state is fully determined by
past states. This type of model can exhibit an increasing switching frequency between states [37],
making it physically unrealistic. Hence, an ε d

dt -term was added to prevent this behaviour and
allow for better numerical treatment. We were able to derive an error term for this approximation
using the MZ formalism, and relate this error to the upwind discretization scheme used in
solving the original PDE model. For the non-damped version of the AMO model (α = 0), the MZ
formalism is not strictly necessary for deriving a delay model, although it is more general and
can be extended to other types of models. The MoC yields the same delay-difference equation, as
shown in §5d. We showed that the way in which the smoothing approximation ε d

dt -term is added
affects the size of the error of the delay model. Furthermore, the error introduced through the
smoothing ε d

dt -term is proportional to that introduced by discretization methods, as discussed
in §5c.

The PDE model of the AMO by Sévellec & Huck [17], the starting point for deriving the
delay model, does not contain a background overturning circulation. This results in a high-
frequency model oscillation which is undesired to study the AMO. As discussed in §3b,
adding the meridional overturning circulation to the background state of the model results in
a damping of this high-frequency oscillation. This also becomes clear when studying the delay
model corresponding to this extended AMO model, which has been derived in the electronic
supplementary material. It shows a weakening of the delayed effect of the high-frequency mode
(short delay time), while the low-frequency mode (long delay time) is enhanced by the extended
background state.

The method of deriving delay equations as applied to a PDE model of the AMO (and also
to a PDE model of ENSO [2]) can be generalized. It is expected that any diagonalizable linear
system of wave equations can be rewritten in the form of a delay-difference system, given
sufficient coupling that allows for the transfer of a signal between either different variables
or boundaries. Integration along characteristics would yield the dominant terms, but the MZ
formalism additionally gives error terms to a smoothing approximation for solving the delay-
difference system. The necessity of the diagonalizability remains to be investigated. For non-
diagonalizable systems, it is not yet clear whether a similar result would hold as the computations
become more involved.

For nonlinear models the method applied here to the AMO model has to be generalized.
Although the MZ formalism is general and does not rely on the linearity of the system, the
difficulty lies in solving the orthogonal dynamics equation, as noted extensively in the literature
[3,21,23]. For linear models, the pseudo-orthogonal dynamics approximation can be used to arrive
at the final result [38]. For nonlinear models, this approximation cannot be used without first
showing its accuracy. In [2] it was shown to result in a significant error for the nonlinear ENSO
model studied. A better approximation for nonlinear models first needs to be proposed before
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the method described here can be accurately generalized. This step is necessary for a reliable and
accurate application of the MZ formalism to nonlinear models of climate phenomena.

Many PDE models used to describe climate phenomena contain some type of wave dynamics.
We have shown in this study that projecting a system of wave equations onto one location yields
a delay model. This would imply that more climate variability phenomena could be described by
a delay equation when there is a physical mechanism that suggests memory effects. Once better
methods of approximation of the orthogonal dynamics are available, it may be possible to derive
accurate nonlinear delay models of climate phenomena, thus clarifying dynamical mechanisms
and allowing for further analysis.
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