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Abstract

Various strategies evolved in plants to adjust the position of organs relative to the prevailing temperature condition, 
which allows optimal plant growth and performance. Such responses are classically separated into nastic and tropic 
responses. During plant thermotropic responses, organs move towards (engage) or away from (avoid) a directional 
temperature cue. Despite thermotropism being a classic botanical concept, the underlying ecological function and 
molecular and biophysical mechanisms remain poorly understood to this day. This is in contrast to the relatively well-
studied thermonastic movements (hyponasty) of, for example, rosette leaves. In this review, we provide an update on 
the current knowledge on plant thermotropisms and propose directions for future research and application.

Keywords:  Hyponasty, nastic movements, thermonasty, thermotropism, tropic movements.

Introduction

Plants are continuously exposed to fluctuating temperat-
ures and need to respond appropriately to diverse cues, from 
freezing to heat stress (Penfield, 2008; Van Zanten et al., 2014; 
Casal and Balasubramanian, 2019; Ding et  al., 2020). With 
a few exceptions, plants lack homeostatic mechanisms to 
maintain body temperature, while almost every process in the 
plant depends on temperature (Penfield, 2008; Quint et  al., 
2016; Ibañez et  al., 2017). Plants therefore evolved diverse 
adaptations to withstand (tolerate) extreme temperatures and 
acclimation mechanisms alike, to maintain optimal perform-
ance under mild suboptimal temperature conditions. Many 
of these adaptations occur at the cellular level. For instance, 
several cold-adapted species contain anti-freeze proteins and 

accumulate high levels of sugar to withstand subzero temper-
atures (Ouellet, 2007; Ritonga and Chen, 2020). At the other 
end of the temperature spectrum, so-called heat shock pro-
teins are induced in response to heat stress. These function as 
molecular chaperones to protect native proteins and remove 
proteins that are damaged beyond repair (Wahid et al., 2007; 
Zhao et  al., 2021). On the physiological level, the balance 
between carbon gain through photosynthesis and carbon 
loss through respiration is affected by temperature (Atkin 
and Tjoelker, 2003; Van Zanten et al., 2014; Perez and Feeley, 
2020), and carbon (sugar) status regulates growth responses 
triggered by high ambient temperature conditions (Hwang 
et al., 2019).
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In addition to cellular and physiological alteration, many 
plant species respond to adverse temperatures by altering the 
growth direction of their organs. Such unilateral growth re-
sponses are classically divided into two types. On the one hand, 
tropisms are directional growth responses triggered by a unilat-
eral stimulus (Gilroy, 2008). This differs from nastic responses, 
on the other hand, that are considered to occur independent of 
the orientation vector of the environmental stimulus. Here, we 
focus on the underexplored plant thermotropic responses (Fig. 
1). We discuss the current knowledge, and directions for future 
research and applications thereof are proposed.

A brief history of thermotropism research

The term thermotropism was first coined by Philippe van 
Tieghem of the Muséum d’Histoire Naturelle in Paris (Van 
Tieghem, 1884). He noted that subjection of a plant to uni-
lateral temperature cues results in faster growth on the side 
facing an optimum temperature, leading to curvature of the 
stem. Wortmann (1885) subsequently conducted thermo-
tropism assays with roots of lentils (Ervum lens, syn. Lens 
culinaris), maize (Zea mays), pea (Pisum sativum), and runner 
bean (Phaseolus multiflorus). Throughout these species, he ob-
served positive (temperature engagement) and negative (tem-
perature avoidance) thermotropisms (Fig. 1A), depending 
on the temperature used, except for runner bean where 

only negative thermotropism was noted (Wortmann, 1885). 
Following these early observations, experimental research 
on plant thermotropisms peaked in the first two decades of 
the 20th century, and thermotropic responses were described 
in diverse species (Burwash, 1907; Eckerson, 1914; Hooker, 
1914). The results appeared to be species dependent, and both 
positive and negative responses were noted, whereas others 
failed to detect thermotropic responses altogether, possibly 
due to issues with the experimental set-ups (Hooker, 1914). 
For a historical overview of the early years of thermotropic 
research, we refer the reader to Aletsee (1962).

Wortmann (1885) and Burwash (1907), and later others 
(Onderdonk and Ketcheson, 1973), observed that tempera-
ture affects the direction of root growth of maize, but it took 
until the early 1990s before the first solid evidence from well-
controlled experiments indicated that maize roots indeed re-
spond to thermogradients perpendicular to the root axis (Fortin 
and Poff, 1990, 1991), which we were able to confirm (Fig. 
1B, C). Later it was found that temperature enhanced negative 
phototropism of rice roots (Orbović and Poff, 2007). At least 
in maize, the thermotropic root growth response occurred in-
dependent of the initial root orientation, as both roots that 
were positioned vertically (in line with the gravitational vector; 
Fig. 1A) and those positioned horizontally (perpendicular to 
the gravitational vector) responded to temperature (Fortin and 
Poff, 1990, 1991). Primary maize roots display positive thermo-
tropism when placed in a horizontal temperature gradient in 

Fig. 1. Root thermotropisms in plants. (A) Roots (and shoots alike) of some plant species can display positive (orientation towards warmth) or 
negative (orientation towards cold) thermotropic growth, relative to the gravitropic vector. Thermotropic root bending is caused by differential cell 
elongation between opposite sides of the root. (B and C) Recapitulation of maize thermotropism experiments. (B) Overlay of a representative thermal 
capture of the experimental set-up (background) and a bright field image of the used maize Zea mays L., ‘Mikado’ caryopses (foreground) of the 
same experiment. Seeds were pre-germinated on Petri dishes with nutrient medium including 1% (w/v) sucrose at 28 °C, 16 h light/8 h dark, 90 µmol 
m−2 s−1 photosynthetically active radiation. Plates with 1–2 cm long straight vertical radicles were selected and placed for 24 h perpendicularly to an 
aluminium heating plate (on the left in B) connected with a compact temperature-controller HT60 (Hillesheim GmbH) in a growth chamber set at 20 °C, 
under complete darkness. The heating plate was set to 45 °C, which established a temperature gradient from one side of the Petri dish to the other 
(temperatures are indicated). Control plates (20 °C) were kept in the same conditions but in the absence of a heat source. At the end of each experiment, 
the thermo-image was captured using forward-looking infrared (FLIR) and bright field imaging. Next, the root bending angle was measured between 
the original root tip position (marked before heating treatment) and its final direction, relative the gravitropic vector. (C) Quantification of thermotropism 
experiments including that shown in (B). Box plots show medians, interquartile ranges, and single data points. A Welch two-sample t-test was used to 
statistically compare the data. Fig.1A was created with BioRender.com.
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complete darkness (Fortin and Poff, 1991), if cultivated in the 
temperature range below 26 °C (Fortin and Poff, 1990, 1991). 
Higher temperatures, starting from ~34 oC, however, resulted 
in negative thermotropism. Under cold conditions (15 °C as 
the set point temperature of the gradient), a thermotropic re-
sponse was noted (Fig. 1A), whereas gravitropism was more 
pronounced at higher temperatures, starting from ~19  °C 
(Fortin and Poff, 1991).

Temperature effects on other tropic 
responses

Albeit not a direct thermotropic response, (para)heliotropic 
movements of floral organs are also closely associated with 
temperature. Heliotropic leaf movement in common bean 
(Phaseolus vulgaris) is controlled by air temperature, and leaves 
are positioned such that photosynthesis is close to the thermal 
optimum (Fu and Ehleringer, 1989). Furthermore, high tem-
peratures stimulated paraheliotropic movements of leaves in 
Phaseolus acutifolius, which is probably an adaptive heat avoid-
ance strategy in this species native to hot, sunny, arid habitats 
(Yu and Berg, 1994). Indeed, leaf movement capacity in beans 
was shown to function in direct sunlight avoidance and bene-
fited the plant by protecting it against photoinhibition and by 
maintaining leaf temperatures lower than the air temperature 
(Pastenes et al., 2004a, b).

The apparent opposite is seen in sunflowers and some al-
pine species in which heliotropic movements function in floral 
warming. Young sunflower (Helianthus annuus) floral heads, but 
less so mature floral heads that underwent anthesis, track the 
sun from east to west during the day and reorient during the 
night. In an elegant study, Atamian et al. (2016) demonstrated 
that these heliotropic movements promote growth and the 
response is believed to depend on the phytohormones auxin 
and gibberellin to control differential elongation on opposite 
sides of stems. The authors also showed that eastward-oriented 
flower disks, receiving solar irradiation in the morning, warmed 
up more quickly than those that were experimentally forced 
to face westwards. This warming coincided with significantly 
increased pollinator visits. Interestingly, pollinator visits also in-
creased when westward-facing heads were artificially warmed 
with heaters. It was therefore concluded that heliotropic leaf 
movements increase fitness by enhancing pollination through 
floral warming. Similar findings were reported for various al-
pine species where heliotropism of bowl- and disc-shaped 
flowers contributes to floral warming in the cold moun-
tainous environment. This indirectly stimulates plant fitness 
through increases in seed size and maintenance of an optimal 
energy balance for growth and reproduction, and directly by 
increasing insect pollinator visitations (Luzar and Gottsberger, 
2001; Galen, 2006). The work of Galen (2006) in addition 
showed that heliotropic movement in alpine snow buttercup 
(Ranunculus adoneus) at the same time is a mechanism to avoid 

heat stress via stimulating evaporative cooling by enhanced 
water uptake.

Molecular and biophysical mechanisms 
underlying thermotropism

It is evident that both long- and short-term thermotropic re-
sponses can be discerned, which may very well have different 
mechanistic causes. Turgor pressure plays a role in the short-
term leaf petiole collapse of Mimosa pudica at cold temper-
atures, resulting in leaf folding (Barrett and Barrett, 2016). 
Similarly, warmth-induced thermotropisms may be due to 
relatively high transpiration at the warmth-facing side of tis-
sues, resulting in swift turgor loss followed by curved growth/
movements. However, to the best of our knowledge, no con-
clusive experimental evidence for the latter exists. Long-term 
effects such as root curvature responses may work differently. 
Yet, Eckerson (1914) concluded that slow root thermotropic 
movement is also due to turgor loss and cell shrinkage at one 
side of the root as a consequence of temperature-mediated 
changes in permeability. It was suggested that whether a species 
exhibits positive or negative curvature depends on the ability 
of high temperature to increase or decrease permeability.

The best-studied example of turgor-driven thermotropism is 
the inward leaf rolling response seen in evergreen Rhododendron 
species in freezing cold conditions. However, it can be debated 
whether this response is a bona fide tropic response or should 
be considered a thermonastic movement, as the directionality 
of the stimulus is not clear. Turgor pressure in the petiole plays a 
pivotal role in the effectuation of Rhodondendron leaf rolling 
(Nilsen, 1987), and leaves are able to unroll within minutes 
upon transfer to warmth. By rolling inward, the leaves become 
droopy and position close to the stem (Harshberger, 1899). It 
is proposed that this allows for efficient shedding of snow and 
ice, and protects the sensitive lower side of the leaves, that bear 
the stomata, against excessive water loss through transpiration 
in water-limited frozen soils (Harshberger, 1899). More recent 
work questioned this ‘desiccation theory’, however, and argued 
that leaf rolling is mainly induced to prevent photo-damage 
and membrane damage during cold harshness (Nilsen, 1992; 
Nilsen et al., 2014). Support for this hypothesis came from the 
observation that cold acclimation in Rhododendron species in-
volves decreases in proteins related to photosynthesis and in-
creases in those involved in cell membrane permeability (Die 
et al., 2017). In any case, all of the reported aspects certainly 
make sense for the many Rhododendron species of cold tem-
perate regions. A  recent study combining leaf dissection and 
mathematical modelling provided mechanistic insight into the 
mechanical forces of Rhodondendron leaf rolling. It appears 
that longitudinal expansion of the leaves amplifies the trans-
verse rolling event around the stiff midrib during cold stress 
(Wang et  al., 2020). Despite these insights into the biophys-
ical basis, the physiological trigger, ecological function, and 
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molecular regulation of the supposedly tropic leaf rolling re-
sponse remain far from being understood.

Besides involvement of turgidity, it is likely that auxin plays 
a pivotal role in thermotropic (root) curvature responses, as 
most, if not all, differential growth responses depend on this 
phytohormone. This is true especially in roots where auxin 
gradients are redefined in response to the gravitropic vector 
(gravitropism), soil water availability (hydrotropism), and touch 
(thigmotropism) (reviewed in Su et  al., 2017; Muthert et  al., 
2020). As a result of auxin accumulation, cell elongation is lo-
cally inhibited, and the root consequently bends due to elong-
ation of cells at the opposite side (Fig. 1A).

A similar, yet opposite, effect is typically found in the shoot, 
where auxin is associated with increased cell elongation 
(Esmon et  al., 2006). Auxin has been linked to temperature-
mediated bending of Arabidopsis inflorescence stems (Wyatt 
et  al., 2002). When placed horizontally, inflorescence stems 
quickly start to reorient against the gravity vector and initiate 
upward bending in control temperature conditions (23  °C) 
(Fukaki et al., 1996). This negative shoot gravitropism response 
was absent at 4 °C but, when shifted back to a vertical position 
at 23 °C, the inflorescence started to bend. Similar results were 
obtained using sunflower hypocotyls that failed to respond to a 
gravitropic stimulus when positioned horizontally at 4 °C but 
started to curve when placed vertically at 20 °C (Brauner and 
Hager, 1958). This suggests that sensing of gravity was intact 
in the cold-treated horizontal stems of both species, but that 
effectuation of the bending response was over-ruled by the 
cold. A later study confirmed that starch-statoliths required for 
gravity sensing indeed sedimented normally at cold temper-
atures, but that auxin transport required for the bending was 
abolished at 4 °C (Wyatt et al., 2002).

In addition to auxin, temperature signalling and acclimation 
responses are tightly regulated by a number of interconnected 
phytohormones such as gibberellins, brassinosteroids, ethylene, 
and abscisic acid (Van Zanten et al., 2009, 2010, 2014; Bours 
et al., 2013; Quint et al., 2016; Casal and Balasubramanian, 2019; 
Park et al., 2019; Muthert et al., 2020). Because their involve-
ment in thermotropic responses is currently unknown, their 
signalling and biosynthesis components pose interesting targets 
for future reverse genetic studies into the molecular networks 
regulating thermotropism, with auxin as a prime candidate.

As well as the involvement of phytohormones, the 
SHOOT GRAVITROPISM 5 (SGR5) protein is part of 
the thermosignalling pathway regulating gravitropism in 
Arabidopsis (Kim et al., 2016). Two alternative splicing versions 
of this zinc finger transcription factor were identified (SGR5α 
and SGR5β) and their relative levels are temperature de-
pendent. At high temperatures, levels of the truncated SGR5β 
form are elevated relative to those of the full-length bioactive 
SGR5α form. Both variants heterodimerize, whereby SGR5β 
suppresses SGR5α function. Temperature regulation of SGR5β 
levels therefore provides a direct thermosensory input to the 

gravitropism response. Indeed, gravitropic bending of the in-
florescence was induced at high temperatures in wild-type 
plants and lines overexpressing SGR5α, whereas overexpression 
of SGR5β led to temperature-independent suppression of in-
florescence bending against the gravitropic vector. It is known 
that starch levels are low and starch-statolith sedimentation is 
disrupted in sgr5 mutants (Tanimoto et al., 2008). This suggests 
that temperature perception modulates this gravity-sensing 
mechanism directly (Kim et  al., 2016). Warm temperatures 
(upstream of statolith sedimentation) (Tanimoto et  al., 2008) 
and cold temperatures (downstream of statolith sedimentation) 
(Wyatt et al., 2002) thus may modulate gravitropic bending of 
the inflorescence stem via distinct molecular signalling path-
ways in Arabidopsis.

Discussion and outlook

Pioneering efforts demonstrated the existence of direct and 
indirect thermotropism events in planta (Fig. 1A–C). However, 
despite the fact that the subject has received attention from 
scholars for over a century, it remains surprisingly under-
studied, and the molecular networks and biophysical mech-
anisms are still largely unknown. The occurrence of root 
thermotropism in natural and agricultural field settings is not 
yet experimentally validated. We can therefore only speculate 
about the ecological significance of root thermotropism and 
its possible applications. We hypothesize that thermotropism 
may be a mechanism to avoid root-dense soils. The presence of 
aboveground vegetation is known to have a tempering effect 
on soil temperature absorption, due to (partial) sunlight inter-
ception and reflection by foliage (Ni et al., 2019). However, the 
presence of vegetation obviously also comes with belowground 
competition with neighbouring root systems for resources (e.g. 
water, nutrients, minerals, and the microbiome). We here pro-
pose that positive thermotropism could be a mechanism to en-
gage roots in warm patches of soil with plenty of resources and 
relatively limited occurrence of neighbouring roots.

Thermotropism differs from the temperature-mediated 
opening and closing of flowers of tulips and crocus (Crombie, 
1962) and the typical upward leaf movement responses seen 
in several rosette species in response to mild high temper-
atures and heat stress (Van Zanten et al., 2009, 2010; Vasseur 
et al., 2011; Bours et al., 2013; Ibañez et al., 2017; Park et al., 
2019), both referred to as thermonasty. Thermonasty of rosette 
leaves is considered primarily a heat stress avoidance strategy, 
induced to evade overheating by direct solar heat flux on the 
leaves. Moreover, thermonasty enhances leaf cooling capacity 
by stimulating evaporation (Crawford et  al., 2012; Bridge 
et al., 2013). Indeed, elegant use of infrared thermography and 
Arabidopsis mutants in PHYTOCHROME INTERACTING 
FACTOR 4 (pif4-2), disrupted in temperature responsiveness, 
indicated that thermonastic leaves are cooler than their hori-
zontally oriented counterparts in warm environments (Park 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/72/21/7414/6273781 by U

trecht U
niversity user on 20 D

ecem
ber 2021



7418 | van Zanten et al.

et al., 2019). Others, however, reasoned that thermonasty may 
serve particularly to enhance shade avoidance (Casal and 
Balasubramanian, 2019). Indeed, thermonasty negatively scales 
with light intensity levels (Van Zanten et  al., 2009; Vasseur 
et al., 2011). This is considered beneficial, because carbon gain 
is hampered in shaded conditions, and warmth puts a par-
ticular burden on carbon loss via respiration. Thus, evading 
shade conditions at warm temperatures may be a necessity 
to restore carbon balance in certain environments (Casal and 
Balasubramanian, 2019). However, hyponasty is not the only 
way plants position their leaves to avoid heat. Similar to hypo-
nastic movements, but in the opposite direction, is the be-
haviour of some hot climate specialists. Eucalyptus spp., for 
example, allow their leaves to hang vertically to reduce ra-
diation load, which helps to prevent them from overheating 
and creates the so‐called shadeless forests (Hirons and Thomas, 
2018). In this case, however, it is unlikely that shade avoidance 
is the driving factor of this response.

Future work should elucidate whether there are com-
monalities in thermotropic and thermonastic responses be-
tween plant species on both the physiological and functional 
ecological level. It would also be interesting to test whether 
similar tropic responses between species on the one hand, 
and between different organs (e.g. roots and leaves) on the 
other hand, depend on conserved molecular signalling net-
works. Interestingly, a role for mechanosensitive Ca2+-selective 
cation co-channels has been hypothesized to contribute to 
both thermotropic and thermonastic responses, as (tension-
dependent) activity of plasmalemma-located mechanosensitive 
Ca2+-selective cation co-channels, at least in onion epidermal 
cells, are highly dependent on temperature (Ding and Pickard, 
1993). However, no experimental evidence was presented to 
validate this proposition.

Roots appear highly sensitive to temperature changes, as 
thermotropic responses of maize roots were noted in response 
to a gradient of only 0.5  °C cm–1 (Fortin and Poff, 1991), 
which is a relatively small difference when the background 
temperature is considered (Staves et  al., 1992). Therefore, 
it is unlikely that the tropic movement is due to a passive 
temperature-triggered increase in enzymatic activity of, for 
example, cell wall-loosening enzymes. Rather, this hints at 
the existence of a specific and sensitive thermosensory mech-
anism in the root that actively controls the tropic movement. It 
would be interesting to test whether one of the thermosensing 
mechanisms that were recently identified plays a role in regu-
lation of thermotropism (Jung et al., 2016, 2020; Legris et al., 
2016; Chung et al., 2020). However, since these thermosensors 
are all either classified as light sensors (phytochrome B; Jung 
et al., 2016; Legris et al., 2016) or function as transcriptional 
regulators directly downstream of light-sensing events (PIF7; 
Chung et al., 2020 and EARLY FLOWERING 3; Jung et al., 
2020), it is very possible that root thermotropisms depend on 
as yet unknown thermosensing events.

To the best of our knowledge, direct thermotropic responses 
have not (yet) been identified in Arabidopsis thaliana, which 
complicates studies of the molecular and genetic networks 
controlling thermotropisms and root thermosensing. With in-
creased availability of genetic and genomic resources for spe-
cies such as tomato, maize, wheat, rice, and the monocot model 
Brachypodium, it is becoming increasingly more feasible to by-
pass the Arabidopsis model (Chang et al., 2016; Scholthof et al., 
2018). This opens up avenues to study the genetic architecture 
of thermotropisms directly in (more) agriculturally relevant 
species (Fig. 1).

Several studies report that temperature also closely interacts 
with phototropic, heliotropic, and gravitropic responses in this 
model species. Orbović and Poff (2007), for instance, found 
that low temperatures prolong the lag phase of phototropic 
bending of the hypocotyl, whereas bending rates decreased 
slightly. We suggest that such indirect effects of temperature on 
tropisms can function as a starting point for investigations on 
the molecular regulation of thermotropic responses.

With regards to applications, unravelling the molecular 
mechanisms underpinning thermotropisms can facilitate 
knowledge-based development of thermotolerant crop var-
ieties that perform optimally under a given temperature set-
ting. Moreover, inclusion of externally applied thermal signals 
can be instrumental in guiding organ growth in plant-based 
life support systems that are necessary for future long-term 
space exploration programmes and planet colonization (Lasseur 
et al., 2006; Muthert et al., 2020) where gravitropy, the dom-
inant tropic signal on Earth, is absent or reduced. Moreover, 
the biomechanical principles of leaf thermotropism can be 
industrially applied in development of biomimetic thermally 
adaptive building coverings. While bending outwards from 
the building can avoid excess warming by dissipation of solar 
radiation, bending inwards/closing can insulate the building 
(Barrett and Barrett, 2016). A  matching natural ‘role model’ 
for this already exists. Silver lime (Tilia tomentosa) trees invert 
their leaves during hot spells to reveal the characteristic sil-
very underside of the leaf (made up from leaf hairs), which 
reduces the heat load on their crown by reflecting light and 
thereby helps to prevent injury from high leaf temperatures 
(Hirons and Thomas, 2018). However, we are only at the verge 
of appreciation of, as Darwin himself recognized, ‘the power 
of movement of plants’ (Darwin, 1880), and this is true for 
thermotropisms in particular.
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