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Phytochrome A overexpression can increase harvest index, as

was shown 25 years ago in a breakthrough paper on tobacco

(Robson et al., 1996). The impact of this important discovery

has, however, not been fully developed. Plants at high densities

often respond strongly to nearby competitors by strong elonga-

tion of their internodes and upward bending of their leaves, i.e.,

shade avoidance. This is crucial for plants to ascertain access

to sunlight, and this navigation through vegetation occurs

through light cues that are sensed with various photoreceptors.

A spectacular sensitivity is displayed by sun-loving plants that

can already sense their nearby competitors even before mutual

shading occurs and respond through a first acceleration of shoot

elongation. This anticipatory response is triggered through red

(R):far-red (FR) light-sensitive phytochrome photoreceptors that

detect FR light that is reflected by nearby vegetation. When the

vegetation continues to grow and true shading occurs, there is

also a significant depletion of red and blue light, since the latter

two are absorbed for photosynthesis in the overhead leaves

(reviewed in Pierik and Ballaré, 2021). Plants can respond to

blue light depletion, especially when integrating it with signaling

of FR enrichment in Arabidopsis (de Wit et al., 2016).

Much is known about the core R:FR signaling pathways: FR

enrichment inactivates the phytochrome B (phyB) photoreceptor,

releasing phytochrome-interacting proteins (PIFs, a subgroup of

basic helix-loop-helix transcription factors) from their inactivation

that typically occurs upon interaction with active phyB. As a

result, under FR-enriched light conditions PIFs accumulate and

promote expression of their target genes. Among these targets

are a variety of genes associated with auxin homeostasis, such

as YUCCAs and PINs. Auxin signaling builds up and stimulates

cell elongation in target tissues, such as the hypocotyl or inter-

nodes. This is a highly simplified representation, and all aspects

of the signaling pathway are in fact networks with various positive

and negative regulators, as well as parallel pathways to control

shade avoidance (Pierik and Ballaré, 2021).

In contrast to our relatively detailed understanding of the R:FR-

triggered shade avoidance syndrome (SAS) pathway, knowledge

of the blue light-mediated pathways is scant. It was shown previ-

ously in Arabidopsis that cryptochromes (cry; Wang and Lin,

2020) are the main photoreceptors triggering elongation

responses to blue light depletion (Keller et al., 2011; Keuskamp

et al., 2011) via PIF4 and PIF5 (Keller et al., 2011; de Wit et al.,

2016; Pedmale et al., 2016). The downstream events, however,

remain poorly understood.

In a recent study, Lyu et al. (2021) took an integrated approach,

combining classic and CRISPR/Cas9-based genetic

engineering, transcriptomics, physiology, and field trials, to
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study these processes in soybean (Glycine max) rather than

Arabidopsis. An interesting observation was that low R:FR

ratios majorly induced upward bending of leaves and petiole

elongation, while low blue light (LBL) caused pronounced stem

elongation, implying that low R:FR and LBL are involved in

distinct pathways to regulate different aspects of SAS in

soybean (Figure 1A–1C). They identified seven GmCRY genes,

representing a CRY1 and a CRY2 group, and created knockout

and overexpression lines for these two groups in soybean.

Although cry2 knockouts were rather similar to wild type, cry1

mutant plants (Gmcry1s-qm) displayed severe constitutive

elongation, similar to the effect of blue light depletion on wild

type. GmCRY1b overexpression, on the other hand,

suppressed stem elongation. Consistently, the different

genotypes displayed important differences in their

transcriptome profiles. Expression of two GA2-OXIDASE-7

(GA2OX7) genes was repressed in the cry1 knockout and

elevated in the CRY1 overexpressor lines. GA2 oxidases are

gibberellin (GA) catabolic enzymes that reduce the levels of

growth-promoting, bioactive GA, and transgenic overexpression

of GmGA2ox7a reduced stem length and inhibited LBL-induced

stem elongation in soybean. In accordance with the differential

expression levels between the different cry1 lines, GA concentra-

tions in theGmCRY1b overexpressor were reduced, whereas the

Gmcry1s-qm mutant had elevated endogenous GA1 (Lyu et al.,

2021). Together, these findings indicate that GA regulation by

cry1-mediated blue light signaling could regulate shade avoid-

ance in soybean, consistent with LBL-mediated shade avoidance

in Arabidopsis (Djakovic-Petrovic et al., 2007).

The question that remained was: how is this regulated? Lyu et al.

(2021) observed that two bZIP transcription factor-encoding

genes, STF1 and STF2, with homology to HY5 were upregulated

in the GmCRY1b overexpressor and downregulated in the

cry1 mutant. Overexpression of STF1 and STF2 led to

severe dwarfing, comparable with what was seen in the

GmCRY1b overexpression lines, consistent with elevated

expression of GmGA2ox7-a in the STF1 overexpression line. In

an elegant follow-up, it was confirmed through chromatin immu-

noprecipitation that STFs physically interact with theGmGA2ox7-

a and GmGA2ox7-b promoters. Moreover, STF1 was also

confirmed, using electrophoretic mobility shift and dual-lucif-

erase assays, to promote GmGA2ox-7a expression, and this

was further promoted by co-expression with GmCRY1b.

Based on these findings, the authors propose that blue light-

mediated inactivation of CRY1 reduces STF1 protein
.
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Figure 1. Soybean shade avoidance is
strongly regulated by blue light depletion.
(A) Individually grown plants in full (sun)light

experience high blue light that activates the cry1

photoreceptors. cry1s stimulate STF abundance,

which drives the expression of GA2OXIDASES,

thereby keeping growth-promoting GA1 levels

low.

(B) Upon neighbor proximity, far-red (FR) light is

reflected and thereby enriched between plants,

but this leads to only very minimal elongation in

soybean.

(C) Wild-type plants grown in dense fields expe-

rience low blue (and low red) light conditions due

to shading, resulting in elevated GA1 levels that

stimulate internode elongation.

(D) CRY1 overexpression (GmCRY1b-OE) sup-

presses the low blue light-induced promotion of

internode elongation, which promotes yield.
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accumulation, which subsequently represses the expression of

GA2OX7 genes, resulting in elevated bioactive GA that promotes

elongation in soybean (Figure 1A and 1C).
Reduced shade avoidance could result in more compact plants

that may be more lodging resistant. Of particular interest is that

Lyu et al. (2021) verified the performance of CRY1

overexpression lines under high-density crop field conditions.

They observed that the transgenic GmCRY1b overexpression

lines under high planting density are highly lodging resistant

and have strongly increased yield per plant as compared with

their wild-type controls (Figure 1C and 1D). These findings

indicate that engineering of photoreceptor signaling pathways

offers a huge opportunity for food crop improvement. An

important additional aspect of plant growth at high planting

densities is the trade-off between (shade avoidance) growth

and defense against attackers (Pierik and Ballaré, 2021). The

little evidence available so far suggests that blue light

signaling may not interfere strongly with resistance, unlike

phytochrome-mediated R:FR signaling (Cerrudo et al., 2012).

The newly developed soybean lines with engineered variation

of expression of CRY1 present a powerful tool for verifying,

under agriculturally relevant conditions, to what extent

cryptochromes play a role in the growth-defense trade-off.

The study by Lyu et al. (2021) not only provides novel

insights into soybean photobiology but also set an

inspiring example showing how to boost crop yield through

engineering of photobiology pathways, implying that
Mole
engineering photoreceptor expression is a promising approach

towards crop improvement.
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