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Abstract 
The chapter familiarises the reader with an intuitive yet powerful 
methodology to tune instruments to a common unit, presenting a 
fresh approach that expresses measurements made by different 
instruments on the D-score scale. As a result, the reader may compare 
D-scores between ages, children or cohorts. It shows how to exploit 
common developmental milestones to bridge instruments and 
cohorts; presents an analysis to obtain D-scores from 16 cohorts and 
14 instruments; compares D-score age-distribution across populations 
from four continents; suggests an indicator for the United Nations 
Sustainable Development Goals; and defines developmentally-on-
track.

Keywords 
global child development, equating, individual data meta analysis, 
linking

 

This article is included in the Child 

Development with the D-score gateway.

Open Peer Review

Reviewer Status  AWAITING PEER REVIEW

Any reports and responses or comments on the 

article can be found at the end of the article.

Gates Open Research

 
Page 1 of 45

Gates Open Research 2021, 5:86 Last updated: 21 DEC 2021

https://gatesopenresearch.org/articles/5-86/v1
https://gatesopenresearch.org/articles/5-86/v1
https://orcid.org/0000-0002-0030-1458
https://doi.org/10.12688/gatesopenres.13223.1
https://doi.org/10.12688/gatesopenres.13223.1
https://gatesopenresearch.org/gateways/dscore
https://gatesopenresearch.org/gateways/dscore
https://gatesopenresearch.org/gateways/dscore
http://crossmark.crossref.org/dialog/?doi=10.12688/gatesopenres.13223.1&domain=pdf&date_stamp=2021-05-25


Corresponding author: Iris Eekhout (iris.eekhout@tno.nl)
Author roles: Eekhout I: Writing – Original Draft Preparation; van Buuren S: Writing – Original Draft Preparation
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by the Bill & Melinda Gates Foundation [49921, 52561 and 02133]. 
Copyright: © 2021 Eekhout I and van Buuren S. This is an open access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 
cited.
How to cite this article: Eekhout I and van Buuren S. Child development with the D-score: tuning instruments to unity [version 1; 
peer review: awaiting peer review] Gates Open Research 2021, 5:86 https://doi.org/10.12688/gatesopenres.13223.1
First published: 25 May 2021, 5:86 https://doi.org/10.12688/gatesopenres.13223.1 

Gates Open Research

 
Page 2 of 45

Gates Open Research 2021, 5:86 Last updated: 21 DEC 2021

mailto:iris.eekhout@tno.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/gatesopenres.13223.1
https://doi.org/10.12688/gatesopenres.13223.1


1 Introduction

This introductory section

•  briefly summarises our previous work on the D-score (1.1)

•  introduces the main topic of the chapter (1.2)

•  highlights the relevance of work (1.3)

•  explains why we have written this chapter (1.4)

•  delineates the intended audience (1.5)

1.1 Previous work on the D-score

Chapter I - Turning milestones into measurement (van 
Buuren & Eekhout, 2021) - highlights the concepts and tools 
needed to obtain a quantitative score from a set of 
developmental  milestones.

In practice, we typically want to make the following types of  
comparisons:

•  Compare development within the same child over time;

•  Compare the development of two children of the same age;

•  Compare the development of two children of different ages;

•  Compare the development of groups of children of different
ages.

To do this well, we need an interval scale with a fixed unit  
of development. We argued that the simple Rasch model is a 
very suitable candidate to provide us with such a unit. The  
Rasch model is simple, fast, and we found that it fits child  
developmental data very well (Jacobusse et al., 2006)(van  
Buuren, 2014). The Rasch model has a long history, but -
unfortunately- it is almost unknown outside the field of  
psychometrics. We highlighted the concepts of the model that 
are of direct relevance to child development. Using data col-
lected by the Dutch Development Instrument, we demonstrated 
that the model and its estimates behave as intended for chil-
dren in the open population, for prematurely born-children,  
and children living in a low- and middle-income country.

As our approach breaks with the traditional paradigm that  
emphasises different domains of child development, we expected 
a slow uphill battle for acceptance. We have now gained the 
interest from various prominent authors in the field, and from  
organisations who recognise the value of a one-number-summary 
for child development. In analogy to traditional growth charts, 
it is entirely possible to track children, or groups of children, 
on a developmental chart over time. Those and other applica-
tions of the technology may eventually win over some more  
souls.

1.2 What this volume is about

It is straightforward to apply the D-score methodology, as  
explained in Chapter I: Turning milestones into measurement 
(van Buuren & Eekhout, 2021), for measurements observed by 
one instrument. In practice, however, there is a complication. 

We often need to deal with multiple, partially overlapping tools.  
For example, our data may contain

•  different versions of the same instrument (e.g., Bayley I, II and
III);

• different language versions of the same tool;

• different tools administered to the same sample;

• different tools administered to different samples;

• and so on.

Since there are over 150 different instruments to measure 
child development (Fernald et al., 2017), the chances are high  
that our data also hold data observed by multiple tools.

It is not apparent how to obtain comparable scores from differ-
ent instruments. Tools may have idiosyncratic instructions to  
calculate total scores, distinctive domain definitions, unique 
compositions of norm groups, different floors and ceilings,  
or combinations of these.

This chapter addresses the problem how to define and calcu-
late the D-score based on data coming from multiple sources,  
using various instruments administered at varying ages. We 
explain techniques that systematically exploit the overlap 
between tools to create comparable scores. For example, many 
instruments have variations on milestones like Can stack two  
blocks, Can stand or Says baba. By carefully mapping out 
the similarities between instruments, we can construct a con-
strained measurement model informed by subject matter  
knowledge. As a result, we can map different instruments onto  
the same scale.

Many of the techniques are well known within psychometrics 
and educational research. This chapter translates the concepts  
to the field of child development.

1.3 Relevance of the work

We all like our children to grow and prosper. The first 1000 
days refers to the time needed for a child to grow from  
conception to its second birthday. During this period, the archi-
tecture of the developing brain is very open to the influence  
of relationships and experiences. It is a time of rapid change  
that lays the groundwork for later health and happiness.

Professionals and parents consider it necessary to monitor chil-
dren’s development. While we can track the child’s physi-
cal growth by growth charts to identify children with signs of  
potential delay, there are no charts for monitoring child devel-
opment. To create such charts, we need to have a unit of  
development, similar to units like centimetres or kilograms.

The D-score is a way to define a unit of child development. 
With the D-score, we see that progress is much faster during 
infancy, and that different children develop at different rates. The  
D-score also allows us to define a “normal” range that we
can use to filter out those who are following a more patho-
logical course. There is good evidence that early identification
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and early intervention improve the outcomes of children 
(Britto et al., 2017). Early intervention is crucial for children 
with developmental disabilities because barriers to healthy  
development early in life impede progress at each subsequent 
stage.

Monitoring child development provides caregivers and parents  
with reliable information about the child and an opportunity  
to intervene at an early age. Understanding the developmental  
health of populations of children allows organisations  
and policymakers to make informed decisions about pro-
grammes that support children’s greatest needs (Bellman et al.,  
2013).

1.4 Why this chapter?

We believe that there can be one scale for measuring child  
development and that this scale is useful for many applica-
tions. We also believe that there cannot be one instrument for 
measuring child development that is suitable for all situations.  
In general, the tool needs tailoring to the setting.

We see that practitioners often view instruments and scales 
as exchangeable. In daily practice, the practitioner would  
pick a particular tool to measure a specific faculty, which then 
effectively produces a “scale score.” Each tool produces its  
own score, which then feeds into the diagnostic and monitoring 
process.

We have always found it difficult to explain that scales and 
instruments are different things. For us, a scale is a continuous  
concept, like “distance,” “temperature” or “child development,” 
and the instrument is the way to assign values to the particular 
object being measured. For measuring distance, we use devices 
like rods, tapes, sonar, radar, geo-location, or red-shift detection,  
and we can express the results as the location under the underly-
ing scale (e.g., number of meters). It would undoubtedly be an 
advance if we could establish a unit of child development, and  
express the measurement as the number of units. If we suc-
ceed, we can compare child development scores, that are meas-
ured through different devices. This chapter explores the theory  
and practice for making that happen.

1.5 Intended audience

We aim for three broad audiences:

• Professionals in the field of child growth and development;

• Policymakers in international settings;

• Statisticians, methodologists, and data scientists.

Professionals in child development are constantly faced with 
the problem that different instruments for measuring child  
development yield incomparable scores. This chapter introduces 
and illustrates sound psychometric techniques for extracting 
comparable scores from existing instruments. We hope that  
our approach will ease communication between professionals.

Policymakers in international settings are looking for simple,  
versatile, and cheap instruments to gain insight into the  

effectiveness of interventions. The ability to measure child 
development by a single number enhances priority setting and  
leads to a more accurate understanding of policy effects.

The text may appeal to statisticians and data scientists for 
the simplicity of the concepts, for the (somewhat unusual)  
application of statistical models to discard data, for the ease  
of interpretation of the result, and for the availability of software.

2 Data

This chapter explains the methodology for obtaining a compara-
ble developmental score (D-score) from different instruments.  
This section introduces the data that will illustrate our 
approach. The data originates from a study by the Global Child  
Development Group (GCDG), that brought together longitudi-
nal measurement on child development data from 16 cohorts  
worldwide.

• Overview of cohorts and instrument (2.1)

• Cohort descriptions (2.2)

• Instruments (2.3)

2.1 Overview of cohorts and instruments

The Global Child Development Group (GCDG) collected  
longitudinal data from 16 cohorts. The objective of the study 
was to develop a population-based measure to monitor early 
child development across ages and countries. The requirements  
for inclusion were

1. direct assessment of child development;

2. availability of individual milestone scores;

3. spanning ages between 0–5 years;

4. availability of follow-up measures, at ages 5–10 years.

The effort resulted in a database containing individual data 
from over 16,000 children from 11 countries. The world 
map below (Figure 2.1) colors the countries included in the  
study. Section 2.2 briefly describes each cohort. Section 2.3  
reviews the measurement instruments.

The GCDG data comprises of birth cohorts, impact evaluation 
studies and instrument evaluation studies. Table 2.1 displays  
a brief overview of the instruments used in each sub-study.

2.2 Cohort descriptions

The cohorts have different designs, age ranges and assess-
ment instruments. Figure 2.2 displays the age range of devel-
opmental assessments per cohort, coloured according to the  
instruments.

A brief description of each cohort follows:

The Bangladesh study (GCDG-BGD-7MO) was an impact
evaluation study including 1862 children around the age of  
18 months. The Bayley Scale for Infant and Toddler Develop-
ment-II (by2) was administered and long-term follow-up data
were available for the Wechsler Preschool and Primary Scale  
of Intelligence (WPPSI) at 5 years (Tofail et al., 2008).
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Figure 2.1. Coverage of countries included in the study.

Table 2.1. Overview of instruments administered in the cohorts.

Cohort by den gri bat vin ddi bar tep aqi sbi

Bangladesh x

Brazil 1 x

Brazil 2 x

Chile 1 x

Chile 2 x x

China x

Colombia 1 x

Colombia 2 x x x x

Ecuador x

Ethiopia x

Jamaica 1 x

Jamaica 2 x

Madagascar x

Netherlands1 x

Netherlands2 x

South Africa x x x
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The Brazil 1 study (GCDG-BRA-1) was a birth-cohort
with 3 measurement moments: 644 children at 3 months,  
1412 children at 6 months and 1362 children at 12 months. The 
investigators administered the Denver Developmental Screen-
ing Test-II (den) in each round. Long-term follow-up data
were available for the Wechsler Adult Intelligence Scale (WAIS)  
at 18 years (Victora et al., 2006).

The Brazil 2 study (GCDG-BRA-2) was a birth-cohort
with measurements of 3907 children at 12 months and 3869  
children at 24 months. Both occasions collected data on the  
Battelle Development Inventory (bat) (Moura et al., 2010).

The Chile 1 study (GCDG-CHL-1) was an impact evalua-
tion study of 128 children assessed at 6 months, 1732 children  
at 12 months and 279 at 18 months. The by1 was adminis-
tered at each of the three waves. Long-term follow-up data were  
available for the WPPSI at 5–6 years (Lozoff et al., 2003).

The Chile 2 study (GCDG-CHL-2) consists of a birth-cohort
of 4869 children. The investigators measured child devel-
opment by the Battelle Developmental Inventory (bat) at
7–23 months. A total of 9201 children aged 24–58 responded 
to the Test de Desarrollo Psicomotor (tep) at 24–58 months.
For the latter group, follow-up data were available for the  
Peabody Picture Vocabulary Test (PPVT) at 5–6 years (Conteras  
& González, 2015).

The China study (GCDG-CHN) was an impact evalua-
tion study that contained 990 children assessed with the by3  
at 18 months (Lozoff et al., 2016).

The Colombia 1 study (GCDG-COL-LT45M) was an impact
evaluation study that comprised two waves. Wave 1 contained 
704 children at 12–24 months and wave 2 631 children at  
24–41 months. The by3 was administered at each wave. Long-
term follow-up data were available for PPVT at 4–6 years  
(Attanasio et al., 2014).

The Colombia 2 study (GCDG-COL-LT42M) was an
instrument validation study where all 1311 children aged  
6–42 months were measured the by3. Also, there are data
for a subgroup of 658 children on den, the Ages and Stages
Questionnaire (aqi), and the bat screener. Long-term
follow-up data were available for the Fifth Wechsler Intelligence  
Scale for Children (WISC-V) and the PPVT (Rubio-Codina  
et al., 2016).

An impact evaluation study in Ecuador(GCDG-ECU) yielded
data from 667 children between 0–35 months on the Barrera  
Moncada (bar). Long-term follow-up data were available for
the PPVT at 5–8 and 9–12 years [Paxson & Schady, 2010].

The Ethiopia study (GCDG-ETH) was a birth-cohort with
193 children of 12 months in the first wave, 440 children of  
30 months at the second wave, and 456 children of 42 months 
at the third wave. The investigators used the same instrument  
(by3) for all waves. Long-term follow-up data were available
for the PPVT at 10–11 years [Hanlon et al., 2009].

The Jamaica 1 study (GCDG-JAM-LBW) was an impact
evaluation study that collected data on the Griffiths Mental  
Development Scales (gri) for 225 children aged 15 months

Figure 2.2. Age range and assessment instrument of included data for each GCDG cohort.
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(first wave), and 218 children of aged 24 months (second wave). 
Long-term follow-up data were available for WPPSI and PPVT  
at 6 years (Walker et al., 2004).

The Jamaica 2 study (GCDG-JAM-STUNTED) was an 
impact evaluation study with data on the gri for 159 children  
at 9–24 months, 21–36 months, and at 33–48 months. Long-
term follow-up data were available for sbi, Raven’s Coloured  
Progressive Matrices (Ravens), and PPVT at 7–8 years and  
the WAIS at 17–18 years (Grantham-McGregor et al., 1991).

The Madagascar study (GCDG-MDG) was an impact evaluation 
study that used the sbi for 205 children aged 34–42 months. 
Long-term follow-up data were available for sbi and PPVT  
at 7–11 years (Fernald et al., 2011).

The Netherlands 1 study (GCDG-NLD-SMOCC) was an 
instrument validation study with a total of 9 waves. At each  
wave the Dutch Developmental instrument (ddi) (In the  
Netherlands known as Van Wiechenschema) was administered. 
The first wave included 1985 children at 1 month, wave 2 1807  
children at 2 months, wave 3 1963 children at 3 months, wave 
4 1919 children at 6 months, wave 5 1881 children at 9 months, 
wave 6 1802 children at 12 months, wave 7 1776 children at  
15 months, wave 8 1787 children at 18 months, and wave 9 1815  
children at 24 months (Herngreen et al., 1992).

The Netherlands 2 study (GCDG-NLD-2) was an instru-
ment validation study with a total of five waves. This study  
resembles GCDG-NLD-SMOCC but for older children. Wave 
1 included 1016 children at 24 months, wave 2 995 chil-
dren at 30 months, wave 3 1592 children at 36 months, wave  
4 1592 children at 42 months, and wave 5 1024 children at  
48 months (Doove, 2010).

The South Africa study (GCDG-ZAF) was a birth cohort with 
four waves. The first wave included 485 children and second  
wave 275 children, who were assessed at 6 and 12 months,  
respectively, with the by1 and the gri. The third wave included 
1802 children and the fourth wave 1614 children, assessed  
at 24 and 48 months, respectively, with the Vineland Social  
Maturity Scale (vin) (Richter et al., 2007).

2.3 Instruments

The Bayley Scales for Infant and Toddler Development 
(by1, by2, by3) aim to assess infants and toddlers, aged  
1–42 months. The current version is the by3, but some 
GCDG cohorts used earlier versions (i.e. by1 and by2)  
(Bayley, 1969, 1993, 2006). The 326 items of the by3 meas-
ure three domains: Cognitive items, Motor items (with fine  
and gross motor items), and Language items (with expres-
sive and receptive items). The by2 contains 277 items and 
has two additional subscales: Social-Emotional and Adaptive  
Behavior. by1 contains 229 items. 

The Denver Developmental Screening Test (den) is aimed 
to identify developmental problems in children up to age six.  
The 125 dichotomous test items are distributed over the age 
range from birth to six years. The Denver covers four domains:  
personal-social, fine motor and adaptive, language, and gross 

motor. The test items are all directly observed by an examiner  
and are not dependent on parent report (Frankenburg et al., 1992) 
(Frankenburg et al., 1990). 

The Griffiths Mental Development Scales (gri) measure  
the rate of development in infants and young children in six  
developmental areas: locomotor, personal-social, hearing and 
language, eye and hand coordination, performance and practical  
reasoning (Griffiths, 1967).

The Battelle Developmental Inventory (bat) measures key  
developmental skills in children from birth to 7 years, 11 months. 
The instrument contains 450 items distributed over five domains: 
adaptive, personal-social, communication, motor, and cognitive 
(Newborg, 2005).

The Vineland Social Maturity Scale (vin) is a test to assess 
social competence. The instrument contains eight subscales that  
measure communication skills, general self-help ability, loco-
motion skills, occupation skills, self-direction, self-help eating,  
self-help dressing and socialisation skills (Doll, 1953).

The Dutch Developmental Instrument (ddi) measures early 
child development during the ages 0–4 years. The instrument 
consists of 75 milestones spread over three domains: fine motor,  
adaptive, personal and social behaviour; communication; and  
gross motor (Schlesinger-Was, 1981).

The Barrera Moncada (bar) is a Spanish instrument that  
measures the growth and psychological development of children  
(Barrera Moncada, 1981).

The Test de Desarrollo Psicomotor (tep) is an instrument to 
evaluate toddlers aged 2 to 5 years on their development. The  
items come from three sub-tests: 16 items assess coordination; 
24 items measure language skills and 12 items tap into motor  
skills (Haeussler & Marchant, 1999).

The Ages and Stages Questionnaire (aqi) measures develop-
mental progress in children aged 2 mo – 5.5 yrs. The instrument  
distinguishes development in five areas: personal-social, gross 
motor, fine motor, problem solving, and communication. The 
caregiver completes 30 items per age intervals and (Squires &  
Bricker, 2009).

The Stanford Binet Intelligence Scales (sbi) is a cogni-
tive ability and intelligence test to diagnose developmental  
deficiencies in young children. The items divide into five  
subtests: fluid reasoning, knowledge, quantitative reasoning, vis-
ual-spatial processing, and working memory (Roid, 2003)(Hagen  
& Stattler, 1986). 

3 Comparability

This section describes challenges and methodologies to har-
monize child development measurements obtained by different  
instruments:

•      Are instruments connected? (3.1)

•      Bridging instruments by mapping items (3.2)

•      Overview of promising item mappings (3.3)
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3.1 Are instruments connected?

The ultimate goal is to compare child development across  
populations and cultures. A complication is that measure-
ments are made by different instruments. To do deal with this 
issue, we harmonize the data included in the GCDG cohorts. 
In particular, we process the milestone responses such that the  
following requirements hold:

•       Every milestone in an instrument has a unique name and a 
descriptive label;

•      Every milestone occupies one column in the dataset;

•      Item scores are (re)coded as: 1 = PASS; 0 = FAIL;

•      Items not administered or not answered are a missing value;

•       Every row in the dataset corresponds to a unique cohort- 
child-age combination.

Cohorts and milestones need to be connected. There are several 
ways to connect cohorts:

•       Two cohorts are directly connected if they use the same  
instrument;

•       Two cohorts are indirectly connected if both connect to a  
third cohort that connects them.

Likewise, instruments can be connected:

•       Two instruments are directly connected if the same cohort 
measures both;

•       Two instruments are indirectly connected if both connect  
to a third instrument that connects them.

An X in Table 3.1 identifies which cohorts use which instru-
ments. The linkage table shows that studies from China,  
Colombia, and Ethiopia are directly connected (by by3). Brazil 1  
indirectly connects to these studies through den. Some cohorts  
(e.g., Chile 1 and Ecuador) do not link to any other study.  
Likewise, we might say that aqi, bat, by3, and den are  
directly connected. Note that no indirect connections exist to  
this instrument group.

Table 3.1 is a somewhat simplified version of the linkage pat-
tern. As we saw in section 2.2, there are substantial age differ-
ences between the cohorts. The linked instrument linkage table  
shows the counts of the number of registered scores per age 
group. What appears in Table 3.1 as one test may comprise 
of two disjoint subsets, and hence some cohorts may not be  
connected after all.

Connectedness is a necessary - though not sufficient - require-
ment for parameter identification. If two cohorts are not  
connected, we cannot distinguish between the following two  
alternative explanations:

•       Any differences between studies can be attributed to the  
ability of the children;

•       Any differences between studies can be attributed to the  
difficulties of the instruments.

Table 3.1. Linkage pattern indicating combinations of cohorts and instruments.

aqi bar bat by1 by2 by3 ddi den gri mac peg sbi sgr tep vin

Bangladesh x

Brazil 1 x

Brazil 2 x

Chile 1 x

Chile 2 x x

China x

Colombia 1 x

Colombia 2 x x x x

Ecuador x

Ethiopia x

Jamaica 1 x

Jamaica 2 x

Madagascar x x x

Netherlands1 x

Netherlands2 x

South Africa x x x x
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The data do not contain the necessary information to dis-
criminate between these two explanations. Since many cohorts  
in Table 3.1 are unconnected, it seems that we are stuck.

The next section suggests a way out of the dilemma.

3.2 Bridging instruments by mapping items

Many instruments for measuring child development have 
appeared since the works of Shirley (1933) and Gesell (1943).  
It is no surprise that their contents show substantial overlap. 
All tools assess events like starting to see, hear, smile, fetch, 
crawl, walk, speak, and think. We will exploit this overlap to 
bridge different instruments. For example, Table 3.2 displays  

the labels of milestones from six instruments. All items probe  
the ability of the child to formulate “sentences” of two  
words.

The idea is to check whether these milestones measure  
development in the same way. If this is found to be true, then 
we may formally restrict the difficulty levels of these mile-
stones to be identical. This restriction provides a formal bridge  
between the instruments. We repeat the process for all groups  
of similar-looking items.

A first step in the bridging process is to group items from dif-
ferent instruments by similarity. As the by3 is relatively long 
and is the most often used instrument, it provides a convenient  
starting point. Subject matter experts experienced in child devel-
opment mapped items from other tools to by3 items. These 
experts evaluated the similarity of wordings and descriptions  
in reference manuals. Also, they mapped same-skill items 
across other instruments into groups if these did not map onto  
by3 items.

Figure 3.1 connects similar items and hence visualises con-
nections between instruments for the fine motor domain. Items  
are displayed in the wheel, coloured by instrument. In the online 
application we organised item mappings into five domains: 
fine motor (FM), gross motor (GM), cognitive (COG), receptive 
(REC), and expressive (EXP). The Prev and Next buttons  
allow us to visit other domains.

Table 3.2. Example of similar items from 
different instruments.

Item Label

by1mdd136 Sentence of 2 words

by2mdd114 Uses a two-word utterance

ddicmm041 Says sentences with 2 words

denlgd019 Combine Words 

grihsd217 Uses word combinations

vinxxc016 Use a short sentence

Figure 3.1. Connections between the instruments via mapped item groups for the fine motor domain (https://
tnochildhealthstatistics.shinyapps.io/GCDG_mapping/).
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Figure 3.2. The probability of passing by age in potential bridging items.

3.3 Age profile of item mappings

Another way to explore the similarity of milestones from  
different instruments is to plot the probability of passing by 
age. Figure 3.2 shows two examples. The first graph presents 
the age curves of a group of four cognitive items for assessing  
the ability to put a cube or block in a cup or box. The  
milestones are administered in different studies and seem to 

work similarly. The second plot shows a similar graph for items  
that assess the ability to build a tower of six cubes or blocks.  
These milestones have similar age patterns as well.

Figure 3.3 presents two examples of weak item mappings. Nota-
ble timing differences exist for the “babbles” and “bangs” 
milestones, which suggests that we should not take these as  
bridges.

Page 10 of 45

Gates Open Research 2021, 5:86 Last updated: 21 DEC 2021



While these plots are suggestive, their interpretation is  
surprisingly complicated. We may find that age profiles of 
two milestones A and B administered in samples 1 and 2,  
respectively, are identical if

•       A and B are equally difficult and samples 1 and 2 have the 
same maturation level;

•       A is more difficult than B and sample 1 is more advanced  
than 2.

Similarly, we may find that the age profile for A is earlier than B if

•       A is easier than B and if samples 1 and 2 have the same  
level of maturation;

•       A and B are equally difficult and if sample 1 is more  
advanced than sample 2.

Note that the age curves confound difficulty and ability, and  
hence cannot be used to evaluate the quality of the item map.

Figure 3.3. Probability to pass items for age in poor bridges.
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What we need to do is separate difficulty and ability. For this, 
we need a formal statistical model. The next section introduces  
the concepts required in such a model.

4 Equate groups

This section introduces the concepts and tools needed to link 
assessments made by different instruments administered  
across multiple cohorts. Our methodology introduces the idea of 
an equate group. Systematic application of equate groups pro-
vides a robust yet flexible methodology to link different instru-
ments. Once the links are in place, we may combine the data  
to enable meta-analyses and related methods.

•      What is an equate group? (4.1)

•      Concurrent calibration (4.2)

•      Strategy to form and test equate groups (4.3)

•      Statistical framework (4.4)

•      Common latent scale (4.5)

•      Quantifying equate fit (4.6)

•      Differential Item Functioning (4.7)

4.1 What is an equate group?

An equate group is a set of two or more milestones that 
measure the same thing in (perhaps slightly) different ways.  
Table 3.2 contains an example of an equate group, contain-
ing items that measure the ability to form two-word sentences.  
Also, Figure 3.2 and Figure 3.3 show examples of equate groups.

Equate groups vary in quality. We can use high-quality equate 
groups to link instruments by restricting the difficulty of  
all milestones in the equate group to be identical. Equate  
groups thus provide a method for bridging different tools.

Figure 4.1 displays items from three different instruments 
with overlapping sets of milestones. The shared items make 
up equate groups, as presented by the arrows between them. In  
the example, all three instruments share one milestone (“walk 
alone”). The “sitting” and “clap hand” items appear in two  
tools. So in total, there are three equate groups.

4.2 Concurrent calibration

Patterns as in Figure 4.1 occur if we have multiple forms 
of the same instrument. Although in theory, there might be  
sequence effects, the usual working assumption is that we may 
ignore them. Equate groups with truly shared items that work in 
the same way across samples are of high quality. We may col-
lect the responses on identical items into the same column  
of the data matrix. As a consequence, usual estimation meth-
ods will automatically produce one difficulty estimate for that  
column (i.e. common item).

The procedure described above is known as concurrent  
calibration. See Kim & Cohen (1998) for more background. 
The method simultaneously estimates the item parameters for 

all instruments. Concurrent calibration is an attractive option  
for various reasons:

•      It yields a common latent scale across all instruments;

•      It is efficient because it calibrates all items in a single run;

•       It produces more stable estimates for common items in  
small samples.

However, concurrent calibration depends on a strict distinc-
tion between items that are indeed the same across instruments  
and items that differ.

In practice, strict black-white distinctions may not be  
possible. Items that measure the same skill may have been 
adapted to suit the format of the instrument (e.g. number of 
response options, question formulation, and so on). Also,  
investigators may have altered the item to suit the local lan-
guage and cultural context. Such changes may or may not 
affect the measurement properties. The challenge is to find out  
whether items measure the underlying construct in the same way.

In practice, we may need to perform concurrent calibration to 
multiple - perhaps slightly dissimilar - milestones. When con-
fronted with similar - but not identical - items, our strategy  
is first to form provisional equate groups. We then explore, 
test and rearrange these equate groups, in the hope of finding  
enough high-quality equate groups that will bridge  
instruments.

4.3 Strategy to form and test equate groups

An equate group is a collection of items. Content matter experts 
may form equate groups by evaluating the contents of items 

Figure 4.1. Example of three instruments that are bridged by 
common items in equate groups.
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and organising them into groups with similar meaning. The  
modelling phase takes this set of equate groups (which may 
be hundreds) as input. Based on the analytic result, we may  
activate or modify equate groups. It is useful to distinguish 
between active and passive equate groups. What do we mean  
by these terms?

•  Active equate group: The analysis treats all items within an
active equate group as one super-item. The items obtain
the same difficulty estimate and are assumed to yield
equivalent measurements. As the items in an active equate
group may originate from different instruments, such a
group acts as a bridge between instruments.

•  Passive equate group: Any non-active equate groups are
called passive. The model does not restrict the difficulty
estimates, i.e., the milestones within a passive equate
group will have separate difficulty estimates.

Since active equate groups bridge different instruments, they 
have an essential role in the analysis. In general, we will set the 
status of an equate group to active only if we believe that the  
milestones in that group measure the underlying construct in 
the same way. Note that this does not necessarily imply that all 
items need to be identical. In Table 3.2, for example, small  
differences exist in item formulation. We may nevertheless believe 
that these are irrelevant and ignore these in practice. Reversely, 
there is no guarantee that the same milestone will measure  
child development in the same way in different samples. For 
example, a milestone like “climb stairs” (Figure 4.2) could be 
more difficult (and more dangerous) for children who have  
never seen a staircase.

The data analysis informs decisions to activate equate groups. 
The following steps implement our strategy for forming  
and enabling equate groups:

•  Content matter experts compare milestones from different
instruments and sort similar milestones into equate groups.
It may be convenient to select one instrument as a starting
point, and map items from others to that (see section 3.2);

•  Visualise age profiles of mapped items (see section 3.3).
Verify the plausibility of potential matches through simi-
lar age profiles. Break up mappings for which age pro-
files appear implausible. This step requires both statistical
and subject matter expertise;

•  Fit the model to the data using a subset of equate groups
as active. Review the quality of the solution and opti-
mise the quality of the links between tools by editing
the equate group structure. The technical details of this
model are explained in section 4.4. Refit the model until
(1) active equate groups link all cohorts and instruments,
(2) active equate groups are distributed over the full-scale
range (rather than being centred at one point);

•  Assess the quality of equate groups by the infit and outfit
(see section 4.6).

•  Test performance of the equate groups across subgroups
or cohorts by methods designed to detect differential item
functioning (see section 4.7).

The application of equate groups is needed to connect differ-
ent instruments to a universal scale. The technique is espe-
cially helpful in the situation where abilities differ across  
cohorts.

If the cohort abilities are relatively uniform (for example as a 
result of experimental design) and if the risk of misspecifica-
tion of the equate groups is high, a good alternative is to rely on  
the equality of ability distribution. In our application, this was 
not an option due to the substantial age variation between  
cohorts.

4.4 Parameter estimation with equate groups

The Rasch model is the preferred measurement model for 
child development data. Chapter I, Section 4 (van Buuren & 
Eekhout, 2021) provides an introduction of the Rasch model  
geared towards the D-score.

The Rasch model expresses the probability of passing an item 
as a logistic function of the difference between the person  
ability β

n
 and the item difficulty δ

i
. Table 4.1 explains the

Figure 4.2. One year old child climbs stairs. Photo by Iris 
Eekhout.
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symbols used in equation (4.1). Formula (4.1) defines the  
model as

exp( )

1 exp( )
n i

ni
n i

β δ
π

β δ

−
=

+ −

One way to interpret the formula is as follows. The loga-
rithm of the odds that a person with ability β

n
 passes an item of

difficulty δ
i
 is equal to the difference β

i
 – δ

i
 (Wright & Masters,

1982). See the logistic model in Chapter 1, Section 4.6.1 (van 
Buuren & Eekhout, 2021) for more detail.

In model (4.1) every milestone i has one parameter δ
i
. We

extend the Rasch model by restricting the δ
i
 of all items within

the same equate group to the same value. We thereby effec-
tively say that these items are interchangeable measures of child  
development.

Estimation of the parameter for the equate group is straightfor-
ward. Wright & Masters (1982) present a simple method for  
aligning two test forms with common items. There are three  
steps:

• Estimate the separate δ
i
’s per item;

•  Combine these estimates into δ
q
 by calculating their

weighted average;

• Overwrite each δ
i
 by δ

q
.

Suppose that Q is the collection of items in equate group 
q, and that w

i
 is the number of respondents for item i. The  

parameter estimate δ
q
 for the equate group is

i Q i i
q

i Q i

w

w∈

δ
δ ∈∑

=
∑

4.5 Common latent scale

The end goal for using the equate group method to model devel-
opment items is to measure development on one common  
latent scale, the D-score. That way, the measure (i.e. D-score) 
can be obtained, irrespective of which instrument is used in  
which population.

Figure 4.3 displays the D-score estimates by age in three cohorts 
from the GCDG study: Netherlands 1 (GCDG-NLS-SMOCC),
Ethiopia (GCDG-ETH) and Colombia 2 (GCDG-COL-LT42M)
for two different analyses. As described in section 2.2, the  
Netherlands 1 study administered the ddi; Ethiopia measured
children by the by3; and Colombia collected data on by3, den,
aqi and bdi. Accordingly, there is an overlap in items between
Ethiopia and Colombia via the by3, but the Netherlands 1
cohort is not linked.

We created the plot on the left-handed side without active 
equate groups. The large overlap between Ethiopian and  
Columbian children occurs because the scales for these stud-
ies are linked naturally via shared items from by3. Since the
ddi instrument is not connected, the Dutch cohort follows a
different track. While we can compare D-scores between Ethi-
opia and Colombia, it is nonsensical to compare Dutch to  
either Ethiopia or Colombia. The right-handed side plot is 
based on an analysis that used active equate groups to link the  
cohorts. Since the analysis connected the scales for all three 
cohorts, we can now compare D-scores obtained between  
all three cohorts.

This example demonstrates that active equate groups form the 
key for converting ability estimates for children from different  
cohorts using different instruments onto the same scale.

4.6 Quantifying equate fit

It is essential to activate only those equate groups for which 
the assumption of equivalent measurement holds. We have 
already seen the item fit and person fit diagnostics of the  
Rasch model. This section describes a similar measure for  
the quality of an active equate group.

4.6.1 Equate fit. Section 6 of Chapter I (van Buuren & 
Eekhout, 2021) defines the observed response of person n on 
item i as x

ni
. The accompanying standardized residual z

ni
 is the  

difference between x
ni
 and the expected response P

ni
, divided  

by the expected binomial standard deviation,

ni ni
ni

ni

x P
z

W

−
=

Table 4.1. Overview of the symbols used in equations (4.1) and (4.2).

Symbol Term Description

βn Ability True (but unknown) developmental score of child n

δi Difficulty True (but unknown) difficulty of item i

δq Difficulty The combined difficulty of the items in equate group q

πni Probability Probability that child n passes item i

l The number of items in the equate group

wi The number of respondents with an observed score on item i
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with variances W
ni 

= P
ni
(1 – P

ni
).

Equate infit is an extension of item infit that takes an aggregate  
over all items i in active equate group q, i.e.,

2( )
Equate infit .

N
i q n ni ni

N
i q n ni

x P

W

∈

∈
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=
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Likewise, we calculate Equate outfit of group q as

2

Equate outfit ,
Ni

i q n ni

i q i
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where N
i
 is the total number of responses observed on item i. 

The interpretation of these diagnostics is the same as for item  
infit and item outfit.

Note that these definitions implicitly assume that the expected 
response P

ni
 is calculated under a model in which all items 

in equate group q have the same difficulty. This is not true  
for passive equate groups. Of course, no one can stop us from 
calculating the above equate fit statistics for passive groups, 
but such estimates would ignore the between-item variation  
in difficulties, and hence gives a too optimistic estimate of qual-
ity. The bottom line is: The interpretation of the equate fit  
statistics should be restricted to active equate groups only.

4.6.2 Examples of well fitting equate groups. The evalua-
tion of equate fit involves comparing the observed probabilities  
of endorsing the items in the equate group to the estimated 

probability of endorsing the items in the equate group. For 
an equate group there is an empirical curve for each item in  
the equate group and one shared estimated curve. The empirical 
curves should all be close together, and close to the estimated  
curve for a good equate fit.

Figure 4.4 shows a diagnostic plot for equate groups REC6
(Turns head to sound of bell) and GM42 (Walks alone). The
items within REC6 have slightly different formats in the
Bayley I (by1), Dutch Development Instrument (ddi), and the
Denver (den). The empirical curves in the upper figure show
good overlap, but note that hardly any negative responses 
were recorded for four of the five studies, so the shared esti-
mate depends primarily on the Dutch sample. Items from equate  
group GM42 appear in six instruments: bar, by1, by2, by3,
ddi, and gri. Also, here the empirical data are close together,
and even a little steeper than the fitted dashed line, which indicates  
a good equate fit. The infit and outfit indices, shown in the  
upper left corners, confirm the good fit (fit < 1).

4.6.3 Examples of equate groups with poor equate fit. 
Poor fitting equate groups are best treated as passive equate 
groups, so that items in those groups are not restricted to the  
same difficulty. Empirical item curves with different loca-
tions and slopes indicate a poor fit. Additionally, the equate fit  
indices will indicate a poor fit (fit > 1).

Figure 4.5 shows examples for groups COG24 (Bangs in
play / Bangs 2 blocks) and EXP12 (Babbles). In both cases
there is substantial variation in location between the empirical 

Figure 4.3. Example of three cohorts with and without equate group linking.
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curves. For COG24 we find that the fitted curve is closer to 
the den item, which suggests that the equate difficulty is  
mostly based on the den item. Items from equate group EXP12 
have a different format in instruments by1, ddi and gri. The 
empirical curves, with different colours for each instrument,  
are not close to each other, nor close to the fitted curve. Note 
that all infit and outfit statistics are fairly high, indicating 

poor fit. Both equates are candidates for deactivation in a  
next modelling step.

4.7 Differential item functioning

Items within an active equate group should work in the same 
way across the different cohorts, i.e., they have no differential 

Figure 4.4. Two equate groups that present a good equate fit.
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item functioning (DIF). The assumption of no DIF is criti-
cal for active equate groups. If violated, restricting the  
difficulty parameters as equal across cohorts may introduce 
unwanted bias in comparisons between cohorts. This section  
illustrates the role of DIF in equate groups.

4.7.1 Good equate groups without DIF. Chapter I (van 
Buuren & Eekhout, 2021) discusses the role of DIF in the 

evaluation of the fit of items to the Rasch model. This sec-
tion illustrates similar issues in the context of equate  
groups.

Figure 4.6 shows the empirical curves of two equate groups, 
FM31 (two cubes) and EXP26 (two-word sentence). All
curves are close to each other, so there is no differential item  
functioning here.

Figure 4.5. Two equate groups that present a poor equate fit.
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4.7.2 Poor equate groups with DIF for study. Figure 4.7 
plots the empirical curves for equate groups GM44 (throws 
ball) and EXP23 (5 or more words). The substantial variation  
between these curves is a sign of differential item functioning. 
For example, Throws ball is easier for children in the South-
Africa cohort (purple curve; GCDG-ZAF) and more difficult 
for children in Colombia (blue curve; GCDG-COL-LT42M). 

In other words, the probability of passing the item given the  
D-score (i.e. item difficulty) differs between the cohorts. Like-
wise, there is differential item functioning for Says more 
than 5 words. This milestone is easier for children in Jamaica  
(yellow and pink curves; GCDG-JAM-LBW and GCDG-
JAM-STUNTED) than for children from Ecuador (green;  
GCDG-ECU).

Figure 4.6. Two equate groups that present no differential item functioning between cohorts.
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5 Modelling equates

This section deals with the nitty-gritty of the modelling strat-
egy used for the GCDG data introduced in Section 2. This  
section

•      provides a high-level description of the GCDG data (5.1)

•      discusses various modelling strategies (5.2)

•       shows the impact of equate groups on the model in  
extreme cases (5.3)

•       demonstrates visualisation of age profiles to select  
promising equate groups (5.4)

Figure 4.7. Two equate groups that present differential item functioning between cohorts.
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•       introduces a helpful visualisation of the quality of the  
equate group (5.5)

•       highlights infit and outfit for removing misfitting  
milestones (5.6)

•       discusses instrument fit and equate group editing (5.7)

•       introduces a grading system for equate groups (5.8)

•       provides pointers to the final model (5.9)

5.1 GCDG data: design and description

5.1.1 Data combination. Section 2.1 provides an overview 
of the data collected by Global Child Development Group.  
The group collected item level measurements obtained on 
12 instruments for measuring child development across  
16 cohorts.

We coded every item as 0 (FAIL), 1 (PASS) or missing. For 
some instrument we did some additional recoding to restrict 
to these two response categories. The Battelle Developmental  
Inventory scores items as 0 (FAIL), 1, or 2, depending on the 
level of skill demonstrated or time taken to complete the task. 
We joined categories 1 and 2 for these items. The ASQ items  
were originally scored as 0 (not yet), 5 (sometimes) and  
10 (succeeds). We recoded both 5 and 10 to 1.

We concatenated the datasets from the GCDG cohorts cohort. 
The resulting data matrix has 71403 rows (child-visit com-
binations) and 1572 columns (items) collected from 36345  
unique children. We removed 233 items that had fewer than 
10 observations in a category. The remaining 1339 items 
were candidates for analysis. The total number of observed  

scores was equal to about 2.8 million pass/fail responses. 
While this is a large number of measurements, about 97 percent  
of the entries in the matrix are missing.

5.1.2 Equate group formation. A group of 13 subject-matter 
experts from the Global Child Development Group cross-walked  
the available instruments for similar milestones. This group

•      developed an item coding schema;

•       matched similarly appearing items stemming from different 
instruments;

•      formed an opinion about the quality of each match;

•      noted peculiarities of the matches;

•      reported the results as a series of detailed Excel spreadsheets.

The group evaluated around 1500 milestones. After sev-
eral days, this highly-skilled, intensive labour resulted in a  
series of spreadsheets. Figure 5.1 shows an example. These 
sheets formed the basis of an initial list of 184 equate groups,  
each consisting of at least two items.

5.2 Modelling strategies

The analytic challenge is twofold:

•      to find a subset of items that form a scale;

•       to find a subset of equate groups with items similar enough  
to bridge instruments.

Note that both subsets are related, i.e., changing one affects 
the other. Thus, we cannot first identify items and then  
equate groups, or first identify equate groups followed by 

Figure 5.1. A snapshot of information generated by subject-matter experts.
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the items. Rather we need to find the two subsets in an itera-
tive fashion, primarily by hand. This section describes some of  
the modelling issues the analyst needs to confront.

In general, we look for a final model that

• preserves the items that best fit the Rasch model;

•  uses active equate groups with items that behave the
same across many cohorts and instruments;

•  displays reasonable age-conditional distributions of the
D-scores;

• has difficulty estimates that are similar to previous estimates.

The modelling strategy is a delicate balancing act to achieve 
all of the above objectives. Particular actions that we  
could take to improve a given model are:

• remove bad items;

• inactivate bad equate groups;

• break up bad equate groups;

• move items from one equate group to another;

• create new equate groups;

• remove entire instruments;

• remove persons;

• remove studies.

In order to steer our actions, we look at the following  
diagnostics (in order of importance):

• quality of equate groups (both visually and through infit);

•  plausibility of the distribution of the D-score by age per
study;

•  correspondence of difficulty estimates from published
(single study) Dutch data and the new model;

• infit of the items remaining in the model.

Various routes are possible and may result in different final 
models. The strategy adopted here is to thicken active equate 
groups by covering as many studies as possible, in the  
hope of minimizing the number of active equates needed.

5.3 Impact of number of active equate groups

Figure 5.2 is a display of the D-score by age for the  
GCDG-COL-LT42M cohort under four models. D-score by age
visualizations for all cohort are can be found via this link. 
As a rough reference to compare, the grey curves in the  
back represent the Dutch model as calculated from the 
SMOCC study. In order to speed up the calculations, the figure  
shows a random subsample of 25% of all points. Manipulate  
the plot controls to switch cohorts.

All models contain 1339 items, but differ in the number of  
active equate groups. The most salient features per model are:

•  1339_θ: No equate groups, so different instruments in
different cohorts are fitted independently;

•  1339_11: Connects all cohorts through one or more
equated items using 11 equate groups in total;

•  1339_33: There are 33 equate groups that bridge cohort
and instruments;

•  1339_184: Maximally connects instruments and cohort
by all equate groups.

Comparison of the D-score distribution by age across these  
models yields various insights:

•  The location of cohorts on the vertical scale depends on
the number of active equate groups. For example, for
Madagascar (MDG) the points are located around 52
when no equate groups are activated, whereas if all are
activated it is about 68.

•  The age trend depends on the number of active equate
groups. For example, for Colombia (COL) or Ethiopia
(ETH), the model without equate groups has a shallow
age trend, whereas it is steep for the 1339_184 model.

•  The vertical spread depends on the number of equate
groups. For example, the spread in the Chile-2 (CHL-2)
cohort substantially increases with the number of active
equates.

•  Model 1339_0 for the Dutch NLD-SMOCC cohort is
equivalent to the model fitted to the SMOCC study alone.
Introducing equate groups compresses the range of
scores, especially at the higher end.

We have now seen that the number of active equate groups 
has a large effect on the model. The next sections look into  
the equate groups in more detail.

5.4 Age profiles of similar milestones

Figure 5.3 displays the percentage of children that pass  
milestones at various ages for equate group EXP 26. Subject  
matter experts clustered similar items stemming from different  
instruments into equate groups. There are 184 equate groups 
that contain two or more milestones; the percentage pass by age  
for the items in these equate groups are shown here.

Most age profiles show a rising pattern, as expected, though some 
(e.g. FM17 or EXP11) have one item showing a negative relation
with age. Equate EXP26 combines two-word sentences
items from seven instruments into one plot. The item difficul-
ties expressed as age-equivalents (c.f. Section 3.1.2, Chapter I  
(van Buuren & Eekhout, 2021)) for these cohorts vary 
between 20–25 months. By comparison, equate group EXP18
(says two words) shows more heterogeneity across cohorts,
and is therefore, less likely to be useful for equating. Equate 
group FM31 (stack two blocks) is another example of a
promising example. By comparison, FM38 (stack 6–8 
blocks) shows additional heterogeneity. As a last example,

Page 21 of 45

Gates Open Research 2021, 5:86 Last updated: 21 DEC 2021

https://d-score.org/dbook-apps/models1339/
https://d-score.org/dbook1/sec-smoccstudy.html
https://d-score.org/dbook1/sec-smoccstudy.html
https://d-score.org/dbook-apps/p-a-equate-1339/
https://doi.org/10.12688/gatesopenres.13222.1


Figure 5.2. D-score by age of four models with all 1339 items using 0, 11, 33 and 184 active equate groups. The number of equate 
groups has a substantial effect on the D-score distribution (https://d-score.org/dbook-apps/models1339/, use the arrows to see other 
cohorts).

Figure 5.3. Percentage of children that pass similar milestones at a given age (https://d-score.org/dbook-apps/p-a-equate-
1339/).

Page 22 of 45

Gates Open Research 2021, 5:86 Last updated: 21 DEC 2021

https://d-score.org/dbook-apps/models1339/
https://d-score.org/dbook-apps/p-a-equate-1339/#display=Percent_pass_by_age_for_all_equate_groups&nrow=1&ncol=1&arr=row&pg=65&labels=equate&sort=equate_index;asc&filter=&sidebar=&fv=
https://d-score.org/dbook-apps/p-a-equate-1339/
https://d-score.org/dbook-apps/p-a-equate-1339/


consider GM42 (walks alone), which has a similar age 
profile across cohorts, whereas GM44 (throws ball)  
or GM49 (walk down stairs) are more heterogeneous.

We could follow different strategies in selecting which equate 
groups to activate. One strategy would be to include as  
many equate groups as possible (e.g. all 184 equates) so as to 
build as many bridges as possible between different instru-
ments. A more selective strategy would be to activate a subset  
of promising equates and leave others inactive. The following  
section compares four different approaches.

5.5 Quality of equate groups

This visualization shows how the passing percentage depends 
on the child’s D-score as calculated under four models.  
All models include the same 1339 milestones, but differ in 
the number of active equates. The grey curve corresponds to 
the estimate made under the assumption that milestones are  
equally difficult. Good milestones for bridging instruments 
will have a tight bundle of curves. For example, as shown in  
Figure 5.4, equate EXP26 has tight bundles especially in mod-
els 1339_11 and 1339_33. By comparison, the curves of the 
two extreme models vary considerably: the model without any 
bridges (1339_θ) or the model with all bridges (1339_184)  
are thus less than ideal. The shallow grey curve of model  
1339_184 indicates a poorer overall fit.

Outfit and infit statistics measure the residual deviation of 
the items to the grey curve. High values (e.g. above 1.4) are  
undesirable and indicate lack of fit to the model. For example, 
the fit statistics for EXP26 in model 1339_184 (1.70 and 1.25) 

indicate a mediocre fit, whereas EXP26 in models 1339_33 and  
1339_11 fits well. Sometimes the individual item curves are 
steeper than the grey curve. This indicates that these mile-
stones are more discriminative than the combined item. Model  
1339_θ lacks a grey curve and has no fit statistics for equate 
groups, because in that model, the combined item is not  
activated.

The probability curves provide a quick visual method for spot-
ting promising and problematic equate groups. Examples of 
promising equate groups include COG36, FM31, GM26 and  
GM42. A little more weak are FM26 (has more variability), FM52 
(looks promising, but has a problem with the item grigcd4θ2  
from the GCDG_JAM_STUNTED cohort), and GM35 (does 
not align cohort GCDG-ZAF). In such cases, one may wish to  
move an item out of an equate group, combine equate groups,  
or inactivate troublesome links.

Until now we only looked at models that include all 1339  
items. In practice, we may improve upon the model by 
selecting the subset of milestones that fit the Rasch model. 
The next section looks in this modelling step in more  
detail.

5.6 Milestone selection

Item infit and outfit are convenient statistics for selecting the 
milestones that fit the model. Figure 5.5 displays the infit and  
outfit statistics of model 1339_11. The correlation between 
infit and outfit is high (r = 0.84). The expected value of the infit  
and outfit statistics for a perfect fit is 1.0. The centre of infit 
and outfit in Figure 5.5 is approximately 1.0, so on average  

Figure 5.4. Percentage of children that pass similar milestones given their D-score as calculated under four models (1339 
items, and 0, 11, 33 and 184 equate groups, respectively (https://d-score.org/dbook-apps/p-d-equate-1339/).
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one could say the items fit the model. Note however that fit val-
ues above and below the values of 1.0 are qualitatively dif-
ferent. Item with fit statistics exceeding 1.0 fit the model less  
well than expected (underfit), whereas items with fit statistics 
lower than 1.0 fit the model better than expected (overfit). See  
Chapter 1, Section 6.1 (van Buuren & Eekhout, 2021) for  
more details.

Some practitioners remove both underfitting and overfitting 
items. However, we like to preserve overfitting items and be  
more strict in removing items that underfit. The idea is that pres-
ervation of the best fitting items may increase scale length, 
and hence reliability and measurement precision. Figure 5.5  
draws two cut-off lines at 1.0. Taking items with infit < 1.0 
and outfit < 1.0 will select 631 out of 1339 items for further  
modelling.

A practical problem of item removal is that it also affects 
equate group composition. By default, a removed item will 
also be removed from the equate group, so item removal may  
reduce the size of an equate group below two items. For  
passive equates this is no problem, since passive equates do no 
affect the estimates. However, removal of an underfitting item 
from an active equate group will break the bridge between the  
instrument it pertains to and the rest of the item set. Potentially 

this can result in substantial effects on the D-score distribution  
of the cohort, as demonstrated in Figure 5.2. As a solution, 
we force any items that are members of active equate groups to  
remain in the analysis. If that leads to substantially worse 
equate fit in the next model, we must search for alternative 
equate groups that bridge the same instruments and that are less  
sensitive to misfit.

5.7 Other modelling actions

5.7.1 Instrument fit. Some instruments fit better than others.  
Figure 5.6 shows the box plots of outfit per instrument. Instruments 
bar, by1, ddi and vin generally fit well, whereas discrepan-
cies between model and data are larger for bat, by2 and sbi.  
Through additional modelling, we found that it was extremely 
difficult to get enough high-quality bridge items that could 
link bat (Battelle Development Inventory) to the other  
instruments. We also found that models without the Battelle 
were able to better discriminate children in the upper range of 
the D-score scale. We therefore opted to remove bat from the 
model, even though this meant that one cohort (GCDG-BRA-2)  
had to be dropped from the analysis.

It is not clear why bat does not fit. Perhaps the scoring system 
of the Battelle in three categories invokes scoring behaviour that  

Figure 5.5. Infit and outfit of 1339 items in model 1339_11. About 8 percent of the points falls outside the plot.
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is different from the PASS/FAIL scoring used by most other 
instruments, even though this appears to be less of a troublesome  
aspect in aqi, which also uses three response categories.

5.7.2 Splitting, combining and selecting equate groups. Most 
of the modelling effort went into finding a set of high-quality  
equate groups that link the instruments. For example, we tried 
to bridge the South-African study placing vinxxc016 (uses 
a short sentence) into EXP26 (two-word sentences) and EXP36  
(sentences of 3 or more words), but neither option led to a rea-
sonable model. On the surface, milestone by3gmd060 (balances  
on right foot, 2 seconds) appears to fit within GM60 (balances  
on foot), but the analysis showed large discrepancies with the  
other items in the groups, so it had to be taken out.

Subject-matter experts identified 38 items that were thought 
to be cross-culturally incompatible. Table 5.1 provides an  
overview. Many of such milestones involve a specific lan-
guage concept (such as a pronoun), refer to stairs (less common 
in rural settings), help in house or clothing behaviour. These 
items have different meanings in different contexts, so they  
were not used to bridge instruments.

5.8 Item information

Item information is a psychometric measure that quantifies 
the sensitivity of the item to changes in the person’s ability. 

An item is most sensitive around the D-score value where the  
PASS probability equals the FAIL probability, which corre-
sponds to the item difficulty (δ

i
). One unit change around δ

i
 has a  

large effect on the probability of endorsing, while one unit 
change far away from δ

i
 has negligible impact. Suppose person  

A had passing probability 0.7 for some item. The infor-
mation delivered by that item for person A is the product  
0.7 × (1.0 – 0.7) = 0.21. Suppose person B has a D-score that 
coincides with the difficulty level of the item. In that case, the  
information for B equals 0.5 × (1 – 0.5) = 0.25, the maximum. 
Likewise, for a person C with high ability, the information 
could be 0.98*0.02 = 0.02, so that item carries almost no  
information for person C.

The information is inversely related to the error of measure-
ment. More information amounts to less measurement error.  
For each response in the data, we can compute the amount  
of information it contributed to the model D-score. By sum-
ming the information over persons, we obtain a measure of cer-
tainty about the difficulty estimate of the item. This sum of  
information incorporates both the number of administrations 
and the quality of the match between person abilities and item  
difficulty.

Figure 5.7 displays the summed information for each item, 
divided into four grades: A(best) to D (worst). The informa-
tion grade measures the stability of the difficulty estimate. 

Figure 5.6. Box plot of the distribution of item outfit per instrument in model 1339_11.
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Table 5.1. Milestones not used for equating because of limited cross-cultural validity.

Item Label
aqislc023 When you dress your baby does she lift her foot for her shoe, sock, or pant leg?

aqislc041 Using these exact words, ask your child, “Are you a girl or a boy?” Does your 
child answer correctly?

by1mdd050 Washes and dries hands
by1pdd053 Bowel and bladder control
by1pdd054 manipulates table edge actively
by2pdd069 Walsk up stairs with help
by3cgd043 Walks down stairs with help
by3cgd052 Walks down stairs with help
by3gmd047 Clear Box: Front
by3gmd049 Clear Box: Sides
by3gmd057 Uses pronouns
by3gmd058 Walks Up Stairs Series: Both feet on each step, with support.
by3red030 Walks Down Stairs Series: Both feet on each step, with support
by3exd030 Walks Up Stairs Series: Both feet on each step, alone.
barxxx016 Walks Down Stairs Series: Both feet on each step, alone
barxxx020 Understands pronouns (him, me, my, you, your)
dengmd020 Eats with spoon without help (M; can ask parents)
densld012 Takes off shoes and socks (M; can ask parents)
densld013 Can dress (one piece) (M; can ask parents)
grigmd219 Walk Up Stairs 
grigmd222 Drink from a cup
mdsgmd002 help in house
mdsgmd003 (Locomotor) Walks up and down stairs.
mdsgmd004 (Locomotor) Goes alone on the stairs (any method)
mdsgmd005 Hands-and-knees crawling
mdsgmd006 Standing with assistance
ddifmm019 Walking with assistance
ddifmd154 Standing alone
vinxxc002 Walking alone
vinxxc003 chew solid foods
vinxxc009 take off socks / shoes
vinxxc012 get on with other children
vinxxc014 know what’s edible
vinxxc022 walk upstairs
vinxxc028 avoid simple danger - knife / hot
vinxxc031 help around the house / clear table
vinxxc040 Play or do things with other children of same age eg sing song
ddifmm025 Help with little things around the house eg pick up things
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Most items receive grades higher than C. In total, 30 milestones 
have grade D. Adding these items to future studies may yield  
important additional information.

The red circles indicate active equate groups. Most have grade 
A, so we have a lot of information about the items that form  
the active equate groups. Table 5.2 displays more detailed infor-
mation for the active equate groups. The sample sizes are  
reasonably large. Many information statistics are well is above  
100; the criterion for Grade A. The interpretation of this cri-
terion is as follows. Suppose that we obtain a sample of 400  
persons who are all perfectly calibrated to the item of interest.  
In that case, the information for that item will be equal to 100.

5.9 Final model

Unfortunately, there is no single index of model fit that we 
can optimise. Modelling is more like a balancing act among  
multiple competing objectives, such as

•      preserving as many items as possible that fit the model;

•       finding high-quality active equate groups that span many 
cohorts and instruments;

•       picking active equate groups for which we have enough  
information;

•       providing reasonable age-conditional distributions of the  
D-score;

•      representing various developmental domains in a fair way;

•       preserving well-fitting historical models as new data  
become available;

•      maintaining a reasonable calculation time.

This section showed various modelling techniques and ways 
to assess the validity of the model. In real life, we fitted a  

total number of 140 models on the data and made many 
choices that weigh the above objectives. The final model for the  
GCDG data consists of 565 items (originating from 14  
instruments) that fit the Rasch model and that connect through 
18 equate groups. Due to the sparseness of data at the very 
young ages, the quality of the model is best for ages between  
4–36 months.

Model 565_18 formed the basis of the publication by Weber 
et al. (2019). Additional detail on model 565_18 is available  
through the dmodel shiny app.

6 Comparing ability

Once we identified a satisfactory D-score model, we may cal-
culate the D-score for children from different cohorts and  
compare their values. This section highlights various techniques 
and issues for comparing D-score distributions between studies.  
We will address the following topics:

•      Comparing child development across studies (6.1)

•      Precision of the D-score (6.2)

•      Domain coverage (6.3)

6.1 Comparing child development across studies

This display shows the scatterplot of the D-score by age sepa-
rately for each cohort, Figure 6.1 presents the D-score by  
age for the GCDG-COL-LT52M study. Remember from  
section 2.1 that each study selected its own set of instruments 
to collect the data. The scatterplots demonstrate a significant  
advance made possible by the D-score: We can plot the devel-
opmental scores of children from different cohorts, with  
different ages, using different instruments, on the same vertical  
axis.

Figure 5.7. Item information grade by item difficulty for the final model.
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The five blue lines guide the eye. These lines indicate the 
locations of the -2SD, -1SD, 0SD, +1SD and +2SD quan-
tiles at each age in the combined data. Section 5.4, in Chapter I  
(van Buuren & Eekhout, 2021) motivates the idea and pro-
vides some technical details. We’ll come back to these lines in  
section 7.2.

By and large, the data in every study follow the blue lines.  
Perhaps the most obvious exception is the GCDG-JAM-STUNTED
cohort, where older children somewhat exceed the D-score  
range. It is unknown whether this is real, or due to a sub-optimal 
calibration of the instrument.

Figure 6.2 plots the same data with D-score transformed  
into age standardized scores (DAZ) for study GCDG-COL-
LT42M. The distributions of the age standardized scores for all
studies are displayed here. Replacing the D-score by the DAZ  
emphasises the differences both within and between stud-
ies. The majority of observations lies between the -2 SD and 
+2 SD lines in all cohorts. Using DAZ makes is easier to spot
deviating trends, e.g., for the Jamaican or Ethiopian data.

6.2 Precision of the D-score

The EAP algorithm estimates the D-score from a set of PASS/
FAIL scores. The standard deviation of the posterior distribu-
tion (or sem: standard error of measurement) quantifies the  
imprecision of the D-score estimate. The sem is inversely 
related to the number of items. Thus, when we administer more  
milestones, the sem of the D-score drops.

Figure 6.3 shows that the sem drops off rapidly when the 
number of items is low and stabilises after about 35 items.  
Apart from test length, the precision of the D-score also 
depends on item information (c.f. section 5.8). Administer-
ing items that are too easy, or too difficult, does not improve  
precision. The figure suggests that - in practice - a single  
D-score cannot be more precise than 0.5 D-score units.

One may wonder whether the sem depends on age. Figure 6.4 
suggests that this is not the case. The average DAZ is  
close to zero everywhere, as expected. The interval DAZ ± sem  
will cover the true, but unknown, DAZ in about 68% of the 
cases. While the interval varies somewhat across ages, there is  
no systematic age trend. 

Does precision vary with studies? The answer is yes.  
Figure 6.5 plots the same information as before but now only 
for GCDG-COL-LT42M. The standard error of measurement
around de age-standardized D-scores (DAZ) for each cohort  
can be found here. Individual data points are added to give a 
feel for the design. The Colombia cohort GCDG-COL-LT45M,
Figure 6.5, administered the Bayley-III, where each child 
answered on average 45 items, so the sem is small. In con-
trast, the Dutch cohort GCDG-NLD-SMOCC collected data
on a screener consisting of about ten relatively easy mile-
stones, so the sem is relatively large. As a result, the Colombian  
D-scores are much more precise than the Dutch. These dif-
ferences in precision between cohorts is also reflected in
Figure 6.6. This figure shows the pooled standard error of
measurement within each cohort.

The ordering of studies depends on test length and item infor-
mation. Table 6.1 shows the median number of items per  
child (test length) and the probability to pass the item. The Ethi-
opian cohort GCDG-ETH administered 39 milestones with a
median probability of 0.66. In contrast, the South Africa study  
GCDG-ZAF measures 12 items which were all very easy for
the sample at hand (median probability of 1.0). One may thus  
well explain the extremes by test length and item information.

In general, the design of the study has a significant impact 
on the precision of the measurement. Our ongoing work 
addresses the question how one may construct a measurement  
instrument that will be optimally precise given the goals of the 
research.

Table 5.2. Equate group information in the 
final model.

equate tau n info grade

EXP2 11.44 3608 162.33 A

REC6 30.9 5428 95.40 B

GM25 36.43 6380 470.63 A

FM26 42.93 4155 296.78 A

GM35 44.01 5522 356.04 A

COG36 44.53 7912 230.03 A

GM42 49.86 5953 327.74 A

FM31 53.17 10991 731.66 A

COG55 54.08 5647 420.35 A

FM72 57.07 5430 253.64 A

EXP26 59.15 9119 578.79 A

SA1 60.08 3363 172.11 A

FM38 60.87 10236 491.68 A

FM52 67.8 13487 1159.94 A

FM43 69.66 15765 1563.89 A

GM60 70.09 9519 1070.61 A

REC40 71.04 10393 1182.91 A

FM61 72.56 10612 945.87 A
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6.3 Domain coverage

The D-score is a one-number summary of early child develop-
ment. Traditional instruments distinguish domains (like motor,  
communication, language and cognitive development) and some 
provide ways to calculate a total score. The D-score, on the 
other hand, is based on the notion that child development is a  
unidimensional latent construct and hence does not provide  

domain scores. And thus, the question is how the D-score  
represents domains.

This section explores the following two questions:

•       Can we break down the D-score by domain contribu-
tion, and if so, can we evaluate whether the D-score fairly  
represents all domains?

•      Can we calculate domain-specific D-scores?

Figure 6.1. D-score distributions for study GCDG-COL-LT42M (https://d-score.org/dbook-apps/gcdgdscores/).
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6.3.1 Domain coverage of the scale. For many items in the  
D-score model, we had expert information available as to which 
domain the item belongs. For each item, we calculated the  
proportion of times the experts assigned it to one of five domains: 
Fine Motor, Gross Motor, Expressive, Receptive, Cognitive.  
We then calculated the distribution of domain by age.

Figure 6.7 shows the domain composition of the D-score 
across different levels of ability. Note that we miss domain  
information for a few items. The share of gross-motor is large 
in early development (e.g., between 15 and 30 months), and  
gradually tapers off at higher levels. Reversely, the percent-
age of cognition and language is relatively small before  

Figure 6.2. DAZ distributions for study GCDG-COL-LT42M (https://d-score.org/dbook-apps/gcdgdaz/).
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30 months but rapidly rises as the child matures. These transitions  
in domain composition look both reasonable and valid.

6.3.2 Domain-specific D-scores. Suppose we select a domain 
of interest and calculate the D-score only from items that  
substantially load onto that domain. We then get a domain-specific 
D-score. Items that relate to multiple domains contribute to  
multiple domain-specific D-scores.

Figure 6.8 displays the standardized domain-specific D-score  
(i.e. DAZ) per cohort. The DAZ strips out irrelevant age vari-
ation, and thus enhances comparability between cohorts. The 
error bars around the scores depict the sem interval. We observe  
some variation in domain-specific DAZ scores within cohorts. 
Still, these differences are relatively small and well within the  
margins of error. This analysis suggests that the D-score is an  
excellent overall summary of the domain-specific D-scores.

The D-score methodology assumes that child development 
is a unidimensional scale. As a consequence, the correlations  

between different domain-specific D-scores are extremely 
high (r > 0.95). It is more interesting to study the correlation  
between the DAZ equivalent of the domain-specific scores.

Table 6.2 lists the Pearson correlation matrix of the DAZ  
and the five domain-specific DAZ scores. All correlations 
between the DAZ and the domain-specific scores are high, thus 
confirming the generic character of the D-score and DAZ. We  
find high inter-domain correlations for the cognitive-receptive,  
cognitive-fine motor and expressive-receptive pairs. The gross 
motor domain appears as somewhat distinct from the four  
other domains. Its position may be genuine, but could also 
be related to the smaller number of responses on gross motor  
milestones in the GCDG data.

Figure 6.9 displays individual scores for a 3 year old boy. The  
filled bars indicate the number of available items per domain. 
The vertical white line that crosses the horizontal axis at  
value 5 indicates a threshold for a minimum number of items 
needed for a D-score. Note that the number of items for Gross 

Figure 6.3. Standard error of measurement (sem) as a function of the number of items.
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Motor in this example is meagre (only three items). The 
grey vertical line indicates the value of the overall D-score  
(68.55D). The nearby dashed lines are located at one sem 
(0.53D) distance. The coloured points are the domain-specific  
D-scores with the sem around in error bars. The plot visualises  
that the boys’ scores on language domains (i.e. Expressive  
and Receptive) are low as compared to the motor and  
cognitive domains. A systematic discrepancy between various 
domain-specific scores might be an early warning sign for  
developmental delay.

7 Application I: tracking a Sustainable 
Development Goal

The Sustainable Development Goals (SDG) formulated by the 
United Nations (UN) set targets to promote prosperity while 
protecting the planet. One or more indicators quantify the  
progress towards each target.

This section explores the use of the D-score to monitor the 
progress of the indicator for healthy child development, SDG 4.2.1.  
We propose a method to define on-track development and 
show how the application of this method pans out for the  
GCDG data. More in detail, the section deals with the following 
topics:

•      Estimating SDG 4.2.1 indicator from existing data (7.1)

•      Defining developmentally on track (7.2)

•      Country-level estimations (7.3)

•      Relation to other estimates (7.4)

7.1 Estimating SDG 4.2.1 indicator from existing data

The UN Sustainable Development Goals form a universal 
call to action to end poverty, protect the planet and improve  
the lives and prospects of everyone, everywhere. All UN  
Member States adopted the 17 Goals in 2015. The SDG 4 tar-
get to ensure inclusive and equitable quality education and  
promote lifelong learning opportunities for all. SDG 4.2 reads  
as:

	 	By 2030, ensure that all girls and boys have access 
to quality early childhood development, care and  
preprimary education so that they are ready for  
primary education.

To measure progress, the UN defined indicator 4.2.1 as follows:

	 	Proportion of children under 5 years of age who are 
developmentally on track in health, learning and  
psychosocial well-being, by sex.

On July 22, 2020, the indicator was changed into

	 	Proportion of children aged 24–59 months who are 
developmentally on track in health, learning and  
psychosocial well-being, by sex.

Figure 6.4. Mean DAZ ± sem as a function of age.
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Figure 6.5. The standard error of measurement (sem) around the age-standardized D-scores (DAZ) for cohort GCDG-COL-LT42M 
(https://d-score.org/dbook-apps/gcdgsem).

The exclusion of children 0–24 months is at variance with 
the importance of healthy growth and development during 
the first 1000 days of life. Indeed, the UN restricted the age  
range for practical concerns. Loizillon et al. (2017) report:

	 	The initial recommendation was for the ECDI to 
measure child development from birth–5 years, but 
the range was restricted to 3–5 years due to time and  

resource constraints and limited availability of  
comparable measurement tools for children under age 3.

The careful scientific approach underlying the D-score fills 
the gap for children aged 0–24 months. Also, the D-score  
methodology enables extensions to ages beyond 24 months, per-
mits back-calculation of D-scores from existing data, and acts as  
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Figure 6.6. Cohort Standard Error of Measurement (sem).

Table 6.1. Test length and probability to pass the 
items per cohort.

cohort
test length 

(median)
pass probability 

(median)

GCDG-ETH 39 0,66

GCDG-CHL-1 32 0,67

GCDG-COL-LT45M 45 0,64

GCDG-COL-LT42M 61 0,62

GCDG-JAM-LBW 43 0,55

GCDG-CHN 27 0,50

GCDG-JAM-STUNTED 38 0,65

GCDG-CHL-2 33 0,48

GCDG-BGD-7MO 14 0,38

GCDG-MDG 8 0,35

GCDG-BRA-1 18 0,89

GCDG-NLD-SMOCC 10 0,80

GCDG-NLD-2 11 1,00

GCDG-ECU 3 0,67

GCDG-ZAF 12 1,00
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Figure 6.7. Domain coverage of the D-score scale.

Figure 6.8. Average domain-specific DAZ ± sem by cohort.

Table 6.2. Pearson correlation of the DAZ and five domain-specific DAZ scores.

DAZ Fine motor Gross Motor Cognitive Receptive Expressive

DAZ 1.00 0.69 0.57 0.84 0.70 0.69

Fine motor 0.69 1.00 0.40 0.74 0.50 0.39

Gross Motor 0.57 0.40 1.00 0.43 0.34 0.30

Cognitive 0.84 0.74 0.43 1.00 0.76 0.59

Receptive 0.70 0.50 0.34 0.76 1.00 0.63

Expressive 0.69 0.39 0.30 0.59 0.63 1.00
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a linking pin to compare child development from birth  
onwards.

The cohorts included in the GCDG study represent a wide 
range of countries and instruments (see Section 2.1). Combin-
ing existing data from such a wide range of countries to create  
the D-score, is undoubtedly challenging, but doable. Although, 
in all fairness, we note that obtaining accurate compari-
sons between world-wide populations requires additional  
representative (existing) data beyond what is available here.

7.2 Defining developmentally on track

In 2006, the World Health Organisation (WHO) published 
the WHO Child Growth Standards. These standards specify  
“how children should grow” and form the basis for widely 
used anthropometric indicators such as stunting and wasting.  
We advocate a similar approach for child development. More in 
particular, the following steps:

1.       Measure child development on an interval scale;

2.       Estimate the age-conditional reference distribution for  
normal child development;

3.       Define the indicator developmentally on track as the  
proportion above a chosen cut-off.

Step 1 is solved by the D-score. Step 2 borrows from  
well-tested statistical methodology for constructing growth 
standards (Borghi et al., 2006). Step 3 can be done in differ-
ent ways, but a applying a simple cut-off fits easily with regular  
practice in reporting international comparisons.

Figure 7.1 demonstrates steps 2 and 3 in more detail. In the 
online visualization you can click ‘Next’ to advance these  
series of six steps:

1.        Plot the D-score by age;

2.         Model the relation between age and D-score by an LMS 
model. In practice, this amounts to smoothing three 
curves representing the median, coefficient of variation  
and the skewness.

3.        Present the centile lines for the model;

4.        Plot the age-standardized scores for development (DAZ);

5.         Draw standard deviation lines to indicate the location at  
±1 and ±2 standard deviation from the mean;

6.         Count observations above the -2 SD line as on-track. 
Count observation below the -2 SD lines as off-track (red  
dots).

Note: These SD lines build upon on a convenience sample. 
The GCDG cohorts are not representative samples, and the  
countries are not representative of the world. While we should 
not over-interpret these references, they play a central role in 
a stepwise, principled approach to define “developmentally  
on track.”

7.3 Country-level estimations

Using the definition from the previous section, we can calculate 
the percentage of children that are developmentally on track.  
Table 7.1 summarises this statistic by country. At a cut-off 
value of -2 SD, we expect that about 97.7% of the children will 
be on track. The actual country estimates fall into the range  
93.9 - 99.9 and are thus near the theoretical value. This close 
correspondence shows that the definition and estimation  
procedure work as expected.

Bear in mind that the measurements leading up to these esti-
mates come from different instruments. It is gratifying to see  
how well we can do with historical data, thanks to the robust 
underlying measurement model. Of course, comparability only  
gets better if all countries would use the same instrument.  
However, using the same tool everywhere is not a requirement.

7.4 Off-track development and stunted growth

Weber et al. (2019) thoroughly discuss concurrent, discrimi-
nant and predictive validity of the D-score using the GCDG  
data. In this section, we concentrate on the relation between 
the D-score and stunting, a popular measure of impaired  
height growth in children due to nutrition problems. The WHO 
defines stunted growth as a height-for-age Z-score below the  
-2 SD line of the WHO Child Growth Standards (HAZ < -2.0).

Figure 7.2 plots the percentage off-track and percentage  
stunting per country. This plot reveals two exciting features:

Figure 6.9. Domain-specific D-scores for a 3 year old boy.
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•       The variation in stunting is much larger than the vari-
ation off-track development. One might speculate that 
height is more dependent on the environment than off-track  
development, and hence more variable.

•       Stunted growth and off-track development are unrelated.  
Ranking countries by stunting or by off-track development 
yields substantially different orders. This finding pro-
vides clear counter-evidence to the argument that stunted  
growth is as a proxy for delayed development. It may even 
be the case the child development and physical growth 
are different maturation processes that develop largely  
independently.

However, this is not the whole story. Figure 7.3 reveals a  
consistent difference in DAZ between stunted and non-stunted 
children of about 0.2 - 0.3 SD. There could be factors at the 
child level that affect both development and height growth. For  
example, low-income families may lack the resources for ade-
quate nutrition, which may impact both child development and  
physical growth.

The exact nature of the relation between stunting and devel-
opment is still obscure. The D-score provides a means to 
study the intriguing interplay between both measures in more  
detail.

8 Application II: who is on-track?

Section 7 described a method to define and estimate off-track 
development. The current section highlights strategies to find 
factors that discriminate between children that are on-track 
and off-track. We order explanatory factors relative to their  

importance and discuss opportunities for interventions.

•      What determines who is developmentally on-track (8.1)

•      Factors that impact child development (8.2)

8.1 What determines who is developmentally on-track?

There are multiple ways to define on-track development. 
Here we will use the method outlined in Section 7.2. Ideally,  
we would like to fit the age-conditional reference distribution 
on a sample of children with normal, healthy development. As 
noted before, we calculated the references used in Section 7.2  
from a convenience sample. They may not be representative  
of healthy development.

Assuming we place the cut-off value at -2 SD, we may subdi-
vide the observed D-scores into off-track and on-track. Figure 8.1  
colours the regions of the D-score for children considered on-
track (green) and off-track (red). The regions indicate the expected 
locations of D-scores in practice. Although one could find  
D-score outside the coloured areas, such should be very rare. 
The occurrence of such cases may indicate an error in the calcu-
lation of the D-score, most likely caused by setting an incorrect  
age variable.

Preventing observations in the red region requires us to form an 
idea about the factors that determine the off-track probability.  
The next section looks into this topic.

8.2 Factors that impact child development

We already know many of the factors that influence early 
child development. A higher level of education in the family  

Figure 7.1. Illustration of the method to define on-track development (https://d-score.org/dbook-apps/gcdgreferences/).
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Figure 7.2. Off-track development (%) versus stunting (%) per country.

Table 8.1 compares the frequency distributions of various fac-
tors for children on-track versus off-track. There are only  
tiny differences between boys and girls. Children with low 
birth weight (< 2500 gr) are more at risk for off-track develop-
ment. This estimate does not correct for gestational age. We  
discussed techniques for such corrections elsewhere.

The influence of maternal education on off-track development 
follows the expected trend. Interestingly, it seems that a rural  
environment could prevent off-track development. We note that 
original measures of maternal education and residence were 
harmonised across studies. It would, therefore, also be inter-
esting to study the impact per cohort using the actual factor  
coding.

We predicted DAZ by linear regressions with predictors coun-
try, sex, birth weight, maternal education, height for age and  
residential area. The percentage of explained variance was 11 
percent. Figure 8.2 depicts the relative contributions of the  
individual factors to the prediction. Country differences explain 
over half the variances, followed by maternal education.  
Contributions of height-for-age (HAZ), low birth weight and  
residence are about equal in magnitude.

These analyses only scratch the surface. It is nowadays com-
mon to analyse the impact of interventions on height and HAZ 
by multivariate techniques and machine learning methods.  
The D-score and DAZ are drop-in replacements that allow 
similar procedures to study which factors contribute to healthy  
child development worldwide.

Table 7.1. Percentage 
of on-track children per 
country.

Country Percentage 
on-track

BGD 94.9

BRA 99.5

CHL 98.3

CHN 99.9

COL 98.8

ECU 93.9

ETH 99.4

JAM 99.6

MDG 96.6

NLD 96.8

ZAF 97.4

promotes development. Infectious diseases like malaria slow 
down growth. Access to adequate nutrition, clean water and a 
stimulating, prosperous and safe environment is favourable for  
healthy development. And so on. Unfortunately, we do not 
have data on most factors, so we need to limit ourselves to  
a few background characteristics.
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Figure 7.3. Difference in mean DAZ per country between stunted and not stunted children.

Figure 8.1. D-score observatations that are on-track according the current references.

Page 39 of 45

Gates Open Research 2021, 5:86 Last updated: 21 DEC 2021



9 Discussion

This closing section briefly summarises the key lessons  
from this section. The section covers:

•       D-score from multiple instruments (9.1)

•      Variability within and between cohorts (9.2)

•      D-score for international comparisons (9.3)

•      Better measurement (9.4)

9.1 D-score from multiple instruments

We developed the initial D-score methodology for just 
one instrument. In practice, however, we need to deal with  
data collected on multiple, partially overlapping tools. This 
chapter addressed the problem how to define and calculate the  
D-score based on data coming from various sources, using  
multiple instruments administered at varying ages.

We had longitudinal data available from 16 cohorts, collected 
with 15 tools to measure child development at various ages.  
Our analytic strategy to define a D-score from these data  
consists of the following steps:

1.        Make an inventory of instruments and cohorts;

2.        Combine all measurements into one dataset;

3.        Find out which shared instruments connect cohorts;

4.         Place similar items from different instruments into equate 
groups;

5.        Find the best set of active equate groups;

Figure 8.2. Relative importance of the explanatory factors in 
this study.

Table 8.1. Comparisons between on-track and off-track 
development.

On-track Off-track

n % n %

sex
female 21136 97.7 489 2.3

male 20805 97.2 595 2.8

birth weight
<2500gr 3388 94.8 185 5.2

>2500gr 36375 97.8 821 2.2

maternal education

no education 1907 96.7 66 3.3

any primary 11764 96.7 398 3.3

any secondary 21576 97.7 503 2.3

higher secondary 6263 98.4 101 1.6

residence

rural 1251 98.9 14 1.1

semi-urban 2236 99.0 23 1.0

urban 18740 97.1 566 2.9

metropolitan 11122 97.9 234 2.1
* Exludes children with missing DAZ or missing factor

6.         Estimate item difficulty using a restricted Rasch model 
that requires the estimates of all items within an active  
equate group to be identical;

7.        Weed out items that do not fit the model.

We need to perform steps 5, 6 and 7 in an iterative fashion. 
Depending on the result, we may also need to redefine, combine  
or break up equate groups (step 4).
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As an example, we outlined a generic strategy on how to 
advance on SDG 4.2.1. We use the D-score to operationalise the  
concept developmentally on track. We calculated age-conditional 
references of the D-score, analogous to the WHO Multicentre 
Growth Reference Study. We may then define cut-off values. 
Children above the cut-off then count as developmentally on  
track.

While we highlighted the principles, much work still needs 
to be done. First, there are over 150 instruments for child  
development, and our current key covers only a fraction of 
these. We are actively expanding the key using additional data,  
so as time passes the coverage of tools will go up. Second, 
we calculated the references on a mix of studies, some of  
which include special populations. Thus, we cannot interpret 
the current reference values as portraying normal develop-
ment. We hope that the inclusion of healthy population data  
will improve the usefulness of the references as a standard for  
child development.

9.4 Better measurement

The D-score metric is a generic measure of child development. 
It summarises child development by one number. We found  
that D-score fairly represents development domains over the 
entire scale. Due to its generic nature, the D-score is less suit-
able for measuring a specific domain. It may then be better to  
use a specialised tool that accesses motor, cognitive or  
communication faculties. For example, think of sub-scales from 
the Bayley, ASQ, Griffiths, and so on. Note that also in those  
cases, one still has the option of calculating a D-score.

The opposite scenario may also be of interest. Suppose we 
want to measure generic development AND identify any areas  
of slow growth. Extending the measurement by adding more 
items from domains with a higher failure rate will then increase  
precision in areas of suspected delay.

Since we based the D-score on a statistical model, we may cre-
ate instruments customised to the exact needs of the study.  
Population-based studies may require a short measure consist-
ing of a handful of items per child, and aggregate scores over  
many children to achieve precision. Intervention studies aim 
for a precise estimate for the intervention effect. If group sizes  
are small, we may administer a more extended test to achieve 
the same precision and vice versa. At the other end of the spec-
trum, for clinical purposes, we want a precise estimate for one  
particular person, so here we will administer a relatively 
long test. The good news is: As long as we pick items from 
the statistical model, the D-score in those three cases are all  
values on the same scale.

Our ongoing work targets tailoring instruments to a study  
design and discusses all of these options. And more.

These techniques are well-known within psychometrics 
and educational research. Our approach builds upon a well- 
grounded and robust theory of psychological measurement. 
We, therefore, expect that repeating our method on other data  
will lead to very similar results.

A novel aspect in our methodology is the systematic forma-
tion of candidate equate groups by subject-matter experts based  
on similarity in concept and content. Our subsequent testing  
and tailoring of each equate group given the data provide  
empirical evidence of its quality for connecting instruments. 
While anchoring tests by itself is not novel, we are not aware 
of any work aimed at identifying the best set of active equate  
groups on this scale.

9.2 Variability within and between cohorts

The final model retains 565 items and employs 18 equate 
groups. Given the difficulty estimates from that model, we can  
estimate the D-score and DAZ for each measurement.

Figure 6.1 reveals that all cohorts show a rapidly rising age  
trend in the D-score, which matches the earlier finding that  
child development is faster in younger children.

Figure 6.2 shows large overlaps in the DAZ distributions 
between cohorts. This finding suggests that the level of child  
development is similar in different regions of the world. Some 
studies display more variability in DAZ than others, which is  
likely to be related to differences in measurement error, as the 
number of milestones differs widely.

Observe that we used all cohorts for modelling, which may 
have made them appear more similar than they are. It would  
be good if we could verify the apparent similarities in level 
and variability of child development in different regions by  
other data that were not part of the modelling.

9.3 D-score for international comparisons

The D-score is a universal scale of early child development. 
The D-score does not depend on a particular instrument.  
Instead, we can calculate a D-score as long as appropriate diffi-
culty estimates are available for the tool at hand. This feature  
makes the D-score methodology flexible and helpful for  
international comparisons.

Of course, the ideal situation for international comparisons 
would be that all countries collect child development data in the  
same way. In practice, this ideal may be difficult to achieve. 
Also, we cannot change past data. In these less-than-ideal worlds, 
the D-score presents a convenient, conscientious and timely  
alternative.
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Appendices

A Abbreviations

Section Abbreviation Description

2.2 GCDG-BGD-7MO The Bangladesh study of the GCDG (Tofail et al., 2008)

2.2 GCDG-BRA-1 The Brazil 1 study of the GCDG (Victora et al., 2006)

2.2 GCDG-BRA-2 The Brazil 2 study of the GCDG (Moura et al., 2010)

2.2 GCDG-CHL-1 The Chile 1 study of the GCDG (Lozoff et al., 2003)

2.2 GCDG-CHL-2 The Chile 2 study of the GCDG (Conteras & González, 2015)

2.2 GCDG-CHN The China study of the GCDG (Lozoff et al., 2016)

2.2 GCDG-COL-LT45M The Colombia 1 study of the GCDG (Attanasio et al., 2014)

2.2 GCDG-COL-LT42M The Colombia 2 study of the GCDG (Rubio-Codina et al., 2016)

2.2 GCDG-ECU The Ecuador study of the GCDG (Paxson & Schady, 2010)

2.2 GCDG-ETH The Ethiopia study of the GCDG (Hanlon et al., 2009)

2.2 GCDG-JAM-LBW The Jamaica 1 study of the GCDG (Walker et al., 2004)

2.2 GCDG-JAM-STUNTED The Jamaica 2 study of the GCDG (Grantham-McGregor et al., 1991)

2.2 GCDG-MDG The Madagascar study of the GCDG (Fernald et al., 2011)

2.2 GCDG-NLD-SMOCC The Netherlands 1 study of the GCDG (Herngreen et al., 1992)

2.2 GCDG-NLD-2 The Netherlands 2 study of the GCDG (Doove, 2010)

2.2 GCDG-ZAF The South Africa study of the GCDG (Richter et al., 2007)

2.3 by1 Bayley Scale for Infant and Todler Development version 1 (Bayley, 1969)

2.3 by2 Bayley Scale for Infant and Todler Development version 2 (Bayley, 1993)

2.3 by3 Bayley Scale for Infant and Todler Development version 3 (Bayley, 2006)

2.3 den Denver Developmental Screening Test (Frankenburg et al., 1992)

2.3 gri Griffiths Mental Development Scales (Griffiths, 1967)

2.3 bat Battelle Developmental Inventory (Newborg, 2005)

2.3 vin Vineland Social Maturity Scale (Doll, 1953)

2.3 ddi Dutch Developmental Instrument (Schlesinger-Was, 1981)

2.3 bar Barrera Moncada (Barrera Moncada, 1981)

2.3 tep Test de Desarrollo Psicomotor (Haeussler & Marchant, 1999)

2.3 aqi Ages and Stages Questionnaire (Squires & Bricker, 2009)

2.3 sbi Stanford Binet Intelligence Scales (Roid, 2003)

B Notation The notation in this chapter follows Wright & Masters (1982).

Section Symbol Term Description

4.4 βn Ability True (but unknown) developmental score of child n

4.4 δI Difficulty True (but unknown) difficulty of item i

4.4 δq Difficulty The combined difficulty of the items in equate group q

4.4 πni Probability True (but unknown) probability that child n passes item i
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Name in publication Reference Contact
GCDG-BGD-7MO Hamadani et al., 2011; Tofail, 2009 Jena Hamadani (jena@icddrb.org)
GCDG-BRA-1 Halpern et al., 1996; Victora et al., 2006 Simone Karam (Karam.simone@gmail.com)
GCDG-BRA-2 Moura et al., 2010 Simone Karam (Karam.simone@gmail.com)
GCDG-CHL-1 Lozoff et al., 2013 Betsy Lozoff (blozoff@umich.edu)
GCDG-CHL-2 Conteral & González, 2015 Lia Fernald (fernald@berkeley.edu)

GCDG-CHN Angulo-Barroso et al., 2016; Lozoff et al., 2016; 
Santos et al., 2017

Betsy Lozoff (blozoff@umich.edu)

GCDG-COL-LT45M Andrew et al., 2017; Attanasio et al., 2014 Marta Rubio (martarubio@iadb.org)
GCDG-COL-LT42M Rubio-Codina et al., 2016 Marta Rubio (martarubio@iadb.org)

GCDG-ECU Araujo et al., 2016; Fernald & Hidrobo, 2011; Paxon & 
Shady, 2010

Caridad Araujo (mcaraujo@iadb.org)

GCDG-ETH Hanlon et al., 2016 Charlotte Hanlon (charlotte.hanlon@kcl.ac.uk)
GCDG-JAM-LBW Walker et al., 2004; Walker et al., 2010 Susan Walker (susan.walker@uwimona.edu.jm)

GCDG-JAM-STUNTED Grantham-McGregor et al., 1991; Grantham-
McGregor et al., 1997; Walker et al., 2005

Susan Walker (susan.walker@uwimona.edu.jm)

GCDG-MDG Galasso et al., 2011; Galasso et al., 2017 Ann Weber (annweber@stanford.edu)
GCDG-NLD-SMOCC Herngreen et al., 1992 Paul Verkerk (paul.verkerk@tno.nl)
GCDG-NLD-2 Doove et al., 2010; Doove et al., 2019; Bernice Doove (bernice.doove@maastrichtuniversity.nl)

GCDG-ZAF Richter et al., 1995; Richter et al., 2004; Richter et al., 
2007; Yach et al., 1991

Linda Richter (Linda.Richter@wits.ac.za)

TOGO Van Buuren & Eekhout, 2021 Cécile Schat-Savy (cschatsavy@kinderhulp-togo.nl)
POPS Verloove - Vanhorick et al., 1986 Sylvia van de Pal (sylvia.vanderpal@tno.nl)

Data availability

Underlying data

The raw data needed to replicate these analyses are not public, 
so we cannot share it with this publication. However, the reader  
can apply for access to the data through the study contact. The 
table given below contains the contact information for each  
cohort included in this publication.

A subset of studies made their study data publicly available  
under a CC BY 4.0 license (https://creativecommons.org/
licenses/by/4.0/)1. Authorship remains with the study coordinator, 
but users are free to redistribute, alter and combine the data,  

1 Zenodo: D-score/childdevdata: childdevdata 1.0.1, http://doi.org/10.5281/
zenodo.4685979 (van Buuren, 2021)

Section Symbol Term Description

4.4 l Count The number of items in the equate group

4.4 wi Count The number of respondents with an observed score on item i

4.6 Pni Probability Estimated probability that child n passes item i

4.6 xni Data Observed response of child n on item i, 0 or 1

4.6 Wni Variance Variance of xni

4.6 zni Residual Standardized residual between xni and Pni

4.6 Ni Count Number of responses on item i

5.6 r Correlation Correlation coefficient

6 D Score Developmental score of a child: D-score

6.2 sem Error Standard Error of Measurement: precision of the D-score
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on the condition of giving appropriate credit with any  
redistributions of the material. The URL of the public data is  
https://d-score.org/childdevdata/.
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