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TEACHER’S CORNER

Evaluating Causal Dominance of CTmeta-Analyzed Lagged Regression Estimates
Rebecca Kuiper

Universiteit Utrecht

ABSTRACT
Meta-analysis techniques allow researchers to aggregate effect sizes, like standardized regression esti-
mates, of different studies. Recently, continuous-time meta-analysis (CTmeta) has been developed such 
that the time-interval dependent lagged-parameter estimates can be properly meta-analyzed. This leads 
to overall standardized lagged-parameter estimates and their multivariate confidence interval. Often, 
researchers are not only interested in these overall estimates but also in a specific ordering of them: Many 
researchers have an a priori expectation regarding the ordering of the predictive strength of the cross- 
lagged relationships; referred to as causal dominance. For example, a researcher might expect, based on 
literature or expertise, that the lagged relationship between burnout and work engagement is weaker 
than the reciprocal lagged relationship. Such a hypothesis can be evaluated with an AIC-type theory- 
based model selection criterion: GORICA. This paper introduces and illustrates how the GORICA can be 
applied to CTmeta-analyzed standardized lagged-parameter estimates and demonstrate its performance.
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Meta-analysis; first-order 
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Introduction

Meta-analysis aims to aggregate effect-size estimates, like stan-
dardized regression parameters, from multiple studies to come 
to an overall estimate of one or more population parameters 
(cf. Becker & Wu, 2007; Borenstein et al., 2009). In principle, it 
takes a weighted average of the effect-size estimates, where the 
contribution of each study is weighted by the standard error of 
the estimate (or the covariance matrix of the estimates), that is, 
the amount of information or certainty in the estimate(s).

Lagged-effects models, such as the first-order vector- 
autoregressive (VAR(1); Hamilton, 1994) and cross-lagged 
panel models (CLPMS; Bollen & Curran, 2006; Mayer, 1986) 
are increasingly the target for meta-analysis (for instance, 
Jacobson & Newman, 2017; Maricuțoiu et al., 2002; 
Masselink et al., 2018; Nohe et al., 2015). It is well-known 
that the lagged parameters are time-interval dependent 
(Gollob & Reichardt, 1987; Kuiper & Ryan, 2018; Pelz & 
Lew, 1970; Voelkle & Oud, 2013): Studies that use different 
uniform time intervals between observations (e.g., 1 hour vs 
3 hours or 1 month vs 2 months) can come to very different 
parameter estimates, and seemingly contradictory conclu-
sions, about the same underlying process. Averaging these 
incomparable estimates would lead to not-interpretable 
overall estimates. This problem can be overcome by using 
the recently developed continuous-time meta-analysis 
(CTmeta; Kuiper & Ryan, 2020), which assumes an under-
lying continuous-time process. Like the classical meta- 
analysis, CTmeta renders overall (standardized) parameter 
estimates. Nevertheless, this is often not sufficient informa-
tion to answer the researcher’s research question.

Typically, researchers use lagged-effects models to assess the 
Granger-causal relationships between pairs of variables, through 

the estimation of cross-lagged regression parameters (Granger, 
1969; Rogosa, 1979, 1980). Generally, their primary aim is to 
compare the size and sign of the estimated cross-lagged para-
meters (ϕjk vs ϕkj). This relative strength is often referred to as 
“causal dominance” (Bentler & Speckart, 1981; Finkel, 1995; 
Hamaker et al., 2015; Rogosa, 1980). For instance, Moberly 
and Watkins (2008) examine which of momentary ruminative 
self-focus (RSF) and negative affect (NA) can be considered the 
‘driving force’ of the pair, by comparing the size of the cross- 
lagged relationships of RSF and NA on each other at the next 
measurement occasion. The meta-analysis of Nohe et al. (2015) 
investigates the ‘causal dominance’ relationships between work- 
family conflict and strain by comparing the size of the overall 
cross-lagged parameter estimates. Their hypotheses of interest 
can be expressed as: H1 : ϕ12 < ϕ21 versus H2 : ϕ12 >ϕ21. Such 
hypotheses are often referred to as informative hypotheses 
(Hoijtink, 2012), inequality-constrained hypotheses, order- 
restricted hypotheses, or theory-based hypotheses.

While the overall (standardized) parameter estimates often do 
not answer the ‘causal dominance’ questions, as presented by H1 
and H2, it possible to evaluate these hypotheses by using an AIC- 
type theory-based model selection criterion: GORICA (Altnışık 
et al., 2021; Kuiper et al., 2012, 2011). This paper demonstrates 
how this is done and what the advantages are. Furthermore, this 
paper will give insight into the performance of theory-based 
model selection using the GORICA on CTmeta-analyzed 
estimates.

Background

First, the core concepts of lagged-effects models, CTmeta-analysis, 
and model selection using the GORICA are briefly introduced. 
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Second, the remainder of this paper focuses on illustrating how 
causal dominance hypotheses can be evaluated and on demon-
strating its performance by a small simulation study.

The discrete-time VAR(1) model

A popular choice of model to analyze multiple repeated 
measurements are (first-order) lagged-effects models, 
where lagged parameters describe the relationship between 
current observations and past observations. In the context of 
panel data (i.e., data for a large number of participants but 
with relatively few observations measured far apart in time), 
this is referred to as the cross-lagged panel model (CLPM). 
In the context of time series data (i.e., single-subjects data 
with many observations measured at a higher frequency), 
this is referred to as the (discrete-time) first-order vector 
autoregressive (DT-VAR(1)) model. Since both models are 
conceptually very similar, the DT-VAR(1) terminology will 
be used throughout. Figure 1 depicts a bivariate DT-VAR(1) 
model as a path model.

Let yi;m be the vector with q observed variables for indivi-
dual i (i ¼ 1; . . . ;N) at measurement occasion m, which is 
regressed on the preceding observation through 

yi;m ¼ ci þΦyi;m� 1 þ �i;m 

where ci is a q-vector of intercepts which is related to the 
person-specific mean of yi;m by μi ¼ ðI � ΦÞ� 1ci; �i;m repre-
sents a q-vector of errors for measurement m which are inde-
pendent and identically distributed: �i;m,ð0;��Þ; and Φ is the 
q� q matrix of lagged regression parameters, that is, autore-
gressive (ϕjj) and cross-lagged (ϕjk; j�k) parameters. The next 
subsection briefly discusses the time-interval dependency of Φ 
and how its elements should be meta-analyzed using CTmeta.

Time-interval dependency and CTmeta

It is well known that autoregressive and cross-lagged para-
meter estimates are a function of the time interval 
(Chatfield, 2004; Dormann & Griffin, 2015; Gollob & 

Reichardt, 1987; Hamilton, 1994; Kuiper & Ryan, 2018; 
Oud, 2002). This refers to the phenomenon that estimates 
differ in sign, size, and/or relative ordering only due to the 
use of different spacing between measurements. Therefore, 
the lagged parameters will be denoted by ΦðΔtÞ in the 
remainder. To illustrate the time-interval dependency, let 
us assume that measurements are taken every, say, 2 hours 
instead of every 1 hour, then a model is fitted on 
every second measurement wave in Figure 1. In that case, 
the estimate of Φð2Þ ¼ Φð1Þ2 is obtained instead of the 
estimate of Φð1Þ. Note that this is a matrix exponential 
and, therefore, the elements in Φð2Þ are a sum of multiple 
different products of the parameters in the original matrix 
Φð1Þ. For example, element (1,1) in Φð2Þ, that is, the auto-
regressive parameter ϕ11ð2Þ, does not equal the square of 
ϕ11ð1Þ but equates ϕ11ð1Þ ϕ21ð1Þ þ ϕ21ð1Þ ϕ22ð1Þ. As 
a numerical example, take the lagged-parameter matrix 

Φð1Þ ¼ 0:50 0:15
0:25 0:40

� �

:

When a twice as large time interval is used, an estimate of the 
following lagged-parameter matrix would be found: 

Φð2Þ ¼ 0:29 0:14
0:23 0:20

� �

:

This shows the implications for meta-analysis: Taking 
a weighted average of estimates based on different time inter-
vals results in a set of overall estimates which do not accurately 
reflect the true underlying process for any time interval. 
Furthermore, including the time interval as linear and/or quad-
ratic moderator of the effect (cf. Card, 2019) fails to capture the 
exponential relationship (Kuiper & Ryan, 2020). Alternatively, 
when doing separate meta-analyses per time interval used in 
the primary studies (i.e, using dummy variables), an overall 
estimate per time interval is obtained. Moreover, the power is 
reduced because not all primary studies are used, only the ones 
that use that time interval. To overcome these problems, con-
tinuous-time meta-analysis (CTmeta) was developed, which is 
based on the following reasoning. Even though the elements in 

Figure 1. A graphical representation of a bivariate VAR(1) model.
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Φð1Þ and Φð2Þ differ in size, they do describe the same process. 
Thus, results from studies using different time intervals are 
informative about one another, but need to be made compar-
able. Assuming that the underlying process is continuous in 
time (cf. Boker & Laurenceau, 2006; Oravecz et al., 2009, 2011; 
Oud & Delsing, 2010a; Voelkle & Oud, 2013), the results from 
studies using different time intervals (e.g., Φ̂ð0:5Þ, Φ̂ð1Þ, and 
Φ̂ð1:7Þ) can all be mapped back to one underlying effects 
matrix A, called the drift matrix, using 

ΦðΔtÞ ¼ eAΔt:

An elaborate discussion regarding the interpretation of the 
drift matrix can be found in Ryan et al. (2018). In the numerical 
example, the underlying drift matrix equals 

A ¼ � 0:79 0:36
0:60 � 1:03

� �

:

The underlying drift matrix A can be used to transform the 
(standardized) lagged relationships such that they are 
comparable: 

ΦðΔt�Þ ¼ ðeAΔtÞ
Δt�
Δt 

¼ ðΦðΔtÞÞ
Δt�
Δt : (3) 

Using this formula, the lagged-parameter matrix estimates 
from studies using different time intervals, for instance, 
Φ̂ð0:5Þ, Φ̂ð1Þ, and Φ̂ð1:7Þ, can all be transformed to the 
estimate for a targeted time interval Δt�, say, Φ̂ð1Þ. Since 
these transformed (standardized) estimates are compar-
able, these can be meta-analyzed, which is what CTmeta 
does.

Thus, CTmeta averages the transformed standardized 
lagged relationships, obtained using Equation 3, for one or 
more targeted time intervals Δt� (where weighting is done 
based on the covariance matrices of the study-specific trans-
formed standardized lagged relationships). The CTmeta 
method is implemented in i) the R-package CTmeta 
(Kuiper, 2020c), available from my GitHub page (https:// 
github.com/rebeccakuiper/CTmeta) as demonstrated in the 
section “GORICA on CTmeta in R” below, and ii) an inter-
active (Shiny) web application (Kuiper, 2020b). CTmeta 
renders the overall standardized lagged-parameter estimates 
and their multivariate confidence intervals. The latter is 
based on the covariance matrix of the overall estimates 
instead of their single variances. By using the covariances 
as well, the multivariate structure is accounted for. These 
multivariate confidence intervals are sometimes refers to as 
elliptical confidence intervals.

The next subsection discusses how the GORICA can evalu-
ate researchers’ (causal dominance) theories regarding the 
overall CTmeta estimates.

GORICA

An information criterion selects the hypothesis that describes the 
data best (highest fit) with the smallest (least complex) hypoth-
esis in terms of number of distinct parameters, out of a set of 

candidate hypotheses. An often used information criterion is the 
Akaike information criterion (AIC; Akaike, 1973): 

AIC ¼ � 2 fmaximum log likelihood � penaltyg;

where the penalty equals the number of distinct model para-
meters: e.g., the number of distinct regression parameters, 
including the intercept, and the distinct error (co)variance(s). 
The formula shows the trade-off between the fit (likelihood) 
and the complexity (penalty) of the candidate hypotheses. The 
AIC is an estimate of the Kullback–Leibler (KL) discrepancy 
(Kullback & Leibler, 1951), the distance between a candidate 
hypothesis and the true unknown hypothesis. Therefore, the 
hypothesis with the smallest AIC value is the preferred one in 
the set of candidate hypotheses. The AIC can evaluate hypoth-
eses where (some) parameters are set equal to zero or equal to 
each other; e.g., ϕ12 ¼ ϕ21; ϕ13 ¼ ϕ31.

By using the generalized order-restricted information cri-
terion (GORIC; Kuiper et al., 2012, 2011) or its approximation 
(GORICA; Altınışık et al., shed), researchers’ theories, like 
causal dominance theories, can directly be examined by evalu-
ating theory-based hypotheses, like ϕ12 > ϕ21; ϕ13 > ϕ31. Thus, 
the GORIC and GORICA can evaluate theory-based hypoth-
eses containing order restrictions on the parameters (“<” and/ 
or “>”) besides equality restrictions (“¼”). The GORIC is, like 
the AIC, an estimate of the KL discrepancy and is of the form 

GORIC ¼ � 2 fmaximum order-restricted log likelihood
� penaltyg:

In comparison with the AIC, this expression is based on the 
order-restricted maximum likelihood (i.e., the maximum 
likelihood under the order restrictions in the hypothesis) 
and has a corrected penalty (using so-called chi-bar-square 
weights) such that the order restrictions are properly 
accounted for. The latter comes loosely speaking down to 
deriving the expected number of distinct parameters. For 
example, ϕ12 <ϕ21 represents 1.5 distinct regression para-
meters and not 2, as would be the case in the AIC. If there are 
no order restrictions (i.e., only equality constraints (“¼”) 
and/or no constraints (“,”)), the GORIC reduces to the 
AIC. To ease the calculation of the GORIC for a broad 
range of models, the GORICA was derived using the fact 
that maximum likelihood estimates (mle’s) are asymptoti-
cally normally distributed: 

GORIC ¼� 2 fmaximum order-restricted log likelihood
mle0s � penaltyg:

Here, the fit part is based on the mle’s, which are a summary for 
the data, instead of the data themselves, which is used in the 
GORIC. Furthermore, the fit part of the GORICA is always 
based on the normal distribution even if the data do not follow 
one (like in a logistic regression). The fit values of the GORIC 
and GORICA differ in absolute sense but asymptotically not in 
relative sense when comparing candidate hypotheses. The pen-
alty of the GORICA equates that of the GORIC.

Like AIC values, GORICA values denote the ordering of the 
candidate hypotheses and not their relative strength, but the 
following transformation does: 
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wi ¼
exp � 1

2 GORICAi
� �

PM
m¼1 exp � 1

2 GORICAm
� �

for i ¼ 1; . . . ;M, with M the total number of hypotheses in the 
set. These are called GORICA weights and reflect the relative 
likelihood of a hypothesis given the data and the set of hypotheses 
(Akaike, 1978; Burnham & Anderson, 2002; Kuiper et al., 2012; 
Wagenmakers & Farrell, 2004). For instance, GORICA weights 
for Hypothesis H1 and a competing hypothesis H2 of w1 ¼ 0:875 
and w2 ¼ 0:125 mean that H1 has w1=w2 ¼ 7 times more sup-
port than the competing hypothesis H2. Notably, the GORICA 
weights asymptotically equate the GORIC weights, which equal 
Akaike weights (i.e., AIC weights) in case there are no order 
restrictions.

The set of hypotheses of interest should consist of at least 
two hypotheses. When there are multiple theories, these can 
thus be included as competing hypotheses. Let us assume 
that the literature states two competing hypotheses: 
ϕ12 > ϕ21; ϕ13 > ϕ31 and ϕ12 < ϕ21; ϕ13 < ϕ31. Since these 
hypotheses do not cover all possible theories (e.g., 
ϕ12 < ϕ21; ϕ13 > ϕ31 is not included), GORICA selects the 
best out of a set of weak hypotheses when both hypotheses 
are weak. Therefore, in case the hypotheses do not cover the 
whole parameter space (as is also the case when there is only 
one theory of interest), a safeguard hypothesis should be 
included (Kuiper et al., 2012). There are two possibilities: 
the unconstrained hypothesis Hu, where none of the para-
meters are restricted and represents all possible theories, and 
the complement of the hypothesis/-es of interest, represent-
ing al other theories. The unconstrained hypothesis should 
be used to investigate whether the hypotheses of interest are 
weak or not. When at least one is not (e.g., w1 >wu, that is, 
w1=wu > 1), the relative support for the hypotheses of interest 
(e.g., w1=w2) can be inspected. Using the complement can be 
more powerful (Vanbrabant et al., 2020) and acts like 
another hypothesis of interest, but is in software only avail-
able for one theory-based hypothesis.

It is important to note that comparing parameters (e.g., 
ϕ12 <ϕ21) is only meaningful if these parameters are measured 
on the same scale. Hence, (overall) standardized lagged parameters 
should be used; which should also be the target in CTmeta such 
that comparable estimates are averaged.

There are two R functions that can calculate GORICA values 
and weights: the gorica function in the gorica package (Kuiper 
et al., 2020) and the goric function (Vanbrabant & Kuiper, 2020) 
in the restriktor package (Vanbrabant & Rosseel, 2020). There 
are some differences in functionality (Kuiper, 2020d), but both 
functions render the same results of course. The goric function 
of the restriktor package is used in this paper.

The following sections demonstrate how the GORICA can 
be applied to CTmeta-analyzed lagged-parameter estimates 
and give insight into its advantages and performance. The 
paper concludes with a discussion.

Illustration

This section illustrates the application of  GORICA to CTmeta. 
The illustration consists of simulated data which mimics the set-up 

of a published empirical meta-analysis, which was also used in the 
CTmeta article Kuiper and Ryan (2020). The code to reproduce all 
of the analyses shown below is available on my GitHub page 
(https://github.com/rebeccakuiper/CTmeta).

Dataset

To evaluate the use of the GORICA on CTmeta-analyzed 
estimates, the working example of Kuiper and Ryan (2020) 
is used, which is based on the design of Maricuțoiu et al., 
2002. In the working example, there are 25 primary panel 
data studies which all study the cross-lagged relationships 
between work engagement and burnout (i.e., q ¼ 2). These 
two variables are assumed to have a contemporaneous 
pairwise correlation of corðy1m; y2mÞ ¼ 0:3. The underlying 
dynamic relationships between these two variables is 
described by the one in Equation 2. Based on this under-
lying drift matrix, Figure 2 depicts the elements in ΦðΔtÞ
for a range of time intervals between 0 and 5 years, 
obtained by the Shiny web application Kuiper (2020a). In 
the 25 studies, the range of study-specific time intervals 
between measurement occasions is Δts 2

1
365 ; 3
� �

years 
(s ¼ 1; . . . ; 25), and the range of study-specific sample 
sizes is Ts 2 ð67; 2897Þ; the study-specific values can be 
found in Table 1.

For each primary study (i.e., for Study s), Ts measure-
ments were generated from a VAR(1) model with standar-
dized lagged parameters ΦðΔtsÞ, based on the drift matrix in 
Equation 2, using the R-package tsDyn (Fabio Di Narzo 
et al., 2009); see Kuiper and Ryan (2020) for more details. 
Then, a DT-VAR(1) model is fitted to each dataset using the 
vars package (Pfaff, 2008). The standardized parameter esti-
mates from each simulated dataset serve as input to CTmeta. 
This results in overall standardized lagged-parameter esti-
mates and their covariance matrix, which is input for the 
GORICA.
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Figure 2. The bivariate lagged parameters ϕðΔtÞ as a function of the time 
interval Δt.
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The theory-based causal-dominance hypothesis to be eval-
uated with the GORICA is one stating that the lagged relation-
ship between work engagement and burnout is weaker that the 
reciprocal lagged relationship (H1), which is evaluated versus 
its complement (Hc): 

H1 : ϕ12 < ϕ21 

Hc : ϕ12 >ϕ21:

CTmeta

When applying CTmeta for a targeted interval, the resulting 
output gives, among other things, the overall lagged esti-
mates (called “Overall_standPhi_DeltaTStar” in the 
R output) and their multivariate confidence intervals 
(“elliptical_CI”). For the working example, the resulting 
overall CTmeta estimates for a targeted interval of Δt� ¼ 1 
year and their multivariate confidence intervals are dis-
played in Table 2. This process can be repeated for other 
targeted time intervals of interest as well.

GORICA on CTmeta

To evaluate H1, the GORICA should be applied on the 
CTmeta-analyzed estimates. Here, this is done for all the time- 
intervals used in the 25 primary studies, assuming that all these 
intervals are of interest. In practice, this should be done for the 
time-interval(s) which are of interest (which are preferably 
within the range of the ones used in the primary studies). 
The code to replicate this analysis can be found at my 
GitHub page (https://github.com/rebeccakuiper/CTmeta). 
The section “GORICA on CTmeta in R” below also gives 
some example R code to do this for one targeted time- 
interval based on a subset of the example data (namely 3 out 
of the 25 studies) using the CTmeta package and restriktor 
package in R.

The resulting GORICA weights for the causal dominance 
hypothesis H1 are given in the second column of Table 3. These 
are the GORICA weights for H1 based on the overall standar-
dized lagged-parameter estimates that resulted from CTmeta 
on the 25 primary studies, where H1 is evaluated against its 
complement. From this column, it can be concluded that there 
is maximum support for H1 (i.e., GORICA weights of 1) for 
almost all targeted time-intervals. For the smallest time- 
interval (one day), the support for H1 is a bit higher but 
about equal to the support for its complement stating the 
opposite ordering of cross-lagged parameters. In that case, H1 
is only 0:584=ð1 � 0:584Þ � 1:4 times more supported than its 
complement. Thus, for that time interval, there is no compel-
ling evidence for (or against) H1. This makes sense since the 
effect of work engagement on burnout will not be substantial 
after one day. Similarly, the support for H1 will decrease to 0.5 
for higher targeted time intervals. Namely, the cross-lagged 
parameters will both go to 0, as can be seen from Figure 2, 
and, thus, both H1 and Hc will be equally supported (since their 
border is the truth and because they are equally complex). This 
can also be seen from the GORICA weights for H1, which 
decrease after Δt� ¼ 36=12 ¼ 3 years, but are still very high 
in this case.

Since support is found for H1 for all time-intervals and, for 
most, even compelling support, this increases the confidence in 

Table 1. The study-specific sample sizes Ts and study-specific time intervals Δts (in 
years) used in the working example.

Study (s) Ts Reported Time Interval Δts

1 643 12 months 1
2 651 12 months 1
3 473 12 months 1
4 387 4 months, 2.5 months and 6.5 months 1

3
5 187 9 months 3

4
6 209 12 months 1
7 2897 12 months 1
8 160 2 months 1

6
9 1964 36 months, 48 months 3
10 848 12 months 1
11 926 12 months 1
12 274 8 months 2

3
13 433 24 months 2
14 256 1 day 1

365
15 409 24 months 2
16 926 12 months 1
17 162 2 months 1

6
18 262 14 months 14

12
19 247 12 months 1
20 102 10 months 10

12
21 171 48 months 4
22 201 12 months 1
23 309 12 months 1
24 77 1 month 1

12
25 67 8 months 2

3

Table 2. The CTmeta results of the working example: The resulting overall 
estimates of the lagged effects parameters for a targeted time interval of 1 year 
(i.e., ϕ11ð1Þ, ϕ12ð1Þ, ϕ21ð1Þ, and ϕ22ð1Þ) and the lower and upper bound of their 
multivariate confidence intervals.

ϕ11ð1Þ ϕ12ð1Þ ϕ21ð1Þ ϕ22ð1Þ

Overall estimate 0.491 0.148 0.249 0.399
Lower bound 0.477 0.133 0.233 0.384
Upper bound 0.506 0.162 0.264 0.415

Table 3. GORICA weights for H1 (versus its complement Hc), for all 12 unique time 
intervals considered in the meta-analysis. In the second column, GORICA weights 
for the causal dominance hypothesis H1 regarding the overall estimates. In 
columns 3 to 6, some descriptive statistics (minimum, maximum, mean, and 
standard deviation) for the study-specific GORICA weights for H1 regarding the 
study-specific lagged-parameter estimates.

Per study

Δt� Overall min max mean s.d.

1/365 0.584 0.500 0.532 0.504 0.007
1/12 1.000 0.497 0.975 0.602 0.124
2/12 1.000 0.495 0.999 0.654 0.161
4/12 1.000 0.491 1.000 0.704 0.191
8/12 1.000 0.487 1.000 0.731 0.204
9/12 1.000 0.487 1.000 0.732 0.205
10/12 1.000 0.487 1.000 0.732 0.205
12/12 1.000 0.487 1.000 0.729 0.205
14/12 1.000 0.487 1.000 0.725 0.203
24/12 1.000 0.492 1.000 0.683 0.186
36/12 1.000 0.496 0.994 0.619 0.147
48/12 0.995 0.498 0.906 0.566 0.099
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the finding that H1 is the best hypothesis. Hence, the conclu-
sion is that the lagged relationship of work engagement on 
burnout is weaker than its reciprocal relationship and that the 
support for this finding is prominent.

Advantages

This section describes two advantages of applying the GORICA 
to meta-analyzed lagged estimates. First, by using the CTmeta- 
analyzed estimates instead of the study-specific ones, the power 
to select the correct hypothesis is increased. Second, by using 
the GORICA instead of a classical criterion like the AIC or 
a confidence interval comparison approach, the hypothesis of 
interest is directly investigated.

Increased power to select correct hypothesis

The GORICA can also be applied to each primary study (per 
targeted time-interval). The 25 times 12 resulting GORICA 
weights for H1 are plotted in Figure 3. Additionally, some 
descriptive statistics of the 25 study-specific GORICA weights 
for H1 are depicted in columns 3 to 6 in Table 3, for each targeted 
time-interval. The plot and table show that not in all studies 
there was compelling evidence for H1: There are studies indeci-
sive (i.e., GORICA weights around 0.5) and, on average, there is 
support for H1 but not overwhelming support: e.g., for Δt� ¼ 1, 
the support for H1 is 0:729=ð1 � 0:729Þ � 2:69 times larger 
than for its complement.

While the evidence for H1 is not convincing for each 
study, the evidence based on all 25 studies combined is 
(cf. column 2 in Table 3 and the black squares in 
Figure 3). Combining all the information from all the 25 
studies does result in prominent (even maximum) support 
for H1. This demonstrates the advantage of a meta-analysis 
and model selection on the resulting overall estimates: By 
using all information, the power to select the correct 
hypothesis increases. To obtain further insight in the 
behavior and performance of the GORICA weights in 
various CTmeta settings (e.g., regarding the size of the 
estimates), a small simulation study will be conducted in 
the next section. First, the preference of GORICA over 
AIC and a confidence interval comparison is demonstrated 
in the next subsection.

Direct evaluation of theory-based hypotheses

This subsection discusses two alternatives to the GORICA and 
demonstrates why the use of the GORICA is preferred. To 
investigate the hypothesis of interest H1, the conservative 
method of inspecting the overlap of confidence intervals 
(CIs) can be used. Based on the eliptical/multivariate 95% CIs 
of the two cross-lagged estimates in Table 2, it is concluded that 
they significantly differ because the confidence intervals do not 
overlap.1 Because of the size of the estimates, the conclusion is 
that ϕ12ð1Þ is smaller than ϕ21ð1Þ, which is the ordering of 
interest. This, however, does not quantify the support for the 

Figure 3. GORICA weights for H1, for all 12 unique time intervals considered in the meta-analysis. The black squares are the ones based on the overall estimates; the 
colored rounds are the 25 times 12 study-specific GORICA weights for H1.

1Note that the significance level is not 5% when comparing two confidence intervals. The confidence interval of the difference between the parameters should be 
inspected, which is not part of the output.
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hypothesis of interest. Moreover, what if the CIs do overlap 
a bit and what if there are multiple pairs of cross-lagged 
relationships of interest and some of their CIs do overlap and 
others do not. To straightforwardly investigate the hypothesis 
of interest and quantify its support, model selection is needed.

Instead of the GORICA, the AIC can also be applied to the 
CTmeta results. In that case, the hypotheses of interest 
depicted in Equation 4 are represented by the following: 

H0 : ϕ12 ¼ ϕ21 

Hu : ϕ12; ϕ21;

where H0 is not of real interest but reflects ‘no causal dom-
inance’ and Hu is the complement of H0 and reflects both 
possibilities of causal dominance (i.e., H1 and Hc in 
Equation 4). Since CTmeta does not render likelihood 
values, the AIC is not easily calculated. Fortunately, the 
GORICA weights asymptotically equal the AIC weights in 
case of no order restrictions. Therefore, the GORICA 
weights are calculated and denoted as AIC weights. The 
AIC weights for Hu are displayed in Table 4. When compar-
ing this table to Table 3, it can be seen that the results per 
study differ (columns 3 to 6). The AIC weights have a lower 
minimum and mean and, therefore, a bit higher standard 
deviation. Nevertheless, the conclusion is the same: Some of 
the primary studies are underpowered and there is an advan-
tage of taking studies together since the overall support for 
Hu (column 2) is very high. There is compelling overall 
support for Hu (second column), except for the smallest 
targeted time interval (one day). The difference between 
the AIC and GORICA is how these criteria address the 
theory-based hypothesis H1. Using the AIC, it can be con-
cluded that there is prominent support for unequal cross- 
lagged effects since there is overall support for Hu and not 
for H0. Based on the sizes of the estimates, it can be con-
cluded that this favors H1. This is, however, not 

a quantification of the support for H1. Furthermore, what 
if the interest lies in multiple pairs of cross-lagged para-
meters? Then, the evaluation is less straightforward and 
may even lead to inconclusive results, which is shown in 
Kuiper and Hoijtink (2010) who elaborately compare the 
AIC with the ORIC, the precursor of the GORIC and thus 
GORICA. In sum, like with using confidence intervals, the 
AIC does not offer a straightforward way to investigate the 
hypothesis of interest and quantify its support, while the 
GORICA does.

Performance of GORICA on CTmeta

The advantage of the meta-analysis and model selection on 
the resulting overall estimates is clear: an increased power to 
select the correct hypothesis and ability of evaluating the 
theory-based hypothesis. To examine how well the GORICA 
on CTmeta-analyzed estimates works, a small simulation 
study based on the working example is conducted. The 
procedure above is repeated for various settings for 1,000 
simulated datasets.2 Hence, each iteration in the simulation 
is a meta-analysis on 25 studies, where the GORICA is 
applied to the resulting overall lagged-parameter estimates, 
which is done for several targeted time intervals. The set-
tings that are varied are the effect size in the population 
(large, medium, small, and zero) and the study-specific 
sample sizes (7 different sets). The other setting will remain 
the same: the study-specific time-intervals from Table 1, the 
25 studies, and the 2 variables. The performance of the 
GORICA on CTmeta-analyzed estimates is measured by 
the true hypothesis rate (THR; i.e., the number of times the 
correct hypothesis is chosen) and the mean GORICA 
weights for the correct hypothesis.

The four effect size specifications are based on the popula-
tion values of Φð1Þ in Equation 1, were element (2,1) is varied. 
The specification in Equation 1, using 0.25, reflects a large 
effect size. For the effect size to be medium, small, and zero 
(implying that both cross-lagged relationships are equally 
strong), this element is set to 0.20, 0.17, and .15, respectively. 
At first, the study-specific sample sizes specifications as in 
Table 1 are used. Afterward, all of them are set to 100. Then, 
this is varied by setting the first 1 to 3 sample sizes to 500 or 
1000. This leads to 7 specifications: “Example”, “100”, “100 
and 1 x 500”, “100 and 2 x 500”, “100 and 1 x 1000”, “100 and 
2 x 1000”, and “100 and 3 x 1000”; where the sum of the study- 
specific sample sizes are 13241, 2500, 2900, 3300, 3400, 4300, 
and 5200, respectively.

Based on these settings, datasets are generated for 25 primary 
studies where each primary study measures the lagged relation-
ships between two variables. The same procedure as in the working 
example is used and evaluates H1 and its complement Hc, given in 
Equation 4, with the GORICA. Note that H1 is true for all settings, 
except for the zero effect size setting in which both H1 and Hc are 
true (since the truth is on their border) and they have the same 
complexity. It is expected that the THRs and the mean GORICA 

Table 4. AIC weights for Hu (versus H0), for all 12 unique time intervals considered 
in the meta-analysis. In the second column, AIC weights for the causal dominance 
hypothesis Hu regarding the overall estimates. In columns 3 to 6, some descriptive 
statistics (minimum, maximum, mean, and standard deviation) for the study- 
specific AIC weights for Hu regarding the study-specific lagged-parameter 
estimates.

Per study

Δt� Overall min max mean s.d.

1/365 0.341 0.269 0.296 0.273 0.006
1/12 1.000 0.269 0.935 0.377 0.157
2/12 1.000 0.269 0.997 0.446 0.211
4/12 1.000 0.269 1.000 0.521 0.261
8/12 1.000 0.270 1.000 0.567 0.289
9/12 1.000 0.270 1.000 0.569 0.291
10/12 1.000 0.270 1.000 0.570 0.291
12/12 1.000 0.270 1.000 0.566 0.291
14/12 1.000 0.270 1.000 0.559 0.289
24/12 1.000 0.269 1.000 0.493 0.256
36/12 1.000 0.269 0.985 0.402 0.191
48/12 0.988 0.269 0.779 0.335 0.115

2When simulating data, some samples were discarded. Namely, the ones where the DT-VAR(1) lagged-parameter matrix had at least one negative eigenvalue (since in 
that case there does not exist an underlying drift matrix A) and the ones where the covariance matrices were not positive definite (comparable to negative variance; 
since in that case, CTmeta cannot be performed). For more details see Kuiper and Ryan (2020).
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weights for H1 will go to one, when the effect size and/or combined 
sample size increases. In case of the zero effect size, it is expected 
that the THRs and the mean GORICA weights for H1 is 0.5 (when 
the combined sample size is large enough) since the truth is on the 
border of H1 and its complement and the hypotheses are of equal 
size (i.e., have the same penalty).

The THRs and mean GORICA weights for H1 are plotted in 
Figures 4 and 5, respectively. These figures show that, for a zero 
effect size (Plots a), the hypothesis rate and mean weights for H1 
are around 0.5. Furthermore, the higher the combined sample size, 
the closer these values are to 0.5. Additionally, the figures show 
that the higher the effect size (going from Plots b to d), the higher 
the THRs and mean GORICA weights. Similarly, the higher the 
combined sample size (within Plots b, c, and d), the higher the 
THRs and mean GORICA weights. For a large effect size, the 
THRs are even 1 for all targeted time intervals, meaning full 
support for the true hypothesis.

When inspecting the results across targeted time intervals (i.e., 
various values on the x-axis), it can be seen that the THRs are 
(about) equal, while there is some variation in mean GORICA 
weights. Thus, the (average) support for H1 varies over the targeted 
time intervals, which makes sense since the estimates of the para-
meters of interest do as well (cf. Figure 2). The pattern of the mean 
GORICA weights also resembles the pattern of the lagged- 
parameter curves in the Φ-plot in Figure 2, with the exception of 
the ceiling effect for the mean GORICA weight because it has 
a maximum value of 1. Since, here, the support is still over 0.5, the 
THR does not vary (that much). In case the targeted time intervals 
are that large that the corresponding cross-lagged estimates are 
both near zero, there is a zero effect size setting again and not only 
the mean GORICA weights go to 0.5 but eventually also the THR. 
To demonstrate this phenomenon for the GORICA weights, the 
targeted time-interval range is extended to 10 years (which is 
outside of the range within the primary studies); see Figure 6.

Figure 4. (True) hypothesis rates for H1 (y-axis) for the 12 targeted time intervals (x-axis), 7 sample size sets (colored lines), and 4 effect size specifications (Plot a-d). Note 
that, for a zero effect size (Plot a), both H1 and its complement are true; for the other three, H1 is true.
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GORICA on CTmeta in R

Example R code based on the first 3 out of the 25 studies of the work engagement and burnout working example is given by:

When using GORICA, only the parameters addressed in the theory-based hypotheses, the structural parameters, and 
their covariance matrix are needed. In contrast, the estimates of the residual covariance matrix S2 are so-called nuisance 
parameters and are not needed. In this example, the autoregressive relationships, which are also nuisance parameters here, 
could have been left out. Of course, including or excluding nuisance parameters does not effect the resulting GORICA 
weights.

The code above renders the following output in R:
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From this, it is concluded that the lagged relationship of 
work engagement on burnout is smaller than its reciprocal 
effect; and that the support for this hypothesis is 14 times 
stronger than for its complement (i.e., any other theory) 

which states the opposite ordering in a two-parameter case. 
When inspecting the CTmeta results, this makes sense since 
the overall standardized lagged-parameter estimates in this 
3-studies example are 0.08 and 0.15, respectively.

Figure 5. Mean GORICA weights for H1 (lines with dots) with the 5th percentile (lower lines) and 95th percentile (upper lines) for the 12 targeted time intervals (x-axis), 7 
sample size sets (colored lines), and 4 effect size specifications (Plot a-d). Note that, for a zero effect size (Plot a), both H1 and its complement are true; for the other 
three, H1 is true.

960 KUIPER



Discussion

This paper demonstrates how causal dominance theories 
regarding cross-lagged relationships based on multiple studies 
can be evaluated using the GORICA. A small simulation study 
shows that the properties of this method is good: The support 
for the correct hypothesis (reflected by the THR and the mean 
GORICA weight) increases with combined sample size and 
with effect size and will asymptotically reflect full support. 
Furthermore, the mean GORICA weights are a function of 
the targeted time intervals, like the estimates themselves are.

Only a small simulation study is conducted to show the per-
formance of the GORICA on CTmeta-analyzed estimates. Since 
the results resemble that of the GORICA for a single CLPM and 
a single random-intercept CLPM (RI-CLPM; Hamaker et al., 
2015),3 it is to be expected that the performance will also be 
good for other settings, like a trivariate model. A more extensive 
simulation of the performance of the GORICA on a single (RI-) 
CLPM can be found in Sukpan and Kuiper (unpublished). They 
also investigated the performance for various choices of waves (in 
combination with different choices of the number of persons). 
Additionally, it is also possible to evaluate order-restricted theory- 
based hypotheses on autoregressive (and cross-lagged) relation-
ships. Since most researchers are interested in the comparison of 
reciprocal cross-lagged relationships, only these were investigated. 
Nevertheless, it is to be expected that the performance is the same 
for other types of hypotheses.

Like in the CTmeta article, the key assumption is that the 
underlying process is continuous-time in nature and, thus, the 

same two limitations hold. First, the sampling frequency in the 
primary studies should be sufficiently high to capture the 
dynamics of interest (cf. Shannon, 1984). Second, when oscil-
lating behavior is present in the system of interest, as indicated 
by complex eigenvalues of the lagged-parameter matrix, 
CTmeta breaks down (cf. Hamerle et al., 1991). In that case, 
there is no unique mapping from the discrete-time to the 
continuous-time parameter matrices.

Last but not least, while the interest of researchers is in 
‘causal dominance’ relations, additional assumptions are 
required for the overall lagged parameters to reflect causal 
relationships (cf. Usami et al., 2019). Nonetheless, the avail-
ability of a method to evaluate the ordering of CTmeta- 
analyzed (cross-)lagged parameters is a necessary step on the 
road to establishing any reliable conclusions regarding ‘causal 
dominance’ relationships.
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