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ABSTRACT

To establish a consistent framework for seismic wave
propagation that accommodates the effects of stress changes,
it is critical to take into account the different definitions of
stress and their corresponding effects on seismic quantities
(e.g., wave speeds) as dictated by continuum mechanics.
Revisiting this fundamental theoretical foundation, we first
emphasize the role of stress within various forms of the wave
equation resulting from different choices of stress defini-
tions. Subsequently, using this basis, we investigate connec-
tions among existing theories that describe the variation of
elastic moduli as a function of changes in stress. We find that
there is a direct connection between predicting stress-in-
duced elastic changes with the well-known third-order elas-
ticity tensor and the recently proposed adiabatic pressure
derivatives of elastic moduli. However, each of these ap-
proaches has different merits and drawbacks in terms of
experimental validation as well as in their use. In addition,
we investigate the connection with another general approach
that relies on micromechanical structures (e.g., cracks and
pores). Although this can be done algebraically, it remains
unclear as to which definition of stress and which corre-
sponding constitutive relationship should be considered in
practical scenarios. We support our analysis with validations
using previously published benchmark experimental data.

INTRODUCTION

The knowledge of stress variations and their effects on seismic
wave propagation is crucial for seismic processing in stressed for-

mations, reservoir characterization, and 4D monitoring. Therefore,
it is critical that the theoretical foundation underlying the calcula-
tion of the effects of stress on seismic waves is developed self-con-
sistently, so that seismic-based technologies can be built upon it. To
address stress-induced wavefield effects, there are two primary
problems that need to be considered:

1) How do seismic waves propagate in media under stress? How
do we take into account the effects of the state of stress in the
wave equation?

2) How do elastic moduli vary with stress? Can we establish a
parameter model for wave propagation experiments that is con-
sistent at the field and laboratory scales?

To our knowledge, the treatment of the first problem appears to be
sparse in the seismic exploration literature. This may be partly due to
the success of the use of a familiar — but approximate — wave
equation that is valid when the initial stress of the medium is ignored.
This point is noted in, for example, box 8.5 of Aki and Richards
(2002). However, a complete treatment of this problem is given in
the neighboring fields of global seismology (Dahlen and Tromp,
1998) and ultrasonics (Wallace, 1967; Thurston, 1974). For this rea-
son, we first present a synopsis of how the effects of stress can be
incorporated into the wave equation and the importance of various
possible definitions of stress that can be used to accomplish this.
With regard to the second problem, there are two general ap-

proaches that exploration geophysicists adopt to quantify the effects
of stress on elastic moduli, namely, the theory of third-order
elasticity (TOE) and theories based on micromechanical structure
analysis. The former builds on the original framework from the
ultrasonic community for characterizing the linear effects of stress
on wave speeds, which are in turn related to the crystal properties
under stress. The literature on TOE commonly refers to the original
formulation of Brugger (1964) and Thurston and Brugger (1964).
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Some additional details can also be found in Thurston (1965b,
1974). In seismic exploration, several variants of TOE theory have
been proposed (Johnson and Rasolofosaon, 1996; Sinha et al.,
1996; Rasolofosaon, 1998; Winkler et al., 1998; Sinha and Plona,
2001; Sarkar et al., 2003; Prioul and Lebrat, 2004; Prioul et al.,
2004; Fuck et al., 2009). Each of these theories involves certain
modifications or assumptions. In general, the TOE theory has
the benefit of not relying on micromechanical models, which, in
principle, makes it more general than other theories that make as-
sumptions, e.g., the crack shape or grain contacts. Moreover, TOE
represents a full sixth-ranked tensor with, at most, 56 independent
parameters that can be used to compute any wave signatures in arbi-
trarily anisotropic media (Fuck and Tsvankin, 2009; Fuck et al.,
2009). This number reduces to three when assuming the TOE tensor
to be isotropic. Several studies report that these three additional
parameters appear to be sufficient to characterize the stress-depen-
dent effects in many common applications (Sinha and Plona, 2001;
Sarkar et al., 2003; Prioul et al., 2004).
Others advocate the use of theories based on analyses of micro-

mechanical structures, such as cracks and pores, and their responses
under stress. In this approach, these features are considered to be the
most compliant parts of rock pore spaces and most sensitive to de-
formation upon a change in stress. Therefore, the variation of elastic
moduli with stress can be interpreted in terms of parameters related
to deformations of the corresponding pore spaces. Several variants
of the micromechanical theory exist with different modifications
and assumptions (Mavko et al., 1995; Sayers and Kachanov,
1995; Sayers, 2002, 2010; Tod, 2002; Shapiro, 2003, 2017; Shapiro
and Kaselow, 2005; Verdon et al., 2008; Angus et al., 2009; Gur-
evich et al., 2011; Collet et al., 2014), and some comparisons may
be found in Price et al. (2017). Most variants make use of micro-
mechanical structure parameters that are described by second- and
fourth-rank tensors. Only in one variant (Shapiro, 2017) is a sixth-
order tensor involved. In general, this approach allows us to poten-
tially gain more intuitive insights into rock properties than TOE
theory. In some variants of the theory, one can characterize a non-
linear stress dependence of wave speeds in a larger range of stress
changes because some parameters related to micromechanical struc-
tures may be considered exponentially related to stress (Tod, 2002;
Shapiro, 2003). The required number of parameters in this approach
can be large because each micromechanical structure (e.g., crack)
must be described individually. Several studies have reported that,
in practice, the total contribution from multiple micromechanical
structures can be described and estimated in an effective sense and
some stringent requirements, such as crack shape, may be relaxed
(Mavko et al., 1995; Sayers, 2002; Gurevich et al., 2011; Sha-
piro, 2017).
Recently, Tromp and Trampert (2018) propose a theory to char-

acterize the stress dependence of elastic moduli in terms of their
adiabatic pressure derivatives. Its preliminary results were validated
by ab initio calculations (e.g., Karki et al., 2001; Militzer et al.,
2011), in which predicted elastic moduli under changes of stress
were compared with those computed directly from molecular
dynamics (Tromp et al., 2019). Analogously to the TOE theory,
the approach aims at describing the linear effects of stress on elastic
moduli but stems from a different root — the nonuniqueness of the
stiffness tensor in continuum mechanics. No micromechanical
model is assumed, and the linear effects of stress on elastic param-
eters are captured through more intuitive mathematical parameters

— the adiabatic pressure derivatives of the elastic moduli them-
selves. These derivatives can be written out as a fourth-order tensor
in the same manner as for the usual stiffness tensor. Tromp and Tram-
pert (2018) also show that the results from this theory can easily be
used with an appropriate wave equation that honors the effects of
stress, which, in principle, fully enables its application in seismic
modeling and inversion.
To address the two general problems posed above, in this exposi-

tory paper we first emphasize the importance of the initial stress,
definitions of the stress tensor, and their effects on the wave equa-
tion following from continuum mechanics. Subsequently, we use
this theoretical foundation as a common ground to look at previ-
ously proposed theories for predicting stress-dependent elastic
moduli and discuss some of their relations. Note that we do not aim
to present a new theory for characterizing stress-dependent elastic
moduli in this paper. Rather, we present a concise overview of the
topic and new insights on connections among existing theories suit-
able for an audience of exploration geophysicists in the hope that
these connections will pave the way for future developments to fully
address the aforementioned key problems.

WAVE EQUATIONS IN THE PRESENCE OF STRESS

From continuum mechanics it follows that the wave equation in a
stressed medium can be written in three equivalent forms (Dahlen
and Tromp, 1998), namely,

ρ0∂2t s ¼ ∇ · TPK1

¼ ∇ · TL1 − ∇ · ðs · ∇T0Þ
¼ ∇ · TSK1 þ ∇ · ðT0 · ∇sÞ; (1)

where ρ0 is the density, s is the displacement vector, and
T0 ¼ −p0Iþ τ0 denotes the state of stress at which waves must
propagate, with pressure p0 ¼ −ð1∕3ÞtrðT0Þ and deviatoric stress
τ0 ¼ p0Iþ T0. The three types of stress perturbations used to de-
scribe wave propagation are the incremental Lagrangian description
of the Cauchy stress (TL1), the incremental first (TPK1), and second
(TSK1) Piola-Kirchhoff stresses. A synopsis on the derivation
of equation 1 and the three definitions of stress are presented in
Appendix A.
If the current state of the medium is stress-free (T0 ¼ 0), any of

the three choices lead to the same wave equation normally used in
seismic processing. In the presence of a nonzero prestress, the three
definitions differ and involve different (but related) constitutive re-
lations. Here, we express the three possible constitutive relations as

TPK1 ¼ Λ∶∇s; TL1 ¼ Υ∶∇s; and TSK1 ¼ Ξ∶∇s; (2)

with three choices of stiffness tensors, Λ, Υ, and Ξ, which are
related to each other as follows:

Λijkl ¼ Ξijkl þ T0
ikδjl; (3)

Υijkl ¼ Λijkl þ T0
jkδil − T0

ijδkl

¼ Ξijkl þ T0
ikδjl þ T0

jkδil − T0
ijδkl: (4)

W48 Sripanich et al.
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The Christoffel equation corresponding to equation 1 can then be
expressed as

B · a ¼ c2a; (5)

where a denotes an eigenvector, c denotes the corresponding phase
speed, and B denotes the Christoffel matrix with elements

ρ0Bjl ¼ Λijklk̂ik̂k ¼ Υijklk̂ik̂k: (6)

Here, k̂ ¼ k∕k denotes a unit wave vector that points in the phase
direction. The phase speed c may be found by solving the eigen-
problem 5.
To choose among the three stress options for the wave equation

and associated constitutive relations, there are at least three points to
consider:

1) By definition (Appendix A), TPK1 ≠ ðTPK1ÞT but TL1 ¼ ðTL1ÞT
and TSK1 ¼ ðTSK1ÞT.

2) As a consequence, Λ and Υ only have the following sym-
metries:

Λijkl ¼ Λklij and Υijkl ¼ Υjikl; (7)

whereas Ξ has the “full” symmetry

Ξijkl ¼ Ξjikl ¼ Ξijlk ¼ Ξklij: (8)

3) It is either Λ or Υ but not Ξ that appears in the Christoffel equa-
tion and thus in expressions of phase speed determined in
equation 5.

As a result, previous researchers have noted that stress-induced
anisotropy will lead to stiffness tensors with limited symmetry
because we have to work with Λ or Υ but not Ξ. We summarize
the important aspects associated with three stress definitions in
Table 1.
Considering the above three points and Table 1, it appears that

working with TL1 is the most convenient choice because (1) the
Lagrangian stress perturbation (TL1) still maintains its symmetry
over a transposition and (2) its associated stiffness tensor elements
directly relate to the Christoffel matrix and, in turn, the wave speeds.
Moreover, under the static equilibrium condition (∇ · T0 ¼ 0), the
wave equation related to the Lagrangian stress perturbation (TL1)
becomes

ρ0∂2t s ¼ ∇ · TL1 þ ∇½s · ð∇ · τ0Þ� − ∇ · ðs · ∇τ0Þ; (9)

which leads us to yet another advantage. According to equation 9, if
there are no deviatoric components, τ0 ¼ 0, the wave equation

reduces to the usual one in seismic processing and is valid for
hydrostatically stressed media (including the case of unstressed
media), namely,

ρ0∂2t s ¼ ∇ · TL1: (10)

This τ0 ¼ 0 assumption also results in T0 ¼ −p0I, which leads to Λ
and Υ becoming

Λijkl ¼ Ξijkl − p0δikδjl; (11)

Υijkl ¼ Λijkl − p0ðδjkδil − δijδklÞ
¼ Ξijkl − p0ðδikδjl þ δjkδil − δijδklÞ; (12)

and exhibiting the same symmetries as Ξ in equation 8.
Consequently, if we choose to consider a hydrostatically stressed (or

unstressed) medium and make use of wave equation 10, together with
a Υ, whose elements appear naturally in the wave speed expressions,
wewill have a consistent framework for studies/experiments that prop-
erly honor the effects due to the state of stress according to continuum
mechanics. At the same time, we will also have a framework that is
closely similar to one that is conventionally used in the seismic explo-
ration community — similar looking wave equation (equation 10)
with stiffness tensor that includes the effects of p0 terms (equation 12).
To enhance the understanding of our audience, we numerically

illustrate the effects of stress on phase and group speeds as deter-
mined in equation 5. We consider an example of a transversely iso-
tropic medium with vertical symmetry axis (VTI) that has nonzero
elements of the Christoffel matrix in the [k̂1, k̂3] plane expressed
under Voigt notation as follows:

B11¼ðΞ11−p0þτ11Þk̂21þ2k̂1k̂3τ13þðΞ55−p0þτ33Þk̂23;
(13)

B13 ¼ ðΞ13 þ Ξ55Þk̂1k̂3; (14)

B22¼ðΞ66−p0þτ11Þk̂21þ2k̂1k̂3τ13þðΞ55−p0þτ33Þk̂23;
(15)

B31 ¼ ðΞ13 þ Ξ55Þk̂1k̂3; (16)

B33¼ðΞ55−p0þτ11Þk̂21þ2k̂1k̂3τ13þðΞ33−p0þτ33Þk̂23:
(17)

Table 1. A comparison between the three stress definitions.

Stress
Stress

symmetry
Stiffness
tensor

Stiffness
symmetry

Wave equation
(stressed media)

Wave equation
(unstressed media)

Lagrangian stress
perturbation (TL1)

TL1 ¼ ðTL1ÞT Υijkl Υijkl ¼ Υjikl ρ0∂2t s ¼ ∇ · TL1 − ∇ · ðs · ∇T0Þ ρ0∂2t s ¼ ∇ · TL1

First Piola-Kirchhoff
stress perturbation (TPK1)

TPK1 ≠ ðTPK1ÞT Λijkl Λijkl ¼ Λklij ρ0∂2t s ¼ ∇ · TPK1 ρ0∂2t s ¼ ∇ · TPK1

Second Piola-Kirchhoff
stress perturbation (TSK1)

TSK1 ¼ ðTSK1ÞT Γijkl Ξijkl ¼ Ξjikl ¼ Ξijlk ¼ Ξklij ρ0∂2t s ¼ ∇ · TSK1 þ ∇ · ðT0 · ∇sÞ ρ0∂2t s ¼ ∇ · TSK1
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The medium parameters are Ξ11 ¼ 30.12 GPa,
Ξ33¼21.68GPa, Ξ13¼3.28GPa, Ξ55¼6.26GPa,
and ρ0 ¼ 2 g∕cm3, which can be translated to
VP0 ¼ 3.29 km/s, VS0 ¼ 1.77 km/s, ϵ ¼ 0.19,
and δ ¼ −0.22 using Thomsen’s notation.
We consider two cases of prestress, namely,
(1) p0 ¼ 40 MPa and (2) p0 ¼ 400 MPa, with
τ011 ¼ p0∕10, τ013 ¼ p0∕20, and τ033 ¼ p0∕15.
In each case, we use the above VTI parameters
to describe the reference medium under the pres-
ence of either 40 or 400 MPa prestress. The phase
and group velocities of the P- and SV-waves for
40 and 400 MPa cases are shown in Figures 1
and 2, respectively.
We observe that the presence of stress can di-

rectly affect the corresponding wave speeds and
that the degree of its influence directly depends
on its magnitude relative to the magnitudes of the
elastic moduli (Ξijkl). In the 40 MPa case, the
magnitude of the prestress is much smaller than
the magnitude of the elastic moduli, and its influ-
ence is less than 0.4%. The error grows by ap-
proximately 10 times in the case of 400 MPa
given that everything else is kept constant.
In practice, we strive to estimate properties of

the subsurface via wave experiments (laboratory
or seismic). Without a proper and consistent
treatment of stress, its associated constitutive
relation, and the wave equation, the obtained
parameters will certainly be flawed and sub-
sequent uses of such results will further aggregate
errors, especially when ones tries to improve sub-
surface models via iterative wave-equation-based
inversions.

DEFINING DIFFERENT STATES
OF STRESS

Before proceeding further, it is advantageous
to go over the concept of states of stress. Each
state describes a particular configuration of the
medium, which provides a basis for us to relate
changes from one to another and eventually es-
tablish an appropriate wave equation. In the con-
text of the current problem, we identify three
states of stress, as shown in Figure 3:

1) The reference configuration is conveniently
taken where present data on elastic moduli
are available (e.g., seismically inverted mod-
els or laboratory measurements at some
pressure).

2) The intermediate configuration denoting
the same medium but subjected to arbitrary
choices of stress setups (e.g., with an addi-
tional triaxial stress change on the medium).
Several authors also refer to this configura-
tion as a medium with static bias (Sinha
and Kostek, 1996; Winkler et al., 1998;
Sinha and Plona, 2001; Lei et al., 2012).
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Figure 1. A comparison of (a) phase speed, (c) group speed, and (b and d) their
differences in the presence of 40 MPa pressure and additional (approximately 15%)
deviatoric stress. The blue color denotes P-waves, whereas the orange color denotes
SV-waves. Note that the phase and group speeds are almost identical (the dashed
and solid lines overlapping) despite the presence of stress due to its relatively small
magnitude.
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differences in the presence of 400 MPa pressure and additional (approximately 15%)
deviatoric stress. The blue color denotes P-waves, whereas the orange color denotes
SV-waves.
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3) The current configuration, which describes the medium in the
intermediate state 2 with additional deformations from wave
propagation.

Going from reference state 1 to intermediate state 2, one can
choose to use any of the three theories to relate the elastic moduli
at some state of stress to another. However, we emphasize that there
are several options for what one can and should define as a refer-
ence. To study wave propagation in the current state 3, we need both
knowledge of the medium in 2 and a wave equation that properly
accounts for the effects of stress as defined by continuum mechan-
ics. In the previous section, it is shown that the wave equation that
defines how waves propagate in a medium under some arbitrary
stress field T0 is given in equation 1 or 9. Given the appropriate
linearized constitutive relations (equation 3 or 4) and the knowledge
of T0, we can propagate wavefields that correctly honor the effects
of the state of stress. In other words, this wave equation describes
how to relate the intermediate state 2 to the current state 3.
With these considerations in mind, the goal then is to construct

a rock-physics model that can connect changes in elastic moduli
(Λ, Υ, or Ξ) between the reference 1 and intermediate 2 states
so that proper wave studies can be conducted. We emphasize that
there are at least two more points that we have to keep in mind:

1) In seismology, we always invert for medium parameters in the
presence of some in situ stress in the subsurface. This is also the
case in laboratory measurements of elastic moduli, which are
normally done under some state of nonzero stress. The fact that
these parameter estimation processes commonly rely on the
wave equation for hydrostatically stressed media equivalent
to equation 10 suggests that the recovered elastic moduli from
these approaches represent an approximation of Υ related to
some in situ pressure p0 (equation 12), which
in turn relates to Ξ at the same in situ pres-
sure. Therefore, in view of these previous de-
velopments, it is convenient to define the
reference state to be associated with hydro-
statically stressed media (Figure 3), where
the elastic moduli can be obtained from
the current model building workflow or
laboratory measurements at some effective
hydrostatic stress.
Strictly speaking, in view of equation 10, these moduli provided
by the conventional model building workflow are only approxi-
mate because the effects of subsurface in situ deviatoric stresses
are neglected due to the use of an approximate wave equation.
This is generally valid in seismology because the effects of de-
viatoric stress are assumed to be much smaller than those due to
hydrostatic pressure (Dahlen and Tromp, 1998). However, this
problem may not be pertinent in laboratory settings because the
choice of applied stress in the reference state can be controlled.

2) Another important point must also be made regarding the differ-
ence between isothermal and adiabatic quantities. In seismol-
ogy, we generally assume that adiabatic elastic moduli at
constant entropy S (Λ, Υ, or Ξ) are well-approximated by the
isothermal moduli at a constant temperature T (ΛT , ΥT , or ΞT )
and vice versa (e.g., Johnson and Rasolofosaon, 1996; Dahlen
and Tromp, 1998). Therefore, given an appropriate frequency
range, the model parameters obtained from seismic inversion,
which are adiabatic moduli, can directly be related to those

isothermal moduli obtained in laboratory settings at a constant
temperature. Even though we use a similar assumption here,
distinguishing them becomes important when we consider
some variants of the TOE theory and try to theoretically relate
them to the theory with adiabatic pressure derivatives in the
“Third-order elasticity” section.

THEORIES FOR STRESS-DEPENDENT
ELASTICITY

Predicting changes in elastic moduli due to changes in stress is a
long-standing problem, and many previous studies have proposed
theories to characterize this behavior (Murnaghan, 1951; Toupin
and Bernstein, 1961; Brugger, 1964; Ghate, 1964; Nur and Simmons,
1969; Wallace, 1970; Nur, 1971; Thurston, 1974). In this section, we
go over three general approaches — namely, adiabatic pressure
derivatives, TOE, and micromechnical structures — used to char-
acterize changes in elastic moduli due to changes in stress. The first
two represent a linear approximation (Figure 4), whereas the third
one may be nonlinear. We use continuum mechanics as the common
ground of each of the three theories and discuss some of their direct
implications. This enables us to provide some connections between
the latest theory with adiabatic pressure derivatives and the TOE
theory because they stem from the same continuum mechanics basis.
In this section, we use a general expression of the form

Ξijkl ¼ Γijkl þ fijklðT0
mnÞ (18)

to describe the variation of elastic moduli with stress. Here, Γijkl

denotes the elastic moduli in the unstressed reference state 1,
fijklðT0

mnÞ denotes a linear or nonlinear function describing their

Reference state

Hydrostatically prestressed
(incl. unstressed)

Intermediate state

Arbitrarily pre-stressed

Current state

Wave propagation 
in prestressed medium

Intermediate state

Arbitrarily pre-stressed

Intermediate state

Arbitrarily prestressed

Figure 3. Configuration states for studying stress-dependence elasticity with seismic
waves. The reference state is defined where the elastic moduli can be measured.

W
av

e 
ve

lo
ci

ty

Effective stress

Unstressed

Local linear approximation

Option 1: Several variants of the  
           third-order elasticity  
      (TOE) theory

Option 2: Theory based on 
      pressure derivatives of  
     elastic moduli

Figure 4. Schematic showing the notion of a local linear approxi-
mation adopted by the TOE theory and the theory based on adia-
batic pressure derivatives (Tromp and Trampert, 2018). Other
theories that are based on micromechanical structrues aim to de-
scribe this nonlinear variation in a larger range of stress change
in terms of parameters related to deformations of micromechanical
structures.
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change with stress T0, and Ξ is the corresponding modulus appro-
priate for TSK1, which possesses full symmetry relations 8 and lives
in the intermediate state 2. The corresponding expressions forΛ and
Υ may be obtained from equations 3 and 4. In principle, additional
consideration on the deformation gradient and density variation be-
tween the two states must also be honored. Different theories take
this point into account variously, and it shall become clear once we
specify fijklðT0

mnÞ in equation 18 depending on the theory.

Adiabatic pressure derivatives

The theory of Tromp and Trampert (2018) aims to capture the
linear effects of stress on elastic moduli with the use of adiabatic
pressure derivatives of the elastic moduli themselves. They ap-
proach this problem on the basis of the nonuniqueness of the stiff-
ness tensor, which was previously used by Dahlen (1972) with the
same goal but in a different formulation. In the context of this
theory, we can express fijkl in equation 18 as

fijklðT0
mnÞ ¼ ΨijklmnT0

mn; (19)

where we enforce that ΨijklmnT0
mn also has the required symmetry

among indices i, j, k, and l (equation 8). Equations 18 and 19 then
represent the most general form of elastic tensor that can be used to
capture the linear effects of T0. In other words, they represent a
linear approximation of the elastic tensor with respect to its value
at T0 ¼ 0 given by Γijkl. By making different choices ofΨijklmnT0

mn,
variants of this theory can be derived.

1) Let us first consider the following choice proposed by Dahlen
(1972):

ΨijklmnT0
mn ¼ aðT0

ijδkl þ T0
klδijÞ

þ bðT0
ikδjl þ T0

jkδil

þ T0
ilδjk þ T0

jlδikÞ; (20)

where the summation in parentheses ensures the necessary sym-
metry among indices i, j, k, and l. The scalar parameters a and b
can be any arbitrarily chosen quantities, which may vary spa-
tially. Dahlen (1972) shows that choosing a ¼ −b ¼ 1∕2 leads
to expressions of TL1 and P-wave phase speeds that are inde-
pendent of pressure p0, which may be desirable in some cases.

2) Consider an isotropic reference Γ given by

Γijkl ¼
�
κ −

2

3
μ

�
δijδkl þ μðδklδjlþ δilδjkÞ; (21)

where κ and μ denote the spatially variable isotropic bulk and
shear moduli at p0 ¼ 0, respectively (or at any other p0 with
Ξijkl at that pressure). Building on the choice of an isotropic
background and equation 20, Tromp and Trampert (2018) pro-
pose an alternative choice for a and b, namely,

a ¼ 1

2

�
1 − κ 0 þ 2

3
μ 0
�
;

b ¼ −
1

2
ð1þ μ 0Þ; (22)

where κ 0 and μ 0 denote the spatially variable adiabatic pressure
derivatives of the bulk and shear moduli, respectively. The
derivatives with respect to the deviatoric stress τ0 are assumed
to be negligible in magnitude with respect to κ 0 and μ 0.
Substituting equation 22 into equation 20 gives

Ξijkl ¼ Γijkl þ
1

2

�
1 − κ 0 þ 2

3
μ 0
�
ðT0

ijδkl þ T0
klδijÞ

−
1

2
ð1þ μ 0ÞðT0

ikδjl þ T0
jkδil þ T0

ilδjk þ T0
jlδikÞ;

(23)

which leads to the Christoffel matrix

ρBjl ¼
�
ðκ þ κ 0p0Þ þ 1

3
ðμþ μ 0p0Þ

�
k̂jk̂l

þ ðμþ μ 0p0Þδjl
−
1

2

�
κ 0 þ 1

3
μ 0
�
ðτ0ijk̂ik̂l þ τ0klk̂jk̂kÞ

þ 1

2
ð1 − μ 0Þτ0ikk̂ik̂kδjl −

1

2
ð1þ μ 0Þτ0jl: (24)

We observe that the choice of using these adiabatic pressure
derivatives (κ 0 and μ 0) conforms to the general objective of
the theory that aims to capture the first-order (linear) effects
of T0 and quantify them in an intuitive way. Furthermore, it
allows us to conveniently isolate pressure-dependent terms in
the form of linear approximations κ þ κ 0p0 and μþ μ 0p0 from
the those that depend on τ0.

3) Tromp et al. (2019) generalize the theory for an arbitrary aniso-
tropic background, still in the scope of the linear regime, as fol-
lows:

ΨijklmnT0
mn ¼

1

2
ðT0

ijδkl þ T0
klδijÞ

−
1

2
ðT0

ikδjl þ T0
jkδil

þ T0
ilδjk þ T0

jlδikÞ

−
1

4
ðT0

mjΓ 0
imkl þ T0

miΓ 0
jmkl

þ T0
mlΓ 0

kmij þ T0
mkΓ 0

lmijÞ: (25)

The first two terms are similar to those in equation 20 with
a ¼ −b ¼ 1∕2. The last term is dependent on the adiabatic
pressure derivative of the background elastic tensor Γ 0

ijkl. If
Γijkl is assumed to be isotropic, with its pressure derivatives
characterized by κ 0 and μ 0, equation 25 reduces to equation 23
originally proposed by Tromp and Trampert (2018).

Equation 25 maintains the same advantage of conveniently isolating
pressure-dependent terms, which becomes apparent when we write
out the corresponding Ξ, Λ, and Υ in terms of p0 and τ0 as follows:
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Ξijkl ¼ Γijkl þ Γ 0
ijklp

0

− p0ðδijδkl − δikδjl − δjkδilÞ

þ 1

2
ðτ0ijδkl þ τ0klδijÞ

−
1

2
ðτ0ikδjl þ τ0jkδil þ τ0ilδjk þ τ0jlδikÞ

−
1

4
ðΓ 0

imklτ
0
mj þ Γ 0

jmklτ
0
mi

þ Γ 0
kmijτ

0
ml þ Γ 0

lmijτ
0
mkÞ; (26)

Λijkl ¼ Γijkl þ Γ 0
ijklp

0 − p0ðδijδkl − δjkδilÞ

þ 1

2
ðτ0ijδkl þ τ0klδij þ τ0ikδjlÞ

−
1

2
ðτ0jkδil þ τ0ilδjk þ τ0jlδikÞ

−
1

4
ðΓ 0

imklτ
0
mj þ Γ 0

jmklτ
0
mi

þ Γ 0
kmijτ

0
ml þ Γ 0

lmijτ
0
mkÞ; (27)

Υijkl ¼ Γijkl þ Γ 0
ijklp

0

þ 1

2
ðτ0jkδil þ τ0klδij þ τ0ikδjlÞ

−
1

2
ðτ0ijδkl þ τ0ilδjk þ τ0jlδikÞ

−
1

4
ðΓ 0

imklτ
0
mj þ Γ 0

jmklτ
0
mi

þ Γ 0
kmijτ

0
ml þ Γ 0

lmijτ
0
mkÞ: (28)

The first term in equations 26–28 is Γijkl þ Γ 0
ijklp

0, which repre-
sents the desired linear approximation in terms of the adiabatic pres-
sure derivative on the background elastic tensor Γijkl. The remaining
dependence on p0 in Λ exists in combinations of delta functions but
disappears upon contraction with k̂ik̂k when constructing the Chris-
toffel equation (equation 5). Substituting equation 27 or 28 into
equation 5, we obtain the Christoffel equation:

ρ0Bjl ¼ Λijklk̂ik̂k

¼ ðΓijkl þ Γ 0
ijklp

0Þk̂ik̂k þ
1

2
τ0ikk̂ik̂kδjl −

1

2
τ0jl

−
1

2
ðΓ 0

imklτ
0
mj þ Γ 0

jmklτ
0
miÞk̂ik̂k; (29)

which possesses a noted advantage of having only one pressure-
dependent term, namely, Γijkl þ Γ 0

ijklp
0.

It is apparent from the generalized theory, captured in equa-
tion 25, that when working with adiabatic pressure derivatives,
the additional contribution fijklðT0

mnÞ can be directly expressed
in terms of stress and we do not need to involve strain, which is
the case in the TOE theory. Moreover, without a loss of generality,
because we are looking at a linear function in p0 and τ0, we can also
consider Γ as Ξ measured at some other reference state, such as at

some convenient hydrostatic stress (equation 12), as previously
noted. Equations 26–28 then predict the linear changes in the elastic
tensor from that reference state due to additional induced stress T0

from some external process. In other words, suppose the reference
state is chosen at p1 and we would like to predict elastic moduli at a
new p2 and τ2. We can achieve this by substituting

• Ξijkl estimated at p1 for Γijkl
• Ξ 0

ijkl the adiabatic pressure derivatives at p1 for Γ 0
ijkl

• p0 ¼ p2 − p1 and τ0 ¼ τ2

into equations 26–28. Similar substitutions can be made in the
Christoffel equation 29 for calculations of the wave speeds.

Third-order elasticity

In TOE theory, one makes use of a sixth-ranked tensor and its
contraction with a variation in strain to predict changes in the elastic
moduli with stress. In general, the TOE tensor can be defined in
two ways:

• Adiabatic TOE tensor:

cijklmn ¼ ρ

�
∂3UL

∂EL
ij∂EL

kl∂EL
mn

�
¼

�
∂Γijkl

∂EL
mn

�����
SL
; (30)

whereUL denotes the Lagrangian internal energy density per
unit mass expressed in terms of the local instantaneous La-
grangian strain EL and the local entropy SL. Recall from our
synopsis in Appendix A (equation A-41) that the definition
of the stiffness tensor Ξ (or Γ in unstressed media) is the
second derivative of UL with respect to EL. Therefore,
the adiabatic TOE tensor is the derivative of such stiffness
tensor while keeping the entropy SL constant.

• Isothermal TOE tensor:

cmixed
ijklmn ¼

�
∂Γijkl

∂EL
mn

�����
T
; (31)

where we note that the isothermal TOE is the derivative of Γ
while keeping the temperature T constant.

Note that in both definitions, we are considering a deformation
from the unstressed reference state 1 to an intermediate state 2. As a
result, we consider Γ as the counterpart of Ξ in an unstressed refer-
ence, and it is an adiabatic quantity by definition.
The first is the third-order derivative of the Lagrangian internal

energy density, which is a purely adiabatic quantity, whereas the latter
is the isothermal derivative of the adiabatic Ξ, which is a “mixed”
quantity as denoted by the superscript. Both of them are defined with
respect to a reference medium that is chosen to be unstressed in the
context of ultrasonic studies. The method to solve for the TOE tensor
in Thurston and Brugger (1964) was proposed based on equation 31,
and its relation to equation 30 was provided by Brugger (1964).
Skove and Powell (1967) note that the TOE tensor in equation 31
does not have the same symmetry as those expressed in equation 30
because the pair of indices from isothermal differentiation cannot
necessarily be interchanged with the other two pairs. Thurston
(1974) points out that the assumption of full symmetry of the
TOE tensor in equation 31 leads only to small errors that can be
neglected in the presence of other experimental errors. Symmetry
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properties of the TOE tensor in equation 30 are studied by Fuck and
Tsvankin (2009). Distinguishing between both definitions of TOE
is important for linking it with the theory with adiabatic pressure
derivatives from the previous section.
To our knowledge, most variants of the TOE theory in seismic

exploration appear to adopt the TOE tensor in equation 30. The only
exceptions are the studies of Johnson and Rasolofosaon (1996) and
Rasolofosaon (1998), which made use of the original workflow of
Thurston and Brugger (1964), leading to equation 31. Therefore, in
view of the general formula in equation 18, we can consider the
TOE tensor in equation 30 and write

fijklðT0
mnÞ ¼ ΨijklmnT0

mn ¼ cijklmnϵmn; (32)

where ϵmn ¼ Γ−1
mnpqT0

pq denotes the corresponding linearized
Lagrangian strain that governs the change in the elastic tensor from
the reference state upon contraction with the sixth-ranked TOE ten-
sor in equation 30. Strictly speaking, ϵmn must also include a non-
linear term that involves the inverse of the TOE tensor, but several
authors have argued that the magnitude of such a term is small and
can be neglected in practice (Sarkar et al., 2003; Prioul et al., 2004).
Equation 32 serves as the basis for three notable variants of the TOE
theory, as listed below:

1) Sinha and Kostek (1996) consider equation 32 together with
two additional terms: one stress term that stems from the differ-
ence between Ξ and Λ (equation 3) and the other related to a
static deformation from the unstressed reference to the inter-
mediate state, expressed in terms of Γijkl. Both terms are listed
in their equation A-5. An extension of the theory to the elastic-
plastic regime was proposed by Sinha and Plona (2001).

2) Prioul et al. (2004) make use of the result by Sinha and Kostek
(1996), but they argue that both additional terms are relatively
small in practice and can effectively be neglected in an estima-
tion of the TOE tensor. This results in their equation 1, which is
an approximation to Λ but has the full symmetry expressed in
equation 8.

3) Sarkar et al. (2003) reach the same final equation 32, but their
derivation stems from a different approach. They assume that
the range of strain (and stress) change is small, such that the
deformation gradient relating the unstressed reference and
the intermediate states is well-approximated by a delta function.
The difference between Ξ and Λ (equation 3) is kept in this
scheme.

Analogous to the theory with pressure derivatives, the TOE
theory is linear in stress changes. Therefore, we can adopt a similar
strategy to change the unstressed reference medium to a hydrostati-
cally stressed medium. Subsequently, estimation of the TOE tensor
in equation 30 is accomplished by a regression analysis with appro-
priate restrictions on the range of stress variation to ensure consis-
tency with the underlying linear approximation.

Connections to the adiabatic pressure-derivative theory

At the most fundamental level, the TOE theory and the theory
based on pressure derivatives (equation 25) are after the same goal
of predicting linear effects of changes in stress on seismic wave
propagation. Even though the latter was not established until re-
cently, the adiabatic pressure derivative as a quantity is by no means
foreign. In principle, these derivatives can be used to calculate

elastic moduli at elevated pressure without relying on the TOE
tensor (Thurston, 1965b, 1974). The theory of Tromp and Trampert
(2018) is a significant step forward in this regard because we can
now use the same information on the pressure derivatives to predict
elastic moduli under an arbitrary state of stress nearby — a task
that was previously only possible by using the TOE tensor or an
entirely different formulation based on microstructural parameters.
Following Thurston (1974), we show that there exists a connec-

tion between the TOE tensor (equation 30) and the adiabatic pres-
sure derivatives (Γ 0

ijkl in the unstressed reference or Ξ 0
ijkl for the

hydrostatically stressed reference). The starting point of our deriva-
tion is the assumption that the reference medium under considera-
tion is in equilibrium under hydrostatic pressure, which we first
assume to be unstressed. As a result, the Lagrangian strain (EL) that
corresponds to the change from the reference at zero pressure to the
intermediate state at some elevated pressure can be described as a
function of two variables: pressure change p and entropy SL. Con-
sequently, in the unstressed reference, we can write Γijklðp; SLÞ and

Γ 0
ijkl ¼

�
Γijkl

∂p

�����
SL;p¼0

¼
��

∂Γijkl

∂EL
mn

��
∂EL

mn

∂p

������
SL;p¼0

¼ cijklmn

�
∂EL

mn

∂p

�����
SL;p¼0

: (33)

The latter derivative of strain with respect to pressure may be found
from

�
∂EL

mn

∂p

�
jSL;p¼0 ¼

��
∂EL

mn

∂TSK
pq

��
∂TSK

pq

∂p

������
SL;p¼0

¼ −ðΓ−1Þmnpqδpq: (34)

Finally, we may write

Γ 0
ijkl ¼ −cijklmnðΓ−1Þmnpp ¼ −cijklmnsmnpp; (35)

which provides a direct bridge between the adiabatic pressure deriv-
atives and the adiabatic TOE tensor (equation 30). We use smnpq ¼
ðΓ−1Þmnpq to denote elements of the corresponding compliance ten-
sor. It is apparent from equation 35 that given the stiffness/compli-
ance tensor and the TOE tensor of any known medium, the adiabatic
pressure derivatives essential for the theory of Tromp and Trampert
(2018) can be computed. Similarly, equation 35 allows us to com-
pute the TOE tensor needed by various formulations of TOE theory
from the adiabatic pressure derivatives and the stiffness/compliance
tensor. We further investigate this connection in more detail in the
“Numerical comparison between TOE and pressure-derivative the-
ories” section.
An analogous bridging expression for isothermal pressure deriv-

atives has a similar form as equation 35, but it involves isothermally
measured quantities. A different expression that involves the mixed
TOE tensor (equation 31) can also be established. Some details of
the connections among these expressions may be found in Barsch
(1967) and sections 11.11 and 29.2 of Thurston (1974). Without a
loss of generality, it is also possible to define a reference medium to
be hydrostatically stressed. The pressure change is then expressed
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with respect to this initial value, but the general form of equation 35
remains the same with Ξ at the reference pressure instead of Γ. The
TOE tensor is then defined at this reference pressure instead of at
zero pressure, as is the case for Γ.
It should be emphasized that in the derivation of equation 35,

elastic tensors are assumed to be dependent upon only pressure
change p and entropy SL — the dependence on deviatoric stress
is neglected. The same assumption is central to the development of
equation 25 by Tromp et al. (2019). This has led to a decrease in the
number of dependent parameters from a total of 56 in the TOE
tensor to a maximum of 21 in the case of Tromp et al. (2019),
i.e., one derivative for each of the stiffness coefficients. A discus-
sion on the potential importance of the absent derivatives with re-
spect to the deviatoric stress and rotational properties of the
deformation gradient can be found in Maitra and Al-Attar (2021).
Based on this connection 35 and satisfactory preliminary results

from the pressure-derivative theory (Tromp et al., 2019), using
equation 25 to accomplish the task of predicting linear variations
in elastic moduli with stress instead of TOE theory may represent
a reasonable alternative in practice.

Microscale inclusions

Another approach to characterize the change in elastic moduli with
stress is based on additional compliances related to deformations of
microstructures — microscale inclusions — which are often
thought to be the most compliant parts of rock pore spaces and
are most sensitive to deformations upon a change in stress. (Though
often used in the context of “soft” inclusions, these approaches can
also be used for inclusions that are stiffer than the background
medium [Kachanov and Sevostianov, 2005]). Therefore, the common
ground of this general approach is that one should think of the change
in elastic moduli in terms of additional compliances, not stiffnesses.
We refer the reader to the cited works for references and specific de-
tails on the developments based on this approach: Kachanov (1980);
Sayers and Kachanov (1995); Schoenberg and Sayers (1995); Sayers
(1999, 2002, 2009, 2010); Tod (2002); Shapiro (2003, 2017); Kacha-
nov and Sevostianov (2005); Shapiro and Kaselow (2005); Grechka
and Kachanov (2006); Grechka et al. (2006); Hall et al. (2008); Ver-
don et al. (2008); Angus et al. (2009); and Kachanov et al. (2010).
According to the derivation in Sayers and Kachanov (1995),

which serves as the basis for most variants under this general ap-
proach, the linearized strain is used as opposed to the exact Lagran-
gian strain needed to derive equations 2–4. Therefore, in view of the
above theoretical foundation, it is unclear to which of the elastic
moduli (Λ, Υ, or Ξ) that this excess compliance should be added.
This is notably different from the connection 35 that strictly follows
from continuum mechanics. More importantly, the inability to con-
nect the inclusion-based approaches above to one of the three elastic
moduli has an important consequence: It means that a strict theo-
retical consistency between the Lagrangian- and inclusion-based
approaches cannot be established at this time.
Because of this fact, we point out some connections that follow

from algebraically equating the estimated Ξ from the theory cap-
tured in equation 25 to that from the microstructural approach under
the assumption that the excess compliance should be added to Ξ
with full symmetry (equation 8). As a result, we have

Ξ−1
ijkl ¼ Γ−1

ijkl þ gijklðT0
mnÞ; (36)

where the additional compliance can be written as

gijklðT0
mnÞ ¼

1

4
ðδikαjl þ δilαjk þ δjkαil þ δjlαikÞ þ βijkl;

(37)

with αij and βijkl denoting the crack-related tensors. For the case of
oblate-spheroidal cracks with a particular orientation n with normal
BN and shear BT compliances, we may write

αij ¼
P

rA
ðrÞ

V
BTninj ¼ ZTninj;

βijkl ¼
P

rA
ðrÞ

V
ðBN − BTÞninjnknl ¼ ðZN − ZTÞninjnknl;

(38)

where
P

rA
ðrÞ∕V denotes the crack-specific area (Gurevich

et al., 2011).
Another notable alternative that relies on a different microme-

chanical structure (stiff and compliant pore spaces) is the porosity
deformation approach (PDA) (Shapiro and Kaselow, 2005). Shapiro
(2017) shows that analytical relationships between the TOE tensor
and parameters related to such microstructure can be derived by
equating the predicted changes in the elastic moduli from the
PDA and the TOE theory. This may be accomplished by using
the following relationship (Thurston, 1974):

spqrsuv ¼ −suvmnspqijsrsklcijklmn: (39)

In the context of the PDA approach, the term spqrsuv can be related
to parameters controlling the properties of stiff and compliant pore
spaces, and the total additional compliance can then be found
from gijklðT0

mnÞ ¼ spqrsuvT0
uv.

As we have discussed, a strict theoretical link between inclusion-
and Lagrangian-based approaches to predicting compliance
changes is not yet available. As such, in view of continuum mechan-
ics, the relationships between the additional compliance and the mi-
crostructure parameters for both approaches in this section are
purely algebraic and are established by expressing the additional
compliance in terms of the microstructure parameters of choice. In
other words, the identities in this section would hold only if the
different theories were indeed consistent with each other — which
would have to be assumed because it cannot be theoretically proven.
This is not the case for the identity in equation 35, which follows
directly from the same theoretical foundation.

A TEST CASE

Equipped with our findings in the previous sections, we inves-
tigate the properties of the newly proposed theory based on the adia-
batic pressure derivative in equation 19. We consider the specific
case of an orthorhombic (ORT) Ξ subjected to triaxial stress
changes that are aligned with its principal directions (T0 contains
no off-diagonal components), the change in stiffness moduli δΞijkl

in Voigt notation can then be expressed according to equation 26 as
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δΞ11 ¼ ð1þ Γ 0
11Þðp0 − τ011Þ;

δΞ12 ¼ −ð1 − Γ 0
12Þ

�
p0 −

1

2
ðτ011 þ τ022Þ

�
;

δΞ13 ¼ −ð1 − Γ 0
13Þ

�
p0 þ 1

2
τ022

�
;

δΞ22 ¼ ð1þ Γ 0
22Þðp0 − τ022Þ;

δΞ23 ¼ −ð1 − Γ 0
23Þ

�
p0 þ 1

2
τ011

�
;

δΞ33 ¼ ð1þ Γ 0
33Þðp0 − τ033Þ;

δΞ44 ¼ ð1þ Γ 0
44Þ

�
p0 þ 1

2
τ011

�
;

δΞ55 ¼ ð1þ Γ 0
55Þ

�
p0 þ 1

2
τ022

�
;

δΞ66 ¼ ð1þ Γ 0
66Þ

�
p0 −

1

2
ðτ011 þ τ022Þ

�
: (40)

One can observe that the change of each elastic modulus is char-
acterized by a combination of its derivative with respect to pressure
and the magnitude of the pertinent stress components. For other
more general cases, the relationships for δΞijkl can be straightfor-
wardly obtained from equation 26 and expressed in Voigt notation if
preferred.

Connection with TOE

To relate between the pressure derivatives of elastic moduli and
the elements of the TOE tensor, we can expand equation 35 to ob-
tain the desired derivatives. With the assumption of an isotropic
TOE tensor with three independent parameters (c111, c112, and
c123) (Fuck et al., 2009), the pressure derivatives for the ORT case
in equation 40 in Voigt notation can be expressed as

Γ 0
11 ¼Γ 0

22

¼−c111ðs11þ s12þ s13Þ−c112ðs11þ s12þ3s13þ s33Þ;
Γ 0
33 ¼−c111ð2s13þ s33Þ−2c112ðs11þ s12þ s33Þ;

Γ 0
13 ¼Γ 0

23

¼−c123ðs11þ s12þ s13Þ−c112ðs11þ s12þ3s13þ s33Þ;
Γ 0
12 ¼−c123ð2s13þ s33Þ−2c112ðs11þ s12þ s13Þ;

Γ 0
44 ¼Γ 0

55

¼ 1

4
½−c111ðs11þ s12þ3s13þ s33Þ

þc112ð−s11− s12þ s13þ s33Þþ2c123ðs11þ s12þ s13Þ�;

Γ 0
66 ¼

1

2
½−c111ðs11þ s12þ s13Þþc112ðs11þ s12− s13

−s33Þþc123ð2s13þ s33Þ�: (41)

Connection with microstructural theory

Unlike the connection with the TOE tensor in equation 35, the
connection between the pressure derivatives used by Tromp and
Trampert (2018) and the microstructure parameters can only be

algebraic as discussed previously. To achieve this, we can equate
the change in stiffness moduli as predicted by Tromp and Trampert
(2018) in equation 25 to that from the microstructual theory (inverse
of equation 37). Choosing n ¼ ½1; 0; 0�, together with equation 38
and the previous ORT case, we can then express the pressure
derivatives in terms of the crack parameters as follows:

Γ 0
11 ¼

−Γ11ZNðΓ11 þp0 − τ011Þ−p0 þ τ011
ðΓ11ZN þ 1Þðp0 − τ011Þ

; Γ 0
44 ¼ −1;

Γ 0
22 ¼

−p0ðΓ11ZN þ 1Þ þ Γ11τ
0
22ZN þ Γ2

12ð−ZNÞ þ τ022
ðΓ11ZN þ 1Þðp0 − τ022Þ

Γ 0
33 ¼

−p0ðΓ11ZN þ 1Þ þ Γ11τ
0
33ZN þ Γ2

13ð−ZNÞ þ τ033
ðΓ11ZN þ 1Þðp0 − τ033Þ

;

Γ 0
13 ¼

Γ11ZNð−2Γ13 þ 2p0 þ τ022Þ þ 2p0 þ τ022
ðΓ11ZN þ 1Þð2p0 þ τ022Þ

;

Γ 0
23 ¼

Γ11ZNð2p0 þ τ011Þ− 2Γ12Γ13ZN þ 2p0 þ τ011
ðΓ11ZN þ 1Þð2p0 þ τ011Þ

;

Γ 0
12 ¼ −

−Γ11ZNð2Γ12 − 2p0 þ τ011 þ τ022Þ þ 2p0 − τ011 − τ022
ðΓ11ZN þ 1Þð−2p0 þ τ011 þ τ022Þ

;

Γ 0
55 ¼ −

Γ55ZTð2ðΓ55 þp0Þ þ τ022Þ þ 2p0 þ τ022
ðΓ55ZT þ 1Þð2p0 þ τ022Þ

;

Γ 0
66 ¼ −

Γ66ZTð−2Γ66 − 2p0 þ τ011 þ τ022Þ− 2p0 þ τ011 þ τ022
ðΓ66ZT þ 1Þð−2p0 þ τ011 þ τ022Þ

;

(42)

where p0 and τ0ij are the pressure and deviatoric stress changes to
the background as a result of adding microstructural inclusions, re-
spectively (i.e., cracks, in this case). Because equation 36 represents
the overall effective elasticity as a result of microinclusions, the re-
sulting p0 and τ0ij in equation 42 represent volume-averaged stress
changes.

NUMERICAL COMPARISON BETWEEN TOE AND
PRESSURE-DERIVATIVE THEORIES

Apart from the theoretical connection between the adiabatic pres-
sure derivatives of elastic moduli and the TOE tensor as discussed in
previous sections, we further illustrate in this section the similar-
ities/differences between the two theories (that of Tromp and Tram-
pert [2018] and the TOE theory) that rely on these two quantities.
For this comparison, we rely on two VTI examples described by
Prioul et al. (2004): a hydrostatic experiment on Jurassic North
Sea shale and a hydrostatic/biaxial experiment on Colton sandstone.

Jurassic North Sea shale (hydrostatic)

For the shale data set, we use equation 41 and a similar reference
background as Prioul et al. (2004) to convert the reported c111, c112,
and c123 to the following pressure derivatives that relate the elastic
moduli (GPa) to the change in stress (MPa):

1) (5–30 MPa): Γ 0
11 ¼ 310.18, Γ 0

13 ¼ 112.90, Γ 0
33 ¼ 403.70,

Γ 0
55 ¼ 122.02, and Γ 0

66 ¼ 174.90
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2) (30–100 MPa): Γ 0
11 ¼ 57.282, Γ 0

13 ¼ 24.88, Γ 0
33 ¼ 82.51,

Γ 0
55 ¼ 22.51, and Γ 0

66 ¼ 20.81.

We then use these results and equation 40 to predict the change in
elastic moduli with stress according to equation 25. Figure 5 shows
the results of this experiment with the solid lines indicating the pre-
dicted values of Υ. Because the ultrasonic measurements used in
this example are dynamic moduli (obtained from measured wave
speeds) and are related to either Λ or Υ, we must use equations 3
and 4 to relate them to Ξ. The dashed lines, which are almost com-
pletely overlain by the solid lines in the same figure denote the pre-
dicted values from the TOE theory. Even though no conversion is
applied to the TOE results (estimated Ξ) to properly obtain Υ, the
predictions fit the measurements well because the pressure range is
0–100 MPa, which is small in comparison with the magnitude
(GPa) of the moduli Υ themselves.

Colton sandstone (hydrostatic and biaxial)

For the second example, we consider a data set from hydrostatic
and biaxial experiments on Colton sandstone (Figure 6a). We follow
the same process as before and convert the reported third-order elas-
tic constants between the first and last states to Γ 0

11 ¼ 422.27,
Γ 0
13 ¼ 95.96, Γ 0

33 ¼ 448.95, Γ 0
55 ¼ 122.02, and Γ 0

66 ¼ 174.90. A
comparison of predicted values from both theories is shown in
Figure 6 with estimates from the TOE theory in dashed lines
— similar to those in Prioul et al. (2004) — and those from the
theory with pressure derivatives (equation 25) in solid lines.
Several observations can be made after examining the results

from both experiments in this study:

1) Predictions from the pressure-derivative and TOE theories gen-
erally agree with each other, although a slightly better perfor-
mance from the latter is observed in the states in which the
applied stress is further away from being hydrostatic. Table 2
shows a comparison between the mean difference of the pre-
dicted values from either the TOE or the pressure-derivative
theory and the values from laboratory measurements. Note that
the TOE appears to perform better the further away the state of
stress is from hydrostatic, but it requires third-order constants
that are difficult to measure.

a)

b)

Figure 5. Ultrasonic measurements of Jurassic North Sea shales
superimposed on predicted moduli from the theory with pressure
derivatives (the solid lines) and the TOE theory (the dashed lines).
Predictions from both theories are virtually identical.

a)

b)

c)

d)

Figure 6. (a) Stress cycle of the Colton sandstone measurements. A
comparison of ultrasonic measurements and predicted moduli for
(b) Υ11, Υ22, Υ33, (c) Υ44, Υ55, and (d) Υ66 from the theory with
pressure derivatives (the solid lines) and the TOE theory (the dashed
lines).
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2) According to the pressure-derivative theory, the predicted val-
ues of δΞijkl and its corresponding Υ will follow the associated
stress path. For example, we can observe in Figure 6b that the
predicted Υ33 follows the same path as the T0

33 shown in
Figure 6a.

3) To predict changes in the elastic moduli with stress, the pres-
sure-derivative theory only needs the derivative of the wanted
element, whereas the TOE theory requires all elastic moduli of
the reference medium for strain computation.

DISCUSSION

We have shown in this study that there exists a consistent theo-
retical foundation that takes into account the effects of different
stress definitions and states of stress, which directly influences the
choice of the wave equation, constitutive relation, and speed of
wave propagation. This consistent foundation follows directly from
continuum mechanics and represents the answer to the first primary
question that we raised in the “Introduction” section. In particular,
we highlight the importance of the additional wave-equation stress
terms connected to the absolute magnitudes of principal stresses —
this implies that the additional terms may be neglected at relatively
small stress variations (e.g., reservoir-scale compaction) and be-
comes important for larger magnitude stress perturbations (e.g., after
larger earthquakes or at continental scales). Note that this is inde-
pendent of the various choices one can make to describe changes in
elastic moduli with respect to stress changes, e.g., TOE, microstruc-
ture-based theory, or other. Nonetheless, two points are worth keep-
ing in mind:

1) Although the state of stress may be small in the context of ex-
ploration seismology (in the range of tens or hundreds of MPa),
its effects on the wavefield can be quantified via proper choices
of the wave equation and constitutive relation (equations 1 and
6). Errors from any form of approximation (e.g., ignoring the
effects of the state of stress) can then be analyzed. In light of the
growing use of waveform inversion for subsurface model esti-
mation, choosing an appropriate wave equation becomes even
more important.

2) Concerning the speed of wave propagation, equation 6 suggests
that it is either Λ or Υ but not Ξ that is involved. Therefore, one
must be mindful of what stiffness coefficients (Λ, Υ, or Ξ) are
obtained from wave experiments at the field and laboratory
(e.g., dynamic moduli measurement) scales. This has to be car-
ried out regardless of the theory that one wishes to use (TOE,
microstructure-based, or pressure derivative-based). Without a
proper treatment, the estimated stiffness coefficients (or micro-
structure parameters) will surely be biased.

In view of the second primary problem identified in the “Introduc-
tion” section, we have discussed three different theories that can be
used to describe how elastic moduli vary with stress changes: TOE,
inclusion-based, and pressure-derivative theories. Each one of them
stems from a different basis and has its own advantages and disad-
vantages. Building on the foundation of continuum mechanics, we
have shown that there is a theoretical connection (equation 35) be-
tween the TOE tensor and the pressure derivatives; however, such a
connection relating the TOE tensor and the pressure derivatives to
inclusion-based parameters is not yet available — only an algebraic
connection is possible. Furthermore, the particular connection be-
tween the TOE tensor and the pressure derivatives also allows us
to unravel some similarities and differences between the character-
istics of the TOE theory and the pressure-derivative theory when
it comes to their use in practice. However, we emphasize that further
study is needed to decisively argue for any single theory in any par-
ticular situations and/or applications.
Although it is not the objective of this study, one important ap-

plication of the models herein is the inverse problem of inferring the
medium’s stress state from observed wave data. The more likely
scenario being a time-lapse change in the medium, e.g., due to res-
ervoir compaction, preseismic stress build-up, or postseismic stress-
release accommodation — in which case, the observations would
be time-lapse waveforms from either active or passive data. To solve
the inverse problem for stress changes, in addition to the wave data
one would also need a priori knowledge of the baseline elasticity
and the stress sensitivity of the medium. The stress sensitivity
comes in the form of the sixth-rank tensor for TOE, or the fourth-
rank tensor for the pressure-derivative approach. Presumably, these
would come from supporting experimental data. Here, we note that
the pressure-derivative approach may have the practical advantage
of not only requiring the observation of fewer parameters but also
simpler experiments because only (isotropic) pressure derivatives
are needed. A more thorough study on this inverse problem is
the topic of further research.
With regard to the inverse problem of subsurface model building,

we note that some previous studies such as Prioul et al. (2004) and
Keys et al. (2017) have investigated the theoretical bounds of
various elements of the TOE tensor in the hope of constraining
the inversion results and helping with the convergence during
the process. However, we emphasize that regardless of the value
of various elements of the TOE tensor and their associated bounds,
our connection in equation 35 between the TOE tensor and the pres-
sure derivatives remains valid. Although our work here is concerned
with providing physical connections and insights into the effects of
stress on wave propagation, further understanding into the role and
behavior of the different formulation choices — in the context of
different stress regimes (e.g., reservoir or lithospheric scales) — is
the subject of future study.

Table 2. A comparison between the mean difference of
predicted values from either the TOE or the pressure-
derivative theory and the values from laboratory
measurements.

Parameter
Tromp et al. (2019)

(difference %)
TOE

(difference %)

Υ11 1.14 0.89

Υ22 1.62 1.32

Υ33 1.56 0.98

Υ44 0.79 0.65

Υ55 1.46 1.10

Υ66 1.35 0.80

Note that the TOE appears to perform better the further away the state of stress is
from hydrostatic, but it requires third-order constants that are difficult to measure.
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In addition, it is important to point out that the elasticity models
that we discuss in this work have limitations tied to the intrinsic
assumptions of theories behind them — we see our work as a
starting point for a comprehensive analysis of the effects of stress
changes on wave properties. First, here we envisage scenarios in
which the dominant wavelengths are large compared with hetero-
geneity scales, the wave-strain magnitudes are small, and the
medium is in static stress equilibrium during the wave propagation
experiment — as such, nonlinear wave-medium interactions (e.g.,
clap cracks) or strong resonance effects are assumed to be not
present/observed. Second, we here treat the purely elastic case, thus
neglecting effects such as wave attenuation due to intrinsic and/or
effective absorption or fluid-related effects (e.g., poroelasticity).
These effects are of course important in their own contexts, and their
relation to stress-induced wave elasticity deserves investigation in
future studies. Third, we ignore effects due to thermal expansion
and strictly consider the effects of stress changes on moduli. In prin-
ciple, when there are fluid-content changes in a reservoir, the tem-
perature and the state of stress change. Further investigations are
required to incorporate the stress and temperature effects (Wang
and Nur, 1988; Eastwood, 1993) on elastic moduli.
Finally, we note that here, as in general exploration seismology,

rocks are generally assumed to be hyperelastic and hysteresis
(stress-strain curves being different for loading and unloading) is
often ignored (Mavko et al., 2009) — implying that plastic defor-
mation effects are not taken into account. Together with the fact that
the Lagrangian and Eulerian descriptions of motions are rarely dif-
ferentiated (in contrast to what we present here), this has led to chal-
lenges in describing the shapes of stress-strain curves over large
ranges of stress and strain. However, we note that research in
the ultrasonic community has led to, for example, the usage of bi-
modulus (bilinear) materials, in which material stiffnesses can be
modeled in accordance with, e.g., crack characteristics — open
or closed, and other modifications to describe hysteresis (Dyskin
et al., 2012; Broda et al., 2014). Therefore, in principle, it is possible
to bring in these developments and further improve our description
of stress-dependent elasticity for exploration seismology, e.g., by
accommodating plastic deformation mechanisms in the future.

CONCLUSION

As dictated by continuum mechanics, we emphasize that in the
presence of nonzero stress it is important to distinguish among
different stress definitions, in which each choice pertains to a differ-
ent wave equation and a different set of elastic moduli. Their
differences become more prominent with the larger magnitudes
of stress changes with respect to the reference state. Building on
this foundation, we show that there is an explicit connection be-
tween the TOE tensor and adiabatic pressure derivatives of elastic
moduli, which allows the recently developed theory with pressure
derivatives to benefit from existing research on TOE. Finally, we
point out that with regard to the definition of strain there are fun-
damental differences in the underlying framework and assumptions
between the pressure-derivative and TOE theories on the one hand
and those based on micromechanical structures on the other hand.
Therefore, further work is needed to connect microstructure-based
approaches with those stemming from continuum mechanics in a
consistent and verifiable manner.
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APPENDIX A

DEFINITIONS OF STRESS AND CORRESPONDING
WAVE EQUATION

The background for this review is the treatise of Dahlen and
Tromp (1998), from which we adopt the same notation convention
for convenience. The bold font is used to denote tensors (including
vectors and matrices), but we will switch to index notation when
indices become important, especially when working with fourth-
ranked tensors. We note that indices involving derivatives are ar-
ranged as ð∇xrÞij ¼ ∇irj; consequently, ð∇xrÞTij ¼ ∇jri. The diver-
gence of a tensor is obtained by contracting on its first
index; i.e., ð∇ · TÞj ¼ ∇iTij.

Lagrangian versus Eulerian descriptions

In seismology, we treat earth as a continuum — a continuous
distribution of matter that can interact with any subjected forces.
The associated motion of a continuum can be described in two
ways: Lagrangian or Eulerian. The former involves labeling par-
ticles in the material by their position and following them through
time to provide a kinematic description of the motion. We shall refer
to the particle, whose position at time t ¼ 0 is x, as particle x and
denote its position at t ≥ 0 by rðx; tÞ, i.e., rðx; 0Þ ¼ x. The corre-
sponding velocity of particle x can be written as uLðx; tÞ ¼ ∂tr,
where we use a superscript L to denote Lagrangian quantities.
On the other hand, the Eulerian description does not focus on the

motion of individual particles through time, but instead it focuses on
fixed points in the considered coordinate space. We label those fixed
points by position r and the velocity of the particle that is at point r
can be written as uEðr; tÞ with the superscript E denoting Eulerian
quantities. The knowledge of uEðr; tÞ at all points r at all time t ≥ 0

is an alternative yet equally valid description of the motion of a
continuum.
For every scalar, vector, or tensor quantity q in a continuum, there

exists a Lagrangain qLðx; tÞ and an Eulerian qEðr; tÞ description.
These descriptions can be related by

qLðx; tÞ ¼ qEðrðx; tÞ; tÞ; (A-1)

which represents the quantity q for particle x at position r at time t.
Differentiating equation A-1 with respect to time t leads to

∂tqL ¼ ∂tqE þ uE · ∇rqE ¼ DtqE: (A-2)
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Equation A-2 describes two types of changes in variable q experi-
enced by an observer riding on particle x. The term ∂tqE represents a
change experienced by a stationary observer, whereas uE · ∇rqE

represents an additional change due to the motion of the particle
itself. The combination of both changes, Dt ¼ ∂t þ uE · ∇r, is
called the material derivative, which only acts on Eulerian quan-
tities while holding x fixed.
Receivers in seismic experiments directly record the motion rðx; tÞ

of particle x to which they are attached. Hence, adopting the Lagran-
gian viewpoint is a natural and appropriate choice in seismological
studies. It will become apparent in the subsequent sections why dis-
tinguishing between the Lagrangian and Eulerian viewpoints is cru-
cial in the studies of stress-dependent effects on the material and the
development of an appropriate wave equation in stressed media. This
is primarily due to the fact that exploration geophysicists generally
use the Eulerian Cauchy stress tensor to approximate its Lagrangian
counterpart under the assumption of linear elasticity.

Lagrangian strain

We can consider relative motion at two adjacent particles (La-
grangian) or two adjacent points in the coordinate space (Eulerian)
to characterize the deformation. Here, we focus on the Lagrangian
case and consider two particles that were initially at x and xþ dx
but are now located at r and rþ dr, where

dr ¼ dx · ∇xr ¼ dx · FT ¼ F · dx; (A-3)

and T denotes the transpose. The term F is referred to as the de-
formation tensor, which measures the total deformation experienced
by a moving material particle and its vicinity. Its determinant
(detF ¼ J) governs the volumetric change between the volume
at the initial undeformed state (dV0) and that after the deformation
at later time (dVt):

dVt ¼ ðdetFÞdV0 ¼ JdV0: (A-4)

The Lagrangian strain EL is defined in terms of the squared
length of kdxk2 and kdrk2 as follows:

kdrk2 − kdxk2 ¼ 2ðdx · EL · dxÞ; (A-5)

or, alternatively,

EL ¼ ðELÞT ¼ 1

2
ðFT · F − IÞ: (A-6)

Here, EL measures the total finite strain accumulated by the particle
x and its vicinity from time t ¼ 0. We emphasize that the definition
of Lagrangian strain (equation A-6) that we should use in seismo-
logical studies is directly related to the deformation tensor F.

Stress definitions

Forces in continuum mechanics are generally represented in
terms of a stress tensor acting on a surface element. Let us first con-
sider an infinitesimal-oriented surface element n̂0dΣ0 centered at a
particle xwith normal n̂0 and size dΣ0 in the undeformed state. At a
later time t, the surface element is deformed to n̂tdΣt at position r
(Figure A-1), where the relationship between the two states can be
expressed as

n̂tdΣt ¼ Jn̂0dΣ0 · F−1: (A-7)

Equation A-7 is the areal counterpart of equation A-4. Using this
information, the Eulerian Cauchy stress tensor TE is defined as

dfE ¼ n̂tdΣt · TE; (A-8)

where dfE denotes the instantaneous surface force exerted by all
particles immediately in the front of the surface element on the par-
ticles immediately in the back. The corresponding Lagrangian
Cauchy stress can then be defined with the help of equation A-1
as TLðx; tÞ ¼ TEðrðx; tÞ; tÞ. We note that TE naturally appears in
the derivation of Eulerian momentum conservation law.
The second definition of stress that offers convenience in the der-

ivation of Lagrangian momentum conservation law is the first
Piola-Kirchhoff stress TPK given by

dfE ¼ n̂0dΣ0 · TPK: (A-9)

We emphasize that TPK gives dfE acting across the deformed sur-
face element n̂tdΣt at r in terms of the undeformed element n̂0dΣ0.
Therefore, TPK can be interpreted as the force per unit of unde-
formed area. Using equation A-7 together with equations A-8
and A-9, we can thus write

TPK ¼ JF−1 · TL: (A-10)

The third definition of stress that is convenient for the derivation
of the constitutive relation for perfectly elastic media is the second
Piola-Kirchhoff stress TSK given by

dfL ¼ F−1 · dfE ¼ n̂0dΣ0 · TSK: (A-11)

Here, TSK acts on the undeformed surface element n̂0dΣ0 and gives
the transformed force dfL acting upon the initial position x rather
than the deformed position r. Using equations A-10 and A-11, we
can also write

TSK ¼ TPK · F−T

¼ JF−1 · TL · F−T: (A-12)

Figure A-1. Surface elements before (time = 0) and after (time = t)
deformation. The associated surface forces at both configurations
are denoted by dfL and dfE, respectively.
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Lagrangian conservation laws

The preceding definitions of stress and strain can be used in the
derivation of various conservation laws from either Lagrangian or
Eulerian viewpoints. However, the details of such derivation are un-
important for the objective of this paper, and we refer readers to
Chapter 2 of Dahlen and Tromp (1998). We only summarize the
important final results from Lagrangian conservation laws:

1) Conservation of mass:

ρLðx; tÞJ ¼ ρLðx; 0Þ ¼ ρ0; (A-13)

which relates the instantaneous density of a particle ρL to its
initial value ρ0.

2) Conservation of momentum:

ρ0∂2t r ¼ ∇x · TPK; (A-14)

where we neglect the effects from rotational reference frame and
the gravitational forces.

3) Conservation of angular momentum:

TL ¼ ðTLÞT; (A-15)

which indicates that the Lagrangian Cauchy stress is symmetric.
It also follows from equations A-10 and A-12 that TPK is not
symmetric because ðTPKÞT ¼ F · TPK · F−T, but TSK is sym-
metric.

4) Conservation of energy:

ρ0∂tUL ¼ TPK∶∂tFT ¼ TSK∶∂tEL; (A-16)

where UL denotes the Lagrangian internal energy density per
unit mass that will serve as the basis for constructing constit-
utive relations for perfectly elastic material in the next section.

Constitutive relations

Let us now consider the Lagrangian formulation of the constit-
utive relations for perfectly elastic media, which governs how the
material particles deform and return to their natural reference con-
figuration by any applied stress. The most general perfect elastic
material is the one whose Lagrangian internal energy density UL

can be expressed in terms of the local instantaneous strain EL

and the local entropy SL. The first dependency on EL stipulates that
UL only changes when there is deformation (strain) but remains
invariant due to a rigid rotation. The second dependency is generally
neglected (∂tSL ¼ DtSE ¼ 0) because seismic deformation is as-
sumed to be isentropic — adiabatic and reversible, where SL is
unchanged. Therefore, we can write the derivative of the Lagran-
gian internal energy density with respect to time as

ρ0∂tUL ¼ ρ0
�
∂UL

∂EL

�
∶∂tEL; (A-17)

where we multiply both sides by ρ0. Equating the conservation of
energy law (equation A-16) and equation A-17 leads to

TSK ¼ ρ0
�
∂UL

∂EL

�
; (A-18)

which is expressed in terms of EL. Using the relationship between
different measures of stress (equations A-10 and A-12), we can
alternatively write

TPK ¼ ρ0
�
∂UL

∂EL

�
· FT; (A-19)

TL ¼ ρ0J−1F ·

�
∂UL

∂EL

�
· FT: (A-20)

Equations A-18–A-20 represent the most general form of constit-
utive relations for perfectly elastic media. We emphasize that from
equation A-18, the Lagrangian strain EL is directly related to the
second Piola-Kirchhoff stress TSK not the Lagrangian Cauchy stress
TL nor the Eulerian Cauchy stress TE.

Linearized seismic deformation

In practice, we generally assume that seismic deformations are
small in magnitude, which permits linearization of the constitutive
relations, the conservation laws, and eventually the wave equation.
Prior to such deformations the material is presumed to be in a state
of mechanical equilibrium (∇ · T0 ¼ 0), where there is zero strain
and potentially nonzero initial static stress T0 (intermediate con-
figuration). In such equilibrium, there is no need to distinguish be-
tween Lagrangian and Eulerian quantities because that r ¼ x and
F ¼ I. All the measures of stress, therefore, coincide and are equal
to T0, which can be decomposed into the initial pressure p0 and the
initial deviatoric stress τ0 as follows:

p0 ¼ −
1

3
trðT0Þ and τ0 ¼ p0Iþ T0; (A-21)

where tr denotes the trace operator. Due to the static equilibrium
condition, we can also deduce that ∇p0 ¼ ∇ · τ0, and we can al-
ways express T0 in terms of τ0 alone.
To characterize additional seismic deformation superposed on

this initially stressed medium, we consider the Lagrangian descrip-
tion of motion expressed as

rðx; tÞ ¼ xþ sðx; tÞ; (A-22)

where s is the displacement away from equilibrium of particle x at
time t, with particle velocity

uL ¼ ∂tr ¼ ∂ts: (A-23)

For any other physical quantity q, we can define first-order pertur-
bations qE1 and qL1 as follows:

qEðr; tÞ ¼ q0ðrÞ þ qE1ðr; tÞ;
qLðx; tÞ ¼ q0ðxÞ þ qL1ðx; tÞ; (A-24)

where q0ðrÞ ¼ q0ðxÞ denotes the zeroth-order initial value in the
undeformed (intermediate) state. Because the magnitude of s is as-
sumed to be small, we systematically neglect all terms of order jjsjj2
or higher. This assumption allows us to write

qE1ðr; tÞ ¼ qE1ðx; tÞ and qL1ðr; tÞ ¼ qL1ðx; tÞ; (A-25)
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which is correct to first order in s. Therefore, we may henceforth
regard all zeroth- and first-order quantities as functions of the posi-
tion x and the domain of all pertaining linearized equations will be
associated with the volume of the undeformed equilibrium state. We
will also henceforth omit the subscript x for conciseness.
With regard to equation A-2, we can then rewrite it as

qL1 ¼ qE1 þ s · ∇q0; (A-26)

which represents a linearized and integrated version of the material
derivative. Its physical interpretation can be summarized as follows.
The first-order change qL1 experienced by an observer riding on a
moving particle x is the summation of the first-order change qE1 at a
fixed initial position x in the coordinate space, plus the change due
to the particle displacement s with respect to the initial spatial gra-
dient ∇q0.
In view of the deformation gradient F, substituting equation A-22

into equation A-3 gives

F ¼ Iþ ð∇sÞT ¼ Iþ ϵþ ω; (A-27)

where the symmetric contribution ϵ is the infinitesimal strain tensor
generally used in geophysical studies and the antisymmetric part ω
is the infinitesimal rotation tensor given by

ϵ¼1

2
½ð∇sÞþð∇sÞT� and ω¼−

1

2
½ð∇sÞ−ð∇sÞT�: (A-28)

The corresponding linearized expressions of F−1 and J correct to
the first order in ksk are

F−1 ≈ I − ð∇sÞT (A-29)

and

det F ¼ J ≈ 1þ trðϵÞ ¼ 1þ ∇ · s: (A-30)

Finally, equation A-27 leads to the exact definition of EL (equa-
tion A-6) given by

EL ¼ 1

2
½ð∇sÞ þ ð∇sÞT� þ 1

2
ð∇sÞ · ð∇sÞT; (A-31)

which can then be linearized to

EL ≈ ϵ: (A-32)

A similar linearization result can also be obtained via the Eulerian
framework, which leads to a common conclusion that there is no
need to distinguish between the Lagrangian and Eulerian view-
points in the case of infinitesimal (seismic) deformation. However,
this is not true for variables that have zeroth-order values q0,
e.g., density and stress, as we shall show subsequently.

Stress perturbations

Using the general definition in equation A-24, we can write the
first-order perturbations to the Lagrangian and Eulerian Cauchy
stress as follows:

TE ¼ T0 þ TE1; TL ¼ T0 þ TL1; (A-33)

where the perturbations themselves are related by (equation A-26)

TL1 ¼ TE1 þ s · ∇T0: (A-34)

We can clearly observe that the perturbations of the Eulerian
Cauchy stress from seismic deformation differ from its Lagrangian
counterpart by a term that depends on the initial stress T0. Only
when ignoring the effects from T0 do the two become similar. Fol-
lowing the same procedure for TPK and TSK and using equations A-
10, A-12, and A-27–A-30, we have

TPK ¼ T0 þ TPK1 and TSK ¼ T0 þ TSK1 (A-35)

and

TPK1 ¼ TL1 þ T0ð∇ · sÞ − ð∇sÞT · T0; (A-36)

TSK1 ¼ TPK1 − T0 · ∇s: (A-37)

Equations A-34, A-36, and A-37 represent the first-order perturba-
tions in stress due to seismic deformations that we will use to es-
tablish the wave equation in the next section.
Wave equation under stress

To derive the equation of motion (wave equation) for seismic de-
formation, we consider the linearized version of the momentum
conservation law (equation A-14). Substituting the expression for
r (equation A-22) and TPK (equations A-35–A-37), we can write
correctly to the first order in ksk wave equations under stress as
shown in equation 1 in the main text.
We note that equation 1 consists of three equivalent wave equa-

tions with respect to the different choices of stress measure. They
generally involve terms related to the initial static stress T0 except in
the case of the nonsymmetric TPK1. Even though the wave equation
with TPK1 appears the simplest at a glance, TPK1 ≠ ðTPK1ÞT as fol-
lows from the conservation of angular momentum in equation A-15
and, thus, TPK1 may not be the most desirable measure of stress with
which to work. Depending on the choice of stress measure, one also
has to work with different constitutive relationships (equations A-
18–A-20). Therefore, what we commonly refer to as “elastic
moduli” or “stiffness coefficients” must conform to the type of con-
sidered stress. In the next section, we show how each choice of
stress perturbation can be related to its corresponding linearized
constitutive relation, which, in turn, governs how the material re-
sponds to small (seismic) deformation under the influence of the
initial state of stress T0.
Linearized constitutive relations

In view of the linearized constitutive relations, it is extremely cru-
cial that we calculate the Lagrangian internal energy density UL

correct to the second order of ksk. This is essential because the gen-
eral constitutive relations (equations A-18–A-20) are associated
with the derivative of UL with respect to EL or F. In other words,
because we want the derivative ofUL to be of order one,UL must be
of order two. Therefore, this requirement does not allow us to use
the linearized approximation of EL ¼ ϵ (equation A-32) in the der-
ivation of linearized constitutive relations from UL.
Because we will also be working with higher order tensors in

constitutive relations, it is convenient to consider index notation
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for such quantities. We will be, from this point onward, switching
between the previous invariant notation and index notation as ap-
propriate. Equation A-31 can be expressed in index notation as

EL
ij ¼

1

2
ð∂isj þ ∂jsiÞ þ

1

2
∂isk∂jsk: (A-38)

Expanding the Lagrangian internal energy density UL in terms of
EL to second order in ksk gives

ρ0UL ≈ ρ0U0 þ T0∶EL þ 1

2
EL∶Ξ∶EL

≈ ρ0U0 þ T0
ijE

L
ij þ

1

2
EL
ijΞijklEL

kl; (A-39)

where ρ0U0 is the zeroth-order term that represents the energy in the
underformed reference state. The first-order term T0∶EL ensures
that all three stresses (TL, TPK, and TSK) reduce to T0 (equa-
tions A-18–A-20) correct to zeroth order in jjsjj. Differentiating
equation A-39 with respect to EL, we can express the second
Piola-Kirchhoff stress TSK from equations A-18 and A-35 as

TSK ¼ T0 þ TSK1 ¼ ρ0
�
∂UL

∂EL

�
¼ T0 þ Ξ∶EL; (A-40)

where it follows that

Ξijkl ¼ ρ0
�

∂2UL

∂EL
ij∂EL

kl

�
; (A-41)

and Ξijkl has the symmetry as shown in equation 8 in the main text.
The symmetry of the first two indices is due to the symmetry of

the stress tensor (equation A-15). The symmetry of the last two in-
dices is due to the symmetry of the strain tensor by definition (equa-
tion A-6). The final symmetry between the front and back pairs of
indices is due to equation A-41, where the mixed second-order
derivative remains the same regardless of the order of differentia-
tion. At this point, we conclude our consideration on UL (equa-
tion A-39), where the exact definition of EL (equations A-31
and A-32) correct to the second order in ksk must be used. Now
that the linear relation (equation A-40) is obtained with the correct
definition of Ξ, it is permissible to use EL ≈ ϵ, which leads to equa-
tions 2–4 in the main text.
At this point, we can see that there are several possible measures

of stress and each one is associated with a different fourth-rank ten-
sor that governs the material’s responses to small seismic deforma-
tion. Only in the absence of any initial static stress T0 ¼ 0 do all
measures of stress perturbations become equal (equations A-34 and
A-36–A-37) and lead to the classic stress-strain (Hooke’s law)
relation written as

T ¼ Γ∶ϵ; (A-42)

where T can be any measure of stress perturbations and the elastic
(stiffness) tensor has 21 independent coefficients and the property

Γijkl ¼ Γjikl ¼ Γijlk ¼ Γklij: (A-43)

In the more general case of nonzero initial static stress T0 ≠ 0 with
superimposed incremental stress perturbations associated with seis-

mic deformation, it is crucial to distinguish among different mea-
sures of stress and the corresponding elastic tensor because it is not
perturbations in the Eulerian Cauchy stress TE1 that are related to
∇s by the elastic parameters but rather perturbations in the Lagran-
gian stress TL1, or alternatively TPK1 or TSK1. However, this require-
ment is actually not as troublesome as it may seem. In fact, we have
great flexibility in the construction of Ξ as long as its symmetry
properties (equation 8) are satisfied. In other words, there is a case
of nonuniqueness for the stiffness tensor Ξ (Barron and Klein, 1965;
Thurston, 1965a, 1974; Wallace, 1967; Dahlen, 1972). The corre-
sponding expressions forΛ andΥ can then be obtained according to
equations 3 and 4.
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