
1. Introduction
Were the climate system free of feedback processes, it would be easy to predict and control the future climate 
(Arrhenius, 1896). Unfortunately, the climate system contains many feedback loops (Heinze et al., 2019; 
Von der Heydt et al., 2020). Because of this, climate change can get suppressed or enhanced, making future 
projections hard (Sherwood et al., 2020). Therefore, detailed knowledge of all relevant feedback processes 
is required to accurately assess potential future climates. However, knowledge of the current strengths of 
climate feedbacks is not enough. Over time, as the climate state changes, the strengths of climate feedbacks 
also change (Armour et al., 2013; Gregory & Andrews, 2016; Marvel et al., 2018); for instance, the albedo-in-
creasing effect of ice is only relevant when there still is ice.

As the Earth warms, the strengths of feedbacks change (Bony et al., 2006). Therefore, projections based only 
on current knowledge of climate feedbacks misestimate future climate change–especially the committed 
warming that is to come even if zero-emission is achieved (Goodwin, 2018; Marvel et al., 2018; Senior & 
Mitchell, 2000). To properly assess different emission scenarios, it is crucial to identify all relevant feedback 
mechanisms and, additionally, to quantify how their strengths change over time.

For future temperature projections with global climate models, the focus lies with the following feedback 
processes (Cess, 1975; Klocke et al., 2013; Zelinka et al., 2020). First, the Planck radiation feedback suppress-
es warming due to increased outgoing radiation. Second, the lapse rate feedback also suppresses warming 
due to an increase in long-wave radiation escaping to space (Sinha, 1995). The third is the ice-albedo feed-
back that enhances warming through a less reflective Earth surface (Curry et al., 1995). Fourth is the water 
vapor feedback which boosts warming because of increased atmospheric water vapor content (Manabe & 

Abstract When the climate system is forced, for example, by the emission of greenhouse gases, it 
responds on multiple time scales. As temperatures rise, feedback processes might intensify or weaken. 
Such state dependencies cannot be fully captured with common linear regression techniques that relate 
feedback strengths linearly to changes in the global mean temperature. Hence, transient changes are 
difficult to track and it becomes easy to underestimate future warming this way. Here, we present a 
multivariate and spatial framework that facilitates the dissection of climate feedbacks over time scales. 
Using this framework, information on the composition of projected transient future climates and feedback 
strengths can be obtained. The new framework is illustrated using the Community Earth System Model 
version 2.

Plain Language Summary When the Earth warms, the internal processes of the climate 
system change. This can lead to additional warming, forming a feedback loop. For instance, as the ice 
melts due to increased temperatures, less solar radiation gets reflected back to outer space, causing 
temperatures to rise even more. To properly understand and assess (future) climatic changes, it is, 
therefore, necessary to quantify these so-called climate feedbacks and track how they change over time. 
However, with current techniques, it is not easy to explicitly track these temporal changes, which hampers 
the interpretation of long-term projections of the future climate state and easily leads to systematic 
underestimation of future (committed) warming. Here, we present a new feedback framework that can 
capture the temporal evolution of climate feedbacks. Consequently, a better insight into the development 
of a (projected) future climate is obtained, because not only global mean temperatures can be tracked, but 
also the temporal change in individual climate feedbacks, including their spatial distribution.

BASTIAANSEN ET AL.

© 2021. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Projections of the Transient State-Dependency of Climate 
Feedbacks
Robbin Bastiaansen1 , Henk A. Dijkstra1,2 , and Anna S. von der Heydt1,2 

1Department of Physics, Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, The 
Netherlands, 2Department of Physics, Centre for Complex System Studies, Utrecht University, Utrecht, The Netherlands

Key Points:
•  A multivariate climate feedback 

framework is introduced that takes 
into account the transient state 
dependency of climate feedbacks

•  Using the new framework, 
changes in feedback processes can 
be analyzed per time scale and 
temporal evolution can be tracked

•  Within the framework, it is possible 
to create transient and equilibrium 
projections of (the spatial patterns 
of) climate feedbacks

Supporting Information:
Supporting Information may be found 
in the online version of this article.

Correspondence to:
R. Bastiaansen,
r.bastiaansen@uu.nl

Citation:
Bastiaansen, R., Dijkstra, H. A., & 
Heydt, A. S. v. d. (2021). Projections 
of the transient state-dependency of 
climate feedbacks. Geophysical Research 
Letters, 48, e2021GL094670. https://doi.
org/10.1029/2021GL094670

Received 8 JUN 2021
Accepted 5 OCT 2021

10.1029/2021GL094670
RESEARCH LETTER

1 of 11

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5628-8360
https://orcid.org/0000-0001-5817-7675
https://orcid.org/0000-0002-5557-3282
https://doi.org/10.1029/2021GL094670
https://doi.org/10.1029/2021GL094670
https://doi.org/10.1029/2021GL094670
https://doi.org/10.1029/2021GL094670
https://doi.org/10.1029/2021GL094670
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021GL094670&domain=pdf&date_stamp=2021-10-21


Geophysical Research Letters

BASTIAANSEN ET AL.

10.1029/2021GL094670

2 of 11

Wetherald, 1967). Finally, there is the cloud feedback, describing changes in cloud type and distribution, 
which could enhance or suppress warming (Cess & Potter, 1987).

The effect of a feedback process is quantified by its contribution to the climate system's radiative response 
to a certain experienced radiative forcing—in the current Anthropocene primarily caused by greenhouse 
gas emissions. Specifically, the top-of-atmosphere radiative imbalance E N  (that equals zero when the cli-
mate system is in equilibrium) is given by the sum of the radiative forcing E F and the radiative response E R  , 
that is,

( ) ( ) ( ).N t F t R t    (1)

This response E R  is the sum of the feedback contributions of all relevant feedbacks. So, writing jE R  for the 
feedback contribution of feedback E j ,

( ) ( ),j
j

R t R t


  


 (2)

where the sum is over all feedback processes. Classically, the feedback strength jE   (also called feedback pa-
rameter) is given by the feedback contribution per unit warming, that is,
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From this, the top-of-atmosphere radiative imbalance E N  can be related to the warming E T  as
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which can be used for climate projections (Gregory et al., 2004).

However, the climate system responds on many, vastly different time scales (Von der Heydt et al., 2020). In 
particular, not all feedback processes react similarly on all of these time scales. Consequently, there is no lin-
ear relationship between all feedback contributions jE R  and the global warming E T  (Andrews et al., 2015; 
Armour, 2017; Knutti & Rugenstein, 2015). Hence, computations of feedback strengths jE   often find these to 
change over time (Boer et al., 2005; Klocke et al., 2013; Meraner et al., 2013; Senior & Mitchell, 2000; Zelinka 
et al., 2020); they are certainly not constant, as seems implied by Equation 3.

We propose here to extend the classical framework to include dynamics on multiple time scales. To 
this end, feedback strengths should not be computed for the total time series, as in Equation 3, but 
they should be separated in modal contributions instead. This makes the time-dependency of the var-
ious feedback processes explicit. Moreover, when combined with linear response theory (Lucarini & 
Sarno,  2011; Ragone et  al.,  2016; Ruelle,  2009), it opens the possibility of projections for individu-
al feedback contributions under any forcing scenario without having to perform the model simula-
tions. This has been used for temperature projections already in many models, including global cli-
mate models (Aengenheyster et al., 2018; Hasselmann et al., 1993; Lembo et al., 2020; Maier-Reimer & 
Hasselmann, 1987).

The rest of this paper is structured as follows. In Section 2, we describe the theoretical framework, define 
new feedback strength metrics, and explain the computations of the feedback contributions. In Sections 3.1 
and 3.2, the framework is applied in a study of climate feedbacks in a 1,000E  year long experiment in the 
“Community Earth System Model version 2” (CESM2), in which atmospheric 2COE  was quadrupled from 
the start (a so-called “abrupt4×CO2” experiment). In Section  3.3, as illustrative example, projections of 
feedback contributions are made for and compared against output of an experiment in which atmospheric 

2COE  was gradually increased with 1%E  yearly until quadrupling and kept constant thereafter (a “1pctCO2” 
experiment). Finally, Section 4 contains a summary and discussion.
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2. Method and Model
2.1. Method: The New Climate Feedback Framework

In the linear regime of a climate model, the change (response) in an observable E O due to a specific forcing 
E g is given by

O t G g t G t s g s ds
O t O

( ) * ( ) ( ) ( ) ,
[ ] [ ]    0 (5)

where [ ]OE G  is the Green function for observable E O (Aengenheyster et al., 2018; Hasselmann et al., 1993; 
Maier-Reimer & Hasselmann, 1987; Proistosescu & Huybers, 2017). Many Green functions in the climate 
system seem well-approximated by a sum of decaying exponentials, with only the contribution of the differ-
ent modes depending on the observable E O . That is,

/[ ] [ ]

1
( ) ,

M
tO O m

m
m

G t e  


  (6)

where the sum is over all E M modes, mE   is the E m -th mode's time scale and [ ]O
mE   is the contribution of mode E m 

to the observable's Green function. Because of this, following for example, Proistosescu and Huybers (2017), 
the response of observable E O can also be written as
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where m
g t t s mt e g s ds( ) : ( )

( )/   
0

  contains all time-dependencies and [ ]O
mE   all observable-dependencies. 

Since all feedback contributions jE R  and the global warming E T  adhere to this formulation, it is possible to 
define the feedback strength of feedback E j per mode E m as
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Additionally, the instantaneous feedback strength at time t  can be defined as the incremental change in 
feedback contribution jE R  per incremental change in temperature E T  (i.e., the local slope of the graph 
( , )jE T R   at time t  ):
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Using this framework, it is also possible to estimate properties of the eventual equilibrium state—if such 
state exists. For instance, if ( )E g t g  , m

g
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1  , the equilibrium *E O  is given by
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The equilibrium feedback strength *
jE   for feedback E j is then
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A more elaborate treatment of the mathematics of this framework is given in Text S1 in Supporting Infor-
mation S1. Below, we use this framework on two idealized experiments in CESM2 to understand the tem-
poral evolution of the strength of climate feedbacks in these scenarios.

The above equations can be used empirically to analyze a single forcing experiment (Proistosescu & Huy-
bers,  2017). However, if an ensemble of runs are used and the expressions are interpreted as ensemble 
averages, rigorous results from linear response theory become available (Lucarini & Sarno, 2011; Ragone 
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et al., 2016; Ruelle, 2009). In particular, then Green functions obtained from one forcing experiment can 
be used to make projections for the ensemble average in another forcing scenario by changing the forcing 
in Equation 7. If such procedure is applied on a single run—like is done in Section 3.3 for illustrative pur-
pose—results may not be correct quantitatively.

2.2. Model: CESM2 Abrupt4×CO2 and 1pctCO2 Experiments

We focus on forcing experiments conducted with the model CESM2 (Danabasoglu et al.,  2020), specifi-
cally on the model's abrupt4×CO2 ( 1,000E y long) and 1pctCO2 ( 150E y long) experiments in CMIP6 (Eyring 
et al., 2016). The abrupt4×CO2 experiment is used for fitting of the parameters and computations of feed-
back strengths per mode; the 1pctCO2 experiment is used to illustrate the possibilities of projections made 
within the presented framework.

As feedback contributions are not outputted directly by any climate model, these have been determined 
using additional methodology. For this, we have used the radiative kernel approach (Shell et al., 2008; Soden 
et al., 2008), in which feedback contributions are computed (per grid point at location E x ) as

( , ) ( ) ( , ),j j
j

NR t y t
y


  


x x x (12)

where jE y  is the relevant (derived) state variable for the E j -th feedback and  N yj/ ( )x  is the pre-computed 
radiative kernel. We have used the publicly available CESM-CAM5 kernels from Pendergrass et al. (2018); 
Pendergrass (2017a, 2017b). There are others available, but differences between kernels are typically small. 
The procedure for the cloud feedback contribution is somewhat different because of its more nonlinear na-
ture, but is nevertheless computed following common practice (Klocke et al., 2013; Shell et al., 2008; Soden 
et al., 2008)—see Text S4 in Supporting Information S1 for more details.

3. Results
3.1. Temporal Evolution, Abrupt4×CO2

From CESM2 model output, feedback contributions ( , )jE R t x  , top-of-atmosphere radiative imbalance 
( , )E N t x  and near-surface temperature increase ( , )E T t x  were computed; changes in observables are deter-

mined with respect to the temporal average of a 1,200E  year control experiment with pre-industrial 2COE  
levels. From these, globally averaged datasets ( )jE R t  , ( )E N t  and ( )E T t  were derived. These global time series 
have been fitted to Equation 7, with exception of ( )E N t  that also includes the radiative forcing and is fitted to

[ ] abr
abr abr

1
( ) ( ) ( ),

M
gR

m m
m

N t F R t F t


        (13)

where the subscript “abr” indicates that the forcings are from the abrupt4×CO2 experiment. More details of 
the procedure can be found in Text S2 in Supporting Information S1.

First, the amount of modes E M needs to be determined. Tests with various values for E M have indicated 3E M   
is the best choice here: 3E M   does not capture all dynamics and 3E M   has no significant benefits; see Fig-
ure S1 in Supporting Information S1. This is also in agreement with other reports that typically find two or 
three relevant modes (Bastiaansen et al., 2020; Caldeira & Myhrvold, 2013; Tsutsui, 2017; Proistosescu & 
Huybers, 2017). With 3E M   fixed, the other parameters are fitted with nonlinear regression. The values for 
the fitted parameters are given in Table S1 in Supporting Information S1. In Figure 1, the datasets are shown 
along with the fits and projections, showing a very good resemblance.

From the fitted parameters, the feedback strengths per mode are computed using Equation 8. In Table 1, the 
results are shown per mode and for the equilibrium values. A plot of the change in instantaneous feedback 
strength over time is given in Figure 2a. This shows behavior on three distinct time scales: (a) a short time 
scale 1 4.5E y   , (b) an intermediate time scale 2 127E y   , and (c) a long time scale 3 889E y   . The shorter 
time scale is in agreement with other studies (Zelinka et al., 2020), and long-term behavior seems very plau-
sible. The Planck feedback does not change much over time. The lapse rate feedback becomes weaker over 
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Figure 1. Evolution of temperature increase E T  , radiative imbalance E N  and feedback contributions jE R  for the Community Earth System Model version 
2 abrupt4×CO2 experiment. Red circles denote data points; blue lines the obtained fits. The dashed lines indicate the estimated equilibrium values or initial 
forcing in the case of the radiative imbalance plot. Table S1 in Supporting Information S1 contains the values for the fitted parameters.

Mode 1 Mode 2 Mode 3 Equilibrium

mE  4.5 ( 0.1E   ) 127 ( 3.8E   ) 889 ( 50E   ) −

mE  1.28E   ( 0.08E   ) 0.38E   ( 0.03E   ) 0.37E   ( 0.02E   ) 0.66E   ( 0.03E   )

Planck (LW) 3.16E   ( 0.02E   ) 3.24E   ( 0.02E   ) 3.23E   ( 0.01E   ) 3.21E   ( 0.05E   )

Lapse rate (LW) 0.73E   ( 0.03E   ) 0.50E   ( 0.03E   ) 0.32E   ( 0.03E   ) 0.50E   ( 0.01E   )

Surface albedo (SW) 0.62E   ( 0.04E   ) 0.56E   ( 0.02E   ) 0.08E   ( 0.10E   ) 0.39E   ( 0.01E   )

Water vapor (LW) 0.97E   ( 0.03E   ) 1.38E   ( 0.02E   ) 2.71E   ( 0.01E   ) 1.79E   ( 0.04E   )

Water vapor (SW) 0.21E   ( 0.09E   ) 0.26E   ( 0.05E   ) 0.43E   ( 0.02E   ) 0.31E   ( 0.01E   )

Clouds (SW + LW) 0.27E   ( 0.36E   ) 1.19E   ( 0.02E   ) 1.43E   ( 0.01E   ) 1.00E   ( 0.03E   )

Sum 1.82E   ( 0.37E   ) 0.36E   ( 0.07E   ) 1.09E   ( 0.11E   ) 0.22E   ( 0.08E   )

Residue 0.54E   ( 0.38E   ) 0.02E   ( 0.08E   ) 1.46E   ( 0.11E   ) 0.43E   ( 0.08E   )

Note. These have been computed from the fitted parameters (Table S1 in Supporting Information S1) via Equation 8. 
Time scales mE   have units “year”; feedback parameters m

jE   have units “ W m K/ /
2  .” plusminus values indicate 95%E  

confidence intervals, which were propagated from the 95%E  confidence intervals for the fitted parameters assuming a 
normal distribution for all errors and no existing correlations between parameters.

Table 1 
Values for the Climate Feedback Parameters m

jE   per Mode
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time since temperatures increase. The surface albedo feedback diminishes as sea-ice is melting. The wa-
ter vapor feedback, however, strengthens as warmer air can contain more water, which—as demonstrated 
here—does lead to an almost tripling in this feedback's strength over time. Finally, cloud feedback becomes 
more dominant over time. The estimated equilibrium values are a bit higher generally compared to other 
studies (e.g., Zelinka et al., 2020) since longer time scales are incorporated in the present study, which leads 
to higher temperature values and more positive total feedback strength (Goodwin, 2018; Marvel et al., 2018; 
Proistosescu & Huybers, 2017; Rugenstein et al., 2020).

Since the individual feedback contributions jE R  should sum to the total radiative response E R  , feedback 
strengths should satisfy m m

jjE      . However, because of ignored feedback interactions, imperfect radi-
ative kernels and other limitations of the feedback contribution computations, a mismatch of up to 10%E  is 
deemed inconsequential. Looking at the feedback parameters per mode in Table 1, we see a good balance for 
the intermediate time scale ( 2 10.02E Wm K   imbalance), but not for the short ( 2 10.54E Wm K   imbalance) 
or long time scales ( 2 11.46E Wm K   imbalance). Taking the large uncertainty into account for the shortest 
time scale, this imbalance might be insignificant still. However, for the long time scale, the imbalance is 
large and even the signs are not the same. This might point to a missing negative feedback on this time 
scale (or inaccuracies in the linear computational methods). Because the equilibrium values show a smaller 
imbalance ( 2 10.43E Wm K   ), the alleged missing feedback (or feedbacks) seem to be especially important 
during the transient state.

Figure 2. The evolution of climate feedback strengths over time in (a) The abrupt4×CO2 experiment and (c) The 1pctCO2 experiment, and (b) a Gregory 
plot for climate feedback contributions jE R  against warming E T  in the abrupt4×CO2 experiment. Instantaneous feedback strengthts inst ( )jE t  are computed via 
Equation 9 from the fits derived from the abrupt4×CO2 experiment and show projected feedback strengths under a continued 1%E  yearly CO2 increase.
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3.2. Spatial Distribution, Abrupt4×CO2

With a slight modification of Equation 8, the spatial structure of the modes can be included. Following a 
similar procedure in Proistosescu and Huybers (2017), we take

[ ] abr

1
( , ) ( ) ( ),

M R gj
j m m

m
R t t


  x x  (14)

and similar formulas for ( , )E N t x  and ( , )E T t x  . More details can be found in Text S2.2 in 
Supporting Information S1.

The space-dependent [ ]( )Rj
mE  x  encompasses the spatial structure of the observable jE R  in the E m -th mode. 

Again, it is also possible to estimate equilibrium properties, leading to an estimation of the spatial distri-
bution of feedback contributions and warming in equilibrium. Using the time scales mE   from the fits of 
the global observables, the spatial coefficients [ ]( )Rj

mE  x  can be computed efficiently using linear regression 
methods.

In Figures S3–S10 in Supporting Information S1, the spatial modes of all feedback contributions, warming, 
and radiative imbalance are given. The estimated equilibrium distributions are shown in Figure  3. The 
patterns of feedback contributions are in agreement with previous studies (Andrews et al., 2015; Andrews 
& Webb,  2018; Armour et  al.,  2013; Boeke et  al.,  2020; Dessler,  2013; Dong et  al.,  2020; Proistosescu & 
Huybers, 2017; Soden et al., 2008), although they seem more pronounced here—probably due to a better 
incorporation of long-term behavior. Near the poles, temperature increase gets close to 30 CE    (compared 
to 12 CE    near the equator) and large changes (up to 2135 WmE   ) in surface albedo are found related to 
sea-ice melting. Moreover, the lapse rate feedback contribution increases by about 210 WmE   in these polar 
regions. Near the equator, the water vapor feedback gets much stronger (more than 250 WmE   ) over the 
oceans—especially in the Pacific cold tongue where changes up to 2120 WmE   are found. Cloud feedback 
changes mostly over southern hemisphere oceans (up to 269 WmE   ), and northern hemisphere changes 
are smaller (on average only 22.7 WmE   ) compared to previous studies (Andrews & Webb, 2018; Armour 
et al., 2013; Dong et al., 2020).

Figure 3. Estimated spatial distribution of warming *( )E T x  , radiative imbalance *( )E N x  and feedback contributions *( )jE R x  in equilibrium, and initial effective 
radiative forcing ( )E F x  for the CESM2 abrupt4×CO2 experiment. Equilibrium distributions are derived from the fitted spatial modes; initial forcing ( )E F x  is 
obtained directly from fits.
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3.3. Projections for 1pctCO2 Experiment

In the 1pctCO2 experiment, the forcing ( gradE g  ) is given by a yearly 1%E  increase in atmospheric 2COE  . Follow-
ing linear response theory, replacing abrg

mE   by ggrad
mE   in Equation 8, while using the values for mE   and mE   as 

fitted with an ensemble of abrupt4×CO2 experiment runs, gives a projection for (the ensemble average of) 
feedback contributions and warming in the 1pctCO2 experiment. Since we did not have access to a suitable 
ensemble, we apply the idea here on a single run to illustrate its potency qualitatively (see Section 2.2). More 
details can be found in Text S3 in Supporting Information S1.

In Figure 4, projections for global feedback contributions are shown along with data coming directly from 
the CESM2 1pctCO2 experiment. Qualitatively, the projections are able to reproduce the actual trends in the 
globally averaged observables. The quantitative values overestimate feedback contributions by 10% 20%E   
(less for the lapse rate feedback; more for cloud and long-wave water vapor feedbacks up to about 120E t y  ). 
Projections for the temporal evolution of instantaneous feedback strengths in this scenario are given in Fig-
ure 2b. These show lasting changes over centuries—primarily in long-wave water vapor feedback, surface 
albedo feedback, and cloud feedback—and a less negative total feedback parameter, indicating the climate 
system becomes more sensitive to radiative forcing over time.

Using the same approach, it is also possible to make projections for the evolution of the spatial distributions. 
In Figures S11–S18 in Supporting Information S1 the projections for the feedback contributions jE R  , the ra-
diative imbalance E N  and the temperature increase E T  at 140E t y  are shown. Videos showing these results 
for other times are also available (Movies S1–S8). From all of these, it can be seen that the spatial projections 
reproduce the larger spatial patterns and even some of the smaller features, although the internal variability 

Figure 4. Projections and actual values for globally averaged feedback contributions jE R  , warming E T  and top-of-atmosphere radiative imblance E N  in the 
Community Earth System Model version 2 1pctCO2 experiment. Red circles denote data points obtained from the model output. The lines show projections 
based on data from the abrupt4×CO2 experiment using the introduced framework.
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is of course not present in the projections. The spatial patterns are similar to those found in the abrupt4×-
CO2 experiment (Figure 3) and show the same kind of response in polar and equatorial regions. In general, 
the projections seem to overestimate the spatial feedback contributions, similar to the overestimation of the 
global feedback contributions.

4. Summary and Discussion
In this study, we have introduced a new multivariate feedback framework that enables analysis and pro-
jections of individual climate feedbacks, including their spatial distribution, over different time scales. 
This framework deviates from the common practice of linearly regressing feedback contributions to global 
warming (Klocke et al., 2013; Marvel et al., 2018; Meraner et al., 2013; Zelinka et al., 2020). Instead, these 
contributions are here taken into account directly, and temporal evolution is explicitly considered via a non-
linear regression to obtain modes for each feedback. These modes, indicating behavior over different time 
scales, encapsulate the climate system's dynamics and can thus be used both for analysis and projections of 
climate feedbacks.

Using the presented framework, we have analyzed an abrupt4×CO2 experiment in CESM2. This showed 
evolution of climate feedbacks over time, such as a diminishing of surface albedo feedback in the polar 
regions as sea-ice melts. Strikingly, the water vapor and cloud feedbacks showed a large increase over time: 
water vapor feedback, primarily over oceans around the equator, almost tripled in strength over a 1,000 year 
period and cloud feedback mainly changed over southern hemisphere oceans. Analysis also showed that 
the commonly considered feedback processes do not sum up to the total feedback for long time scales, 
which might point to a missing negative feedback on these time scales. Since estimated equilibrium feed-
back strengths do balance, the alleged missing feedback (or feedbacks) is expected to play a role primarily 
during the transient. As such, the ocean heat uptake seems a good candidate to fill this gap, which would 
mean tracking its effect over time is necessary to accurately understand the long-term transient behavior.

Another benefit of tracking the temporal evolution of climate feedbacks is that this makes it possible to 
project the (ensemble average) climatic change for all sorts of emission scenarios without the need to have 
dedicated model experiments for them all using linear response theory. In this paper, we have illustrated the 
capabilities of such projections by comparing them to a single 1pctCO2 experiment with the same CESM2 
model. The projections did capture the qualitative trends but also showed an overestimation for almost all 
global and spatial climate feedback contributions. However, due to the internal variability associated with 
a single run, results are expected to be better quantitatively when used on an ensemble of runs, as has been 
shown with applications of similar linear response techniques on for example, temperature response (Aen-
genheyster et al., 2018; Lembo et al., 2020).

As climate models become more and more detailed, these models also become more computationally ex-
pensive. Therefore, it is practically impossible to compute climate responses for many forcing scenarios 
and/or on very long time scales. As climate feedbacks seem to become more positive with rising tempera-
tures, it is necessary to track these changes to prevent underestimation of climate change and adequately 
account for committed (long-term) warming. Hence, both extrapolation techniques and response theory 
can play a significant role to alleviate the gaps. The multivariate feedback framework in this study can con-
tribute to this. Moreover, as these projections are multivariate, they can inform us on more than global mean 
warming alone, and also indicate how a potential future climate state may behave differently compared to 
our current one.

Data Availability Statement
Data statement Radiative kernels from Pendergrass et  al.  (2018); Pendergrass  (2017a,  2017b) have 
been used; the kernels were downloaded from https://doi.org/10.5065/D6F47MT6 and accompany-
ing software from https://doi.org/10.5281/zenodo.997899. CESM2 data has been downloaded on the 
fly from Google's cloud storage mirror of CMIP6 data using the “intake-esm” utility package in Python 
(https://doi.org/10.5281/zenodo.4243421).

https://doi.org/10.5065/D6F47MT6
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