
Information and Software Technology 133 (2021) 106535

A
0

A
d
T
a

b

A

K
R
S
T
A
G
C
A

1

e
r
a
c
a
i
a
a
p

r
l

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

lignment and granularity of requirements and architecture in agile
evelopment: A functional perspective
jerk Spijkman a,b,∗, Sabine Molenaar a, Fabiano Dalpiaz a, Sjaak Brinkkemper a

Utrecht University, The Netherlands
fizor., The Netherlands

R T I C L E I N F O

eywords:
equirements engineering
oftware architecture
win Peaks
lignment
ranularity
ase study
gile development

A B S T R A C T

Context: Requirements engineering and software architecture are tightly linked disciplines. The Twin Peaks
model suggests that requirements and architectural components should stay aligned while the system is
designed and as the level of detail increases. Unfortunately, this is hardly the case in practical settings.
Objective: We surmise that a reason for the absence of conjoint evolution is that existing models, such as the
Twin Peaks, do not provide concrete guidance for practitioners. We propose the Requirements Engineering for
Software Architecture (RE4SA) model to assist in analyzing the alignment and the granularity of functional
requirements and architectural components.
Methods: After detailing the RE4SA model in notation-independent terms, we propose a concrete instance,
called RE4SA-Agile, that connects common artifacts in agile development, such as user stories and features.
We introduce metrics that measure the alignment between the requirements and architecture, and we define
granularity smells to pinpoint situation in which the granularity of one high-level requirement or high-level
component is not uniform with the norm. We show two applications of RE4SA-Agile, including the use of the
metrics, to real-world case studies.
Results: Our applications of RE4SA-Agile, which were discussed with representatives from the development
teams, prove to be able to pinpoint problematic situations regarding the relationship between functional
requirements and architecture.
Conclusion: RE4SA and its metrics can be seen as a first attempt to provide a concrete approach for supporting
the application of the Twin Peaks model. We expect future research to apply our metrics to additional cases
and to provide variants for RE4SA that support different concrete notations, and extend the perspective beyond
the functional perspective of this research, similar to what we did with RE4SA-Agile in this paper.
. Introduction

Requirements engineering (RE) and software architecture (SA) are
ntangled disciplines. Nuseibeh’s Twin Peaks model [1] describes how
equirements and architecture undergo conjoint evolution: while they
re separate activities, the former guides the latter and the latter
onstrains the former. The relevance of the Twin Peaks has been clearly
cknowledged by the research community [2] and open challenges ex-
st [3] including communication, preserving architectural knowledge,
nd reconstructing requirements. Previous work has also proposed
daptations of the Twin Peaks, e.g., for agile development of software
roducts [4] and for product lines with variability [5].

Our work focuses on the role of artifacts in particular, functional
equirements and functional architectural models to support the col-
aboration within and across disciplines. Researchers have pointed out

∗ Corresponding author at: Utrecht University, The Netherlands.

how software engineering is a social activity among humans [6] and
have shown the key role of communication among the various domains
of software engineering [7].

Communication problems affect both RE and SA. In RE, flawed
communication is a prevalent cause of project failure [8]. This is
exacerbated by the fact that user and client needs change continuously,
leading to volatile requirements [9,10]. While written artifacts are
common in RE, SA suffers from the lack of proper documentation,
leading to heightened risks of architectural drift and erosion, as well as
increased costs and a decrease in software quality [11]. Finally, changes
in requirements have been shown to endanger component reuse [12].

In this paper, we support improved communication between RE and
SA by providing concrete guidance for the conjoint evolution of require-
ments and architecture. While previous works identified challenges in
vailable online 29 January 2021
950-5849/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a

E-mail address: tjerk@fizor.io (T. Spijkman).

ttps://doi.org/10.1016/j.infsof.2021.106535
eceived 15 July 2020; Received in revised form 16 January 2021; Accepted 18 Ja
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

nuary 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:tjerk@fizor.io
https://doi.org/10.1016/j.infsof.2021.106535
https://doi.org/10.1016/j.infsof.2021.106535
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106535&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 133 (2021) 106535T. Spijkman et al.
applying the Twin Peaks model [1,3,4], they did not specify how to
tackle them. The main research question (MRQ) of our research is as
follows:

MRQ. How to assist agile development teams in applying the Twin Peaks
model?

While the Twin Peaks model concerns both functional and non-
functional aspects [3], we focus here only on functional requirements
and functional architecture, which are hard to align in the context of
software products [4]. We leave the study of the even more intricate
non-functional perspective to future research.

The Twin Peaks model considers a vertical dimension (within RE
and within SA) and an horizontal dimension (across RE and SA).
We study both dimensions through the notions of granularity and
alignment, respectively. Thus, we divide the MRQ into two research
questions (RQs) regarding the two dimensions:

RQ1. How to assist in achieving uniform granularity within and between
functional requirements and architecture specifications?

RQ2. How to assist in establishing and maintaining alignment between
functional requirements and architecture specifications?

In this research, we focus on functional requirements within the
context of software products. This type of requirement is particularly
relevant because new functional requirements emerge to adapt a prod-
uct to specific customers, to reap technological opportunities, and to
realize the product strategy [13]. Future work should complement our
perspective with the study of quality requirements, which are cross-
cutting concerns that spread across multiple components1 [14,15].
While we acknowledge that there are multiple views on software
architecture, our focus is on providing techniques for reconciling the
artifacts from RE and SA, rather than on the processes involved in the
creation of those artifacts.

We present the Requirements Engineering for Software Architecture
(RE4SA) model that links functional requirements and architectural
components. Fig. 1 overlays the RE4SA concepts over the Twin Peaks
model [1]; the conjoint evolution is represented by the spiral arrow that
aligns artifacts from both disciplines2 while increasing the granularity
from high-level to detailed. In an effective application of RE4SA, high
level requirements are aligned with high level architecture, just like
detailed requirements are aligned with detailed architecture.

We borrow the definition of software architecture by Bass et al.
[16]: ‘‘The software architecture of a system is the set of structures
needed to reason about the system, which comprise software elements,
relations among them, and properties of both’’. As mentioned in earlier
paragraphs, we particularly focus on the artifacts that document the
functional view of the software. While the components of a soft-
ware architecture can be justified by multiple requirements, we assume
here that a functional requirement mainly describes a single functional
component.

In this research, we build on our earlier work [17]. More specifi-
cally, we extend the set of metrics to cover the granularity dimension of
the model. Additionally, we position a general version for our instance
of RE4SA, and we revise and extend the case studies and literature
sections. Finally, we add running examples to the paper to illustrate
the concepts that we introduce.

1 In this research, we refer to components in the general definition of the
word: ‘‘A part or element of a larger whole’’. While we are aware there are
different connotations within software architecture, we feel this best conveys
our message.

2 We use the term alignment instead of implementation dependence (from the
Twin Peaks model) to better emphasize the fact that the architecture may lead
to new needs that were not indicated in the requirements.
2

Fig. 1. RE4SA — Twin Peaks overlay.

The RE4SA model is intended as a guideline to applying the Twin
Peaks model and a means to facilitate communication and system
specification. While this solution requires some upfront work, aimed at
creating or recovering the architecture and linking the requirements,
we expect it to decrease rework in the subsequent development phase.
Specifically, we make the following contributions:

• We present the RE4SA general model for linking RE and SA
artifacts, and one concrete instance for agile development called
RE4SA-Agile [17,18], which includes user stories, among other
notations.

• We introduce granularity smells and metrics as a mechanism to
pinpoint RE or SA artifacts that are excessively coarse-grained or
excessively fine-grained compared to the norm. The thresholds
for identifying these smells have been determined empirically
through the analysis of eleven real-world requirements datasets.

• We introduce metrics for analyzing in a quantitative manner the
alignment degree between RE and SA artifacts.

• We report on two case studies that apply RE4SA-Agile for the
purpose of architecture discovery and architecture recovery, re-
spectively. We analyze the data both in terms of granularity and
alignment.

The datasets used in this paper, which represent RE and SA artifacts,
are made publicly available for transparency and to promote their
reusability.3

Research approach. Our approach is predominantly empirical. We an-
swer RQ1 and RQ2 (which are ‘‘how’’ questions) by proposing multiple
design artifacts: (i) the RE4SA and the RE4SA-Agile models that rep-
resents the artifacts in the RE and SA domains and the relationships
therein; and (ii) metrics that allow measuring the degree of granu-
larity (RQ1) and alignment (RQ2). In particular, based on industry
standards and well-known concepts, the RE4SA model for agile devel-
opment has been previously proposed and applied it using field study
to two real-world cases without interference [17]. This version is called
RE4SA-Agile here. We introduce the RE4SA general model and we
conduct theory building by formulating metrics that can be used to
assess the granularity (RQ1) and alignment (RQ2) of artifacts covered
by the model. We define specific hypothesis (H1 and H2 in Section 6)
that allow us to conduct a first validation of the metrics through an
application to the real-world cases, leading to additional findings.

3 The dataset can be found at https://sandbox.zenodo.org/record/679359
or found through DOI http://dx.doi.org/10.5072/zenodo.679359.

https://sandbox.zenodo.org/record/679359
http://dx.doi.org/10.5072/zenodo.679359

Information and Software Technology 133 (2021) 106535T. Spijkman et al.
Organization. Section 2 discusses background work. In Section 3, we
present the RE4SA model and RE4SA-Agile specification, followed by
the granularity metrics in Section 4 and alignment metrics in Section 5.
Section 6 illustrates how the RE4SA-Agile model and its metrics can
be applied in practice, using two case studies. A discussion on the
research and validity threats can be found in Section 7, followed by
the conclusion and future research in Section 8.

2. Background: Granularity and Alignment of RE and SA artifacts

Agile development methods have changed how software is created,
development is more iterative and a focus shift from documentation to
communication [19]. This in turn has impacted and created challenges
for the RE and SA domains as the context for their activities has
changed. Instead of detailed system specifications, requirements are
documented in formats better suited to agile development, like user
stories, prototyping, and scenarios [20]. Agile requires incremental
construction of a product’s functionality, this calls for a modular ar-
chitecture with minimal coordination with other modules and easy to
extend [21].

In Section 2.1, we first discuss research related to the Twin Peaks
model to provide an overview of similar approaches in the relationship
between RE and SA. After that, we review literature that is relevant to
the two relationships as seen in Fig. 1: granularity and alignment, in
Section 2.2 and Section 2.3, respectively.

2.1. Twin peaks

The Twin Peaks model [1] details the tight relationship between
RE and SA, and supports the iterative specification of both the re-
quirements and architecture suited to Agile. Rashid et al. [22] focus
on identification of conflicting aspects and determining trade-offs in
the requirements before deriving the architecture. However, their ap-
proach is not based on iterative development. Ameller et al. [23]
performed an empirical study on how non-functional requirements
impact architecture design in practice. Whalen et al. [24] build on
the Twin Peaks mindset and argue for co-evolution of RE and SA
in hierarchical systems, stating that these are often designed on a
middle out approach on granularity, both abstracting and refining the
requirements and architecture. The COSMOD-RE [25] method positions
a co-design approach for RE and SA, by applying requirements and
architecture viewpoints to four layers of abstraction for system design.
Similarly, the CBSP approach is an approach that can be applied to
design an architecture from a set of requirements [26]. Brandozzi and
Perry investigated a specification language to derive architecture and
state constraining requirements [27,28]. The Global analysis activities
and artifacts described by Hofmeister et al. [29] serve to reduce the gap
between RE and SA. Van Lamsweerde [30] positions an approach that
considers the relation between RE and SA when designing alternative
ways to cope with a requirement. In their research, when alternative
ways to achieve goals in goal-oriented RE are considered, the impact
on architecture is considered to constrain the requirements and deter-
mine the best way to evolve the software. Hall et al. [31] extend the
research on problem frames [32] and bring it within the context of the
Twin Peaks model. The reciprocal Twin Peaks model [4] extends the
Twin Peaks model by specifying how the domains can be linked by
considering the responsibilities in both and further links the model to
agile development.

2.2. Granularity

From a functional perspective, software can be decomposed into
components that contain different functionalities and have their own
responsibilities [33]. This decomposition is commonly referred to as a
module(-based) structure [16,34]. Modules should contain functional
responsibilities, which are divided based on the principle of separation
3

of concerns. Such modules are broken down into smaller so-called
submodules until they are small enough to be understood [16]. Sub-
modules should have no overlapping responsibilities, but should jointly
contain all the responsibilities of the module they are a part of [34].

In more detail, software requires capabilities to implement features
that are expected of application in a certain domain. We take the
definition of feature by Apel and Kästner [35]: ‘‘a unit of functional-
ity of a software system that satisfies a requirement, represents a design
decision, and provides a potential configuration option’’. We acknowledge
that architecture granularity can encompass more than the functional
perspective discussed in this section, for example, the quality and
performance of a solution. However, we do not cover this in the related
works as these surpass the scope of the research.

Decomposing a complex system into discrete parts that can commu-
nicate with each other allows for a more manageable representation of
the system, this process is also referred to as modularization [36]. There
is no single approach to modularization or decomposition. However,
since the nature of modularity is the same across software engineering
activities, we can learn from examples set by other fields. One such
example is Business Process Management, which applies modularity
by decomposing processes into subprocesses. Davis [37] states there
is no objective approach to determining the correct level of granu-
larity. To that extent, it cannot be said with full certainty whether
a subprocess should be on the lowest level of granularity or the one
above. Instead, consistency in the levels of granularity is key. Reijers
et al. [38] describe three criteria to determine whether nodes should
be included in the same subprocess or in separate subprocesses: (i)
block-structuredness, (ii) connectedness, and (iii) similarity of labels.
Firstly, block-structuredness refers to whether the process has a single
entrance and a single exit. Arguably, this criterion can be applied to
modules. However, the input and output flows of modules are less
apparent and the size of the modules should be taken into account to
avoid elements that have disproportionately high amount of functional-
ity [14]. Secondly, scenario overlays [39] can be utilized to determine
the connectedness of features (nodes) within modules (subprocesses).
Thirdly, the similarity of labels can applied to both the requirements
and architecture. Requirements and architecture components can be
grouped together based on commonalities in the artifacts. For instance,
a feature called login to system is more likely to belong to the same
module as the recover password feature, than the request travel
expense feature.

None of these criteria, however, give any indication on the number
of elements to include in a group. Metrics defined by e Abreu and
Goulão [40] provide guidance on how many classes a module should
contain in relation to Object-Oriented systems. They base the (relative)
size of modules on the relative dispersion of classes, to mitigate the
effect of modules with skewed distributions. They divide the total
number of classes by the total number of modules, this result then
divides the difference between the highest number of classes contained
in a module and the lowest number of classes, to determine the relative
module dispersion.

Even if a requirement has good quality features, it can still be neg-
atively impacted by its granularity. A flaw in the granularity can mean
that a user story is either too concrete, or too abstract in the system
scope [41]. This could, for example, lead to user stories that cause
difficulty in determining the effort estimate, are difficult to implement
as they are too abstract, or limit the developer if they are too strict.
Liskin et al. [41] suggest assessing the granularity of a user story based
on the expected implementation duration. España et al. [42] note that
an analyst relies on methodological guidelines to encapsulate concepts.
They use unity criteria to determine the granularity of encapsulation,
and identify two type of granularity errors: (i) functional fragmentation
error, when two or more encapsulations should have been modeled
as a single encapsulation, and (ii) functional aggregation error, when
one functional encapsulation should have been modeled as two or

more encapsulations according to the unity criteria. Kästner et al. [43]

Information and Software Technology 133 (2021) 106535T. Spijkman et al.

w

discuss similar difficulties in granularity for feature implementation.
Differences in granularity can make it difficult to understand and
maintain modularization of features. They found, on closer inspection
of their previous projects, that they had unnecessary replication of
code due to granularity issues. They built an eclipse based prototype
to decompose an application into features with fine granularity and use
background colors to show differences in granularity. They do however,
take a code-focused approach, as opposed to our focus on functional
architecture. Through the link between the functional requirements and
architecture utilized in RE4SA, we intend to advance the research on
granularity and introduce indicators for granularity issues in a set of
requirements or architectural components.

2.3. Alignment

As McKeen and Smith [44] argue that alignment between business
and IT is a state in which the goals and activities of a business are
in harmony with the information systems that support them, we apply
the same line of thought to alignment between requirements and
architecture. Thus, alignment between requirements and architecture
is a state in which the requirements specification is in harmony with
the architectural specification and both describe the same application.
Perfect alignment between requirements and functional architecture is
a state in which all the system requirements are satisfied by a com-
ponent in the architecture, and all components in the architecture can
be linked to the requirements. Keeping software artifacts aligned falls
under the umbrella term of software traceability [45], which includes
techniques for establishing and maintaining trace links between differ-
ent artifacts like requirements, architecture, code, and tests. Among the
open challenges that pertain to our work, ubiquitous traceability [46] is
especially important, as it stresses the need of tools and techniques that
minimize the required human effort to create and keep the trace links
up to date.

Many automated tools exist for the automated establishment of
trace links. Trace Analyzer [47] uses certain or hypothesized dependen-
cies between artifacts and common ground and then considers nodes
that contain overlapping common ground to establish a trace link. The
common ground they use, however, is source code, which is unusable
when the system is still under design. Zhang et al. [48] use an ontology-
based approach to recover trace links, but only link the source code
to documentation. Traceability links have also been explored in agile
development, with a focus on establishing links between commits and
issues [49].

The systematic mapping by Borg et al. [50] shows that the most
frequently studied links in information retrieval-based traceability are
the links between requirements and between requirements and source
code. Other popular links are between requirements and tests, and
other artifacts and code. Linking requirements and architectures is a
less studied topic.

Tang et al. [51] study the creation of traces between requirements
and architecture. They provide an ontology for annotating manually
specifications and architectural artifacts, which are then documented in
a semantic wiki. This wiki shows which architectural design outcome
realizes which requirement, which decisions have been made, and the
links to quality requirements.

Rempel and Mäder [52] are among the first ones to propose trace-
ability metrics in the context of agile development. They propose
graph-based metrics that link requirements and test cases. Numerous
researchers in the field of software maintenance proposed metrics,
starting from the seminal work by Pfleeger and Bohner [53]. Our
work, however, focuses solely on metrics between requirements and
architectures in the context of agile development for software products.

Recently, Murugesan et al. [54] presented a hierarchical refer-
ence model to capture the relationship between requirements and
architecture. Their goals are similar to those of this research, but
they focused on technical architectures. Our work, instead, investigates
functional architectures and suggests the use of specific artifacts to
formulate more specific guidelines, as opposed to a generally applicable
4

requirement-to-component connection model. v
3. The RE4SA model

In this research, we focus on the relationships between the artifacts
in both the RE and SA domains. We aim to provide metrics to mea-
sure the alignment between the artifacts, to facilitate communication
within a development team, and to detect architecture or requirements
smells [55]. We propose the Requirements Engineering for Software Ar-
chitecture (RE4SA) model (Fig. 2(a)), and an instance of this model that
includes concrete notations, assembled based on tight collaboration
with industrial partners in the software domain (Fig. 2(b)).

Like the Twin Peaks model, RE4SA links the RE and SA domains.
More specifically, it relates the problem space, which describes the
intended behavior through requirements, to the solution space that
defines how such intended behavior is implemented, i.e., how the re-
quirements are satisfied [35]. This connection is considered on two dif-
ferent levels of granularity. In practice, requirements are often grouped
to denote a similar goal or scope; for example, via themes, epics, or
use cases. In agile development, these groupings are often used to
determine the scope of a sprint or release, as they indicate a shared
functionality [56,57]. This is likely to lead to a similar grouping in
the architecture, since the requirements form the basis for design and
development.

In this paper, we generalize the definition of the RE4SA model that
we presented in our previous publications [17,18]. What we called
RE4SA is now renamed to RE4SA-Agile, which is an instance of the gen-
eral model (Fig. 2a) referred to as RE4SA. While the proposed RE4SA
model is kept generic to allow for its use with different artifacts, the
following sections rely on some assumptions/limitations: (i) detailed
components should belong to at most one high-level component; (ii)
the granularity levels between the RE and SA concepts need to be at a
similar level. We envision the use of RE4SA as a lens for researchers to
explore the vertical and horizontal relationship within and across the
RE and SA disciplines, without being bound to the notations that we
include in RE4SA-Agile.

To ease explanation and illustration, we limit our focus on two
levels of granularity. In the RE4SA model, the concepts are given
general names, but in practice there could be multiple levels of these
concepts. For example, high-level 1 and high-level 2 aspects. In scenar-
ios with multiple layers, the relationships between the concepts should
be applied to two adjacent layers in the model.

Furthermore, the relationships between the concepts can be clas-
sified depending on whether they affect the granularity of the spec-
ification (refinement and abstraction) or they support the alignment
between requirements and architecture components (allocation and
satisfaction). While we want to measure the alignment between re-
quirements concepts and architecture, in practice we found that re-
quirements are not perfectly atomic. Therefore we introduce the term
‘‘needs’’ in Section 5 in order to define metrics for the alignment of the
concepts. This allows generalizing the metrics to other requirements
concepts, as it covers the number of needs detailed in a requirement
resulting in notation independence. We further detail the link between
needs in Section 5, and provide an example in Table 2.

Refinement. High-level requirements and architecture components
are decomposed into detailed4 requirements and architecture
components, respectively [33].

Abstraction. Detailed requirements are grouped using high-level re-
quirements, while detailed architecture components are bundled
together based on similar functionality and placed in high-level
architecture components [33].

4 We use the term detailed instead of low-level, to avoid interpretations in
hich more refined requirements and components are conceived as being less
aluable.

Information and Software Technology 133 (2021) 106535T. Spijkman et al.
Fig. 2. The general RE4SA model and its instantiation for Agile development. In RE4SA, the solid arrows belong to the Architecture Discovery process, while the dashed arrows
are part of the Architecture Recovery process.
Allocation. The process of relating requirements to architectural com-
ponents is ‘‘the assignment to architecture components responsible
for satisfying the requirements’’ [33]. Since both requirements and
architectural components exist on two levels of granularity, this
relationship is included on both levels.

Satisfaction. The SWEBOK guide states that ‘‘the process of analyz-
ing and elaborating the requirements demands that the architec-
ture/design components that will be responsible for satisfying the
requirements be identified’’ [33]. Therefore, we refer to this re-
lationship from architectural components to requirements as
satisfaction.

Although there are ontological differences between the refinement
and abstraction relationship depending on their application in the RE
or SA domain, we use generic terms with low ontological commitment
to avoid introducing too many, distinct terms in our RE4SA model.

3.1. Architecture discovery and architecture recovery

The RE4SA model, Fig. 2(a), supports the establishment of relation-
ships between the four concepts in two ways: (i) Architecture Discovery
(AD), a top-down process that takes the requirements as the input for
creating an architecture; and (ii) Architecture Recovery (AR), a bottom-
up process that first extracts the architecture from an implemented
system [58], and then allows linking the architectural components to
requirements.

The AD process (solid arrows in Fig. 2(a)) aims to design an
intended architecture based on the requirements. It is advisable to start
at the highest level of granularity, since the high-level requirements
describe the functionality of the entire system, while on the lower
level the details of this functionality is specified. Once the requirements
have been defined, they can be allocated to architectural components.
We suggest starting at the highest level: high-level requirements are
allocated to high-level architectural components. Finally, it is useful
to check if all the detailed architecture components included in the SA
are represented in the detailed requirements. Detailed components that
cannot be linked to a requirement may indicate missing requirements
or unnecessary components.

The goal of an AR process (dashed arrows in Fig. 2(a)), instead, is to
recover the implemented architecture from the system, using available
documentation, such as source code and a run-time version of the
system, and linking the recovered components to requirements. We
suggest starting at the lowest level of granularity, and documenting
the identified detailed architecture components. High-level architecture
components can then be defined to group the detailed components.

AR is often an exploratory process that suggests a structured manner
to analyze an existing software product. While we employed a simple
5

process in previous publications [17,18], which starts from an analysis
of the elements in the GUI of the product, we have since then identified
the necessity for a more elaborate approach. In particular, the major
challenge we found out is that the recovered detailed architecture
components were too low level, and would not match the granularity
of the requirements. We describe our revised process, used to achieve
similar granularity levels, in Section 6.1.

The recovered architectural components can then be linked to re-
quirements by creating satisfaction links. We recommend starting at the
highest level of granularity: in RE4SA-Agile, the ES-module alignment.
If these relationships are established first, it should be easier to identify
which feature satisfies which US, for the USs are abstracted to ESs.
Optionally, missing ESs or USs can be formulated, if the module or
feature they will be allocated to is still relevant and/or required. On
the other hand, ESs or USs that cannot be allocated to an architectural
component need to be assessed. If the functionality the requirement
describes is not required or desired, the requirement can be removed.
If the opposite is true, the implementation of the feature(s) that would
satisfy the requirement can be added to the backlog.

3.2. RE4SA-Agile

RE4SA-Agile is an instance of RE4SA that we constructed in col-
laboration with industrial partners, using concepts that we often found
employed in agile practices [18,59]. On the requirements side, RE4SA-
Agile uses one of the most common requirements representations in
agile practices, User Stories (USs) [60,61]. In practice, USs are often
grouped together using themes, epics or ‘large USs’[62]. However,
themes and epics tend to consist of one or a few words and thus lack
the rationale that justifies why a requirement should be satisfied by the
system [63]. Therefore, we propose the use of Epic Stories (ESs) [59],
which make use of a clear template including both a motivation aspect
and an expected outcome.

To illustrate the requirements side of RE4SA-Agile, let us consider
a route planner application. A high level requirement using the ES
template could be ‘‘When I have to go to a place I don’t know, I want
to have a route planned for me, so that I can plan my trip and find the
location.’’ This ES can be refined in a set of USs, but for the sake of this
example we will provide three such USs, which are shown in Fig. 3.

The RE4SA model assumes the existence of links between the re-
quirements and the architecture concepts with similar granularity lev-
els. From the architectural standpoint, we take the notion of ‘module’
from the functional architecture framework [39] as a grouping of
features, which also allows for the visualization of usage scenarios
through information flows [64]. A US describes a requirement for one
feature [61]. Features are often represented using feature diagrams, a
graphical language for organizing features hierarchically [65].

Information and Software Technology 133 (2021) 106535T. Spijkman et al.

𝐿
𝑟

D
o
r

s
(
s
(
c

v
e
o
c

n
t
r
W
s
d
t

a
t
t

D
ℎ
t

𝐺

Fig. 3. Illustration of RE4SA-Agile for a route planner; on the left, one epic story is refined into three user stories; on the right, the feature diagram shows one module that is
refined into four features.
For the ES presented in the example, we could design the module
Route planner in our application that has the following features:
Determine possible routes, Determine fastest route, Show road
works, and Plan public transport route. Note that the example is
purposefully not aligned with the requirements, so this can be discussed
in the section on alignment metrics.

4. Granularity metrics

We analyze the refinement and abstraction relationships of RE4SA,
which apply to both requirements and architecture. As explained in
Section 3, granularity metrics determine the degree to which a high-
level element is refined into detailed elements. In RE4SA, an element
is either a requirement or an architectural component. Given a set of
high-level elements 𝐻 = {ℎ1,… , ℎ𝑛} and a set of detailed elements

= {𝑙1,… , 𝑙𝑚}, we can formally define refinement as a function
𝑒𝑓𝑖𝑛𝑒𝑠 ∶ 𝐻 → 2𝐿, and 𝑟𝑒𝑓𝑖𝑛𝑒𝑠(ℎ) = 𝐿′, with 𝐿′ ⊆ 𝐿.

efinition 1 (Out-degree). Given a high-level element ℎ ∈ 𝐻 , the
ut-degree of ℎ is the number of detailed elements in 𝐿 that are a
efinement of ℎ. Formally, 𝑜𝑢𝑡-𝑑𝑒𝑔𝑟𝑒𝑒(ℎ) = |{𝑙. 𝑙 ∈ 𝑟𝑒𝑓𝑖𝑛𝑒𝑠(ℎ)}|.

For example, in Fig. 3, we have that the out-degree of the epic
tory (the high-level requirement) is 3, for there are three user stories
detailed requirements) that refine it. On the right-hand side of the
ame figure, we have that the out-degree of the module Route planner
the high-level component) is 4, for there are four features (detailed
omponents) that refine it.

The mean of the out-degrees then functions as an ‘‘ideal’’ granularity
alue that has been established as a convention by the requirements
ngineers and software architects. While expanding the functionality
f a software product over various releases, deviations from this mean
an trigger discussions to combine or split high-level components.

The out-degree of an individual high-level requirement or compo-
ent is not a meaningful tool to measure granularity: for example,
he fact that all high-level requirements are split into ten detailed
equirements may be due to team conventions or company guidelines.
e are interested in the identification of disproportionately large or

mall requirements or components with respect to the norm. These
eviations do not determine an error, but rather a warning, a smell [66],
hat should be investigated by the product team.

We build on outlier detection, the set of statistical techniques that
im to identify elements that differ significantly from the majority of
he data. We apply the Z-Score metric to our context as a simple metric
hat normalizes the data with respect to mean and standard deviation.

efinition 2 (Granularity Score). Given 𝐻 , 𝐿, and a high-level element
∈ 𝐻 , we define the granularity score 𝐺ℎ for the element ℎ by applying

he Z-score formula:

ℎ =
𝑜𝑢𝑡-𝑑𝑒𝑔𝑟𝑒𝑒(ℎ) − 𝑚𝑒𝑎𝑛{𝑜𝑢𝑡-𝑑𝑒𝑔𝑟𝑒𝑒(ℎ′). ℎ′ ∈ 𝐻}

𝑠𝑡𝑑𝑑𝑒𝑣{𝑜𝑢𝑡-𝑑𝑒𝑔𝑟𝑒𝑒(ℎ′). ℎ′ ∈ 𝐻}
A G-Score (similar as the Z-score) of 0 means that the granularity

of an element corresponds to the arithmetic mean of the granularity in
𝐻 . In statistics, outliers are identified when the G-score is above 3 or
below -3. This is based on the so-called empirical rule, saying that in
6

a normal distribution, approximately 99.7% of the measurements fall
within three standard deviations from the mean.

However, our purpose is not that of excluding outliers from statisti-
cal analysis, but rather that of identifying high-level elements (require-
ments and components) that require attention and may be reworked,
e.g., refactored. Furthermore, we cannot assume our data is normally
distributed. Therefore, we take the G-Score as a basis but employ the
following rules in order to identify granularity smells:

Definition 3 (Granularity Smell). Given a high-level element ℎ, take
two real numbers 𝜆 and 𝜇, with 𝜆 < 𝜇, which represent the light smell
threshold and the severe smell threshold, respectively. We define four
types of granularity smells:

1. severe under-granularity: if 𝑜𝑢𝑡-𝑑𝑒𝑔𝑟𝑒𝑒(ℎ) < 2 or if 𝐺ℎ ≤ -𝜇;
2. light under-granularity: if 𝐺ℎ ∈ (-𝜇, -𝜆];
3. light over-granularity: if 𝐺ℎ ∈ [𝜆, 𝜇);
4. severe over-granularity: if 𝐺ℎ ≥ 𝜇.

Refinement to zero or one detailed elements means that the high-
level element is not necessary, unless the high-level element is still
incomplete. This indicates a severe under-granularity smell. This situa-
tion occurs also when the granularity of ℎ is significantly smaller than
the mean: 𝐺ℎ ≤ -𝜇. A light under-granularity smell happens when 𝐺ℎ is
between the two real numbers -𝜇 and -𝜆, indicating that the granularity
of ℎ is smaller than the mean. Conversely, if 𝐺ℎ is between 𝜆 and 𝜇, then
we obtain a light over-granularity smell. Finally, if 𝐺ℎ is higher than
𝜇, we have a severe over-granularity smell, for the granularity of ℎ is
considerably higher than the mean. In the (-𝜆, 𝜆) interval, instead, we
have cases of good refinement practices that do not lead to under- or
over-granularity.

Fig. 4 illustrates the granularity smells for a set of requirements
(excluding the case of 𝑜𝑢𝑡-𝑑𝑒𝑔𝑟𝑒𝑒 < 2). The negative scores indicate
under-granularity, the positive scores indicate over-granularity. To de-
termine the granularity score bounds 𝜆 and 𝜇, we have applied the
granularity smells metrics to eleven datasets (see Table 1), all public
except for DS11, in order to visually identify sensible values. These
sets contain requirement artifacts, using different types of grouping. All
detailed requirements were in the US format. The table briefly describes
each dataset, its size, shows the number of smells that were detected
using the G-score bounds, and mean and standard deviation for the out
degree in a dataset.

As a result of our analysis, we set 𝜆 = 1.1 and 𝜇 = 1.7, as they
seemed adequate to pinpoint disproportionately large or small high-
level requirements in the set. Our values of 𝜆 and 𝜇 constitute an initial
baseline for future research. Also observe the high variation in the
arithmetic mean and standard deviation, which confirm the suitability
of an approach like ours based on the Z-score, rather than relying on
an absolute number of detailed elements to denote smells.

Granularity resonates with the ‘God element’ phenomenon in soft-
ware architecture [14], which occurs when an architectural element
contains a disproportionately high amount of functionality than other
elements: 𝐺𝐺𝑜𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡 > 𝜇. In our case, it happens when a high-level
component is refined to significantly more detailed components than
other high-level components of the system.

Information and Software Technology 133 (2021) 106535T. Spijkman et al.

A
S

f
n
𝑛
F
{

f
t
t

D

Fig. 4. Granularity score values with smell intervals. In our research 𝜆 = 1.1 and 𝜇 = 1.7.
Table 1
Investigation of granularity smells in requirements data set; the results were used to define the smell thresholds 𝜆 and 𝜇.

ID Name Description Requirements Smells Out-degree

Low High Light Severe Mean Std

DS01 Loudoun Electronic land management system 60 11 1 1 5.45 3.33
DS02 ScrumAlliance1 First version of ScrumAlliance website 98 13 4 1 7.54 4.81
DS03 ScrumAlliance2 Video training website 73 15 2 1 4.87 3.36
DS04 Planning poker Planning poker website 53 4 1 0 13.25 10.24
DS05 DataHub Data sharing and management platform 65 8 3 0 8.13 4.94
DS06 MIS University management information system 72 9 1 1 8.00 6.08
DS07 Cask Big data integration platform 65 3 1 0 21.67 16.26
DS08 Duraspace Opensource repository 104 25 1 2 4.16 4.50
DS09 RAC DAM Software for data archiving and sharing 146 9 1 1 16.22 11.78
DS10 Zooniverse Online citizen science platform

Counting #1 General USs as ‘High’ 33 8 0 1 4.13 4.19
Counting #2 Include general USs in all groups 117 7 2 0 16.71 1.38

DS11 Remittance Automatic remittance processing tool 51 7 1 0 7.29 3.09
5. Alignment metrics

We introduce metrics that allow for quantitative investigation of the
relationship between requirements and architecture through the lenses
of the RE4SA model. In particular, these metrics allow exploring the
allocation and satisfaction relationships (see Section 3). As we intro-
duce the metrics, they will be applied to the Route Planner illustrative
example.

Let 𝑅 = {𝑟1, 𝑟2,… , 𝑟𝑛} be a collection of requirements and 𝐶 =
{𝑐1,… , 𝑐𝑚} be a collection of architectural components. In the RE4SA-

gile model, a requirement can be either an Epic Story (ES) or a User
tory (US), while a component can be either a module or a feature.

Since a requirement can denote multiple needs in a part-whole
ashion [67] (e.g., the conjunction ‘and’ is often used to express many
eeds within the same requirement [61,68]), we introduce the function
𝑒𝑒𝑑𝑠 ∶ 𝑅 → 2𝐶 that maps a requirement 𝑟 to the needs it expresses.
ormally, given a set of needs 𝑁 , we have that for any 𝑟 ∈ 𝑅, 𝑛𝑒𝑒𝑑𝑠(𝑟) =
𝑛 ∈ 𝑁. 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑏𝑦(𝑛, 𝑟)}, where 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑏𝑦(𝑛, 𝑟) is true when 𝑛 is

expressed in the text of requirement 𝑟. In this paper, the identification
of the needs that are requested by a requirement is left to human
analysis. For example, the user story ‘‘As a consultant, I want to see all
possible routes and select the fastest route to my destination, so that I can
minimize my travel time when visiting customers’’ can indicate two needs,
Determine possible routes and Determine fastest route.

We can now introduce the set 𝑁𝑅 =
⋃

𝑟∈𝑅 𝑛𝑒𝑒𝑑𝑠(𝑟) as the collection
of needs that are requested by individual requirements in the set
𝑅. Similar to the 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑏𝑦 predicate, we rely on human analysis
or identifying the needs within a requirement, although linguistic
echniques could be employed to locate the needs (e.g., the AQUSA
ool can help locate non-atomic user stories [61]).

efinition 4 (Alignment Matrix). An alignment matrix 𝐴 = (𝑎𝑖𝑗) is a
matrix of size |𝑁𝑅|×|𝐶| such that 𝑎𝑖𝑗 = 1 if and only if the need 𝑛𝑖 ∈ 𝑁𝑅
matches the component 𝑐𝑗 ∈ 𝐶. Formally,

𝑎𝑖𝑗 =

{

1, if 𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑛𝑖, 𝑐𝑗)
0, otherwise.

The alignment matrix can be used to explore the mutual rela-
tionship between requirements and components. Based on the matrix,
7

we define 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∶ 𝑅 → 2𝐶 as a function that returns the set
of components that match the needs in a requirement (the matches
predicate is also based on human mapping). Formally, 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑟) =
⋃

𝑛𝑖∈𝑛𝑒𝑒𝑑𝑠(𝑟){𝑐𝑗 . 𝑎𝑖𝑗 = 1}. Conversely, we define a function 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 ∶
𝐶 → 2𝑅 that returns all the requirements with needs matching a given
component: 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛(𝑐𝑗) =

⋃

𝑟∈𝑅{𝑛𝑖. 𝑎𝑖𝑗 = 1 ∧ 𝑛𝑖 ∈ 𝑛𝑒𝑒𝑑𝑠(𝑟)}.
The allocation function allows us to partition the set of requirements

into four non-disjoint subsets: 𝑅 = 𝑅𝑛𝑜𝑡 ∪𝑅𝑢𝑛𝑑𝑒𝑟 ∪𝑅𝑒𝑥𝑎𝑐𝑡 ∪𝑅𝑚𝑢𝑙𝑡𝑖, defined
as follows:

• 𝑅𝑛𝑜𝑡 = {𝑟 ∈ 𝑅. 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑟) = ∅}
• 𝑅𝑢𝑛𝑑𝑒𝑟 = {𝑟 ∈ 𝑅. 0 < |𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑟)| ∧ ∃𝑛𝑖 ∈ 𝑛𝑒𝑒𝑑𝑠(𝑟). (

∑

𝑗 𝑎𝑖𝑗) = 0}
• 𝑅𝑒𝑥𝑎𝑐𝑡 = {𝑟 ∈ 𝑅. ∀𝑛𝑖 ∈ 𝑛𝑒𝑒𝑑𝑠(𝑟). (

∑

𝑗 𝑎𝑖𝑗) = 1}
• 𝑅𝑚𝑢𝑙𝑡𝑖 = {𝑟 ∈ 𝑅. ∃𝑛𝑖 ∈ 𝑛𝑒𝑒𝑑𝑠(𝑟). (

∑

𝑗 𝑎𝑖𝑗) > 1}.

𝑅𝑛𝑜𝑡 is the set of requirements that are not allocated, 𝑅𝑢𝑛𝑑𝑒𝑟 are
those requirements with some but not all allocated needs, 𝑅𝑒𝑥𝑎𝑐𝑡 are
those requirements with each need allocated to exactly one component,
and 𝑅𝑚𝑢𝑙𝑡𝑖 are those requirements having at least one need allocated
to multiple components. The four sets are not disjoint. For example,
a requirement requesting needs 𝑛1 and 𝑛2, with 𝑛1 matching compo-
nents 𝑐1 and 𝑐2 and with 𝑛2 matching no components would be both
multi-allocated (because of 𝑛1) and under-allocated (because of 𝑛2).

If we look at the example matrix in Table 2, US1 is exactly allocated,
as it details two needs, each allocated to one feature. US2 is under-
allocated, as it has two needs; one for traffic information, and one
for road information, with only the road information need being met
by the Show road works feature. US3 is not allocated, as no feature
satisfies the need see the traffic jams.

Definition 5 (Allocation Degrees). The partitioning of 𝑅 into 𝑅𝑛𝑜𝑡, 𝑅𝑢𝑛𝑑𝑒𝑟,
etc. can be used to define metrics on the allocation degree of a set of
requirements. We introduce four degrees, each in the [0, 1] range:

• multi-allocation degree: 𝑚𝑢𝑙𝑡𝑖_𝑎𝑙𝑙𝑜𝑐𝑑 = |𝑅𝑚𝑢𝑙𝑡𝑖| ∕ |𝑅|
• exact allocation degree: 𝑒𝑥𝑎𝑐𝑡_𝑎𝑙𝑙𝑜𝑐𝑑 = |𝑅𝑒𝑥𝑎𝑐𝑡| ∕ |𝑅|
• under-allocation degree: 𝑢𝑛𝑑𝑒𝑟_𝑎𝑙𝑙𝑜𝑐𝑑 = (|𝑅𝑛𝑜𝑡| + |𝑅𝑢𝑛𝑑𝑒𝑟|) ∕ |𝑅|

• need allocation degree: 𝑛𝑒𝑒𝑑_𝑎𝑙𝑙𝑑 =
|{𝑛𝑖 ∈ 𝑁𝑅. (

∑

𝑗 𝑎𝑖𝑗) = 1}|
|𝑁𝑅|

Information and Software Technology 133 (2021) 106535T. Spijkman et al.

n
d
m
s
t
e
i
d
t
v
t

|

u
n

R
m

f
t
d

Table 2
Alignment matrix example from user stories to features.

User story Need Determine
possible
routes

Determine
fastest route

Show road
works

Plan public
transport
route

Allocation

US1: As a consultant, I want to see all possible routes and
select the fastest route to my destination, so that I can
minimize my travel time when visiting customers

N1 1 – – – ExactN2 – 1 – –

US2: As a car driver, I want to see the road and traffic
information about the routes, so that I can prevent frustration

N3 – – 1 – UnderN4 – – – –

US3: As a car driver, I want to see the traffic jams on my route,
so that I can prevent getting stuck in traffic

N5 – – – – Not
d

6

w
a
p
e
t
m
V
d
c
t
3
w
l
t
d
o
w
t
a
e

f
n
‘
o
a
Y
d

The ideal case is one in which the exact allocation degree and the
eed allocation degree are close to 1, and the multi/under allocation
egrees are close to zero. In that case, indeed, each need in a require-
ent can be traced to almost exactly one architectural component. This

ituation is good because the needs are homomorphically mirrored in
he architectural design, thereby facilitating the conversation between
xperts in either discipline. An exception to this case is when the system
ncludes variability: in that case, it is desired to have a multi-allocation
egree, for multiple components may be devised as alternative ways
o fulfill one requirement. The need allocation degree is a need-level
ersion of the exact allocation degree: it represents the ratio of needs
hat are allocated to exactly one component.

In the example of Table 2, we have a total of 3 requirements so the
𝑅| value is 3. US1 has exact allocation as both needs are met, US2 is
nder allocated as it has two needs of which one is met and US3 is
ot allocated as none of its needs are met. Therefore, our 𝑒𝑥𝑎𝑐𝑡_𝑎𝑙𝑙𝑜𝑐𝑑

is 1∕3 = 0.33, our 𝑢𝑛𝑑𝑒𝑟_𝑎𝑙𝑙𝑜𝑐𝑑 is (1 + 1)∕3 = 0.67, and 𝑚𝑢𝑙𝑡𝑖_𝑎𝑙𝑙𝑜𝑐𝑑 = 0.
egarding the need allocation degree: out of the five needs, three are
et, which makes the 𝑛𝑒𝑒𝑑_𝑎𝑙𝑙𝑑 = 3∕5 = 0.6.

Similar to the partitioning of requirements based on the allocation
unction, we can partition the set of components based on the satisfac-
ion function. Specifically, the set of components is partitioned into two
isjoint subsets: 𝐶 = 𝐶𝑛𝑜𝑡 ∪ 𝐶𝑠𝑎𝑡, where 𝐶𝑠𝑎𝑡 = {𝑐 ∈ 𝐶. 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛(𝑐) ≠

∅} and 𝐶𝑛𝑜𝑡 = 𝐶 ⧵ 𝐶𝑠𝑎𝑡.

Definition 6 (Satisfaction Degree). It defines the ratio of components
that satisfy at least one need in a requirement as follows: 𝑠𝑎𝑡𝑑 =
|𝐶𝑠𝑎𝑡| ∕ |𝐶|.

When the satisfaction degree reaches the value of 1, all architec-
tural components trace back to at least one requirement and, thus,
their existence is justified. Unlike Definition 5, we do not include a
notion of multi-satisfaction, for we are interested in assessing whether
a component is justified or not, instead of counting how many needs
the component accommodates.

If we once again consider Table 2, three out of four features satisfy a
requirement, the only feature that does not satisfy a requirement is the
Plan public transport route feature. Therefore, the satisfaction degree
is 3∕4 = 0.75.

We combine allocation and satisfaction into the metric of alignment,
which is a weighted arithmetic mean of the extent to which needs are
allocated, and the extent to which components can be traced back to
requirements.

Definition 7 (Alignment Degree). It is a weighted arithmetic mean (𝛼 ∈
[0, 1]) of the need allocation degree and the component satisfaction
degree: 𝑎𝑙𝑖𝑔𝑛𝑑 = 𝛼 ⋅ 𝑛𝑒𝑒𝑑_𝑎𝑙𝑙𝑑 + (1 − 𝛼) ⋅ 𝑠𝑎𝑡𝑑 .

In this paper, we set 𝛼 = 0.5 and give equal weight to the re-
quirements and architecture perspectives. Similar to the debate on the
𝛽 in the F𝛽 -score regarding measuring the effectiveness of automated
tools for RE [69], in-vivo studies are necessary to tune our parameter
based on the relative impact of need allocation degree and compo-
8

nent satisfaction degree. However, our experience with the software
production industry reveals that early product releases include several
implicitly expressed needs (e.g., printing, storage, menu interaction),
thereby requiring a high 𝛼 > 0.5, whereas later releases focus on explicit
(customer) requirements allocation with 𝛼 < 0.5.

To calculate the alignment degree of the example set in Table 2,
given an 𝛼 = 0.5, we combine the need allocation degree (0.6) with the
satisfaction degree (0.75). This results in the following: 0.5 ⋅ 0.6 + (1 −
0.5) ⋅ 0.75 = 0.675.

The concepts and definitions above apply to the generic notions
of requirement and component. In RE4SA, as per Fig. 2(a), we can
reason about alignment at two granularity levels: high and detailed. The
efinitions and metrics can therefore be applied at either level:

• high: the set 𝑅 contains ESs, 𝐶 includes modules, 𝑁 consists of
outcomes from an ES, and the function needs returns the set of
outcomes of an ES;

• detailed: 𝑅 contains USs, 𝐶 consists of features, 𝑁 includes actions
from a US, and the function needs returns the set of actions of a
US.

. The RE4SA-Agile model in practice

To assess the feasibility and usefulness of RE4SA and of our metrics,
e applied them to two case studies. Both cases use the concepts
s defined in the RE4SA-Agile model. The first case presents an AD
rocess, while the second illustrates an AR process. After introducing
ach case, we present the case study approach in Section 6.1, analyze
he granularity metrics in Section 6.2, and then report on the alignment
etrics in Section 6.3.
endor Portal (VP). The discovery case concerns a portal for ven-
ors to manage their open invoices through an integration with the
ustomers’ ERP system. The dataset contained 30 user stories, and while
he project was ongoing at the time of writing, the main functionalities,
5 features contained in 13 modules, where delivered in four weeks
ith five active team members. The development was done using a

ow-code platform. Following a requirements elicitation session with
he customer, a list of USs was created and then grouped in themes. We
efined 8 ESs from the themes by rewording them and by splitting one
f them into two (based on the word ‘‘and"). The software architecture
as created by transforming the requirements into an intended archi-

ecture following the AD process described in Section 3.1. The software
rchitect was allowed to include his interpretation of the requirements,
.g., by adding missing features and modules.

Fig. 5 shows how USs were allocated to features. The US1 in the
igure is multi-allocated, as it is linked to two features, specifically the
eed ‘‘use password forgotten functionality ’’ is allocated to the features

‘initiate password recovery ’’, and ‘‘send password recovery email’’. The
ther two USs are exact-allocated as they contain a single need and
re allocated to a single feature.
our Data (YODA). The recovery case regards a research workspace
eveloped for Utrecht University.5 A collection of 58 USs was provided

5 https://github.com/UtrechtUniversity/yoda/

https://github.com/UtrechtUniversity/yoda/

Information and Software Technology 133 (2021) 106535T. Spijkman et al.
Fig. 5. Example of how USs were allocated to features for the VP case.
to us by the development team, already grouped in themes. We used
these one-word themes to formulate 10 ESs. The functional architecture
had to be recovered [which resulted in 60 features contained in 10
modules]. As described in Section 3.1, this was done using a bottom-
up approach. Using the implemented system, in this particular case
a web application, all features were recovered by modeling every
user-interactive element in the GUI as a feature.

An example of how modules and features were recovered from the
GUI is shown in Fig. 6. For the sake of brevity, the alternative features
related to F2 and F3 were collapsed. The module satisfies an ES that
was based on the Metadata theme: ‘‘When I am storing research data,
I want to include metadata about the content, so that I can document my
data.’’ Only two of the features satisfy a US, features F3 and F4 (in
Fig. 6) satisfy US3 and US4, respectively:

US3: ‘‘As a researcher, I want to specify the accessibility of the metadata
of my dataset, so that access can be granted according to policy [...].’’

US4: ‘‘As a researcher, I want to be able to discard existing metadata
and re-begin adding metadata, so that I can document a data package.’’

Therefore, considering our metrics for determining the satisfaction
degree (Definition 6), F1 and F2 are part of the 𝐶𝑛𝑜𝑡 count, while F3
and F4 are part of 𝐶𝑠𝑎𝑡.

6.1. Case study approach

In this section, we discuss a secondary investigation of the case
studies: we performed further investigation and exploration of the data
sets discussed in previous research [17]. This was mostly inspired by
the addition of the granularity metrics, and the changes from this new
perspective.

Following the guidelines by Wohlin et al. [70], we discuss the
approach and goals for the case studies. We report on those case study
findings that are interesting and relevant for this research, and have to
omit some details due to confidential agreements with the data sources.

The object of study is the metrics defined in Sections 4 and 5. Our
purpose is that of evaluating the use and effectiveness of the metrics in
industry scenarios. The cases start help us explore specific aspects of
the research questions RQ1 and RQ2 that we listed in the introduction.
In particular, we hypothesize that our metrics are an effective tool to
analyze granularity and alignment. We set the following hypotheses H1
and H2, which relate to RQ1 and RQ2, respectively.

H1. Granularity smells pinpoint opportunities for achieving uniform
granularity within and between functional requirements and ar-
chitecture specification.

H2. Allocation, satisfaction, and alignment degrees pinpoint opportu-
nities for establishing and maintaining alignment between func-
tional requirements and architecture specification.
9

The context selection was done based on convenience selection: for
the VP case, one of the researchers was embedded in the organization;
for the YODA case, we had a connection to the development team.
While the cases are both selected from convenience sampling, they are
different in nature; VP is a commercial product, while YODA is an
academic project. For further triangulation in our research, the cases
have been investigated by a principal investigator and validated by a
secondary investigator.

Data collection was a combination of second degree (indirect in-
volvement of the researchers) and third degree (study of the work
artifacts only) techniques [71]. We collected architectural data for
YODA by researching the software product via a second degree col-
lection method, through the architecture recovery from the UI and
documentation. For the requirements and for the VP architecture, we
employed a third degree collection technique, as we analyzed com-
pleted artifacts: requirements specification for both cases and feature
diagram for the VP case.

To limit validity threats, we employed multiple techniques. To
support replication, we provide the used data in our online appendix.
We complement the second and third degree data collection techniques,
which did not involve interaction with the stakeholders, with sessions
in which we discussed the findings with the stakeholders of the in-
vestigated artifacts. Additionally, we reflect on the findings that result
from the application of the metrics. Despite our attempts, some threats
could not be prevented, partially due to the convenience selection of
the case study materials. Considering the exploratory nature of the case
studies, the results are not conclusive but show an initial application
of the introduced metrics. The validity threats are further detailed in
Section 7.

6.1.1. Changes from previous investigation
While exploring the cases regarding the granularity metrics of Sec-

tion 4, we determined that there was a discrepancy with what the
feature diagrams contained as feature, and what the researchers consid-
ered a feature. It was decided that the cases would be revised, compared
to our previous work [17], to achieve a more standard feature diagram
granularity:

• Differentiating features: any feature is included that represents
a key functionality of the software product that offers competitive
advantage and helps differentiation from the market competi-
tors [72]. The granularity of a differentiating feature depends on
the product domain.

• Information hiding: the features that are part of an ‘‘alternative’’
or ‘‘OR’’ decomposition, which are fundamental to represent vari-
ability, are counted as one composite feature for our purposes.
This allows for separating the internal and external structure

and/or behavior [73]. To illustrate, in case of language selection,

Information and Software Technology 133 (2021) 106535T. Spijkman et al.
Fig. 6. Example of architectural component recovery from the GUI for the YODA case.
it is of importance to know that language can be selected, not
which languages are included. The reason for this exclusion is
that one of the alternative features is picked on deployment, so
the additional features do not increase the system or functionality
from a user perspective.

• Value: breaking down a feature into parts leads to individual
features that in isolation do not have value for the system. For ex-
ample the feature display vendor address has more value for the
VP case, while the individual features display vendor zip code
and display vendor address line in isolation do not. In these
cases, the composite feature is the lowest level of depth included
in the feature diagram. This is based on the communication
unity [73].

• Role-based features: Two similar features may have different use
cases as users with different roles use the features. For example a
system admin might be able to manage password for all users
in the system and set up a new one if a user contacts them. While
the manage password in a profile module will only allow a user
to change their own password. These features will be counted
separately.

Applying these guidelines to the case studies has changed the number
of features, which in turn impacts the alignment metrics. Since there
is still a subjectivity in the metric calculations, we have opted to make
the case study data sets public. This way other researchers can refer to
our data and compare it to their own calculations. This data set can be
found in a footnote in the introduction.

6.2. Granularity: Studying refinement and abstraction

We apply the granularity metrics as defined in Section 4 to the VP
and YODA cases. Granularity scores (G-score) between the 1.1 and 1.7
thresholds are expressed in bold and indicate a light smell, while those
above the 1.7 threshold, or containing a single element are expressed
in bold with a gray background and indicate a severe smell.
VP. Table 3 reports the granularity metric scores applied to the VP
case. The set contains two severe over-granularity smells (ES4 & M7),
one in the requirements and one in the modules. The two severe smells
are related, as ES4 is uniquely allocated to M7. This indicates that
detection and reaction to the smell on the requirements side would
allow prevention of the architecture smell. The three light smells in
granularity score for ES6, M5 and M6 are for high-level components
that only contain a single detailed component. However, as discussed
in Section 4, a single component is also a severe smell. This can indi-
cate an inconsistent granularity level, or missing detailed components.
Specifically, the user story in ES6 was only linked to a single feature
in the alignment matrix, indicating that the Epic (or theme it was
based on) should have just been a single user story. M5 represents
the module asset management and M6 represents invoice status
overview. M5 was a specific module that allowed users to download
10
files, an optional element in the use cases. In future sprints, this module
might be extended, e.g., with file previews, or sharing possibilities.
From the point of view of the researchers, M6 could be combined with
M3 Vendor overview as a feature showing the invoices per status for a
single vendor. Thus it might be on the wrong level of granularity, unless
the product evolution is expected to add features to this module.
YODA. The granularity metrics for the YODA case are presented in
Table 4.

On the requirements side, two ESs have an disproportionate out-
degree when taking all ESs and USs into account. ES1 has a light
granularity smell, with a granularity score of 1.61 and ES10 has a
severe smell, with a score of 1.84 .

Especially the tenth module, M10 in Table 4 is cause for concern.
Its out-degree is four times as high the second largest module. The
high number of features may indicate that this module contains many
functionalities and therefore has too many responsibilities, which is
generally ill-advised. There is a risk that this module is or may become
a God-element, potentially leading to a bottleneck in the system [14].
At this point, the module can be considered saturated, so no features
should be added to it. If functionality does need to be added, the
module should be split first.

In upcoming updates or releases of the system, this module may
need refactoring to decrease the out-degree. For example, by assigning
responsibilities to other modules or by splitting it into two modules, to
prevent it from becoming too large. This risk could have been prevented
or mitigated, as the requirement granularity scores already indicated
that ES (and later module) 10 was relatively large.

6.3. Alignment: Studying allocation and satisfaction

The alignment metrics for both cases are presented in Table 5,
including both the ES-module alignment and the US-feature alignment.
The allocation and satisfaction for both cases have been performed by
two of the researchers, and any discrepancies in tagging have been
discussed and resolved. One point of discussion was the inclusion of
needs stated in the ‘‘so that..’’. part of USs, as these are only meant
to indicate motivation. However, we decided to include all needs
specified, as requirement sets are generally not perfect, and these still
indicate needs in the documentation.
VP. In the VP case, the ES-module alignment score is 0.92; while all
needs are allocated, two of the modules do not satisfy a requirement.
Additionally, three of the ESs (ES 2, 7, 8 in Table 3) are multi-allocated,
with ES2 being allocated to 5 modules (M2-M5) this multi-allocation
indicates that the ES encapsulates too many of the functionalities in
the set. Although the case company had no unity criteria for the
requirements or architecture, these findings indicate that the functional
requirements and architecture artifacts did not have a consistent level
of granularity. This can be used in further improvements of the arti-
facts; to ease the maintenance of RE and SA artifacts as they co-evolve,
the requirements can be split to match the level of granularity of the

Information and Software Technology 133 (2021) 106535T. Spijkman et al.
Table 3
The granularity-related metrics applied to the VP case.

Epic Story ES1 ES2 ES3 ES4 ES5 ES6 ES7 ES8 Mean Std

USs 5 6 4 8 2 1 2 2 3.75 2.43
G-score 0.51 0.92 0.10 1.75 −0.72 −1.13 −0.72 −0.72 – –

Module M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 Mean Std

Features 2 4 5 2 1 1 6 2 2 3 3 2 2 2.69 1.49
G-score −0.46 0.87 1.55 −0.46 −1.13 −1.13 2.21 −0.46 −0.46 0.21 0.21 −0.46 −0.46 – –
Table 4
The granularity-related metrics applied to the YODA case.

Epic Story ES1 ES2 ES3 ES4 ES5 ES6 ES7 ES8 ES9 ES10 Mean Std

USs 13 3 6 7 2 6 2 3 2 14 5.8 4.47
G-score 1.61 −0.63 0.04 0.27 −0.85 0.04 −0.85 −0.63 −0.85 1.84 – –

Module M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Mean Std

Features 5 2 3 7 2 4 4 3 2 28 6 7.89
G-score −0.13 −0.51 −0.38 0.13 −0.51 −0.25 −0.25 −0.38 −0.51 2.79 – –
w
o
a
Y
h
f
a
i
f
U
o
o

n
(
&
r
I
a
p
f
(
s
0
s

a
n
t
c
t
d
i

Table 5
The alignment-related metrics applied to the VP and YODA cases.

Relationship Metric VP YODA

ES-M US-F ES-M US-F

Allocation
multi_alloc𝑑 0.38 0.17 0.0 0.10
exact_alloc𝑑 0.63 0.73 1.0 0.81
under_alloc𝑑 0.00 0.10 0.0 0.09

Satisfaction sat 𝑑 0.85 0.86 1.0 0.89

Alignment need_all𝑑 1.00 0.93 1.0 0.94
align𝑑 0.92 0.89 1.0 0.91

architecture. If we exclude ES2, the satisfaction drops from 0.85 to
0.69. This shows that a difference in the level of granularity between
the artifacts impacts the scores.

On the other hand, one of the requirements (ES6) was too fine
grained. This ES details an address change request, which can be
traced to a single feature Request vendor information change. This
was still seen as allocation, because although the module did more,
it still fulfilled the need in the requirement. The satisfaction score
indicates that around 15% of both granularity architecture components
do not directly satisfy a requirement. The remaining components are
not explicitly justified by the requirements.

Since this is an AD process, we expect a high alignment degree,
as the architecture is based on the requirements before taking imple-
mentation factors into account (as opposed to the AR process). The
alignment degree is around 0.9 on both granularity levels, indicating
slight discrepancies between the requirements and the architecture.
Together with the multi-allocation degrees of 0.38 and 0.17, this seems
to indicate that the requirements set is not sufficiently detailed. Based on
these results, communication between the requirements engineer and
the architect can increase the consistency between the artifacts and lead
to new requirements or architecture components. The inexact alloca-
tion on the ES-module level can indicate an incorrect categorization of
requirements, that the granularity of ES is not on a module level, or
that the architect’s categorization differs from that of the requirements
engineer.

The metrics from the VP case were discussed with the product
owner of the portal, who was surprised by the low alignment score.
Indeed, the project was rather simple and the requirements were the
basis for the architecture. The architecture design already had an
alignment score of 0.1 lower than a perfect alignment. The product
owner indicated that the metrics can be used to identify potential
issues with the requirements. Applying the metrics also determined
that 2 requirements were not yet satisfied, which was then resolved
11

b

in the architecture design. It was also noted that the requirements
specification was not revisited after the SA creation, and based on the
alignment degree, this might be an action point for the development
team.

Multi-allocation was seen by the product owner as the most im-
portant allocation degree, as it can indicate unnecessary costs. Under-
allocation was expected to be detected during use of the application, or
denote missing features to add later. The modules that did not satisfy a
requirement were judged to be a result of missing requirements. Finally, it

as mentioned that the metrics can be used to make agreements when
utsourcing development, e.g., requiring the architecture to have a 0.9
lignment degree with the requirements.
ODA. The ESs were allocated to exactly one module and the modules
ad a one-to-one relationship with ESs in terms of satisfaction. There-
ore, the need allocation, satisfaction and alignment scores are all 1.0
nd are not discussed any further. As evidenced by the satisfaction score
n Table 5, almost every feature satisfied at least one need. Only seven
eatures, out of 61, did not satisfy any needs. Furthermore, nearly all
Ss were allocated to a feature and only four needs were unallocated
ut of a total 65 needs. One US was under-allocated, meaning that some
f its needs were allocated, but not all.

Five USs are severely multi-allocated: three USs can be allocated to
ine features, while two others can be allocated to 28 and 26 features
these can be found in the YODA dataset alignment matrix with ID 13

18). When these USs are excluded from the alignment metrics, the
esults are clearly different. In both situations, there are 61 features.
n the dataset as-is, 54 of those features satisfy a need, which leads to
satisfaction score of 0.89 and an overall alignment score of 0.91, as

resented in Table 5. When the five aforementioned USs are removed
rom the alignment matrix, only 32 out of 61 features satisfy a need
satisfaction score = 0.52), which means that only half of the features
atisfy at least one need. The need allocation score is only decreased by
.01 (to 0.93) when using two decimals, which results in an alignment
core of 0.73.

In the YODA case, we proposed a modularization, which was then
ttempted by the development team. However, due to the many tech-
ical dependencies in the technical architecture they could not apply
he full modularization. This led them to refactor their software. This
alls for research on the link between functional architecture and
echnical architecture from an alignment point of view. For instance,
etermining how the functional architecture is impacted by decisions
n the technical architecture and whether a technical architecture can

e designed based on the functional architecture.

Information and Software Technology 133 (2021) 106535T. Spijkman et al.

a
m

t
T
a
t
d
m
t
f
s
o
p

Based on these findings, we hypothesize that the satisfaction score,
and therefore the alignment score, can be misleading if severely multi-
allocated requirements are included in the alignment matrix. We rec-
ommend calculating the scores including and excluding severely multi-
llocated requirements to measure their effect on the satisfaction and align-
ent scores. In addition, we suspect that severely multi-allocated USs,

such as the ones that could be linked to more than 20 features, are
formulated using a level of granularity that is dissimilar to the level of
granularity used for the architectural components. Arguably, the five USs
that were previously mentioned should either be split into multiple
USs or formulated as ESs. This indicates that they were underspecified
compared to the rest of the requirements, one of the most common
problems in RE practice [8].

The metrics reveal that not all requirements are currently allocated:
some features still need to be implemented. Moreover, if the severely
multi-allocated USs are excluded, nearly half of the features do not sat-
isfy a need. So, either the requirements are incomplete or unnecessary
features exist. The lead developer explained that they do not consider
anything in retrospect : when a US is considered completed, it is removed
from the backlog. Thus, he was unaware that five USs have not yet been
(fully) implemented in the system.

According to YODA’s lead developer, the metrics could prove to be
useful in several ways. First, they could help foster the creation of trace
links, currently nonexistent. When new colleagues join the team, it takes
them ‘‘approximately three months to get up to speed and be able to
add something of value to the system’’. Second, when someone leaves
the team, their knowledge is lost. Also, team members often do not know
where features originate from. Oftentimes, the rationale is unknown and
he source code is checked to locate features; if unused, it is removed.
he reason for this lack of documentation is that the team sometimes
dds features without defining the requirements first. As reflected by
he satisfaction scores, the team saw that they added features without
ocumenting the requirements for them. Moreover, he expects the
etrics to be of use for sprint reviews. Under-allocation, for instance,

o check whether all requirements were satisfied and if they were satisfied in
ull. Finally, in an attempt to prevent the team from implementing the
ame feature twice, the multi-allocation metric can help them identify
verlap in USs or even duplicate features. The developer stated they
lan on using the metrics in their next sprint aiming to improve their work
efficiency and quality.

7. Findings & validity

Applying the RE4SA-Agile model to two case studies has shown
the importance of considering granularity in all stages of alignment
evaluation. A mismatch in the granularity between the RE and SA
sides can skew the alignment metrics. Both in the YODA case for
US-feature and in the VP case for ES-module, we saw how a too
coarse-grained requirement can lead to a satisfaction score that is much
higher as components allocate to parts of the requirement. This can
be prevented by having clear agreements on the unity criteria [73]
used in the requirements and architecture on a project or product level.
Furthermore, mismatches in granularity are sometimes indicated by
the alignment metrics: a high multi-allocation degree can indicate that
features are more fine-grained than the requirements. For instance,
an incorrect categorization of high-level requirements can result in
an inexact allocation of the high-level requirements and components.
For example, in the YODA case, removing two coarse granulated user
stories reduces the satisfaction degree from 0.89 to 0.75, and therefore
the alignment degree from 0.91 to 0.85. This shows that severely multi-
allocated requirements can heavily impact the satisfaction score and,
12

therefore, the alignment score.
A difference in the level of granularity between artifacts can
impact both the granularity and alignment scores. As a possible
solution, we recommend calculating the metrics including and
excluding severely multi-allocated requirements, to measure their
impact.

Finding 1

When we consider H1, regarding the effectiveness of the granularity
smells, we see that smells in the requirements were often accompanied
by smells related to the corresponding architectural components. In the
VP case, the severe smell in ES4 can be traced to the smell in M7. And
in the YODA case, the severe smell in ES10 can be traced to the smell
in M10. While these results are seen as a first study, and we believe
additional case studies are required for confirmation, we summarize
this in Finding 2:

The granularity scores of the requirements artifacts can indicate
potential smells in the corresponding architecture specification.
The development team can use the requirements granularity smells to
predict architecture smells and be warned of them.

Finding 2

In our research, we somewhat simplified the connection between
the concepts. For example, there are cases in which modules possess
sub-modules (and even sub-sub-modules) or features are hierarchically
organized. For our empirical investigation of the RE4SA model, we
explicitly chose to work with a view of one level of decomposition in
order to keep the metrics and links understandable. When applying the
model to new cases, we suggest using unity criteria for determining
which functional elements to use in the metrics calculations. For ex-
ample, in the VP case, M1–M6 were sub-modules of the Back office
module, which contained all back-end functionalities. However, if we
had considered this a single module for the purposes of our metrics,
it would have provided a skewed view on alignment and granularity,
as these sub-modules are on a similar level of granularity as the other
modules.

When we evaluate H2, regarding the alignment degree, we observe
how the detection of a lower-than-expected alignment degree allows
a project team to determine that they need to ensure that they have
a shared understanding of the design for the application. In these
scenarios, the metrics can be used to facilitate team communication
by pinpointing misalignment. For example, the alignment score of 0.9
in the VP case before development even started, indicates that there
are conflicting views on the system between the requirements engineer
and software architect. The team can then collaborate to improve both
the requirements and architecture of the solution, with the explicit goal
of maximizing the alignment degree. Additionally, the conceptual link
between specific concepts in the RE and SA domains create a common
ground for the requirements engineer and software architect.

A low alignment score indicates a need for communication within
the project team. Identifying misalignment can lead to activities
to ensure the members of a project team are on the same page,
mitigating one of the most prevalent causes of project failure [8].

Finding 3

According to practitioners, the alignment metrics (providing partial
answer to H2) can be of use in several ways: to identify unnecessary
costs, to identify missing requirements, to make agreements when
outsourcing development, to support traceability and to check whether

Information and Software Technology 133 (2021) 106535T. Spijkman et al.

t
d
t
s
w

A
E
w
T
p
f
i
F
u
i
g
s
d
f
A
o
w
a

all requirements were implemented. While using the metrics for out-
sourcing agreements would help ensure the specified functionalities are
met, quality/non-functional aspects should be considered as well, as
those define how well a functionality is implemented. This topic, which
also requires considering the inter-dependencies among components,
is left to future work. As indicated in the evaluation of the AR case,
the alignment metrics could be integrated in development sprints to
evaluate if the requirements of a sprint are met. This leads to an
iterative use of the metrics on smaller sets of requirements, potentially
increasing their usability for agile projects. Incorporating the metrics in
a sprint can also facilitate the detection of trace links, as the allocation
matrix indicates which components satisfy specific requirements.
Validity threats. In relation to conclusion validity we identify three
threats. First, the results obtained from the analysis using the metrics
are affected by the level of granularity that was selected. While we en-
deavored to adhere to the granularity levels used in the source material,
different levels of granularity used may lead to different results. Second,
the granularity scores are dependent on the mean and standard devia-
tions of the dataset in question. If the requirements and/or architecture
are revised/refactored according to the results, for instance a high-level
architecture component is split to reduce its number of components,
the metrics need to be recalculated. Due to the refactoring of, in this
case, the module, the mean and standard deviation have been affected.
Third, the metrics were applied to only two cases; although these are
representative examples of software products, and several findings are
shared, our findings mostly apply to those cases.

Concerning internal validity, similar to the previously mentioned
conclusion validity threat, the selected level of granularity may affect
the internal validity of the research as well. USs should describe a
requirement for exactly one atomic feature, but this is not always
the case due to inefficiency, meaning USs may describe composite
features instead. The US ‘‘As a user, I want to select a language’’ would,
heoretically, result in one feature select language. However, one may
ecide to link this US to all language options available. To mitigate this
hreat, we have formulated guidelines for feature diagram granularity
tandardization. In addition, the granularity and alignment metrics
ere cross-validated and the data-sets have been made available.

In terms of construct validity, the use of epic stories in the RE4SA-
gile model and case studies may bring some risk. In RE practice,
Ss as presented here are rarely. ESs, or rather ‘epics’, are more often
ritten using the US template or as themes (one or a few words).
he re-formulation of epics and themes into ESs did not pose any
articular challenges here, but it is possible that others would have
ormulated these ESs in a different manner. The other concepts included
n the RE4SA-Agile model have already been adopted by practitioners.
urthermore, the abstraction relationship was only partially validated
sing the case studies. Both case studies included some type of group-
ng of requirements beforehand. Ideally, we would also investigate
rouping sets of detailed requirements in high-level requirements from
cratch. During the analysis of the datasets, there were a couple of
iscrepancies in the alignment tagging. These can be explained by the
act that one of the researchers was more familiar with the specific case.
dditionally, for the VP case we had more in depth knowledge, as one
f the authors is embedded in the case context. For the YODA case, we
ere limited to a number of conversations with the development team
nd our interpretation of the artifacts.

Finally, with regards to external validity, the testing of the metrics
was limited to two cases. We did, however, apply the metrics to
real-world documentation and base the granularity score bounds on
12 different data sets. In addition, the metrics and guidelines pre-
sented in this paper are meant for the assessment of requirements and
architecture only. It is entirely possible that a product or system is non-
problematic or without smells according to our metrics and guidelines,
but not according to others. Also, while the alignment metrics were
discussed with stakeholders related to the cases, the granularity metrics
13

were not.
8. Conclusion

In this study on requirements and architecture alignment, we pro-
posed the RE4SA model that provides a connection between artifacts
and that facilitates communication within the development team. We
formalized the links between the artifacts within the RE and SA do-
mains at a conceptual level, and applied these notions to a specific
instance of the model: the RE4SA-Agile model.

Additionally, we provided metrics to quantify the alignment be-
tween RE and SA and detect smells in granularity by focusing on
outliers in a dataset. These metrics have been applied in two industry-
provided cases and allow for detection of smells and for making im-
provements in both architecture and requirements. The metrics are
also useful for detecting the need for communication within a project
team during projects and in requirements and architecture reviews or
revisions. Performing the explicit anomaly analysis for granularity and
alignment of a software system assist RE and SA in establishing and
maintaining well structured, traceable artifacts.

To answer RQ1 on how to assist in achieving uniform granularity,
our proposed solution consists of applying the granularity metrics, to
detect granularity smells as presented in Section 4. These metrics are
expected to reveal opportunities for achieving uniform granularity (H1
in Section 6). While the smells do indicate such opportunities (e.g., we
could identify God-element occurrences in the architecture of the YODA
case), future work is necessary to assess whether re-establishing uni-
form granularity actually leads to better software systems. Moreover, in
Section 7, we observed that it was often the case that granularity smells
co-occurred in both the RE and the SA side together, thereby show-
ing that analyzing granularity at the requirements level may prevent
architectural granularity smells.

We address RQ2 on how to assist establishing and maintaining
alignment through the allocation, satisfaction, and alignment metrics
proposed in Section 5 (leading to H2 in Section 6). The metrics allowed
to identify situations in which requirements were not allocated or
modules were not justified; according to our interviewees, these issues
may lead to unnecessary costs or to foster the creation of trace links.
Finding 3 in Section 7 highlights how low alignment can be an indicator
of need for better communication within the project team.

While this research has shown promising results, our results are
still preliminary, and the findings need to be investigated more thor-
oughly to allow for generalization. For example, while both cases
indicate that a granularity smell in the requirements leads to a similar
granularity smell in the architecture, this needs to be researched em-
pirically. Additionally, more extensive guidelines could be identified
for the alignment metrics. For example, the notion of requirement
multi-allocation could be formalized as it could cause issues related to
under-specification [8].

Furthermore, the generalized RE4SA model has only been tested
through the RE4SA-Agile instance. We invite other researchers to ap-
ply the model and the metrics with alternative RE and SA artifacts.
Additionally, while we studied alignment between requirements and
functional architecture, we surmise that this alignment may also be
studied with respect to tests or code.

As stated, our research focused on the functional requirements
and architecture. However, this is not the only perspective that can
be considered for the alignment and granularity. Similar connections
might be present between non-functional requirements and different
architecture concepts. We do however, hypothesize that these archi-
tectural decisions are often made in early stages of design, and are
less likely to change compared to functional concepts. For instance, the
choice for a cloud platform like Azure, AWS or a low-code development
platform like in the VP case, constrains further choices. Therefore,
we expect that an initial architecture design can be mapped to the
non-functional requirements to ensure the requirements are met.

The activities in this research were mostly performed manually. For

future scenarios, we envision that software tools could assist the use of

Information and Software Technology 133 (2021) 106535T. Spijkman et al.
the RE4SA model. For example, by relying on the linguistic structure of
the artifacts, we could identify allocation and satisfaction links between
the requirements and architecture.

Evolution of software products in agile environments [3] is a chal-
lenge that could benefit from application of RE4SA-Agile. By applying
the metrics on a sprint basis, as suggested in the YODA case, the
effort required is limited to the sprint scope. Additionally, this would
ensure that the evolution of the software product becomes visible and
manageable. Which in turn keeps the SA and RE documentation up to
date.

CRediT authorship contribution statement

Tjerk Spijkman: Conceptualization, Methodology, Formal analy-
sis, Investigation, Data curation, Writing, Visualization. Sabine Mole-
naar: Conceptualization, Methodology, Formal analysis, Investigation,
Data curation, Writing, Visualization. Fabiano Dalpiaz: Conceptual-
ization, Methodology, Formal analysis, Investigation, Writing, Visual-
ization. Sjaak Brinkkemper: Conceptualization, Methodology, Formal
analysis, Investigation, Writing, Visualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We would like to thank fizor. and the YODA development team for
their contributions in the evaluations and data for our case studies.
Additionally, we would like to thank Sergio España for providing input
for this research.

References

[1] B. Nuseibeh, Weaving together requirements and architectures, Computer 34 (3)
(2001) 115–119.

[2] M. Galster, M. Mirakhorli, A. Koziolek, Twin Peaks goes agile, SIGSOFT Softw.
Eng. Notes 40 (5) (2015) 47–49.

[3] J. Cleland-Huang, R.S. Hanmer, S. Supakkul, M. Mirakhorli, The Twin Peaks of
requirements and architecture, IEEE Softw. 30 (2) (2013) 24–29.

[4] G. Lucassen, F. Dalpiaz, J.M. Van Der Werf, S. Brinkkemper, Bridging the Twin
Peaks: The case of the software industry, in: Proc. of the International Workshop
on the Twin Peaks of Requirements and Architecture, 2015, pp. 24–28.

[5] M. Galster, M. Mirakhorli, J. Cleland-Huang, J.E. Burge, X. Franch, R. Roshandel,
P. Avgeriou, Views on software engineering from the Twin Peaks of requirements
and architecture, ACM SIGSOFT Softw. Eng. Notes 38 (5) (2013) 40–42.

[6] J. Whitehead, Collaboration in software engineering: A roadmap, in: Proceedings
of Future of Software Engineering, 2007, pp. 214–225.

[7] I.R. McChesney, S. Gallagher, Communication and co-ordination practices in
software engineering projects, Inf. Softw. Technol. 46 (7) (2004) 473–489.

[8] D.M. Fernández, S. Wagner, M. Kalinowski, M. Felderer, P. Mafra, A. Vetrò, T.
Conte, M.-T. Christiansson, D. Greer, C. Lassenius, et al., Naming the pain in
requirements engineering, Empir. Softw. Eng. 22 (5) (2017) 2298–2338.

[9] B. Curtis, H. Krasner, N. Iscoe, A field study of the software design process for
large systems, Commun. ACM 31 (11) (1988) 1268–1287.

[10] D. Zowghi, N. Nurmuliani, A study of the impact of requirements volatility
on software project performance, in: Proceedings of the Asia-Pacific Software
Engineering Conference, 2002, pp. 3–11.

[11] C.C. Venters, R. Capilla, S. Betz, B. Penzenstadler, T. Crick, S. Crouch, E.Y.
Nakagawa, C. Becker, C. Carrillo, Software sustainability: Research and practice
from a software architecture viewpoint, J. Syst. Softw. 138 (2018) 174–188.

[12] M. Lindvall, D. Muthig, Bridging the software architecture gap, Computer 41 (6)
(2008) 98–101.

[13] W. Bekkers, I. van de Weerd, M. Spruit, S. Brinkkemper, A framework for process
improvement in software product management, in: Proceedings of the European
Conference on Software Process Improvement, 2010, 1–12.

[14] N. Rozanski, E. Woods, Software Systems Architecture: Working with
Stakeholders Using Viewpoints and Perspectives, Addison-Wesley, 2011.

[15] A. Moreira, J. Araújo, I. Brito, Crosscutting quality attributes for require-
ments engineering, in: Proceedings of the International Conference on Software
14

Engineering and Knowledge Engineering, 2002, pp. 167–174.
[16] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
Addison-Wesley Professional, 2003.

[17] S. Molenaar, T. Spijkman, F. Dalpiaz, S. Brinkkemper, Explicit alignment of
requirements and architecture in agile development, in: Proceedings of the
International Working Conference on Requirements Engineering: Foundation for
Software Quality, Springer, 2020, pp. 169–185.

[18] T. Spijkman, S. Brinkkemper, F. Dalpiaz, A.-F. Hemmer, R. van de Bospoort,
Specification of requirements and software architecture for the customisation of
enterprise software: A multi-case study based on the RE4SA model, in: 2019
IEEE 27th International Requirements Engineering Conference Workshops, REW,
IEEE, 2019, pp. 64–73.

[19] T. Dingsøyr, D. Falessi, K. Power, Agile development at scale: The next frontier,
IEEE Softw. 36 (2) (2019) 30–38.

[20] L. Cao, B. Ramesh, Agile requirements engineering practices: An empirical study,
IEEE Softw. 25 (1) (2008) 60–67.

[21] J.O. Coplien, G. Bjørnvig, Lean Architecture, John Wiley & Sons, 2011.
[22] A. Rashid, A. Moreira, J. Araújo, Modularisation and composition of aspectual

requirements, in: Proceedings of the International Conference on Aspect-Oriented
Software Development, 2003, pp. 11–20.

[23] D. Ameller, C. Ayala, J. Cabot, X. Franch, Non-functional requirements in
architectural decision making, IEEE Softw. 30 (2) (2012) 61–67.

[24] M.W. Whalen, A. Gacek, D. Cofer, A. Murugesan, M.P. Heimdahl, S. Rayadurgam,
Your ‘‘what’’ is my ‘‘how’’: Iteration and hierarchy in system design, IEEE Softw.
30 (2) (2012) 54–60.

[25] K. Pohl, E. Sikora, COSMOD-RE: Supporting the co-design of requirements and
architectural artifacts, in: Proceedings of the IEEE International Requirements
Engineering Conference, 2007, pp. 258–261.

[26] P. Grünbacher, A. Egyed, N. Medvidovic, Reconciling software requirements
and architectures with intermediate models, Softw. Syst. Model. 3 (3) (2004)
235–253.

[27] M. Brandozzi, D.E. Perry, Transforming goal-oriented requirement specifications
into architecture prescriptions, in: ICSE 2001 STRAW Workshop, 2001.

[28] M. Brandozzi, D.E. Perry, From goal-oriented requirements to architectural
prescriptions: The preskriptor process., in: STRAW, Citeseer, 2003, pp. 107–113.

[29] C. Hofmeister, R.L. Nord, D. Soni, Global analysis: moving from software
requirements specification to structural views of the software architecture, IEE
Proc. Softw. 152 (4) (2005) 187–197.

[30] A. Van Lamsweerde, From system goals to software architecture, in: International
School on Formal Methods for the Design of Computer, Communication and
Software Systems, Springer, 2003, pp. 25–43.

[31] J.G. Hall, M. Jackson, R.C. Laney, B. Nuseibeh, L. Rapanotti, Relating software
requirements and architectures using problem frames, in: Proceedings of the IEEE
Joint International Conference on Requirements Engineering, 2002, pp. 137–144.

[32] M. Jackson, Problem Frames: Analysing and Structuring Software Development
Problems, Addison-Wesley, 2001.

[33] P. Bourque, R.E. Fairley, et al., Guide to the software engineering body of
knowledge (SWEBOK): Version 3.0, IEEE Computer Society Press, 2014.

[34] D.L. Parnas, P.C. Clements, D.M. Weiss, The modular structure of complex
systems, IEEE Trans. Softw. Eng. 3 (1985) 259–266.

[35] S. Apel, C. Kästner, An overview of feature-oriented software development, J.
Object Technol. 8 (5) (2009) 49–84.

[36] R.N. Langlois, Modularity in technology and organization, J. Econ. Behav. Organ.
49 (1) (2002) 19–37.

[37] R. Davis, Business Process Modelling with ARIS: A Practical Guide, Springer
Science & Business Media, 2001.

[38] H.A. Reijers, J. Mendling, R.M. Dijkman, Human and automatic modularizations
of process models to enhance their comprehension, Inf. Syst. 36 (5) (2011)
881–897.

[39] S. Brinkkemper, S. Pachidi, Functional architecture modeling for the software
product industry, in: Proceedings of the European Conference on Software
Architecture, 2010, pp. 198–213.

[40] F.B. e Abreu, M. Goulão, Coupling and cohesion as modularization drivers:
Are we being over-persuaded ? in: Proceedings of the European Conference on
Software Maintenance and Reengineering, 2001, pp. 47–57.

[41] O. Liskin, R. Pham, S. Kiesling, K. Schneider, Why we need a granularity concept
for user stories, in: Proceedings of the International Conference on Agile Software
Development, Springer, 2014, pp. 110–125.

[42] S. Espana, N. Condori-Fernandez, A. Gonzalez, Ó. Pastor, Evaluating the com-
pleteness and granularity of functional requirements specifications: A controlled
experiment, in: Proceedings of the IEEE International Requirements Engineering
Conference, 2009, pp. 161–170.

[43] C. Kästner, S. Apel, M. Kuhlemann, Granularity in software product lines, in:
Proceedings of the International Conference on Software Engineering, 2008, pp.
311–320.

[44] J.D. McKeen, H. Smith, Making IT happen: Critical Issues in IT Management,
Wiley Chichester, 2003.

[45] J. Cleland-Huang, O.C. Gotel, J. Huffman Hayes, P. Mäder, A. Zisman, Software
traceability: Trends and future directions, in: Proceedings of Future of Software

Engineering, 2014, pp. 55–69.

http://refhub.elsevier.com/S0950-5849(21)00023-9/sb1
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb1
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb1
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb2
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb2
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb2
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb3
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb3
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb3
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb5
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb5
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb5
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb5
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb5
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb7
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb7
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb7
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb8
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb8
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb8
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb8
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb8
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb9
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb9
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb9
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb11
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb11
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb11
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb11
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb11
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb12
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb12
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb12
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb14
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb14
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb14
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb16
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb16
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb16
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb17
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb17
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb17
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb17
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb17
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb17
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb17
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb18
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb18
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb18
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb18
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb18
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb18
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb18
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb18
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb18
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb19
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb19
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb19
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb20
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb20
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb20
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb21
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb23
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb23
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb23
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb24
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb24
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb24
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb24
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb24
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb26
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb26
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb26
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb26
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb26
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb28
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb28
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb28
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb29
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb29
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb29
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb29
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb29
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb30
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb30
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb30
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb30
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb30
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb32
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb32
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb32
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb33
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb33
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb33
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb34
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb34
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb34
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb35
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb35
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb35
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb36
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb36
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb36
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb37
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb37
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb37
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb38
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb38
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb38
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb38
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb38
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb41
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb41
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb41
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb41
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb41
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb44
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb44
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb44

Information and Software Technology 133 (2021) 106535T. Spijkman et al.
[46] O. Gotel, J. Cleland-Huang, J.H. Hayes, A. Zisman, A. Egyed, P. Grünbacher, G.
Antoniol, The quest for ubiquity: A roadmap for software and systems traceability
research, in: Proceedings of the IEEE International Requirements Engineering
Conference, pp. 71–80.

[47] A. Egyed, P. Grünbacher, Automating requirements traceability: Beyond the
record & replay paradigm, in: Proceedings of the International Conference on
Automated Software Engineering, 2002, pp. 163–171.

[48] Y. Zhang, R. Witte, J. Rilling, V. Haarslev, An ontology-based approach for trace-
ability recovery, in: Proceedings of the International Workshop on Metamodels,
Schemas, Grammars and Ontologies, 2006, pp. 36–43.

[49] M. Rath, J. Rendall, J.L.C. Guo, J. Cleland-Huang, P. Mäder, Traceability in the
wild: Automatically augmenting incomplete trace links, in: Proceedings of the
International Conference on Software Engineering, 2018, pp. 834–845.

[50] M. Borg, P. Runeson, A. Ardö, Recovering from a decade: a systematic mapping
of information retrieval approaches to software traceability, Empir. Softw. Eng.
19 (6) (2014) 1565–1616.

[51] A. Tang, P. Liang, V. Clerc, H. Van Vliet, Traceability in the co-evolution of
architectural requirements and design, in: Relating Software Requirements and
Architectures, Springer, 2011, pp. 35–60.

[52] P. Rempel, P. Mäder, Estimating the implementation risk of requirements in agile
software development projects with traceability metrics, in: Proceedings of the
International Working Conference on Requirements Engineering: Foundation for
Software Quality, 2015, pp. 81–97.

[53] S.L. Pfleeger, S.A. Bohner, A framework for software maintenance metrics, in:
Proceedings of the International Conference on Software Maintenance, 1990, pp.
320–327.

[54] A. Murugesan, S. Rayadurgam, M. Heimdahl, Requirements reference models
revisited: Accommodating hierarchy in system design, in: Proceedings of the IEEE
International Requirements Engineering Conference, 2019, pp. 177–186.

[55] T. Sharma, D. Spinellis, A survey on software smells, J. Syst. Softw. 138 (2018)
158–173.

[56] G. van Valkenhoef, T. Tervonen, B. de Brock, D. Postmus, Quantitative re-
lease planning in extreme programming, Inf. Softw. Technol. 53 (11) (2011)
1227–1235.

[57] K. Vlaanderen, S. Jansen, S. Brinkkemper, E. Jaspers, The agile requirements
refinery: Applying SCRUM principles to software product management, Inf.
Softw. Technol. 53 (1) (2011) 58–70.

[58] N. Ali, S. Baker, R. O’Crowley, S. Herold, J. Buckley, Architecture consistency:
State of the practice, challenges and requirements, Empir. Softw. Eng. 23 (1)
(2018) 224–258.
15
[59] G. Lucassen, M. van de Keuken, F. Dalpiaz, S. Brinkkemper, G.W. Sloof, J.
Schlingmann, Jobs-to-be-done oriented requirements engineering: a method for
defining job stories, in: Proceedings of the International Working Conference on
Requirements Engineering: Foundation for Software Quality, 2018, pp. 227–243.

[60] I. Inayat, S.S. Salim, S. Marczak, M. Daneva, S. Shamshirband, A systematic
literature review on agile requirements engineering practices and challenges,
Comput. Hum. Behav. 51 (2015) 915–929.

[61] G. Lucassen, F. Dalpiaz, J.M.E. van der Werf, S. Brinkkemper, Improving agile
requirements: The Quality User Story framework and tool, Requir. Eng. 21 (3)
(2016) 383–403.

[62] Y. Wautelet, S. Heng, M. Kolp, I. Mirbel, S. Poelmans, Building a rationale
diagram for evaluating user story sets, in: Proceedings of the International
Conference on Research Challenges in Information Science, 2016, pp. 1–12.

[63] E.S. Yu, Towards modelling and reasoning support for early-phase requirements
engineering, in: Proceedings of the International Symposium on Requirements
Engineering, 1997, pp. 226–235.

[64] J. Bosch, Software architecture: The next step, in: Proceedings of the European
Workshop on Software Architecture, 2004, pp. 194–199.

[65] A. Hubaux, T.T. Tun, P. Heymans, Separation of concerns in feature diagram
languages: A systematic survey, ACM Comput. Surv. 45 (4) (2013).

[66] J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Identifying architectural bad
smells, in: Proceedings of the European Conference on Software Maintenance
and Reengineering, IEEE, 2009, pp. 255–258.

[67] S. Smirnov, R. Dijkman, J. Mendling, M. Weske, Meronymy-based aggregation
of activities in business process models, in: Proceedings of the International
Conference on Conceptual Modeling, Springer, 2010, pp. 1–14.

[68] A. Bucchiarone, S. Gnesi, P. Pierini, Quality analysis of NL requirements: An
industrial case study, in: Proceedings of the IEEE International Conference on
Requirements Engineering, 2005, pp. 390–394.

[69] D.M. Berry, Evaluation of tools for hairy requirements and software engineering
tasks, in: Procedings of the Workshop on Empirical Requirements Engineering,
2017, pp. 284–291.

[70] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Ex-
perimentation in Software Engineering, Springer Science & Business Media,
2012.

[71] T.C. Lethbridge, S.E. Sim, J. Singer, Studying software engineers: Data collection
techniques for software field studies, Empir. Softw. Eng. 10 (3) (2005) 311–341.

[72] J. Bosch, Achieving simplicity with the three-layer product model, Computer 46
(11) (2013) 34–39.

[73] A. Gonzalez, S. Espana, O. Pastor, Unity criteria for business process modelling,
in: Proceedings of the International Conference on Research Challenges in
Information Science, 2009, pp. 155-164.

http://refhub.elsevier.com/S0950-5849(21)00023-9/sb50
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb50
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb50
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb50
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb50
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb51
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb51
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb51
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb51
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb51
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb55
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb55
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb55
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb56
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb56
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb56
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb56
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb56
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb57
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb57
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb57
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb57
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb57
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb58
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb58
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb58
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb58
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb58
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb60
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb60
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb60
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb60
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb60
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb61
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb61
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb61
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb61
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb61
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb65
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb65
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb65
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb66
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb66
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb66
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb66
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb66
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb67
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb67
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb67
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb67
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb67
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb70
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb70
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb70
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb70
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb70
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb71
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb71
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb71
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb72
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb72
http://refhub.elsevier.com/S0950-5849(21)00023-9/sb72

	Alignment and granularity of requirements and architecture in agile development: A functional perspective
	Introduction
	Background: Granularity and Alignment of RE and SA artifacts
	Twin peaks
	Granularity
	Alignment

	The RE4SA model
	Architecture discovery and architecture recovery
	RE4SA-Agile

	Granularity metrics
	Alignment metrics
	The RE4SA-Agile model in practice
	Case study approach
	Changes from previous investigation

	Granularity: Studying refinement and abstraction
	Alignment: Studying allocation and satisfaction

	Findings & validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

