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Abstract 
The chapter equips the reader with a basic understanding of robust 
psychometric methods that are needed to turn developmental 
milestones into measurements, introducing the fundamental issues in 
defining a unit for child development and demonstrates the relevant 
quantitative methodology.

It reviews quantitative approaches to measuring child 
development;

•

introduces the Rasch model in a non-technical way;•
shows how to estimate model parameters from real data;•
puts forth a set of principles for model evaluation and 
assessment of scale quality;

•

analyses the relation between early D-scores and later 
intelligence;

•

and compares the D-scores from three studies that all use the 
same instrument.

•
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1 Introduction

This introductory section outlines why we utilize the D-score:

•     reviewing key discussions about the first 1000 days in a child’s 
life (1.1)

•     highlighting the relevance of early childhood development for 
later life (1.2)

•    discussing the use of stunting as a proxy for development (1.3)

•     pointing to existing instruments to quantify neurocognitive 
development (1.4)

•    explaining why we have written this chapter (1.5)

•    delineating the intended audience (1.6)

1.1 First 1000 days

The first 1000 days refers to the time needed for a child to 
grow from conception to the second birthday. It is a time of  
rapid change. During this period the architecture of the devel-
oping brain is very open to the influence of relationships and  
experiences (Shonkhoff et al., 2016). Early experiences affect 
the nature and quality of the brain’s developing architecture 
by reinforcing some synapses and pruning others through lack  
of use. The first 1000 days shape the brain’s architecture, but 
higher-order brain functions continue to develop into adolescence 
and early adulthood (Kolb et al., 2017).

The classic nature versus nurture debate contrasts the view-
points that variation in development is primarily due to either  
genetic or environmental differences. The current scientific  
consensus is that both genetic predisposition and ecological  
differences influence all traits (Rutter, 2007). The environ-
ment in which a child develops (before and soon after birth)  
provides experiences that can modify gene activity (Caspi  
et al., 2010). Negative influences, such as exposure to stress-
ful life circumstances or environmental toxins may leave a  
chemical signature on the genes, thereby influencing how  
genes work in that individual.

During the first 1000 days, infants are highly dependent on  
their caregivers to protect them from adversities and to help 
them regulate their physiology and behavior. As Figure 1.1  
illustrates, caregivers can do this through responsive care, 
including routines for sleeping and feeding. To reach their 
developmental potential, children require nutrition, responsive  
caregiving, opportunities to explore and learn, and protection 
from environmental threats (Black et al., 2017). Gradually, chil-
dren build self-regulatory skills that enable them to manage  
stress as they interact with the world around them (Johnson  
et al., 2013).

1.2 Relevance of child development

The first 1000 days is a time of rapid change. Early experi-
ences affect brain development and influence lifelong learning 
and health (Shonkhoff et al., 2016). Healthy development is  
associated with future school achievement, well-being, and  
success in life (Bellman et al., 2013).

Professionals and parents consider it important to monitor 
children’s development. Tracking child development enables  
professionals to identify children with signs of potential 
delay. Timely identification can help children and their par-
ents to benefit from early intervention. In a normal population,  
developmental delay affects about 1–3% of children. A 
delay in development may indicate underlying disorders.  
About 1% of children have an autism spectrum disorder 
(Baird et al., 2006), 1–2% a mild learning disability, and 
5–10% have a specific learning disability in a single domain  
(Horridge, 2011).

Children develop at different rates, and it is vital to distinguish 
those who are within the “normal” range from those who are 
following a more pathological course (Bellman et al., 2013).  
There is good evidence that early identification and early  
intervention improve the outcomes of children (Britto et al., 
2017). Early intervention is crucial for children with devel-
opmental disabilities because barriers to healthy development  
early in life impede progress at each subsequent stage.

Monitoring child development provides caregivers and  
parents with reliable information about the child and an 
opportunity to intervene at an early age. Understanding the  
developmental health of populations of children allows organi-
sations and policymakers to make informed decisions about 
programmes that support children’s greatest needs (Bellman  
et al., 2013).

1.3 Stunting as proxy for child development

Stunting is the impaired physical growth and development 
that children experience from poor nutrition, repeated infec-
tion, and inadequate psychosocial stimulation. Linear growth in  
children is commonly expressed as length-for-age or height-
for-age in comparison to normative growth standards (Wit et al.,  
2017). According to the World Health Organization (WHO), 
children are stunted if their height-for-age is more than two 
standard deviations below the Child Growth Standards median.  

Figure 1.1. Serve and return interactions shape brain 
architecture. Source: Shutterstock, under license.
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Stunting caused by chronic nutritional deprivation in early child-
hood is as an indicator of child development (Perkins et al.,  
2017).

There is consistent evidence for an association between stunt-
ing and poor child development, despite heterogeneity in the  
estimation of its magnitude (Miller et al., 2016; Sudfeld et al., 
2015). Considering impaired linear growth as a proxy measure 
for child development is easy to do, and quite common.  
Yet, using impaired height growth as a measure for child  
development is not without limitations:

•     The relation between height and child development is  
weak after adjustment for age;

•     Height is a physical indicator that does not take into 
account a direct evaluation of a child’s cognitive or mental  
performance;

•     There is considerable heterogeneity in heights of children  
all over the world;

•    Height is not sensitive to rapid changes in child development.

1.4 Measuring neurocognitive development

Assessment of early neurocognitive development in children 
is challenging for many reasons (Ellingsen, 2016). During  
the first years of life, developmental change occurs rapidly, 
and the manifestation of different skills and abilities varies  
considerably across children. Moreover, a child’s performance 
on a cognitive task is very susceptible to measurement setting,  
timing and the health of the child that day.

Recently, a toolkit was published that reviews 147 assessment 
tools developed for children ages 0–8 years in low- and middle- 
income countries (Fernald et al., 2017). Some of the most widely 
used tools include the Ages & Stages Questionnaires (ASQ), 
Achenbach Child Behavior Checklist (CBCL), Bayley Scales 
of Infant Development (BSID), Denver Developmental Screen-
ing Test (DEN), Griffiths Scales of Child Development (GRF),  
Mullen Scale of Early Learning (MSEL), Strengths and  
Difficulties Questionnaire (SDQ), Wechsler Intelligence Scale 
for Children (WISC), and its younger age counterpart Wechsler  
Preschool and Primary Scale of Intelligence (WPPSI).

Each of these tools has its strengths and limitations. For  
example, the ASQ and DEN are screeners for general child 
development. The CBCL and SDQ are screeners for behavioral  
and mental health, not cognition or general development. DEN 
is relatively easy and quick to administer, but not very precise. 
It is out of production, not being sold or re-normed. The BSID, 
MSEL, and GRF provide a clinical assessment at the individual  
level and requires a skilled professional to administer. Some 
instruments collect observations through the caregiver (ASQ), 
whereas others emphasize traits and behavior over performance 
(SDQ, CBCL). Also, the age ranges to which the instruments  
are sensitive vary. Furthermore, they may cover different  
domains of development.

The ideal child development assessment would be easy to 
administer and has high reliability, validity, and cross-cultural  

appropriateness. It should also show appropriate sensitiv-
ity in scores at different ages and ability levels. It is no surprise 
that no test can meet all of these criteria. Many tests are too  
long, difficult to administer, lack cross-cultural validity, or have 
low reliability. Also, many instruments are proprietary and  
costly to use.

1.5 Why this chapter?

We believe that there cannot be one instrument for meas-
uring child development that is suitable for all situations. In  
general, the tool needs tailoring to the setting. For example, to 
find a delayed child, we need an instrument that is precise for  
that individual child, and that is sensitive to different domains 
of delay. In contrast, if we want to estimate the proportion of 
children that is developmentally on track in a region, we need  
one culturally unbiased, relatively imprecise low-cost measure-
ment made on many children across many ages. The optimal  
instrument will look quite different in both cases.

We also believe that there can be one scale for measur-
ing child development and that this scale is useful for many  
applications. Such a scale is similar to well-known meas-
ures for body height, body weight or body temperature. These 
measurements have a clearly defined unit (i.e., centimetre,  
kilogram, degree Celsius), which moreover is assumed to be 
constant across all scale locations. We express measurements  
as the number of scale units (e.g. 92 cm). Note that there  
may be multiple instruments for measuring a child height (e.g. 
ruler, laser distance meter, echolocation, ability to reach the 
door handle, and so on). Still, their result translates into scale  
units (cm here). The opposite is also true, and perhaps more 
familiar. We may have one instrument and express the result in  
multiple units (e.g. cm, inches, light-years).

Instruments and scales are different things. Currently, instru-
ments for measuring child development define their own scales,  
which renders the measurements made by distinct tools incom-
parable. No measurement unit for child development yet  
exists. It would undoubtedly be an advance if we could  
tailor the measurement instrument to the setting while retain-
ing the advantage of a scale with a clearly defined unit across  
different tools. We can then compare the data collected by dis-
tinct devices. This chapter explores the theory and practice for  
making that happen.

1.6 Intended audience

We aim for three broad audiences:

•    Professionals in the field of child growth and development;

•    Policymakers in international settings;

•    Statisticians, methodologists, and data scientists.

Professionals in child development will become familiar with 
a new approach to measuring child development in early  
childhood. We plan to separate the measurement instrument 
from the scale used to express the result. This formulation 
allows the user to select the instrument most suited for a  
particular setting. Since instruments differ widely in age  
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coverage, length, administration mode, and domain coverage  
(Boggs et al., 2019), the ability to choose the instrument, while 
not giving up comparability, represents a significant advance  
over routines that marry the scale to the instrument.

Policymakers in international settings wish to know the effect 
of different interventions on child development. Gaining  
insight into such effects is not so easy since different studies 
use different instruments. The ability to place measurements 
made by different instruments onto the same scale will allow for  
a more accurate understanding of policy effects. It also 
enables the setting of priorities and actions that are less  
dependent on the way the data were collected.

Statisticians and data scientists generally prefer numeric  
values with an unambiguous unit (e.g., centimeters, kilograms)  
over a vector of dichotomous data points. This chapter shows 
how to convert a series of PASS/FAIL scores to a numeric value 
with interval scale properties. The existence of such a scale  
opens the way for the application of precise analytic tech-
niques, similar to those applied to child height and body weight.  
The techniques have a solid psychometric backing, and also  
apply to other types of problems.

2 Short history

The measurement of child development has quite an extensive  
history. This section

•    reviews definitions of child development (2.1)

•    discusses concepts in the nature of child development (2.2)

•    shows a classic example of motor measurements (2.3)

•     summarizes typical questions whose answers need proper  
measurements (2.4)

2.1 What is child development?

In contrast to concepts like height or temperature, it is unclear 
what exactly constitutes child development. Shirley (1931) 
executed one of the first rigorous studies in the field with the  
explicit aim

         that the many aspects of development, anatomical, 
physical, motor, intellectual, and emotional, be studied  
simultaneously.

Shirley gave empirical definitions of each of these domains  
of development.

Certain domains advance through a fixed sequence. Figure 2.1 
illustrates the various stages needed for going from a fetal  
posture to walking alone. The ages are indicative of when these 
events happen, but there is a considerable variation in timing 
between infants.

Gesell (1943) (p. 88) formulated the following definition of  
development:

         Development is a continuous process that proceeds stage by 
stage in an orderly sequence.

Gesell’s definition emphasizes that development is a continu-
ous process. The stages are useful as indicators to infer the  
level of maturity but are of limited interest by themselves.

Figure 2.1. Gross motor development as a sequence of milestones. Source: Shirley (1933), with permission.
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Liebert et al. (1974) (p. 5) emphasized that development is  
not a phenomenon that unfolds in isolation.

         Development refers to a process in growth and capability 
over time, as a function of both maturation and interaction  
with the environment.

Cameron & Bogin (2012) (p. 11) defined an endpoint of  
development, as follows:

        “ Growth” is defined as an increase in size, while “maturity” 
or “development” is an increase in functional ability… 
The endpoint of maturity is when a human is function-
ally able to procreate successfully … not just biological  
maturity but also behavioural and perhaps social maturity.

Berk (2011) (p. 30) presented a dynamic systems perspective  
on child development as follows:

         Development cannot be characterized as a single line 
of change, and is more like a web of fibres branching  
out in many directions, each representing a different skill 
area that may undergo both continuous and stagewise  
transformation.

There are many more definitions of child development. The 
ones described here illustrate the main points of view in the  
field.

2.2 Theories of child development

The field of child development is vast and spans multiple  
academic disciplines. This short overview, therefore, cannot do  
justice to the enormous richness. Readers new to the field 
might orient themselves by browsing through an introductory  
academic titles (Berk, 2011; Santrock, 2011), or by searching  
for the topic of interest in an encyclopedia, e.g., Salkind (2002).

The introductions by Santrock (2011) and Berk (2011) both 
distinguish major theories in child development according to  
how each answer to following three questions:

2.2.1 Continuous or discontinuous? Does development 
evolve gradually as a continuous process or are there qualita-
tively distinct stages, with jumps occurring from one step to  
another?

Many stage-based theories of human development have been 
proposed over the years: social and emotional development 
by psycho-sexual stages introduced by Freud and furthered 
by Erikson (Erikson, 1963), Kohlberg’s six stages of moral  
development (Kohlberg, 1984) and Piaget’s cognitive develop-
ment theory (Piaget & Inhelder, 1969). Piaget distinguishes  
four main periods throughout childhood. The first period, the 
sensorimotor period (approximately 0–2 years), is subdivided 
into six stages. When taken together, these six stages describe  
“the road to conceptual thought.” Piaget’s stages are qualita-
tively different and aim to unravel the mechanism involved in  
intellectual development.

On the other hand, Gesell and others emphasize development  
as a continuous process. Gesell (1943) (p. 88) says:

         A stage represents a degree or level of maturity in the  
cycle of development. A stage is simply a passing moment, 
while development, like time, keeps marching on.

2.2.2 One course or multiple parallel tracks? Stage theorists 
assume that children progress sequentially through the same 
set of stages. This assumption is also explicit in the work of  
Gesell.

The ecological and dynamic systems theories view develop-
ment as continuous, though not necessarily progressing in an  
orderly fashion, so there may be multiple, parallel ways to 
reach the same point. The developmental path taken by a given 
child will depend on the child’s unique combination of personal  
and environmental circumstances, including cultural diversity  
in development.

2.2.3 Nature or nurture? Figure 2.2 illustrates that children 
vary in appearance. Are genetic or environmental factors more  

Figure 2.2. A group of culturally diverse children. Source: Shutterstock, under license.
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important for influencing development? Most theories gener-
ally acknowledge the role of both but differ in emphasis. In 
practice, the debate centres on the question of how to explain  
individual differences.

Maturation is the process of becoming fully developed, much 
like the natural unfolding of a flower. The process depends  
on both genetic factors (species, breed) as well as environ-
mental influences (sunlight, water, nutrition). Some theorists 
emphasize that differences in child development are innate and  
stable over time, although there may be differences in unfold-
ing speed due to different environments. Others argue that  
environmental factors drive differences in development between 
children, and changing these factors could very well impact  
child development.

Our position in this debate has practical implications. If we 
believe that differences are natural and stable, then it may not  
make much sense trying to change the environment, as the 
impact on development is likely to be small. On the other hand,  
we may consider developmental potential as evenly distributed,  

with its expression governed by the environment. In the lat-
ter case, improving life circumstances may have substantial  
pay-offs in terms of better development.

2.3 Example of motor development

2.3.1 Shirley’s motor data. For illustration, we use data on loco-
motor development from a classic study on child development  
among 25 babies. Shirley (1931) collected measurements of 
the baby’s walking ability, starting at ages around 13 weeks, 
in an ingenious way. The investigator lays out a white paper  
of twelve inches wide on the floor of the living room, and 
lightly greases the soles of the baby’s feet with olive oil. The 
baby was invited to “walk” on the sheet. Of course, very young  
infants need substantial assistance. Footprints left were later 
coloured by graphite and measured. Measurements during the  
first year were repeated every week or bi-weekly.

Table 2.1 (Shirley, 1931, Appendix 8) lists the age (in weeks) of 
the 21 babies when they started, respectively, stepping, standing, 
walking with help, and walking alone. Blanks indicate missing  

Table 2.1. Age at beginning stages of walking (in weeks) for 21 
babies. Source: Shirley (1931).

Name Sex Stepping Standing Walking 
with help

Walking 
alone

Martin boy 15 21 50

Carol girl 15 19 37 50

Max boy 14 25 54

Virginia Ruth girl 21 41 54

Sibyl girl 22 37 58

David boy 19 27 34 60

James D. boy 19 30 45 60

Harvey boy 14 27 42 62

Winnifred girl 15 30 41 62

Quentin boy 15 23 38 64

Maurice boy 18 23 45 66

Judy girl 18 29 45 66

Irene May girl 19 34 45 66

Peter boy 15 29 49 66

Walley boy 18 33 54 68

Fred boy 15 32 46 70

Donovan boy 23 50 70

Patricia girl 15 30 45 70

Torey boy 21 72 74

Larry boy 13 41 54 76

Doris girl 23 44
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data. A blank in the first column means that the baby was 
already stepping when the observation started (Virginia Ruth,  
Sibyl, Donovan, Torey and Doris). Max and Martin, who 
have blanks in the second column, skipped standing and  
went directly from stepping to walking with help. Doris has a 
blank in the last column because she passed away before she  
could walk alone.

2.3.2 Individual trajectories of motor development. Figure 2.3  
is a visual representation of the information in Table 2.1. Each 
data point is the age of the first occurrence of the next stage.  
Before that age, we assume the baby is in the previous stage.

Figure 2.3 makes it easy to spot the quick walkers (Martin, 
Carol) and slow walkers (Patricia, Torey, Larry). Further-
more, we may also locate children who remain a long time in a  
particular stage (Torey, Larry) or who jump over stages (Martin, 
Max).

For ease of plotting, the categories on the vertical axis are  
equally spaced. The height of the jump from one stage to the 
next has no sensible interpretation. We might be inclined to  
think that the vertical distance portrays to how difficult it is to 
achieve the next stage, but this is inaccurate. Instead, the abil-
ity needed to set the next step corresponds to the horizontal  
line length between stages. For example, on average, the 
line for stepping is rather short in all plots, so going from  
stepping to standing is relatively easy.

Figure 2.3 presents data from only those visits where a 
jump occurred. The number of house visits made during the  
ages of 0–2 years was far higher. Shirley (1931) collected 
data from 1370 visits, whereas Figure 2.3 plot only the 76  

occasions that showed a jump. Thus the data collection needs to 
be intense and costly to obtain individual curves. Fortunately,  
there are alternatives that are much more efficient.

2.4 Typical questions asked in child development

The emotional, social and physical development of the young 
child has a direct effect on the adult he or she will become.  
We may be interested in measuring child development for  
answering clinical, policy or public health questions.

Table 2.2 lists typical questions whose answers require meas-
uring child development. Note that all questions compare the  
amount of child development between groups or time points. A 
few questions compare development for the same child, group  
or population at different ages. Others compare development  
at the same age across different children, groups or  
populations.

3 Quantifying child development

This section discusses four principles to quantify child  
development:

•    Age-based measurement (3.1)

•    Probability-based measurement (3.2)

•    Score-based measurement (3.3)

•    Unit-based measurement (3.4)

3.1 Age-based measurement of development

3.1.1 Motivation for age-based measurement. Milestones 
form the based building blocks for instruments to measure child  

Figure 2.3. Staircase plot indicating the age at which each baby achieves a new milestone of gross-motor functioning.
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Table 2.2. Questions whose answers require quantitative measurements of child 
development.

Level Question

Individual What is the child’s gain in development since the last visit?

Individual What is the difference in development between the child and peers of the same 
age?

Individual How does the child’s development compare to a norm?

Group What is the effect of this intervention on child development?

Group What is the difference in child development between these two groups?

Population What is the change in average child development since the last measurement?

Population What was the effect of implementing this policy on child development?

Population How does this country compare to other countries in terms of child development?

development. Methods to quantify growth using separate mile-
stones relate the milestone behaviour to the child’s age. Gesell  
(1943) (p. 89) formulated this goal as follows:

         We think of behaviour in terms of age, and we think of 
age in terms of behaviour. For any selected age it is pos-
sible to sketch a portrait which delineates the behaviour  
characteristics typical of the age.

There is an extensive literature that quantifies development 
in terms of the ages at which the child is expected to show a  
specific behaviour. The oldest methods for quantifying child 
development calculate an age equivalent for achieving a  
milestone, and compare the child’s age to this age  
equivalent.

3.1.2 Age equivalent and developmental age. Figure 3.1  
graphs the ages at which each of the 21 children enter a given 
stage in Shirley’s motor data of Table 2.1. Since standing 
follows stepping, children who can stand are older than  
the children who are stepping. Hence the ages for standing  
are located more to the right.

Since age and development are so intimately related, we 
can express the difficulty of a milestone as the mean age at  
which children achieve it. For example, Stott (1967) (p. 25) 
defines the age equivalent and its use for measurement, as  
follows:

         The age equivalent of a particular stage is simply the  
average age at which children reach that particular stage.

Figure 3.2 adds the mean age and the boxplot at which the chil-
dren enter the four stages. The difficulty of these milestones  
can thus be expressed as age equivalents: 16.1 weeks for  
stepping, 27.2 weeks for standing, 43.3 weeks for  
walking with help and 63.3 weeks for walking alone.

Thus, a child that is stepping beyond the age of 16.1 weeks 
is considered later than average, whereas a child already  
stepping before 27.2 weeks earlier than average. We may also 
calculate age delta as the difference between the child’s age 
and the norm age, and express it as “two weeks late” or “three 
weeks ahead.” Summarizing age delta’s over different milestones 
has led to concepts like developmental age as a measure of a  
child’s development.

3.1.3 Limitations of age-based measurement. Age-based 
measurement is easy to understand, and widely used in the  
popular press, but not without pitfalls:

1.    Age-based measurement requires us to know the ages at 
which the child entered a new stage. The mean age can 
be a biased estimate of item difficulty if visits are widely  
apart, irregular or missing.

2.    Age-based measurement can inform us whether a child is 
achieving a given milestone early of late. However, it does 
not tell us what behaviours are characteristic for children  
of a given age.

3.    Age-based measurement cannot exist without an age 
norm. When there are no norms, we cannot quantify  
development.

4.    Age-based measurement works only at the item level.  
Although we may average age delta’s over milestones,  
the choice of milestones is arbitrary.

3.2 Probability-based measurement

An alternative is to calculate the probability of achieving a 
milestone at a given age and compare the child’s response  
to that probability.

The passing probability is an interpretable and relevant meas-
ure. An operational advantage of the approach is that the  
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Figure 3.2. Mean (symbol x) and spread of the ages at which 21 children achieve four motor development milestones.

Figure 3.1. Ages at which 21 children achieve four motor development milestones.

necessary calculations place fewer demands on the available  
data and can be done even for cross-sectional studies.

3.2.1 Example of probability-based measurement. Figure 3.3 
plots the percentage of children achieving each of Shirley’s motor 
stages against age. There are four cumulative curves, one for  
each milestone, that indicate the percentage of children that  
pass.

In analogy to the age equivalent introduced in Section 3.1.2 
we can define the difficulty of the milestone as the age at which  
50 per cent of the children pass. In the Figure we see that the 

levels of difficulty are approximately 14.2 weeks (stepping),  
27.0 weeks (standing), 43.8 weeks (walking with help) 
and 64.0 weeks (walking alone). Also, we may easily find 
the ages at which 10 per cent or 90 per cent of the children  
pass each milestone.

Observe there is a gradual decline in the steepness as we move 
from stepping to walk_alone. For example, we need  
an age interval of 13 weeks (33 - 20) to go from 10 to 90 per 
cent in standing, but need 19 weeks (71 - 52) to go from  
10 to 90 per cent in walking alone. Thus, one step on the 
age axis corresponds to different increments in probability. 
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Figure 3.3. Probability of achieving four motor milestones against age.

The flattening pattern is typical for child development and  
represents evidence that evolution is faster at earlier ages.

3.2.2 Limitations of probability-based measurement. Prob-
ability-based measurement is a popular way to create instru-
ments for screening on developmental delay. For example,  
each milestone in the Denver II (Frankenburg et al., 1992)  
has markers for the 25th, 50th, 75th and 90th age percentile.

1.    The same age step corresponds to different probabilities.

2.    The measurement cannot exist without some norm  
population. When norms differ, we cannot compare the  
measurements.

3.    Interpretation is at the milestone level, sometimes supple-
mented by procedures for counting the number of delays.  
No aggregate takes all responses into account.

3.3 Score-based measurement of development

3.3.1 Motivation for score-based measurement. Score-based 
measurement takes the responses on multiple milestones 
and counts the total number of items passed as a measure of  
development. This approach takes all answers into account,  
hence leading to a more stable result.

One may order milestones in difficulty, and skip those that are 
too easy, and stop administration for those that are too difficult.  
In such cases, we cannot merely interpret the sum score of 
a measure of development. Instead, we need to correct for 
the subset of administered milestones. The usual working  
assumption is that the child would have passed all easier  

milestones and failed on all more difficult ones. We may repeat  
this procedure for different domains, e.g. motor, cognitive, and  
so on.

3.3.2 Example of score-based measurement. Figure 3.4 is a 
gross-motor score calculated as the number of milestones passed.  
It varies from 0 to 3.

The plot suggests that the difference in development between 
scores 0 and 1 is the same as the difference between, say,  
scores 2 and 3. This is not correct. For example, suppose that 
we express the difficulty of the milestone as an age-equivalent. 
From Section 3.1.2 we see that the difference between stepping  
and standing is 27.2 - 16.1 = 11.1 weeks, whereas the differ-
ence between walking alone and walking with help is 63.3 -  
43.3 = 20 weeks. Thus, according to age equivalents scores 0 
and 1 should be closer to each other, and ratings 2 and 3 should  
be drawn more apart.

3.3.3 Limitations of score-based measurement. Score-based 
measurement is today’s dominant approach, but is not without  
conceptual and logistical issues.

1.    The total score depends not only on the actual develop-
mental status of the child, but also on the set of milestones  
administered. If a milestone is skipped or added, the sum 
score cannot be interpreted anymore as a measure of  
developmental status. It might be possible to correct for start-
ing and stopping rules under the assumptions described 
in Section 3.3.1, but such will be involved if intermediate  
milestones are missing.
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Figure 3.4. Same data as in Figure 2.3, but now with the vertical axis representing gross-motor score.

2.    It is not possible to compare the scores made by different 
instruments. Some instruments allow conversion to age- 
conditional scores. However, the sample used to derive such 
transformations pertain to that tool and does not generalise  
to others.

3.    Domains are hard to separate. For example, some cogni-
tive milestones tap into fine motor capabilities, and vice 
versa. There are different ways to define domains, so domain  
interpretation varies by instrument.

4.    Administration of a full test may take substantial time.  
The materials are often proprietary and costly.

3.4 Unit-based measurement of development

3.4.1 Motivation for unit-based measurement. Unit-based 
measurement starts by defining ideal properties and derives 
a procedure to aggregate the responses on milestones into an  
overall score that will meet this ideal.

Section 2.4 highlighted questions for individuals, groups and  
populations. There are three questions:

•     What is the difference in development over time for the  
same child, group or community?

•     What is the difference in development between different  
children, groups or populations of the same age?

•    How does child development compare to a norm?

In the ideal situation, we would like to have a continu-
ous (latent) variable D (for development) that measures child  
development. The scale should allow us to quantify ability 
of persons, groups or populations from low to high. It should  
have a constant unit so that a given difference in ability refers 
to the same quantity across the entire scale. We find the same  
property in height, where a distance of 10 cm represents the 
same amount for molecules, people or galaxies. When are 
these conditions are met, we say that we measure on an interval  
scale.

If we succeed in creating an interval scale for child develop-
ment, an enormous arsenal of techniques developed for quan-
titative variables opens up to measure, track and analyze child  
development. We may then evaluate the status of a child in 
terms of D points gained, create age-dependent diagrams (just  
like growth charts for height and weight), devise age-conditional 
measures for child development, and intelligent adaptive test-
ing schemes. Promising studies on Dutch data van Buuren  
(2014) suggest that such benefits are well within reach.

3.4.2 Example of unit-based measurement. Figure 3.5 is simi-
lar to Figure 3.3, but with Age replaced by Ability. Also, 
modelled curves have replaced empirical ones, but this is not  
essential.

We estimated the ability values on the horizontal axis from 
the data. The values correspond to the amount of development  
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of each visit. Likewise, we calculated the logistic curves 
from the data. These reflect the probability of passing each  
milestone at a given level of ability.

Figure 3.5 shows that the probability of passing a milestone 
increases with ability. Items are sorted according to difficulty  
from left to right. Milestone stepping is the easiest and  
walk_alone is the most difficult. The point at which a logis-
tic curve crosses the 50 per cent line (marked by a cross) is  
the difficulty of the milestone.

The increase in ability that is needed to go from 10 to 90 per 
cent is about five units here. Since all curves are parallel, the  
interval is constant for all scale locations. Thus, the scale is an 
interval scale with a constant unit of measurement, the type 
of measurement needed for answering the basic questions  
identified in Section 3.4.1.

3.4.3 Limitations of unit-based measurement. While unit-
based measurement has many advantages, it cannot perform  
miracles.

1.    An important assumption is that the milestones “measure 
the same thing,” or put differently, are manifestations of  
a continuous latent variable that can be measured by empiri-
cal observations. Unit-based measurement won’t work  
if there is no sensible latent scale.

2.    The portrayed advantages hold only if the discrepancies 
between the data and the model are relatively small. Since  
the simplest and most powerful measurement models 

are strict, it is essential to obtain a good fit between the  
data and the model.

3.    The construction of unit-based measurement requires psy-
chometric expertise, specialized computer software and  
considerable sample sizes.

3.5 A unified framework

This section brings together the four approaches outlined in  
this section into a unified framework.

Figure 3.6 shows the imaginary positions on a gross-motor 
continuum of three babies from Figure 2.1 at the age of  
30 weeks. Both milestones and children are ordered along the 
same continuum. Thus, standing is more difficult than step-
ping, and at week 30, Doris is ahead of Walley in terms of  
motor development.

More generally, measurement is the process of locating mile-
stones and children on a line. This line represents a latent vari-
able, a continuous construct that defines the different poles of  
the concept that we want to measure. A latent variable ranges  
from low to high.

The first part of measurement is to determine the location of 
the milestones on the latent variable. In many cases, the instru-
ment maker has already done that. For example, each length  
marker on a ruler corresponds to a milestone for measur-
ing length. The manufacturer of the ruler has already placed 

Figure 3.5. Modeled probability of achieving four motor milestones against the D-score.
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the marks at the appropriate places on the tool, and we take for  
granted that each marker has been calibrated correctly.

A milestone for child development is similar to a length  
marker, but

•     we may not know how much development the mile-
stone measures, so its location on the line is unknown, or  
uncertain;

•     we may not know whether the milestone measures child 
development at all so that it may have no location on the  
line.

The second part of measurement is to find the location of 
each child on the line. For child height, this is easy: We place  
the horizontal headpiece on top of the child’s head and 
read off the closest height marker. Since we lack a physical  
ruler for development, we must deduce the child’s loca-
tion on the line from the responses on a series of well-chosen  
milestones.

By definition, we cannot observe the values of a latent vari-
able directly. However, we may be able to measure variables  
(milestones) that are related to the latent variable. For exam-
ple, we may have scores on tasks like standing or walking with  
help.

The measurement model specifies the relations between the 
actual measurements and the latent variable. Under a given  
measurement model, we may estimate the locations of  
milestones and children on the line. Section 4.5 discusses  
measurement models in more detail.

3.6 Why unit-based measurement

This section distinguished four approaches to measure child 
development: age-based, probability-based, score-based and  
unit-based measurement. Table 3.1 summarizes how the  
approaches evaluate on nine criteria.

Age-based measurement expresses development in age equiv-
alents, whose precise definition depends on the reference  
population. Age-based measurement does not support mul-
tiple milestones and does not use the concept of a latent  
variable.

Probability-based measurement expresses development as 
age percentiles for a reference population. It is useful for  

individual milestones but does not support multiple items or  
a latent variable interpretation.

Score-based measurement quantifies development by sum-
ming the number of passes. Different instruments make different  
selections of milestones, so the scores taken are unique to  
the tool. Thus comparing the measurement obtained by dif-
ferent devices is difficult. Skipping or adding items require  
corrections.

Unit-based measurement defines a unit by a theoretical 
model. When the data fit the model, we are able to construct  
instruments that produce values in a standard metric.

4 The D-score

Section 2 provided historical background on the nature of child 
development. Section 3 discussed three general quantifica-
tion approaches. This section explains how to apply the unit-
based approach to arrive at the D-score scale. The text illustrates  
the process with real data.

•    Dutch Development Instrument (DDI) (4.1)

•    Milestone passing by age and by D-score (4.2, 4.3)

•    How do age and D-score relate? (4.4)

•    Role of the measurement model (4.5)

•    Item and person response functions (4.6)

•    Engelhard invariance criteria (4.7)

•    Why the Rasch model? (4.8)

4.1 The Dutch Development Instrument (DDI)

4.1.1 Setting. The Dutch Youth Health Care (YHC) routinely  
monitors the development of almost all children living in The 
Netherlands. During the first four years, there are 13 sched-
uled visits. During these visits, the YHC professionals evaluate  
the growth and development of the child.

The Dutch Development Instrument (DDI; in Dutch: Van  
Wiechenschema) is the standard instrument used to measure 
development during the ages 0-4 years. The DDI consists of 
75 milestones. The instrument assesses three developmental  
domains:

1.   Fine motor, adaptation, personality and social behaviour;

2.   Communication;

3.   Gross motor.

Figure 3.6. Placing milestones and children onto the same line reveals their positions.
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The milestones form two sets, one for children aged 0–15 
months, and another for children aged 15–54 months. The YHC  
professionals administer an age-appropriate subset of milestones 
at each of the scheduled visits, thus building a longitudinal  
developmental profile for each child.

4.1.2 Description of SMOCC study. The Social Medical Sur-
vey of Children Attending Child Health Clinics (SMOCC)  
study is a nationally representative cohort of 2,151 children born 
in The Netherlands during the years 1988–1989 (Herngreen 
et al., 1994). The study monitored child development using  
observations made on the DDI during nine visits cover-
ing the first 24 months of life. The SMOCC study collected  
information during the first two years on 57 (out of 75)  
milestones.

The standard set in the DDI consists of relatively easy 
milestones that 90 per cent of the children can pass at the  
scheduled age. This set is designed to have maximal sensitiv-
ity for picking up delays in development. A distinctive fea-
ture of the SMOCC study was the inclusion of more difficult  
milestones beyond the standard set. The additional set origi-
nates from the next time point. The success rate on these  
milestones is about 50 per cent.

4.1.3 Codebook of DDI 0–30 months. Table 4.1 shows the 
57 milestones from the DDI for ages 0 - 30 months as admin-
istered in the SMOCC study. Items are sorted according to  
debut, the age at which the item appears in the DDI. The response 
to each milestone is either a PASS (1) or a FAIL (0). Children 
who did not pass a milestone at the debut age were re-measured  
on that milestone during the next visit. The process continued  
until the child passed the milestone.

4.2 Probability of passing a milestone given age

Figure 4.1 summarizes the response obtained on each  
milestone as a curve against age. The percentage of pass scores 
increases with age for all milestones. Note that curves on the  
left have steeper slopes than those on the right, thus indicating  
that development is faster for younger children.

The domain determines the coloured (blue: gross motor, green:  
fine motor, red: communication). In general, domains are 
well mixed across age, though around some ages, e.g., at four  
months, multiple milestones from the same domain  
appear.

4.3 Probability of passing a milestone given D-score

Figure 4.2 is similar to Figure 4.1, but with the horizontal axis 
replaced by the D-score. The D-score summarizes develop-
ment into one number. See 5.3 for a detailed explanation on how  
to calculate the D-score. The vertical axis with per cent pass  
is unchanged.

The percentage of successes increases with D-score for all 
milestones. In contrast to Figure 4.1 all curves have a similar  
slope, a desirable property needed for an interval scale with  
a constant unit of measurement (c.f. Section 3.4).

How can the relation between per cent pass and age be so 
different from the relation between per cent pass and the  
D-score? The next section explains the reason.

4.4 Relation between age and the D-score

Figure 4.3 shows that the relation between D-score and age is 
nonlinear. Development in the first year is more rapid than in  
the second year. During the first year, infants gain about  
40 D, whereas in the second year they gain about 20 D. A simi-
lar change in growth rate occurs in length (first year: 23 cm,  
second year: 12 cm, for Dutch children).

Figure 4.4 shows the mutual relations between age, percent-
age of milestone passing and the D-score. There are three main  
orientations.

•     In the default orientation (age on the horizontal axis,  
D-score on the vertical axis), we see a curvilinear relation 
between the age and item difficulty.

•     Rotate the graph (age on the horizontal axis, passing  
percentage on the vertical axis). Observe that this is the 

Table 3.1. Evaluation of four measurement approaches on 
seven criteria.

Criterion Age Probability Score Unit

Independent of age norm No No Yes Yes

Supports multiple milestones No No Yes Yes

Latent variable No No Yes Yes

Robust to milestone skipping Yes Yes No Yes

Comparable scores Yes Yes No Yes

Probability model No Yes No Yes

Defines measurement unit No No No Yes
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Table 4.1. Codebook of DDI as used in the SMOCC study.

Item Debut Domain Label
ddicmm029 1m Communication Reacts when spoken to
ddifmd001 1m Fine motor Eyes fixate
ddigmd052 1m Gross motor Moves arms equally well
ddigmd053 1m Gross motor Moves legs equally well
ddigmd056 1m Gross motor Lifts chin off table for a moment
ddicmm030 2m Communication Smiles in response (M; can ask parents)
ddifmd002 2m Fine motor Follows with eyes and head 30d < 0 > 30d 
ddicmm031 3m Communication vocalizes in response
ddifmd003 3m Fine motor Hands open occasionally
ddifmm004 3m Fine motor Watches own hands
ddigmd054 3m Gross motor Stays suspended when lifted under the armpits
ddigmd057 3m Gross motor Lifts head to 45 degrees on prone position
ddicmd116 6m Communication Turn head to sound
ddifmd005 6m Fine motor Plays with hands in midline
ddigmd006 6m Gross motor Grasps object within reach
ddigmd055 6m Gross motor No head lag if pulled to sitting
ddigmd058 6m Gross motor Looks around to side with angle face-table 90 
ddigmd059 6m Gross motor Flexes or stomps legs while being swung
ddicmm033 9m Communication Says dada, baba, gaga
ddifmd007 9m Fine motor Passes cube from hand to hand
ddifmd008 9m Fine motor Holds cube, grasps another one with other hand
ddifmm009 9m Fine motor Plays with both feet
ddigmm060 9m Gross motor Rolls over back to front
ddigmd061 9m Gross motor Balances head well while sitting
ddigmd062 9m Gross motor Sits on buttocks while legs stretched
ddicmm034 12m Communication Babbles while playing
ddicmm036 12m Communication Waves ‘bye-bye’ (M; can ask parents)
ddifmd010 12m Fine motor Picks up pellet between thumb and index finger
ddigmd063 12m Gross motor Sits in stable position without support
ddigmm064 12m Gross motor Crawls forward, abdomen on the floor
ddigmm065 12m Gross motor Pulls up to standing position
ddicmm037 15m Communication Uses two words with comprehension
ddicmd136 15m Communication Reacts to verbal request (M; can ask parents)
ddifmd011 15m Fine motor Puts cube in and out of a box
ddifmm012 15m Fine motor Plays ‘give and take’ (M; can ask parents)
ddigmm066 15m Gross motor Crawls, abdomen off the floor (M; can ask parents)
ddigmm067 15m Gross motor Walks while holding onto play-pen or furniture
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Item Debut Domain Label
ddicmm039 18m Communication Says three ‘words’
ddicmd141 18m Communication Identifies two named objects
ddifmd013 18m Fine motor Tower of 2 cubes
ddifmm014 18m Fine motor Explores environment energetically (M; can ask parents)
ddigmd068 18m Gross motor Walks alone
ddigmd069 18m Gross motor Throws ball without falling
ddicmm041 24m Communication Says sentences with 2 words
ddicmd148 24m Communication Understands ‘play’ orders
ddifmd015 24m Fine motor Builds tower of 3 cubes
ddifmm016 24m Fine motor Imitates everyday activities (M; can ask parents)
ddigmd070 24m Gross motor Squats or bends to pick things up
ddigmd146 24m Gross motor Drinks from cup (M; can ask parents)
ddigmd168 24m Gross motor Walks well
ddicmm043 30m Communication Refers to self using ‘me’ or ‘I’ (M; can ask parents)
ddicmd044 30m Communication Points at 5 pictures in the book
ddifmd017 30m Fine motor Tower of 6 cubes
ddifmd018 30m Fine motor Places round block in board
ddifmm019 30m Fine motor Takes off shoes and socks (M; can ask parents)
ddifmd154 30m Fine motor Eats with spoon without help (M; can ask parents)
ddigmd071 30m Gross motor Kicks ball

Figure  4.1. Empirical  percentage  of  passing  each  milestone  in  the  DDI  against  age  (Source:  SMOCC  data, n =  2151,  9 
occasions).
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same pattern as in Figure 4.1 (with unequal slopes). Curves  
are coloured by domain.

•     Rotate the graph (D-score on the horizontal axis, passing 
percentage on the vertical axis). Observe that this pattern  
is the same as in Figure 4.2 (with equal slopes).

All patterns can co-exist because of the curvature in the rela-
tion between D-score and age. The curvature is never explicitly 
modelled or defined, but a consequence of the equal-slopes  
assumption in the relation between the D-score and the  
passing percentage of a milestone.

4.5 Measurement model for the D-score

4.5.1 What are measurement models?
From section 3.5 we quote:

         The measurement model specifies the relations between  
the data and the latent variable.

The term Item Response Theory (IRT) refers to the scien-
tific theory of measurement models. Good introductory works 
include Embretsen & Reise (2000); Wright & Masters (1982)   
and Engelhard Jr. (2013).

IRT models enable quantification of the locations of both 
items (milestones) and persons* on the latent variable. We  
reserve the term item for generic properties, and milestone for 

child development. In general, items are part of the measurement  
instrument, persons are the objects to be measured.

An IRT model has three major structural components:

•     Specification of the underlying latent variable(s). In 
this work, we restrict ourselves to models with just one  
latent variable. Multi-dimensional IRT models do have 
their uses, but they are complicated to fit and not widely  
used;

•     For a given item, a specification of the probability of suc-
cess given a value on the latent variables. This specifica-
tion can take many forms. Section 4.6 focuses on this in  
more detail;

•     Specification how probability models for the different items 
should be combined. In this work, we will restrict to mod-
els that assume local independence of the probabilities.  
In that case, the probability of passing two items is  
equal to the product of success probabilities.

4.5.2 Adapt the model? Or adapt the data? The measurement 
model induces a predictable pattern in the observed items. We 
can test this pattern against the observed data. When there is  
misfit between the expected and observed data, we can follow  
two strategies:

•    Make the measurement model more general;

•    Discard items (and sometimes persons) to make the model fit.

Figure 4.2. Empirical percentage of passing each milestone in the DDI against the D-score (Source: SMOCC data, 2151 children,
9 occasions).
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Figure 4.4. 3D-line graph illustrating how the patterns in Figure 4.1 and Figure 4.24.2 induce the curvature in the relation between 
D-score and age. The printed version shows three orientations of the relation between age, percent pass and D-score. The online version 
holds an interactive 3D graph that the reader can actively manipulate the orientation of the graph by click-hold-drag mouse operations.

Figure  4.3. Relation  between  child  D-score  and  child  age  in  a  cohort  of  Dutch  children  (Source:  SMOCC  data, n =  2151,  9 
occasions).
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Figure 4.5. Standard logistic curve. Percentage of children passing an item for a given ability-difficulty gap βn – δi.

These are very different strategies that have led to heated 
debates among psychometricians. See Engelhard Jr. (2013)  
for an overview.

In this work, we opt for the - rigorous - Rasch model (Rasch  
(1960)) and will adapt the data to reduce discrepancies  
between model and data. Arguments for this choice are given  
later, in Section 4.8.

4.6 Item response functions

Most measurement models describe the probability of pass-
ing an item as a function of the difference between the  
person’s ability and the item’s difficulty. A person with low 
ability will almost inevitably fail a heavy item, whereas a  
highly able person will almost surely pass an easy item.

Let us now introduce a few symbols. We adopt the notation 
used in Wright & Masters (1982). We use β

n
 (ability) to refer  

to the true (but unknown) developmental score of child n.  
Symbol δ

i
 (difficulty) is the true (but unknown) difficulty of an 

item i, and π
ni
 is the probability that child n passes item i. See  

Appendix A for a complete list.

The difference between the ability of child n and difficulty  
of item i is

n iβ δ−

In the special case that β
n
 = δ

i
, the person will have a  

probability of 0.5 of passing the item.

4.6.1 Logistic model. A widely used method is to express  
differences on the latent scale in terms of logistic units (or logits)  
(Berkson, 1944). The reason preferring the logistic over the linear 
unit is that its output returns a probability value that maps  
to discrete events. In our case, we can describe the probability 
of passing an item (milestone) as a function of the difference  
between β

n
 and δ

i
 expressed in logits.

Figure 4.5 shows how the percentage of children that pass the 
item varies in terms of the ability-difficulty gap β

n
 – δ

i
. The gap  

can vary either by β
n
 or δ

i
 so that we may use the graph in  

two ways:

•     To find the probability of passing items with various diffi-
culties for a child with ability β

n
. If δ

i
 = β

n
 then π

ni
 = 0.5. If  

δ
i
 < β

n
 then π

ni
 > 0.5, and if δ

i
 > β

n
 then π

ni
 < 0.5. In words: 

If the difficulty of the item is equal to the child’s ability, then 
the child has a 50/50 chance to pass. The child will have a  
higher than 50/50 chance of passing for items with 
lower difficulty and have a lower than 50/50 chance of  
passing for items with difficulties that exceed the child’s  
ability.

•     To find the probability of passing a given item δ
i
 for  

children that vary in ability. If β
n
 < δ

i
 then π

ni
 < 0.5, and  

if β
n
 > δ

i
 then π

ni
 > 0.5. In words: Children with abilities 
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lower than the item’s difficulty will have lower than 50/50  
chance of passing, whereas children with abilities that exceed 
the item’s difficulty will have a higher than 50/50 chance  
of passing.

Formula (4.1) defines the standard logistic curve:
One way to interpret the formula is as follows. The loga-
rithm of the odds that a person with ability β

n
 passes an item of  

difficulty δi is equal to the difference β
n
 – δ

i
 (Wright & Masters, 

1982). For example, suppose that the probability that person 
n passes milestone i is π

ni
 = 0.5. In that case, the odds of  

passing is equal to 0.5/(1 – 0.5) = 1, so log(1) = 0 and thus  
β

n
 = δ

i
. If β

n
 – δ

i
 = log(2) = 0.693 person n is two times more 

likely to pass than to fail. Likewise, if the difference is β
n
 – δ

i
 =  

log(3) = 1.1, then person n is three more likely to pass. And  
so on.

4.6.2 Types of item response functions. The standard logistic  
function is by no means the only option to map the relation-
ship between the latent variable and the probability of pass-
ing an item. The logistic function is the dominant choice in  
IRT, but it is instructive to study some other mappings. The item 
response function maps success probability against ability.

Figure 4.6 illustrates several other possibilities. Let us con-
sider five hypothetical items, A–E. Note that the horizontal axis  
now refers to the ability, instead of the ability-item gap in 4.5.

•     A: Item A is the logistic function discussed in Section 4.6.

•     B: For item B, the probability of passing is constant at 
30 per cent. This 30 per cent is not related to ability.  
Item B does not measure ability, only adds to the noise,  
and is of low quality.

•     C: Item C is a step function centred at an ability level of 
1, so all children with an ability below 1 logit fail and all  
children with ability above 1 logit pass. Item C is the ideal 
item for discriminating children with abilities above and  
below 1. The item is not sensitive to differences at other  
ability levels, and often not so realistic in practice.

•     D: Like A, item D is a smoothly increasing logistic func-
tion, but it has an extra parameter that allows it to vary its  
slope (or discrimination). The extra parameter can make 
the curve steeper (more discriminatory) than the red curve, 
in the limit approaching a step curve. It can also become  
shallower (less discriminatory) than the red curve (as plot-
ted here), in the limit approaching a constant curve (item B).  
Thus, item D generalizes items A, B or C.

•     E: Item E is even more general in the sense that it need 
not be logistic, but a general monotonically increasing  
function. As plotted, the item is insensitive to abilities 
between -1 and 0 logits, and more sensitive to abilities  
between 0 to 2 logits.

These are just some examples of how the relationship between 
the child’s ability and passing probability could look. In prac-
tice, the curves need not start at 0 per cent or end at 100 per cent.  
They could also be U-shaped, or have other non-monotonic 
forms. See Coombs (1964) for a thorough overview of such  
models. In practice, most models are restricted to shapes A-D.

4.6.3 Person response functions. We can reverse the roles 
of persons and items. The person response function tells us 
how likely it is that a single person can pass an item, or more  
commonly, a set of items.

Figure 4.6. Item response functions for five hypothetical items, each demonstrating a positive relation between ability and 
probability to pass.
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Figure 4.7. Person response functions for three children with abilities -2, 0 and +2, using a small test of items A, C and D.

Let us continue with items A, C and D from Figure 4.6, 
and calculate the response function for three children,  
respectively with abilities β

1
 = –2, β

2
 = 0 and β

3
 = 2.

Figure 4.7 presents the person response functions from three 
persons with abilities of -2, 0 and +2 logits. We calculate the  
functions as the average of response probabilities on items 
A, C and D. Thus, on average, we expect that child 1 logit will  
pass an easy item of difficulty -3 in about 60 per cent of the  
time, whereas for an intermediate item of difficulty of -1 the 
passing probability would be 10 per cent. For child 3, with 
higher ability, these probabilities are quite different: 97%  
and 90%. The substantial drop in the middle of the curve is  
due to the step function of item A.

4.7 Engelhard criteria for invariant measurement

In this work, we strive to achieve invariant measurement, a 
strict form of measurements that is subject to the following  
requirements (Engelhard Jr., 2013, 14):

1.    Item-invariant measurement of persons: The measure-
ment of persons must be independent of the particular items  
used for the measuring.

2.    Non-crossing person response functions: A more able per-
son must always have a better chance of success on an  
item that a less able person.

3.    Person-invariant calibration of test items: The calibration 
of the items must be independent of the particular persons  
used for calibration.

4.    Non-crossing item response functions: Any person must 
have a better chance of success on an easy item than on a  
more difficult item.

5.    Unidimensionality: Items and persons take on values on a 
single latent variable. Under this assumption, the relations  
between the items are fully explainable by the scores on the 
latent scale. In practice, the requirement implies that items 
should measure the same construct. (Hattie, 1985)

Three families of IRT models support invariant measurement:

1.   Scalogram model (Guttman, 1950)

2.    Rasch model (Andrich, 1978; Rasch, 1960; Wright &  
Masters, 1982)

3.   Mokken scaling model (Mokken, 1971; Molenaar, 1997)

The Guttman and Mokken models yield an ordinal latent 
scale, while the Rasch model yields an interval scale  
(with a constant unit).

4.8 Why take the Rasch model?

•     Invariant measurement: The Rasch model meets the five  
Engelhard criteria (c.f. Section 4.7).

•     Interval scale: When it fits, the Rasch model provides an 
interval scale, the de-facto requirement for any numerical  
comparisons (c.f. Section 3.4.1).

•     Parsimonious: The Rasch model has one parameter for each 
item and one parameter for each person. The Rash model 
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one of the most parsimonious IRT models, and can easily  
be applied to thousands of items and millions of persons.

•     Specific objectivity: Person and item parameters are math-
ematically separate entities in the Rasch model. In prac-
tice, this means that the estimated difference in ability  
between two persons does not depend on the difficulty  
of the test. Also, the estimated differences in difficulties 
between two items do not depend on the abilities in the cali-
bration sample. The property is especially important in the  
analysis of combined data, where abilities can vary widely 
between sources. See Rasch (1977) for derivations and  
examples.

•     Unified model: The Rasch model unifies distinct traditions 
in measurement theory. One may derive the Rasch model  
from

–  Thorndike’s 1904 criteria

–  Guttman scalogram model

– Ratio-scale counts

– Raw scores as sufficient statistics

– Thurstone’s scaling requirements

– Campbell concatenation

– Rasch’s specific objectivity

•     Fits child development data: Last but not least, as we will 
see in Section 6, the Rasch model provides an excellent  
fit to child development milestones.

5 Computation

This section explains the basic computations needed for fitting 
and evaluating the Rasch model. We distinguish the following  
steps:

•    Identify nature of the problem (5.1)

•    Estimation of item parameters (5.2)

•    Anchoring (5.2.2)

•    Estimation of the D-score (5.3)

•    Estimation of age-conditional references (5.4)

Readers not interested in these details may continue to model  
evaluation in Section 6.

5.1 Identify nature of the problem

The SMOCC dataset, introduced in Section 4.1.2, contains  
scores on the DDI of Dutch children aged 0-2 years made  
during nine visits.

Table 5.1 contains data of three children, measured on nine vis-
its between ages 0 – 2 years. The DDI scores take values 0  
(FAIL) and 1 (PASS). In order to save horizontal space, we 
truncated the column headers to the last two digits of the item  
names.

Since the selection of milestones depends on age, the data-
set contains a large number of empty cells. Naive use of  

sum scores as a proxy to ability is therefore problematic. An 
empty cell is not a FAIL, so it is incorrect to impute those  
cells by zeroes.

Note that some rows contain only 1’s, e.g., in row 2. Many 
computer programs for Rasch analysis routinely remove such  
perfect scores before fitting. However, unless the number of 
perfect scores is very small, this is not recommended because  
doing so can severely affect the ability distribution.

In order to effectively handle the missing data and to pre-
serve all persons in the analysis we separate estimation of item  
difficulties (c.f. Section 5.2) and person abilities (c.f. Section 5.3).

5.2 Item parameter estimation

5.2.1 Pairwise estimation of item difficulties. There are many 
methods for estimating the difficulty parameters of the Rasch  
estimation. See Linacre (2004) for an overview.

We will use the pairwise estimation method. This method writes 
the probability that child n passes item i but not item j given  
that the child passed one of them as exp(δ

i
)/(exp(δ

i
) + exp(δ

j
)).  

The method optimizes the pseudo-likelihood of all item pairs  
over the difficulty estimates by a simple iterative procedure.

Zwinderman (1995) has shown that this procedure pro-
vides consistent estimates with similar efficiency computa-
tionally more-intensive conditional and marginal maximum  
likelihood methods.

The beauty of the method is that it is independent of the abil-
ity distribution, so there is no need to remove perfect scores.  
We use the function rasch.pairwise.itemcluster()  
as implemented in the sirt package (Robitzsch, 2016).

Figure 5.1 summarizes the estimated item difficulty param-
eters. Although the model makes no distinction between  
domains, the results have been ordered to ease spotting of the  
natural progression of the milestones per domain. The fig-
ure also suggests that not all domain have equal representation  
across the scale. For example, there are no communication  
milestones around the logit of –10.

5.2.2 Anchoring. The Rasch model identifies the item dif-
ficulties up to a linear transformation. By default, the soft-
ware produces estimates in the logit scale (c.f. Figure 5.1). The  
logit scale is inconvenient for two reasons:

•        The logit scale has negative values. Negative values do 
not have a sensible interpretation in child development,  
and are likely to introduce errors in practice;

•       Both the zero in the logit scale, as well as its variance,  
depend on the sample used to calibrate the item difficulties.

Rescaling preserves the properties of the Rasch model. To make 
the scale independent of the specified sample, we transform  
the scale so that two items will always have the same value 
on the transformed scale. The choice of the two anchor items  
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Figure 5.1. Estimated item difficulty parameters (di) for 57 milestones of the DDI (0 – 2 years).
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Table 5.2. Anchoring values used to identify the D-score scale.

Item Label Value
ddigmd057 Lifts head to 45 degrees on prone position 20
ddigmd063 Sits in stable position without support 40

is essentially arbitrary, but they should correspond to milestones 
that are easy to measure with small error. In the sequel, we  
use the two milestones to anchor the D-score scale:

With the choice of Table 5.2, D-score values are approximately 
0D around birth. At the age of 1 year, the score will around  
50D, so during the first year of life, one D unit corresponds 
to approximately a one-week interval. Figure 5.2 shows the  
difficulty estimates in the D-score scale.

5.3 Estimation of the D-score

The second part of the estimation process is to estimate a  
D-score. The D-score quantifies the development of a child at a  
given age. Whereas the instrument developer is responsible for 
the estimation of item parameters, D-score estimation is more 
of a task for the user. To calculate the D-score, we need the  
following ingredients:

•    Child’s PASS/FAIL scores on the milestones administered;

•    The difficulty estimates of each milestone administered;

•     A prior distribution, an estimate of the D-score distribution 
before seeing any PASS/FAIL score.

Using these inputs, we may use Bayes theorem to calculate  
the position of the person on the latent variable.

5.3.1 Role of the starting prior. The first two inputs to the  
D-score will be self-evident. The third component, the prior dis-
tribution, is needed to be able to deal with perfect responses.  
The prior distribution summarizes our knowledge about  
the D-score before we see any of the child’s PASS/FAIL scores. 
In general, we like the prior to be non-informative, so that the 
observed responses and item difficulties entirely determine 
the value of the D-score. In practice, we cannot use truly non- 
informative prior because that would leave the D-score for 
perfect responses (i.e., all PASS or all FAIL) undefined. The  
choice of the prior is essentially arbitrary, but we can make it 
in such a way that its impact on the value D-score is negligible,  
especially for tests where we have more than, say, four items.

Since we know that the D-score depends on age, a logical 
choice for the prior is to make it dependent on age. In particu-
lar, we will define the prior as a normal distribution equal to the  
expected mean in Figure 4.3 at the child’s age, and with a 
standard deviation that considerably higher than in Figure 4.3.  
Numerical example: the mean D-score at the age of 15 months 
is equal to 53.6D. The standard deviation in Figure 4.3 varies 
between 2.6D and 3.0D, with an average of 2.9D. After some  

experimentation, we found that using a value of 5.0D for the 
prior yields a good compromise between non-informativeness 
and robustness of D-score estimates for perfect patterns. The  
resulting starting prior for a child aged 15 months is thus  
N(53.6,5).

The reader now probably wonders about a chicken-and-egg 
problem: To calculate the D-score, we need a prior, and to  
determine the prior we need the D-score. So how did we cal-
culate the D-scores in Figure 4.3? The answer is that we first 
took at rougher prior, and calculated two temporary models  
in succession using the D-scores obtained after solution 1 to 
inform the prior before solution 2, and so on. It turned out  
that D-scores in Figure 4.3 hardly changed after two steps, and  
so there we stopped.

5.3.2 Starting prior: Numerical example. Figure 5.3 illus-
trates starting distributions (priors) chosen according to the  
principles set above for the ages of 1, 15 and 24 months. As 
expected, the assumed ability of an infant aged one month 
is much lower than that of a child aged 15 months, which in  
turn is lower than the ability of a toddler aged 24 months. The 
green distribution for 15 months corresponds to the normal  
distribution N (53.6,5).

Another choice that we need to make is the grid of points 
on which we calculate the prior and posterior distributions.  
Figure 5.3 uses a grid from -10D to +80D, with a step size 
of 1D. These are fixed quadrature points, and there are 91 of 
them. While these quadrature points are sufficient to estimate  
D-score for ages up to 2.5 years, it is wise to extend the range  
for older children with higher D-scores.

5.3.3 EAP algorithm. The algorithm for estimating the  
D-score is known as the Expected a posteriori (EAP) method, 
first described by Bock & Mislevy (1982). Calculation of the  
D-score proceeds item by item. Suppose we have some vague 
and preliminary idea about the distribution of D, the start-
ing prior (c.f. section 5.3.1), based on age. The procedure uses  
Bayes rule to update this prior knowledge with data from the 
first item (using the child’s FAIL/PASS score and the estimated 
item difficulty) to calculate the posterior. The next step uses  
this posterior as prior before processing the next item, and so 
on. The procedure stops when the item pool is exhausted. The 
order in which items enter does not matter for the result. The  
D-score is equal to the mean of the posterior calculated after  
the last question.

5.3.4 EAP algorithm: Numerical example. Suppose we 
measure two boys aged 15 months, David and Rob, by the  
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Figure 5.2. Estimated item difficulty parameters (di) for 57 milestones of the DDI (0 – 2 years). Milestones ddigmd057 and 
ddigmd063 are anchored at values of 20D and 40D, respectively.
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Figure 5.3. Age-dependent starting priors for the D-score at the ages of 1, 15 and 24 months.

Table 5.3. Scores of David and Rob on five milestones from the DDI.

item label delta David Rob
ddifmd011 Puts cube in and out of a box 46.0 1 1
ddifmm012 Plays ‘give and take’ (M; can ask parents) 46.5 1 0
ddicmm037 Uses two words with comprehension 50.1 1 1
ddigmm066 Crawls, abdomen off the floor (M; can ask parents) 46.1 1 1
ddigmm067 Walks while holding onto play-pen or furniture 46.1 0

DDI. David passes the first four milestones but does not com-
plete the test. Rob completes the test but fails on two out of  
five items.

Table 5.3 shows the difficulty of each milestone (in the col-
umn labelled “Delta”), and the responses of David and Rob for  
the standard five DDI milestones for the age of 15 months.

The mean D-score for Dutch children aged 15 months is 53.6D, 
so the milestones are easy to pass at this age, with the most dif-
ficult is ddicmm037. David passed all milestones but has no 
score on the last. Rob fails on ddifmm012 and ddigmm067.  
How do we calculate the D-score for David and Rob?

Figure 5.4 shows how the prior transforms into the posterior 
after we successively feed the measurements into the calcula-
tion. There are five milestones, so the calculation comprises  
five steps:

1.     Both David and Rob pass ddifmd011. The prior (light 
green) is the same as in Figure 5.3. After a PASS, the  
posterior will be located more to the right, and will often 
be more peaked. Both happen here, but the change is small. 
The reason is that a PASS on this milestone is not very 
informative. For a child with a true D-score of 53 D, the  
probability of passing ddifmd011 is equal to 0.966. If 
passing is so common, there is not much information in  
the measurement.
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Figure 5.4. D-score distribution for David and Rob before (prior) and after (posterior) a milestone is taken into account.
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2.     David passes ddifmm012, but Rob does not. Observe 
that the prior is identical to the posterior of ddifmd011.  
For David, the posterior is only slightly different from 
the prior, for the same reason as above. For Rob, we find a 
considerable change to the left, both for location (from  
54.3D to 47.1D) and peakedness. This one FAIL lowers  
Rob’s score by 7.2D.

3.     Milestone ddicmm037 is more difficult than the previ-
ous two milestones, so a pass on ddicmm037 does have  
a definite effect on the posterior for both David and Rob.

4.     David’s PASS on ddigmm066 does not bring any addi-
tional information, so his prior and posterior are virtually  
indistinguishable. For Rob, we find a slight shift to the  
right.

5.     There is no measurement for David on ddigmm067, so 
the prior and posterior are equivalent. For Rob, we observe  
a FAIL, which shifts his posterior to the left.

We calculate the D-score as the mean of the posterior. David’s  
D-score is equal to 55.7D. Note that the measurement error, 
as estimated from the variance of the posterior, is relatively  
large. Rob’s D-score is equal to 47.7D, with a much smaller 
measurement error. This result is consistent with the design  
principles of the DDI, which is meant to detect children with  
developmental delay.

The example illustrates that the quality of the D-score depends 
on two factors, the match between the true (but unknown)  
D-score of the child and the difficulty of the milestone.

5.3.5 Technical observations on D-score estimation 

•         Administration of a too easy set of milestones introduces 
a ceiling with children that pass all milestones, but whose 
true D-score could extend well beyond the maximum.  
Depending on the goal of the measurement, this may or  
may not be a problem.

•         The specification of the prior and posterior distributions 
requires a set of quadrature points. The quadrature points 
are taken here as the static and evenly-spaced set of inte-
gers between -10 and +80. Using other quadrature points 
may affect the estimate, especially if the range of the  
quadrature points does not cover the entire D-score  
range.

•        The actual calculations are here done item by item. A 
more efficient method is to handle all responses at once.  
The result will be the same.

5.4 Age-conditional references

5.4.1 Motivation. The last step involves estimation an age-
conditional reference distribution for the D-score. This  
distribution can be used to construct growth charts that portray  

the normal variation in development. Also, the references can 
be used to calculate age-standardized D-scores, called DAZ,  
that emphasize the location of the measurement in comparison  
to age peers.

Estimation of reference centiles is reasonably standard. Here 
we follow van Buuren (2014) to fit age-conditional refer-
ences of the D-score for boys and girls combined by the LMS  
method. The LMS method by Cole & Green (1992) assumes 
that the outcome has a normal distribution after a Box-Cox  
transformation. The reference distribution has three param-
eters, which model respectively the location (M), the spread 
(S), and the skewness (L) of the distribution. Each of the three  
parameters can vary smoothly with age.

5.4.2 Estimation of the reference distribution. The parameters  
are estimated using the BCCG distribution of gamlss 5.1-3  
(Stasinopoulos & Rigby, 2008) using cubic splines smooth-
ers. The final solution used a log-transformed age scale 
and fitted the model with smoothing parameters df(M) = 2,  
df(S) = 2 and df(L) = 1.

Figure 4.3 plots the D-scores together with five grey lines, 
corresponding to the centiles -2SD (P2), -1SD (P16), 0SD  
(P50), +1SD (P84) and +2SD (P98). The area between the -
2SD and +2SD lines delineates the D-score expected if devel-
opment is healthy. Note that the shape of the reference is quite  
similar to that of weight and height, with rapid growth  
occurring in the first few months.

Table 5.4 defines age-conditional references for Dutch children 
as the M-curve (median), S-curve (spread) and L-curve (skew-
ness) by age. This table can be used to calculate centile lines  
and Z-scores.

The references are purely cross-sectional and do not account 
for the correlation structure between ages. For prediction  
purposes, it is useful to extend the modelling to include  
velocities and change scores.

5.4.3 Conversion of D to DAZ, and vice versa. Suppose that 
M

t
, S

t
 and L

t
 are the parameter values at age t. Cole (1988)  

shows that the transformation

( ) 1tL
t t

t t
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−

=
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t
 into its normal equivalent deviate  
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Table 5.4. Dutch reference values for 
the D-score. M-curve (median), S-curve 
(spread) and L-curve (skewness).

Age M S L

0.0383 8.81 0.3126 1.3917

0.0575 10.59 0.2801 1.4418

0.0767 12.27 0.2526 1.4891

0.0958 13.87 0.2291 1.5331

0.1150 15.39 0.2089 1.5722

0.1342 16.83 0.1916 1.6049

0.1533 18.20 0.1767 1.6304

0.1725 19.50 0.1640 1.6487

0.1916 20.75 0.1531 1.6607

0.2108 21.94 0.1436 1.6676

0.2300 23.07 0.1354 1.6706

0.2491 24.16 0.1283 1.6711

0.2683 25.21 0.1220 1.6698

0.2875 26.21 0.1165 1.6673

0.3066 27.17 0.1117 1.6636

0.3258 28.10 0.1074 1.6589

0.3450 28.99 0.1035 1.6533

0.3641 29.86 0.1001 1.6471

0.3833 30.70 0.0970 1.6403

0.4025 31.50 0.0942 1.6330

0.4216 32.29 0.0917 1.6255

0.4408 33.05 0.0894 1.6178

0.4600 33.79 0.0873 1.6100

0.4791 34.51 0.0854 1.6022

0.4983 35.21 0.0837 1.5946

0.5175 35.89 0.0821 1.5870

0.5366 36.55 0.0807 1.5797

0.5558 37.20 0.0793 1.5725

0.5749 37.83 0.0781 1.5656

0.5941 38.44 0.0770 1.5588

0.6133 39.04 0.0759 1.5523

0.6324 39.63 0.0749 1.5460

0.6516 40.21 0.0740 1.5399

0.6708 40.77 0.0731 1.5340

Age M S L

0.6899 41.32 0.0723 1.5284

0.7091 41.86 0.0715 1.5230

0.7283 42.39 0.0707 1.5178

0.7474 42.91 0.0700 1.5128

0.7666 43.42 0.0693 1.5081

0.7858 43.92 0.0687 1.5036

0.8049 44.40 0.0681 1.4993

0.8241 44.88 0.0674 1.4952

0.8433 45.36 0.0669 1.4913

0.8624 45.82 0.0663 1.4876

0.8816 46.27 0.0657 1.4841

0.9008 46.72 0.0652 1.4809

0.9199 47.16 0.0647 1.4778

0.9391 47.59 0.0642 1.4749

0.9582 48.01 0.0637 1.4723

0.9774 48.43 0.0632 1.4698

0.9966 48.84 0.0627 1.4676

1.0157 49.24 0.0622 1.4655

1.0349 49.64 0.0618 1.4637

1.0541 50.03 0.0613 1.4620

1.0732 50.41 0.0608 1.4605

1.0924 50.79 0.0604 1.4592

1.1116 51.16 0.0600 1.4580

1.1307 51.53 0.0595 1.4570

1.1499 51.89 0.0591 1.4561

1.1691 52.24 0.0587 1.4553

1.1882 52.59 0.0583 1.4547

1.2074 52.94 0.0578 1.4542

1.2266 53.27 0.0574 1.4538

1.2457 53.61 0.0570 1.4535

1.2649 53.94 0.0566 1.4534

1.2841 54.26 0.0562 1.4533

1.3032 54.58 0.0559 1.4533

1.3224 54.89 0.0555 1.4533

1.3415 55.20 0.0551 1.4535

1.3607 55.50 0.0547 1.4537
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Age M S L

1.3799 55.81 0.0544 1.4539

1.3990 56.10 0.0540 1.4542

1.4182 56.39 0.0536 1.4546

1.4374 56.68 0.0533 1.4551

1.4565 56.97 0.0530 1.4555

1.4757 57.25 0.0526 1.4561

1.4949 57.52 0.0523 1.4567

1.5140 57.80 0.0520 1.4573

1.5332 58.06 0.0517 1.4580

1.5524 58.33 0.0514 1.4587

1.5715 58.59 0.0510 1.4595

1.5907 58.85 0.0508 1.4603

1.6099 59.11 0.0505 1.4612

1.6290 59.36 0.0502 1.4620

1.6482 59.61 0.0499 1.4630

1.6674 59.86 0.0496 1.4639

1.6865 60.11 0.0494 1.4649

1.7057 60.35 0.0491 1.4660

1.7248 60.59 0.0488 1.4670

1.7440 60.82 0.0486 1.4681

1.7632 61.06 0.0483 1.4692

1.7823 61.29 0.0481 1.4704

1.8015 61.52 0.0478 1.4716

1.8207 61.75 0.0476 1.4728

1.8398 61.97 0.0474 1.4740

1.8590 62.20 0.0471 1.4752

1.8782 62.42 0.0469 1.4765

1.8973 62.64 0.0467 1.4778

1.9165 62.85 0.0465 1.4791

1.9357 63.07 0.0463 1.4805

1.9548 63.28 0.0461 1.4818

1.9740 63.49 0.0459 1.4832

1.9932 63.70 0.0457 1.4846

2.0123 63.91 0.0455 1.4861

2.0315 64.11 0.0453 1.4875

2.0507 64.32 0.0451 1.4890

2.0698 64.52 0.0449 1.4904

Age M S L

2.0890 64.72 0.0447 1.4919

2.1081 64.92 0.0445 1.4934

2.1273 65.11 0.0443 1.4949

2.1465 65.31 0.0441 1.4964

2.1656 65.50 0.0440 1.4979

2.1848 65.70 0.0438 1.4994

2.2040 65.89 0.0436 1.5009

2.2231 66.08 0.0434 1.5024

2.2423 66.26 0.0433 1.5039

2.2615 66.45 0.0431 1.5054

2.2806 66.64 0.0429 1.5069

2.2998 66.82 0.0428 1.5084

2.3190 67.00 0.0426 1.5098

2.3381 67.18 0.0425 1.5113

2.3573 67.36 0.0423 1.5127

2.3765 67.54 0.0421 1.5142

2.3956 67.72 0.0420 1.5156

2.4148 67.89 0.0418 1.5170

2.4339 68.07 0.0417 1.5185

2.4531 68.24 0.0415 1.5199

2.4723 68.41 0.0414 1.5213

2.4914 68.59 0.0412 1.5226

2.5106 68.75 0.0411 1.5240

2.5298 68.92 0.0410 1.5254

2.5489 69.09 0.0408 1.5267

2.5681 69.26 0.0407 1.5281

2.5873 69.42 0.0405 1.5294

2.6064 69.59 0.0404 1.5308

2.6256 69.75 0.0403 1.5321

2.6448 69.91 0.0401 1.5334

2.6639 70.07 0.0400 1.5347

2.6831 70.23 0.0399 1.5360

2.7023 70.39 0.0397 1.5373

2.7214 70.55 0.0396 1.5386

2.7406 70.71 0.0395 1.5398

2.7598 70.86 0.0394 1.5411

2.7789 71.02 0.0392 1.5423
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We may derive any required centile curve from Table 5.4. 
First, choose Zα as the Z-score that delineates 100α per cent  
of the distribution, for example, Z

0.05
 = –1.64. The D-score  

that defines the 100α centile is equal to

1/
( ) (1 ) tL

t t t tD M L S Zαα = +

If L
t
 is close to zero, we use

( ) exp( ).t t tD M S Zαα =

6 Evaluation

The properties cut-off Rasch model (c.f. Section 4.8) only 
hold when the data and model agree. It is, therefore, essential  
to study and remove discrepancies between model and 
data. This section explains several techniques that aid in the  
evaluation of model fit.

•    Item fit (6.1)

•    Person fit (6.2)

•    Differential item functioning (6.3)

•    Item information (6.4)

•    Reliability (6.5)

These topics address different aspects of the solution. In  
practice, we have found that item fit is the most critical concern.

6.1 Item fit

The philosophy of the Rasch model is different from conven-
tional statistical modelling. It is not the task of the Rasch model  
to account for the data. Rather it is the task of the data 
to fit the Rasch model. We saw this distinction before in  
Section 4.5.2.

The goal of model-fit assessment is to explore and quantify 
how well empirical data meet the requirements of the Rasch  
model. One way to gauge model-fit is to compare the observed 
probability of passing an item to the fitted item response  
curve for endorsing the item.

The fitted item response curve for each item i is modeled as:

ˆ ˆexp( )
,ˆ ˆ1 exp( )

n i
ni

n i
P

β δ
β δ

−
=

+ −

where ˆ
nβ  is the estimated ability of child n (the child’s  

D-score), and where ˆ
iδ  is the estimated difficulty of item i.  

This is equivalent to formula (4.1) with the parameters replaced 
by estimates. Section 5 described process of parameter  
estimation in some detail.

6.1.1 Well-fitting item response curves. The study of 
item fit involves comparing the empirical and fitted prob-
abilities at various levels of ability. Figure 6.1 shows the item  
characteristics curves of two DDI milestones. The orange line 
represents the empirical probability at different ability levels. 

The dashed line represents the estimated item response  
curve according to the Rasch model. The observed and esti-
mated curves are close together, so both items fit the model  
very well.

6.1.2 Item response curves showing severe underfit. There  
are many cases where things are less bright.

Figure 6.2 shows three forms of severe underfit from three 
artificial items. These items were simulated to have a low fit,  
added to the DDI, and we estimated their parameters by 
the methods of Section 5. For the first item, hypgmd001,  
the probability of passing is almost constant across ability, 
so retaining this item essentially only adds to the noise. Item  
hypgmd002 converges to an asymptote around 80 per cent 
and has a severe dip in the middle. The strong relation to age 
causes the drop. Item hypgmd003 appears to have the wrong  
coding. Also, we often see the spike-like behaviour in the 
middle when two or more different items erroneously share  
identical names.

Removal of items with a low fit can substantially improve  
overall model fit.

6.1.3 Item response curves showing overfit. Figure 6.3 shows 
two artificial items with two forms of overfitting. The curve  
of item hypgmd004 is much steeper than the modelled 
curve. Thus, just this one item is exceptionally well-suited to  
distinguish children with a D-score below 50D from those 
with a score above 50 D. Note that the item isn’t sensitive  
anywhere else on the scale. In general, having items like these 
is good news, because they allow us to increase the reliabil-
ity of the instrument. One should make sure, though, that FAIL  
and PASS scores are all measured (not imputed) values.

Multiple perfect items could hint to a violation of the local  
independence assumption (c.f. Section 4.5). Developmen-
tal milestones sometimes have combinations of responses that 
are impossible. For example, one cannot walk without being  
able to stand, so we will not observe the inconsistent combi-
nation (stand: FAIL, walk: PASS). This impossibility leads 
to more consistent responses that would be expected by  
chance alone. In principle, one could combine the two such 
items into one three-category item, which effectively set the  
probability of inconsistent combinations to zero.

Item hypgmd005 is also steep, but has an asymptote around  
80 per cent. This tail behaviour causes discrepancies between 
the empirical and modeled curves around the middle of the  
probability scale. In general, we may remove such items if a  
sufficient number of alternatives is available.

6.1.4 Item infit and outfit. We quantify item fit by item infit 
and outfit. Both are aggregates of the model residuals. The  
observed response x

ni
 of person n on item i can be 0 or 1.

The standardized residual z
ni
 is the difference between the 

observed response x
ni
 and the expected response p

ni
, divided by the  
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expected binomial standard deviation,

,ni ni
ni

ni

x P
z

W
−

=

where the expected response variance W
ni
 is calculated as

(1 ).ni nini P PW = −

Item infit is the total of the squared residuals divided by the  
sum of the expected response variances W

ni

2( )
Item infit .

N

N
ni nin

nin

Px

W

−
= ∑

∑
Item outfit is calculated as the average (over N measurements)  
of the squared standardized residual

Figure 6.1. Empirical and fitted item response curves for two milestones from the DDI (SMOCC data).

Page 34 of 75

Gates Open Research 2021, 5:81 Last updated: 29 OCT 2021



Figure 6.2. Three simulated items that illustrate various forms of item misfit.
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Figure 6.3. Two simulated items that illustrate item overfit.

2

Item outfit .

N
nin z

N
= ∑

The expected value of both infit and outfit is equal to 1.0.  
The interpretation is as follows:

•     If infit and outfit are 1.0, then the item perfectly fits the  
Rasch model, as in Figure 6.1;

•     If infit and outfit > 1.0, then the item is not fitting well. 
The amount of underfit is quantified by infit and outfit,  
as in 6.2;
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•     If infit and outfit < 1.0, then the item fits the model bet-
ter than expected (overfit). Overfitting is quantified by infit  
and outfit, as in 6.3.

Infit is more sensitive to disparities in the middle of the prob-
ability scale, whereas outfit is the better measure for dis-
crepancies at probabilities close to 0 or 1. Lack of fit is  
generally easier to spot at the extremes. The two measures are 
highly correlated. Achieving good infit is more valuable than  
a high outfit.

Values near 1.0 are desirable. There is no cut and dried cut-off  
value for infit and outfit. In general, we want to remove  
underfitting items with infit or outfit values higher than, say, 1.3.  
Overfitting items (with values lower than 1.0) are not harm-
ful. Preserving these items may help to increase the reliability 
of the scale. The cut-off chosen also depends on the number of  
available items. When there are many items to choose 
from, we could use a stricter criterion, say infit and outfit  
< 1.0 to select only the absolute best items.

6.1.5 Infit and outfit in the DDI. Figure 6.4 displays the his-
togram of the 57 milestones from the DDI (c.f. Section 4.1).  
Most infit values are within the range 0.6 - 1.1, thus indicat-
ing excellent fit. The two milestones with shallow infit values 
are ddigmd052 and ddigmd053. These two items screen  
for paralysis for newborns, so the data contain hardly any 
fails on these milestones. The outfit statistics also indicate  
a good fit.

6.2 Person fit

Person fit quantifies the extent to which the responses of a 
given child conform to the Rasch model expectation. The 

Rasch model expects that a more able child has a higher  
probability of passing an item than a less developed child.  
Person fit analysis evaluates the extent to which this is true.

6.2.1 Person infit and outfit. In parallel to item fit, we can cal-
culate person infit and person outfit. Both statistics evaluate  
how well the responses of the persons are consistent with the 
model. Outlying answers that do not fit the expected pattern  
increase the outfit statistic. The outfit is high, for example, 
when the child fails easy items but passes difficult ones. The 
infit is the information weighted fit and is more sensitive to  
inlaying, on-target, unexpected responses.

Similar to item fit, person fit is also calculated from the  
residuals, but aggregated differently. We calculate person infit as

2( )
Person infit

L

L
ni nii

nii

x P

W

−
= ∑

∑
and person outfit as

2

Person outfit

L
nii z

L
= ∑

A threshold for person fit > 3.0 is customary to clean out  
children with implausible response patterns.

6.2.2 Person infit and outfit in the DDI. Figure 6.5 displays 
the frequency distribution of person infit and person outfit  
16538 measurements of the DDI in the SMOCC data. The  
majority of the values falls below 3.0. For infit, only 43 out 
of 16538 fit values (0.3 per cent) is above 3.0. There are  
446 out of 16538 outfit value (2.7 per cent) above 3.0. Expect  
the solution to improve after deleting these measurements.

Figure 6.4. Frequency distribution of infit (left) and outfit (right) of 57 milestones from the DDI (SMOCC data).
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6.3 Differential item functioning (DIF)

6.3.1 Relevance of DIF for cross-cultural equivalence. An 
essential assumption in the Rasch model is that a given item 
has the same difficulty in different subgroups of respondents.  
Climbing stairs is an example where this assumption is sus-
pect. The exposure to stairs, and hence the opportunity for a  
child to practice, varies across different cultures. It could thus 
be that two children with the same ability but from different cul-
tures have different success probabilities for climbing stairs.  
When these probabilities systematically vary between sub-
group, we say there is Differential Item Functioning, or DIF  
(Holland & Wainer, 1983). DIF is undesirable since it can make  
the instrument culturally biased.

6.3.2 How to detect DIF?
Zumbo (1999) provided a clear definition of DIF:

         DIF occurs when examinees from different groups show 
differing probabilities of success on (or endorsing) the  
item after matching on the underlying ability that the  
item is intended to measure.

There are various ways to detect DIF. Here we will model the 
probability of endorsing an item by logistic regression using the  
observed item responses as the outcome. Predictors include 
the ability, the grouping variable, and the ability-grouping  
interaction. If the latter two terms explain the residual variance  
of the item scores after adjusting for ability, the item shows 
DIF for that group. DIF can be visually inspected by plotting  
the curves for the subgroups separately.

There are two forms of DIF:

•       Uniform DIF: The item response curves differ between  
groups in location, but are parallel;

•       Non-uniform DIF: The item response curve differ 
between groups in location, in slope and possibly in other  
characteristics.

These forms correspond to, respectively, the main effect of 
group and the ability-group interaction in the logistic regression  
model.

6.3.3 Examples of DIF. Figure 6.6 shows an example com-
paring boys and girls. For both milestones, the item response 
curves are similar for boys and girls, so we see no evidence  
of DIF here.

Figure 6.7 displays two milestones with DIF between boys 
and girls. Provided that the ability estimate (as estimated 
from all items in the model) is fair for both boys and girls, we  
see that milestone ddifmm019 (“Takes off shoes and socks”) 
is easier for girls by about 0.86 logits (= the difference in abil-
ity at the intersection of 50 per cent). Conversely, milestone  
ddigmm064 (“Crawls forward, abdomen on the floor”) is eas-
ier for boys by about 0.84 logits. These are the most substantial  
differences found for sex in the DDI. Both are uniform DIF.

In practice, having milestones with opposite directions of  
DIF in the same instrument will cancel out one another, so one 
need not be overly concerned in that case. However, we should  
be careful when the tool consists of milestones that all have  
DIF in the same direction.

Figure 6.5. Frequency distribution of person infit (left) and person outfit (right) for 16538 measurements of the DDI (SMOCC 
data).
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Figure 6.6. Two milestones from the DDI with similar item response curves for boys and girls. There is no DIF for sex.

The DDI did not contain items for which the ability-group 
interaction was statistically significant, so we conclude that  
there is no non-uniform DIF in the DDI.

6.4 Item information

6.4.1 Item information at a given ability. Items are gener-
ally sensitive to only a part of the ability scale. Item information  

is a psychometric measure that quantifies how illuminating 
the item is at different levels of ability. We may visualize item  
information as a curve per item.

The formula to obtain the item information is the first derivative  
of the item response curve and can be written as follows:

ˆ ˆ ˆ( ) ( )(1 ( ))i i iI P Pδ δ δ= −
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Figure 6.7. Two milestones from the DDI with different item response curves for boys and girls. There is evidence for uniform 
DIF.

where ˆ( )iP δ  is the conditional probability of endorsing item 

i, and where ˆ
iδ  is the estimated item difficulty in the logit  

scale. For example for milestone ddicmm039 (“Says three  

words”) ˆ
iδ  equals 4.06.

Figure 6.8 displays the item information curves for two mile-
stones from the DDI. Note that the amount of information for  
the item is maximal around the item difficulty.

The probability of endorsing milestone ddicmm039 for a  
child with an ability of 2 logits is

exp(2 4.06)
0.113

1 exp(2 4.06)niP −
= =

+ −

At this ability level, milestone ddicmm039 has information

ˆ( ) 0.113 (1 0.113) 0.10iI δ = × − =
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6.4.2 Item information at a given age. In practice, it is often 
interesting to express the item information against age. By 
doing so, one can identify at what ages an item provides the  
most information.

Figure 6.9 shows that the sensitive age ranges differ consid-
erably between items. Suppose we use 0.05 as a criterion. 
Then ddigmm060 is susceptible between ages 4–8 months,  
a period of four months. Item ddicmm039 is receptive in  
the period 10–19 months, a range that is about twice as broad. 
The symmetric nature of the curves in Figure 6.8 is not present  
in Figure 6.9. In general, the relation between age and item 
sensitivity is more complicated than the relationship between  
ability and item sensitivity.

The item information by age curve helps to determine at what 
ages we should administer the item. The item will be most  
informative if delivered at the age at which 50% of the chil-
dren will pass the milestone. This age corresponds to an item 
information is equal to 0.5 * 0.5 = 0.25. Administering the item  
closely around that age provide the most efficient measure-
ment of ability. When space is at a premium (e.g. as in popula-
tion surveys) using a well-chosen set of age-sensitive milestones  
will help in reducing the total number of milestones.

In other contexts, milestones may be used as a screening instru-
ment to identify developmental delay. In that case, it is more  
efficient to administer items that are very easy for the age,  
e.g. milestones on which, say, 90% of the children will pass.

6.5 Reliability

The reliability is a one-number summary of the accuracy of 
an instrument. Statisticians define reliability as the propor-
tion of variance attributable to the variation between children’s  
abilities relative to the total variance. More specifically, the  
reliability R of a test is written as

2

2 2
,

e
R β

β

σ

σ σ
≡

+

where 2
βσ  is the variance of true scores and 2

eσ  is the error  
variance.

In general, high reliability is desirable. We often use reli-
ability to decide between instruments. Cronbach’s α is a widely  
used estimate of the lower bound of the reliability of a test.  
In the Rasch model, we can estimate reliability by the ratio

2 2
ˆ ˆ

2
ˆ

ˆ ˆ
ˆ .

ˆ

eR β

β

σ σ

σ

−
=

For a given model, we can calculate 
2
ˆˆ

β
σ  directly as the sam-

pling variance of the estimated abilities. Getting an estimate  

for 2
ˆˆeσ  is more complicated. We use the modelled person abili-

ties and item difficulties to generate a hypothetical data set of 
the same size and same missing data pattern, and re-estimate  

the person ability from the simulated data. Then 2
ˆˆeσ  is 

Figure 6.8. The item information curve for two milestones from the DDI.
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Figure 6.9. Information information of Figure 6.8 plotted against age.

computable as the variance of the difference between the  
modelled and re-estimated person ability.

The estimated variance of the modeled abilities is 2
ˆˆ

β
σ  = 76.6, 

and the variance of the difference between modeled and  

re-estimated abilities is equal to 2
ˆˆeσ  = 1.74. The corresponding  

standard error of measurement (sem) is ˆˆeσ  = 1.32 logits.

The estimated reliability in the SMOCC data is equal to  
(76.6 – 1.74)/76.6 = 0.977. We may interpret this estimate in 
the same way as Cronbach’s α, for which typically any value  
beyond 0.9 is classified as excellent. Note that the reli-
ability is very high because of the large variation in D-scores.  
Newborns are very different from 2-year old toddlers, which 
helps to increase reliability. In practice, it is perhaps more  
useful to use a measure of accuracy that is less dependent on 
the variation within the sample. The sem, as explained above,  
seems to be a more relevant measure of precision.

7 Validity

Validity is a generic term that refers to the question of how 
well an instrument measures what it claims to measure. There 
are various aspects of validity. This section briefly reviews  
the main types of validity:

•      Internal validity (7.1)

•      External validity (7.2)

7.1 Internal validity

7.1.1 Content validity. Content validity is the extent to which 
the D-score represents all facets of development. In contrast 
to “face validity,” which assesses whether the test appears  
valid to respondents, content validity is about what is measured.

One important form of content validity is that we wish to 
make sure that the measurement scale represents the various  
developmental domains in a fair way. In the simplest case, we 
can assign each milestone uniquely to one domain and evaluate  
coverage by splitting the cumulative item information.

Figure 7.1 shows the coverage of the three domains of the 
DDI at various levels of the D-score. The three domains of  
the DDI are relevant at most ability levels. The DDI contains 
no communication milestones between 20 D and 30 D, so at  
these levels, the DDI measures primarily motor performance.

7.1.2 Construct validity. Construct validity is the extent 
to which the D-score behaves like the theory says the  
construct should behave. For example, we expect that child  
development advances with age. Figure 4.3 provides con-
vincing evidence that the D-score increases fastest in the first  
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six months and keeps rising at a slower rate as children age. 
This phenomenon is consistent with theories in growth and  
child development.

In Section 4, we assumed that child development is a 
latent variable. Figure 7.2 provides one way to evaluate the  
validity of this assumption. The figure plots the item fit for each 
milestone coloured by domain. Items from different domains 
fit equally well, so there is no evidence that the D-score  
favours a particular area. Put in more technical terms; the DDI 
domains do not explain differences in the item fit residuals  
of the model.

7.2 External validity

7.2.1 Discriminatory validity. Discriminatory validity indi-
cates the extent to which the D-score can distinguish children  
with non-normal development from children that are develop-
ing normally. We may evaluate this by identifying children  
with lagging development, for example, indicated by reflex or 
tonus problems, and study whether the D-score can discrimi-
nate those children from the general population. Section 9.3  
presents some examples.

7.2.2 Convergent and divergent validity. Convergent validity 
is the extent to which the D-score relates to similar constructs. 
We measure it by the correlation between the D-score and the  
total score on Bayley-III or Denver.

The correlation with the other construct should be 0.6, or 
higher for good convergent validity. Unfortunately, at present, 
only limited data is available for the DDI, so we cannot assess  
convergent validity for the D-score at this point.

Divergent validity is the extent to the D-score is uncorrelated  
with measures of a different construct.

Figure 7.3 shows both convergent and divergent validity at 
work. The figure shows that, as expected, there is a strong and 
almost linear relation between body height and the D-score.  
However, after correction for the child’s age, the relationship 
between height and D-score almost disappears. Thus, growth  
and development are entirely different concepts.

We can also evaluate the strength of the relations between the 
D-score and proxy measures of child development, such as 
stunted height growth (see section 1.3). The low correlation  
between DAZ and HAZ suggests that stunting is a poor  
proxy for child development.

7.2.3 Predictive validity. Predictive validity refers to the degree 
to which the D-score predicts the score on a criterion that is 
measured later. For the D-score, we may compare to measures  
for IQ at the school-age as a possible criterion.

Vlasblom et al. (2019) found strong evidence that individ-
ual milestones of the DDI measured during the first years of 
life predict later intellectual functioning at ages 5–10 years. It  
is to be expected that the D-score, which builds upon these  
individual items, will also predict limited intellectual functioning,  
perhaps even better.

8 Precision

This section shows the properties of the D-score when  
calculated from short tests. The study of quick tests is  
useful because it reveals the behaviour of the D-score when the  
measurement is inherently imprecise.

This section covers:

•      Structure of milestone subsets (8.1)

•      Impact of short tests on D-score (8.2)

Figure 7.1. Cumulative item information by DDI domain.
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Figure 7.2. Item fit by D-score for the DDI domains.

•      Impact of short tests on predicting IQ (8.3)

8.1 SMOCC design: Standard and additional milestones

At each visit, the SMOCC study collected scores on a set of 
standard milestones (that about 90 per cent of the children  
will pass) and a set of additional milestones (that about  
50 per cent of the children will pass). See Section 4.1.2.

The SMOCC dataset covers nine different waves. The set 
of milestones used in the DDI varies per visit. The number 
of standard milestones varies between 2 and 7 on various  

occasions. The additional milestones equal the standard ones  
from the next wave.

Table 8.1 summarizes the scheduled age for each wave, the 
number of standard milestones and the number of additional  
milestones.

Figure 8.1 shows the subsets of DDI items administered at 
each age. For example, at the 1-month visit, the five stand-
ard milestones are ddicmm029 - ddigm056, and the two  
additional ones are ddicmm030 and ddifmd002. At the  
2-month visit, the standard milestones are ddicmm030 and 
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Figure 7.3. Relation between body height and the D-score in the SMOCC data.

ddifmd002, and the five additional ones are ddicmm031 - 
ddigmd057. And so on.

8.2 D-score from short tests

8.2.1 Milestone sets. In the analyses done thus far, we have 
calculated D-scores from responses on the combined (stand-
ard plus additional) milestones. Thus, at the 2-month visit, the  
D-score was calculated from 2 (standard) + 5 (additional)  
= 7 milestones.

In daily practice, the set of additional milestones is often  
lacking. This section explores the impact of using the (smaller)  

subset of standard milestones on measurement error and  
prediction.

This section reports and compares three D-scores:

1.   D-score from standard milestones;

2.   D-score from additional milestones.

3.   D-score from all available milestones;

Estimation of 1 is more complicated than for 2 and 3, for  
the following reasons:

•         There are fewer milestones, so the estimate is less precise  
and more influenced by choice of the prior distribution;
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•         The standard set contains only easy milestones, which  
are uninformative for the majority of children.

8.2.2 Milestone sets at month 2. The vertical axis of  
Figure 8.2 shows the D-score, separately calculated from 
the standard, additional and all milestones for children aged  
two months. The colour of the dots represents the number of  
FAIL ratings within each set of milestones.

At month two there are just two standard milestones:  
ddicmm030 and ddifmd002. About 90 per cent of the 
infants will pass these. The green dots in the left-hand side  
figure represent the estimated D-scores corresponding to two 
passes. As explained in Section 5.3.2, we calculate the D-score  
with an age-dependent prior. If the ages vary (and they do), then 
the D-score for infants having the same total score will also  
vary.

If a child fails either ddicmm030 or ddifmd002, then  
the D-score is substantially lower. The left-hand figure 
shows a gap between the green dots (perfect score) and the  
yellow dots (one FAIL). The impact of a FAIL on the D-score 
is substantial. For example, the D-score of an infant with one 
FAIL on a standard milestone drops from about 20D to 14D.  
Thus, with these two milestones, there cannot be a D-score in 
the range 15D - 18D. It depends on the purposes of the meas-
urement if this is acceptable. We can prevent gaps by measuring  
more milestones, e.g., milestones taken from the additional 
set. Another gap occurs between 14D and 11D. These gaps 
illustrate that precision is constrained if we administer only  
two milestones.

The middle figure shows the estimated D-score at the same visit 
but now calculated from the five additional milestones (i.e.,  
the standard milestones from month 3). Infant aged two months 
have approximately a 50 per cent chance of passing each.  

Note that administration of the additional milestones will cover 
the range 14D-20D quite well. Note the ceiling is also higher  
with these milestones.

Note that the range of the estimated D-scores is quite simi-
lar in both plots. This similarity is a result of accounting for the 
difficulty level of milestones. The estimate of the D-score is  
unbiased for difficulty.

The figure on the right-hand side provides the D-score calcu-
lated from all milestones. We can easily recognise the points 
coming from the standard and additional sets. Also, there  
is a limited number of ratings on easier items that belong to 
month 1. We rescored these because the child failed these mile-
stones at the previous visit. Rescoring effectively extends the  
range of possible D-scores to the lower end, so now we can  
find some children who have D-score lower than 10D.

8.2.3 Milestone sets at month 3. Figure 8.3 is the same plot 
as before, but now for month 3. Compared to Figure 8.2, all 
points shifted upwards because the children are now one month  
older.

The additional milestones from month 2 are the standard mile-
stones of month 3. In Figure 8.2, there were at least 11 children  
(in purple) failed all five additional milestones. One month  
later, one child has five fails.

8.2.4 Floor and ceiling effects. Figure 8.4 plot the D-score  
distribution for all occasions. Some observations:

•         Ceiling effect: The ceiling effect (green) is most promi-
nent in the standard set, but is also present in the other 
two sets. None of the three sets can filter out children with  
really advanced development. To achieve more preci-
sion at the upper end, we would need to include more  
difficult milestones.

•         Floor effect: There are almost no floor effects in the stand-
ard and all sets. These sets discriminate well among  
children with delayed development, which was the 
designed purpose of the DDI. Note that floor effects are  
visible in the additional set.

•         Average level: All three sets capture the overall rela-
tion between age and development. The additional set is 
quite efficient for measuring average levels development  
but lacks detail on the extremes.

Figure 8.4 shows that a short test (5–6 milestones) can precisely 
measure the lower tail of the D-score distribution (standard 
set) or the middle of the D-score distribution (additional set),  
but cannot do both at the same time.

8.3 Impact of short tests on predicting IQ

8.3.1 Measurement and prediction. In Section 8.2, we saw 
that a short test can measure the middle or one tail of the  
distribution, but cannot be precise for both at the same time. 

Table 8.1. Number of items 
administered per wave in the 
SMOCC data.

Age Standard Additional

1m 5 2

2m 2 5

3m 5 6

6m 6 7

9m 7 6

12m 6 6

15m 6 6

18m 6 7

24m 7 7
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Figure 8.1. Age-item grid of the SMOCC study, illustrating how the 57 DDI items are distributed over nine visits during the first 
24 months.
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Figure 8.3. Distribution of the D-scores calculated from the standard, additional and all available milestones at month 3. Colors 
correspond to the number of fails.

Figure 8.2. Distribution of the D-scores calculated from the standard, additional and all available milestones at month 2. Colors 
correspond to the number of fails.
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If we want to identify children at risk for delayed development, 
we are interested in the lower tail of the distribution, so in that 
case, the standard set is suitable. But what set should we use  
if we want to predict a later outcome?

This section explores that effect of taking different milestone  
sets on the quality of prediction.

8.3.2 UKKI. Hafkamp-de Groen et al. (2009) studied the 
effect of the D-score on later intelligence, using a subset of 
557 SMOCC children that were followed up at the age of  
five years.

The Utrechtse Korte Kleuter Intelligentietest (UKKI) (Baarda, 
1978) is a short test to measure intelligence. The UKKI is a  
simple test with just three components:

•         Redraw five figures (square, triangle, cross, trapezoid,  
rhomboid);

•         Draw human figure, with 28 characteristics, like legs,  
eyes, and so on;

•         Give meaning to 13 words like knife, banana, umbrella,  
and so on.

Administration time is about 15–20 minutes. The UKKI has 
a reasonable test-retest reliability for group use (Pearson  
r = 0.74, 3-month interval).

8.3.3 Exploratory analysis. Figure 8.5 shows the empiri-
cal IQ distribution of 557 children. The mean IQ score is 108,  
and the standard deviation is 15, so the IQ-scores of chil-
dren in the sample is about a half standard deviation above the  
1978 reference sample.

Figure 8.6 shows that the relation between the D-score  
0–2 years and IQ at five years is positive for all milestone sets 
and all ages. The strength of the association increases with age. 
At the age of 2 years, the regression coefficient for D-score  
is equal to β (D) = 1.4 (SE: 0.21, p < 0.0001), so on aver-
age an increase of 1.0 unit in the D-score at the age of 2 years  
corresponds to a 1.4 IQ-score points increase at the age  
five years.

Table 8.2 summarizes the Pearson correlations between the  
D-score and later IQ. The association between D-score and 
IQ is weak during the first year of life but gets stronger during  
the second year. In general, having more (and more informa-
tive) milestones helps to increase the correlation, but the  
effects are relatively small. So even from the standard set of 
the seven easy milestones at 24m, we obtain a reasonable  
correlation of 0.245.

All in all, these results suggest that neither the amount nor 
the difficulty level of the milestones is critical in determining  
the strength of the relation between the D-score and IQ.

9 Three studies

This section compares child development between samples  
from three different studies:

•        SMOCC, a representative sample of Dutch children (9.1)

•        POPS, a cohort of all Dutch preterms in 1983 (9.2)

•         TOGO, a set of medical records from preventive health  
service in Togo (9.3)

•        A summary of the main findings (9.4)

Figure 8.4. D-score by age 0–30 months for standard, additional and all available milestones at each measurement occasion.
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Each study used the same measurement instrument, the DDI 
(see Section 4.1). The section compares D-scores between  
studies.

9.1 SMOCC study

Figure 9.1 shows the D-score distribution by age in the SMOCC 
data. The grey curves represent references calculated from 
the SMOCC data. The top figure illustrates that rise of the  
D-score with age, whereas the bottom chart shows that the  
DAZ distribution covers the references well.

The ceiling effect causes low coverage after the age of  
24 months. There are also less prominent ceiling effects for 
younger children. Without these effects, the references would  
presumably show some additional variation.

9.2 POPS study

Figure 9.2 presents the D-score and DAZ distributions for 
the POPS cohort of children born very preterm or with very 
low birth weight. The distributions of the D-score and DAZ  
are similar to those found in the SMOCC study.

Since the D-scores are calculated using the same milestones 
and difficulty estimates as used in the SMOCC data, the  
D-scores are comparable across the two studies. When the  

milestones differ between studies (e.g. when studies use differ-
ent measurement instruments), it is still possible to calculate  
D-scores. This problem is a little more complicated, so we treat  
it in Chapter II (van Buuren & Eekhout, 2021).

The primary new complication here is the question whether 
it is fair to compare postnatal age of children born at term with 
postnatal ages of very preterm children. This section focuses  
on this issue in some detail.

9.2.1 POPS design. In 1983, the Project On Preterm and 
Small for Gestational Age Infants (POPS study) collected data 
on all 1338 infants in the Netherlands who had very preterm  
birth (gestational age < 32 weeks) or very low birth weight 
(birth weight < 1500 grams). See Verloove - Vanhorick et al.  
(1986) for details.

The POPS study determined gestational age from the best 
obstetric estimate, including the last menstrual period, results 
of pregnancy testing, and ultrasonography findings. The POPS  
study collected measurements on 450 children using the 
DDI at four visits at corrected postnatal ages of 3, 6, 12 and  
24 months.

9.2.2 Age-adjustment. Assessment of very preterm children 
at the same chronological age as term children may cause  

Figure 8.5. Histogram of UKKI IQ scores taken around the age of five years (SMOCC data, n = 557).
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Figure 8.6. Relation between D-score at infancy and IQ at age 5 years according to three milestone sets and nine visits (SMOCC 
data, n = 557).
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over-diagnosis of developmental delay in very preterm chil-
dren. Very preterm children may require additional time that  
allows for development equivalent to that of children born a  
term.

In anthropometry, it is common to correct chronological age 
of very preterm born children to enable age-appropriate evalu-
ation of growth. For example, suppose the child is born as  
a gestational age of 30 weeks, which is ten weeks early. A full 
correction would deduct ten weeks from the child’s postnatal  
age, and a half correction would deduct five weeks. In particular, 
we calculate the corrected age (in days) as:

corrected age postnatal age (days) [280 gestational age (days)],f= − × −

where 280 is the average gestational age in days, and where 
we specify several alternatives for f as 1.00 (full correction),  
0.75, 0.50 (half) or 0.00 (no correction).

Let’s apply the same idea to child development. Using  
corrected age instead of postnatal age has two consequences:

•      It will affect the prior distribution for calculating the D-score;

•      It will affect DAZ calculation.

We evaluate these two effects in turn.

9.2.3 Effect of age-adjustment on the D-score. Figure 9.3 
plots the fully age-adjusted D-score against the unadjusted  
D-score. Any discrepancies result only from differences in  
the ages used in the age-dependent prior (c.f. Section 5.3.2).

All points are on or below the diagonal. Age-adjustment low-
ers the D-score because a preterm is “made younger” by  
subtracting the missed pregnancy duration, and hence the prior 
distribution starts at the lower point. For example, the group 
of red marks with D-scores between 30D and 40D (age not  
corrected) will have D-scores between 20D and 30D when fully 

corrected. Note that only the red points (with perfect scores) are 
affected, thus illustrating that the prior has its most significant 
effect on the perfect response pattern. See also Section 5.3.1.  
The impact of age-correction on the D-score is negligible  
when the child fails on one or more milestones.

9.2.4 Effect of no age adjustment (f = 0.00) on the DAZ.  
Figure 9.4 illustrates that a considerable number of D-scores  
fall below the minus -2 SD line of the reference when age 
is not adjusted, especially during the first year of life. The  
pattern suggests that the apparent slowness in development is 
primarily the result of being born early, and does not necessarily  
reflect delayed development.

9.2.5 Effect of full age adjustment (f = 0.00) on the DAZ. 
Full age correction has a notable effect on the DAZ. Figure 9.5  
illustrates that the POPS children are now somewhat advanced 
over the reference children. We ascribe this seemingly odd  
finding to more prolonged exposure to sound and vision in 
air. Thus after age correction, development in preterms during  
early infancy is advanced compared to just-born babies.

Full age correction seems to overcorrect the D-score, so it is  
natural to try intermediate values for f between 0 and 1.

9.2.6 Partial age adjustment. Table 9.1 compares mean 
DAZ under various specifications for f. Values f = 0.00 and  
f = 0.50 do not correct for preterm birth enough in the sense 
that all sign are negative. In contrast, f = 1.00 overcorrects. 
The value of 0.73 is implausibly high, especially because this  
value is close to birth. Setting f = 0.75 seems a good compro-
mise, in the sense that the average DAZ is close to zero in the 
first age interval. The average DAZ is negative at later ages.  
We do not know whether this genuinely reflects less than 
optimal development of very preterm and low birth weight  
children, so either f = 1.00 and f = 0.75 are suitable candidates.

9.2.7 Conclusions.
•         Compared with the general population, more very pre-

term children reached developmental milestones within  
chronological age five months when chronological age  
was fully corrected;

•         Fewer preterm children reached the milestones when  
chronological age was not corrected;

•         Fewer children reached the milestones when we used  
a correction of f = 0.50;

•         Similar proportions were observed when we used  
f = 0.75 within the first five months after birth.

•         After chronological age five months, we observed simi-
lar proportions for very preterm and full-term children  
when chronological age was fully corrected.

•         We recommend using full age correction (f = 1.00). This 
advice corresponds to current practice for growth and 
development. As we have shown, preterms may look  
better in the first few months under full age-correction. If 
the focus of the scientific study is on the first few months,  
we recommend an age correction of f = 0.75.

Table 8.2. Pearson correlation between  
D-score (0–2 years) and IQ at 5 years.

Visit Standard 
set

Additional 
set

All 
milestones

1m 0.059 0.005 0.027

2m 0.051 0.056 0.048

3m 0.036 0.100 0.102

6m 0.040 0.038 0.036

9m 0.094 0.143 0.132

12m 0.046 0.162 0.137

15m 0.180 0.153 0.187

18m 0.129 0.153 0.146

24m 0.245 0.255 0.267
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 Figure 9.1. Distribution of D-score and DAZ by child age in a cohort of Dutch children aged 0–2 years (Source: SMOCC data,
n = 2151, 9 occasions).
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Figure 9.2. Distribution of D-score and DAZ by child age in a cohort of preterm aged 0–2 years. Ages are corrected for preterm 
birth by a factor of 0.75 (Source: POPS data, 450 children, four occasions).
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Figure 9.3. Scatterplot of two versions of the D-score, one calculated using postnatal age (f = 0.00), the other calculated using 
full age-adjustment (f = 1.00).

9.3 TOGO study

Figure 9.6 presents the D-score and DAZ distributions of 
a sample of children living near Kpalimé, Togo. While the  
primary trend with age conforms to the previous data, the 
distributions differ from those in Figure 9.1 and Figure 9.2  
in two respects:

•       Compression at the upper end: Most of the D-scores are 
above the median curve, which suggests that, at these 
ages, children living in Togo develop faster than children  
living in the Netherlands;

•       Expansion at the lower end: There is a considerable vari-
ation in D-scores on the lower end, with many D-scores 
below the -2 SD curve, suggesting that some children are 
significantly more delayed than would be expected in both  
Dutch samples.

The D-scores are calculated using the same 57 milestones and 
difficulty estimates as before. The resulting D-score distribu-
tion is quite unusual. The main question here is what could  
explain the pattern found in the D-scores. This section explores  
this question in some detail.

9.3.1 Togo Kpalimé study, design. If the D-score is to be a 
universal measure, then it should be informative in low and 
middle-income countries (LMIC) as well. We do not yet  
know much about the usability and validity of the D-score  
in LMIC’s. The western African country of Togo quali-
fies as a low-income country, with a 2017 GNI per capita 
of USD 610, compared to USD 46,180 in the Netherlands, 
and USD 744 for low-income countries in general (data. 
worldbank.org).

The data were collected by Cécile Schat-Savy, who initi-
ated a youth health care centre modelled after the Dutch youth  
health care system in Kpalimé, Togo. See https://www.kinder-
hulp-togo.nl for more background. Data monitoring included 
a french translation the DDI for measuring child development.  
The investigators gathered data from 9747 individuals in  
the 0–18 age range.

Participants include children and their parents who visited 
the Kpalimé health centre at least one time. Kpalimé is the  
fourth largest town in Togo, but the health centre also attracted 
parents and children from a wide surrounding rural area.  
Parents visited the health centre for several reasons, including  
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Figure 9.4. Distribution of D-score and DAZ without age correction for preterm birth (f = 0.00).
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Figure 9.5. Distribution of D-score and DAZ under full age correction for preterm birth (f = 0.00).
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for a preventive health check or because of their child’s  
apparent health problems.

The health centre targeted parents through information ses-
sions for parents at primary schools. Parents paid a small amount 
of money per child (about USD 4.00 for children of 4 years or  
older, and USD 0.80 for children younger than four years). 
Four local data-assistants, some portrayed in Figure 9.7,  
digitized the data from paper archives. TNO Child Health in 
The Netherlands monitored the process and checked the data  
for completeness and consistency.

Here we use a subset of 2674 visits from 1644 unique chil-
dren who scored on the 57 milestones of the DDI 0–2 years. We  
did not calculate D-scores when age or DDI milestones were 
missing, which left a dataset of 2425 visits from unique  
1567 children. The number of visits varied from 1 – 9. The  
majority of children visited the centre once.

9.3.2 D-score labelled by neurological problem. Figure 9.8 
is the same scatter plot as in Figure 9.6, but now marked by 
whether the physician registered signs of neuropathology in the  
form of tonus and reflex problems.

Many children with low D-scores also have tonus or reflex 
problems. This finding alone suggests that extreme D-score 
are not artefacts (e.g. caused by a wrongly coded age),  
but indicate main adverse health conditions.

9.3.3 D-score labelled by Apgar score Figure 9.9 identi-
fies the children who had an Apgar score at 10 minutes after 
birth that was lower than 8. About half of these children had a  
D-score below -2 SD curve.

9.3.4 D-score labelled by severe underweight. Many chil-
dren who visited the Kpalimé health centre had a low body 
weight for their age. Figure 9.10 marks the subset of severely  
underweight children (WAZ < -4). A substantial proportion of  
these children also had a very low D-score.

9.3.5 D-score labelled by severe stunting. Figure 9.11 is simi-
lar to 9.10, but now marked by the subset of severely stunted 
children (HAZ < -4). Also here, a sizable proportion has a  
low D-score.

When taken together, Figure 9.8–Figure 9.11 show that chil-
dren with very low D-scores often experience (multiple) 
harsh health problems. Those health problems may have  
substantially delayed their development.

9.3.6 Gross motor development. Figure 9.12 shows substan-
tial differences in gross motor development between children 
from Togo and the Netherlands. For example, at the age of  
three months, about 30 per cent of the Dutch infants suc-
ceed in controlling their head when pulled to sitting. However, 
infants from Togo seem already capable of head control when  
they are just one month old.

Moreover, the advantage persists at least until up to the age 
of two years: children in Togo can roll over and sit much ear-
lier, or kick a ball without falling. As the documentary Babies  
shows, African children even manage to learn to walk with a 
tin can on their head, a craft that children in the west never  
achieve.

9.3.7 Fine motor development. Figure 9.13 shows a less 
pronounced but similar phenomenon for fine motor skills.  
These data suggest that children in Togo may have better fine  
motor skills than the children from the two Dutch cohorts.

9.3.8 Communication and language. Figure 9.14 summa-
rizes the data for three milestones on communication and lan-
guage. In general, the success probability is similar in the three  
studies.

One curious finding is that the high proportion of mile-
stones passes in ddicmm041 for the Togo children around 
the age of 18 months. Note that several of the green lines in  
Figure 9.12–Figure 9.14 start close to perfect scores, which 
makes it impossible to show the rising patterns found in the  
Dutch data.

It may indeed be true that children from Togo develop more 
rapidly than Dutch children. But we may also wonder: Could 
there just be reporting bias on the part of the parents who either  
do not understand the items or have the expectation to say 
“yes” even if the child can’t do it? It would be desirable if  
these results could be backed up from other sources.

Table 9.1. Average DAZ at various ages 
under four correction factors.

Age 
(months)

0.00 0.50 0.75 1.00

0–3 -1.46 -0.50 0.07 0.73

3–4 -1.77 -0.89 -0.37 0.20

5–6 -1.60 -0.87 -0.46 0.00

7–8 -1.76 -1.13 -0.77 -0.39

9–11 -1.21 -0.77 -0.53 -0.28

12–14 -0.99 -0.60 -0.39 -0.16

15–23 -0.50 -0.23 -0.10 0.04

24+ -0.70 -0.49 -0.37 -0.24
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Figure 9.6. Distribution of D-score and DAZ by child age of children living near Kpalimé, Togo (Source: TOGO data, n = 1567).
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9.4 Conclusions

This section compared the D-scores estimated from the DDI  
administered to three different groups of children.

We found that

•         The D-score by age plot showed a positive, curved  
relationship with age in all three studies;

•         Children born very preterm or with very low birth weight 
had similar development to reference children when  
their age was corrected for early birth;

•         A relatively small subset of children born in Togo had 
extremely low D-scores, not found in the Netherlands, 
likely the result of underlying neuropathology, severe  
underweight or severe stunting;

•         On average, children from Togo seemed to have faster 
development during the first two years, especially in 
motor development, though there may be issues with  
reporting bias.

All in all, these findings support the usefulness and validity of 
the D-score as an informative summary of child development  
during their first two years of life.

Figure 9.7. Three of the data-assistants who helped to digitize the paper files. Reproduced with permission from Stichting Kinderhulp 
Togo https://www.kinderhulp-togo.nl.
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Figure 9.8. Distribution of D-score by age labelled by neurological (tonus and/or reflex) problems. (Source: TOGO data).

10 Next steps

This section provides a quick overview of the relevance,  
concepts and techniques of the D-score. While the results 
obtained thus far are encouraging, some questions will  
certainly remain when we put the method to practice.

A rough selection of such questions includes:

•        What is the added value of the D-score in practice?

•        Does the D-score extend to higher ages?

•         Is the assumption of uni-dimensionality reasonable for other 
ages and populations?

•         Can we calculate the D-score from instruments other than 
the DDI?

•         Is it reasonable to assume that milestone difficulty is  
identical in other populations?

•        Does the method apply to caregiver-reported milestones?

•        Would a dedicated D-score instrument be more efficient?

•        How many milestones are “enough?”

•         Can the same scale be used for measurement at individual, 
group and population levels?

•        Can the D-score detect delayed development?

•        Would the D-score help to target early interventions?

This section briefly reviews some of these issues.

10.1 Usefulness of D-score for monitoring child health

The D-score is a new approach to measure child develop-
ment. The D-score is a scale for quantifying generic child  
development by a single number. Milestones are selected to fit 
the Rasch model. We can interpret the resulting measurements  
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Figure 9.9. Distribution of D-score by age labelled by Apgar score (10 minutes) lower than 8. (Source: TOGO data).

as scores on an interval scale, a requirement for answering  
questions like:

•        What is the difference in development over time for the  
same child, group or population?

•        What is the difference in development between different  
children, groups or populations of the same age?

•        How does child development compare to a norm?

The concept of the D-score is broader than a score calculated 
from the DDI. Any instrument that fits the model underlying  
the D-score can be used to measure the child’s D-score.

The precision of the measurement depends on the number of 
milestones and the match between milestone difficulty and  
person ability. We may thus tailor the measurement instrument  
to the question at hand.

10.2 D-chart, a growth chart for child development

The field of child growth and development roughly divides  
into two areas:

•         The subfield child growth (or auxology) emphasizes 
body measures like height, weight, body mass index,  
and so on. It is a rigorous quantitative science with inti-
mate ties to statistics since the days of Quetelet and  
Galton.

•         The subfield child development is more recent and builds 
upon a wide-ranging set of domain-specific instru-
ments for measuring motor, language, cognitive and  
behavioural states.

The growth chart is a widely used tool to monitor physical 
growth. The D-score can be used in a similar way to create the  
D-chart.

Page 62 of 75

Gates Open Research 2021, 5:81 Last updated: 29 OCT 2021



Figure 10.1 shows the developmental paths of five  
randomly chosen children from the SMOCC study. Although 
the milestones differ across age, there is only one vertical 
axis. These trajectories will help to track the progress of  
a child over time.

The D-chart shows that it is straightforward to apply quantita-
tive techniques from child growth to child development. Our 
hope is that D-score aids in bridging the disparate subfields  
of child growth and child development.

10.3 Opportunities for early intervention

Black et al. (2017) estimated that about 250 million children 
worldwide fail to reach their developmental potential. Devel-
opmental delays become evident in the first year and worsen  

during early childhood. The burden of children not reaching  
their developmental potential is high.

Interventions aimed at improving child development work 
best when delivered at the sensitive periods. Programs are  
to be comprehensive, incorporating a combination of health, 
nutrition, security and safety, responsive caregiving and early 
learning. See Engle et al. (2011); Grantham‐McGregor et al.  
(2014) and Britto et al. (2017) for recent overviews and  
initiatives.

The lack of a universal measure for child development has 
long hampered the ability to estimate intervention effects or 
to compare populations. The D-score can be generalized to  
other instruments. We expect that the availability of a  
common yardstick will stimulate informed policy and priority  

Figure 9.10. Distribution of D-score by age labelled by severe underweight (WAZ < -4) (Source: TOGO data).
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setting. We hope a universal measure improves decision making, 
ultimately lowering the number of children not reaching  
their developmental potential.

10.4 D-score for international settings

Section 9 compared D-scores between three study samples. 
We restricted the analysis to studies that used the same instru-
ment (the DDI, in Togo, translated to French) to measure child  
development.

It is difficult to compare levels of child development world-
wide. Existing estimates on children not reaching their  
developmental potential rely on proxies, such as stunting 
and poverty. While these proxies have been found to corre-
late with child development, they are only weak indicators of  
actual child performance. Arguably, the performance of a 
child on a set of well-chosen milestones is more informative 

for his or her future health and productivity than body height  
or parental income.

There are more than 150 instruments are available that quan-
tify child development. Many of these tools produce not just 
one but many scores. Such an overwhelming choice may  
seem a luxury until we realize that we cannot compare their rat-
ings. Of course, we could settle on just one instrument …., 
but that’s never going to happen. While simple in theory,  
pre-harmonization is complicated in practice. It requires sig-
nificant and continued investments by a central agency. It 
does not address historical data, so it will be challenging to  
see secular trends. Also, pre-harmonization impedes the adop-
tion of innovative techniques, e.g., using smartphone-assisted  
evaluations.

The D-score opens up an exciting alternative: agree on the 
scale, and leave some liberty to the data-collector in the exact 

Figure 9.11. Distribution of D-score by age labelled by severe stunting (HAZ < -4) (Source: TOGO data).
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Figure 9.12. Gross motor milestones. Probability by age for SMOCC, POPS (corrected age) and TOGO studies for three milestones.
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Figure 9.13. Fine motor milestones. Probability by age for SMOCC, POPS (corrected age) and TOGO studies for three milestones.
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Figure 9.14. Communication and language milestones. Probability by age for SMOCC, POPS (corrected age) and TOGO studies for 
three milestones.
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Figure 10.1. D-chart with five children from the SMOCC study.

choice of the instrument. We could build upon the expertise of  
the data collector about the local population. Also, it will equip  
is to keep up with innovations in measurement.

The next chapter in our work will address some of the concep-
tual and technical issues that arise when we attempt to apply  
the D-score to other populations.

10.5 D-score from existing instruments

There is a vast base of historic child developmental data using 
existing instruments. The problem is that each device defines 
its own summaries, so we cannot compare scores across  
tools. Different instruments have different domains, vari-
ous age forms, different stopping rules, diverse age norms, and 
so on. Yet, the milestones in these instruments are often very  
similar. Most tools collect data on milestones like:

•        Can the child stack two blocks?

•        Can the child roll over?

•        Can the child draw a cross?

•        Can the child stand?

•        Can the child say “baba?”

With the D-score methodology in hand, we are ready to exploit 
the overlap in milestones shared by different instruments.  
Common items can act as bridges, so - with the appropriate  

item-level data - we may attempt calculating D-scores from  
other tools as well.

The task is to identify milestones that overlap between both 
instruments, filter out milestones that do not fit a joint model, 
and estimate the item difficulties of items that remain. Chapter II  
(van Buuren & Eekhout, 2021) will explore this possibility  
in more detail.

10.6 Creating new instruments for D-score

Extending the D-score to other instruments has the side-
effect of enlarging the item bank with useful items. As more 
and more data feed into the item bank, assessment of already  
present milestones may become more precise.

The enlarged and improved item bank then may act as the 
fundamental resource for creating instruments for particu-
lar settings. For example, if the interest is on finding the most  
advanced children, we may construct a difficult test that 
will separate the good and the best. Alternatively, we can  
use the item bank to create and administer computerized adap-
tive tests (Jacobusse & van Buuren, 2007; Wainer et al., 
2000), a sequential method that selects the next milestone  
based on the previous test outcome.

Our ongoing work will explore the conceptual and techni-
cal challenges, and propose an integrated approach to support  
instrument construction and validation.
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Appendices 

A - Notation 

The notation in this chapter follows Wright & Masters (1982).

Section Symbol Term Description

4.6 βn Ability True (but unknown) developmental score of child n

4.6 δi Difficulty True (but unknown) difficulty of item i

4.6 πni Probability True (but unknown) probability that child n passes item i

6.1 ˆ
nβ Ability Estimated developmental score (D-score) of child n

6.1 ˆ
iδ Difficulty Estimated difficulty of item i

6.1 Pni Probability Estimated probability that child n passes item i

6.1 xni Data Observed response of child n on item i, 0 or 1

6.1 Wni Variance Variance of xni

6.1 zni Residual Standardized residual between xni and Pni

6.1 N Count Number of measurements (children)

6.1 L Count Number of items (milestones)

6.4 ˆ( )iP δ Probability Conditional probability of passing item i

6.4 ˆ( )iI δ Information Item information function of item i

6.5 R Reliability True test reliability

6.5 R̂ Reliability Estimated test reliability

6.5 σe
2 Variance True error variance

6.5
2
ˆˆeσ Variance Estimated error variance

6.5 ˆˆeσ Variance Standard error of measurement (sem)

9.2 f Factor Age-adjustment factor

B - Technical information 

R version 4.0.4 (2021-02-15)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
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Name in 
publication

Reference Contact

GCDG-BGD-7MO Hamadani et al., 2011; Tofail, 2009 Jena Hamadani (jena@icddrb.org)
GCDG-BRA-1 Halpern et al., 1996; Victora et al., 2006 Simone Karam (Karam.simone@gmail.com)
GCDG-BRA-2 Moura et al., 2010 Simone Karam (Karam.simone@gmail.com)
GCDG-CHL-1 Lozoff et al., 2013 Betsy Lozoff (blozoff@umich.edu)
GCDG-CHL-2 Conteral & González, 2015 Lia Fernald (fernald@berkeley.edu)
GCDG-CHN Angulo-Barroso et al., 2016; Lozoff et al., 2016; Santos 

et al., 2017
Betsy Lozoff (blozoff@umich.edu)

Data availability

Underlying data

The raw data needed to replicate these analyses are not  
public, so we cannot share it with this publication. However, 
the reader can apply for access to the data through the study  
contact. The table given below contains the contact information  
for each cohort included in this publication.

1Zenodo: D-score/childdevdata: childdevdata 1.0.1, http://doi.org/10.5281/
zenodo.4685979 (van Buuren, 2021)

other attached packages:
 [1] dinstrument_0.0.1.2 ddata_0.52.0        gseddata_1.5.1     
 [4] dmetric_0.52.0      dscore_1.4.0.9000   forcats_0.5.1      
 [7] haven_2.3.1         scales_1.1.1        plotly_4.9.3       
[10] sirt_3.9-4          gridExtra_2.3       plyr_1.8.6         
[13] reshape2_1.4.4      RColorBrewer_1.1-2  dplyr_1.0.4        
[16] tidyr_1.1.2         ggplot2_3.3.3       officer_0.3.17.001 
[19] officedown_0.2.1    kableExtra_1.3.2    knitr_1.31         

loaded via a namespace (and not attached):
 [1] nlme_3.1-152      webshot_0.5.2     httr_1.4.2        tools_4.0.4      
 [5] R6_2.5.0          DBI_1.1.1         lazyeval_0.2.2    colorspace_2.0-0 
 [9] withr_2.4.1       tidyselect_1.1.0  compiler_4.0.4    polycor_0.7-10   
[13] rvest_0.3.6       TAM_3.5-19        xml2_1.3.2        bookdown_0.21    
[17] mvtnorm_1.1-1     gamlss_5.2-0      systemfonts_1.0.1 stringr_1.4.0    
[21] digest_0.6.27     rmarkdown_2.7     pkgconfig_2.0.3   htmltools_0.5.1.1
[25] fastmap_1.1.0     rvg_0.2.5         htmlwidgets_1.5.3 rlang_0.4.10     
[29] rstudioapi_0.13   shiny_1.6.0       generics_0.1.0    gamlss.data_5.1-4
[33] jsonlite_1.7.2    gtools_3.8.2      zip_2.1.1         magrittr_2.0.1   
[37] Matrix_1.3-2      Rcpp_1.0.6        munsell_0.5.0     gdtools_0.2.3    
[41] lifecycle_1.0.0   stringi_1.5.3     yaml_2.2.1        MASS_7.3-53.1    
[45] gamlss.dist_5.1-7 grid_4.0.4        parallel_4.0.4    promises_1.2.0.1 
[49] crayon_1.4.1      lattice_0.20-41   splines_4.0.4     hms_1.0.0        
[53] pillar_1.4.7      uuid_0.1-4        glue_1.4.2        evaluate_0.14    
[57] data.table_1.13.6 vctrs_0.3.6       httpuv_1.5.5      gtable_0.3.0     
[61] purrr_0.3.4       assertthat_0.2.1  cachem_1.0.4      CDM_7.5-15       
[65] xfun_0.21         mime_0.10         xtable_1.8-4      later_1.1.0.1    
[69] survival_3.2-7    viridisLite_0.3.0 tibble_3.0.6      memoise_2.0.0    
[73] ellipsis_0.3.1

A subset of studies made their study data publicly available  
under a CC BY 4.0 license (https://creativecommons.org/
licenses/by/4.0/)1. Authorship remains with the study coordinator, 
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but users are free to redistribute, alter and combine the data,  
on the condition of giving appropriate credit with any  

redistributions of the material. The URL of the public data is  
https://d-score.org/childdevdata/.
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This book chapter is a comprehensive and very informative treatment of the D-score method. I am 
convinced that the D-score method is beneficial in many applications. I am reserved about some 
of the promises of the method. I will comment on this in detail in the following: 
 

The running example is the ”gross-motor functioning” milestone. It seems that this is a 
polytomous item with five stages (score 0 to 4). However, the stages seem to be handled as 
separate items in the analysis. Ignoring this kind of local dependence will typically result in 
overestimated reliabilities and biased item difficulties. It would be interesting why the 
authors followed their approach. 
 

1. 

In many parts of the chapter, it is claimed that the D-score provides measurements on an 
interval scale. I think that the concept of scales in representational measurement theory 
(RMT) is a concept that does (and should) not have meaning in empirical science. In 
contrast, I think that particular mathematical operations can be ”admissible” (in the sense of 
RMT) in particular analyses. Hence, the scale level is not coupled on a variable (or a scale) 
but using a variable in analysis (see work of Reinhard Niederee). 
 

2. 

Notably, it has been pointed out by several scholars that more complicated item response 
theory (IRT) models like the two-parameter logistic (2PL) IRT model can also have ”interval 
scale” properties by considering a well-defined system of functional equations (e.g., Ballou, 
2009 1). Hence, the arguments of why using the Rasch model (RM) as the basis for the D-
score method are flawed. Other (more complicated) IRT models can also be used. In my 
opinion, the only reason for using the RM might be that the sum score is a sufficient 
statistic. Hence, items are equally weighed in the scale score, which might be considered a 
desirable property. 
 

3. 

P. 18: I suspect that many of the biased statements of the authors about IRT models come 
from a selective reading of the literature. While ”Embretson & Reise, Wright & Masters and 

4. 
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Engelhard” could be classified as ”good introductory books” (I would disagree with such a 
statement), these transport many of the myths of the RM compared to more complex IRT 
models. The myths surround the concepts of ”sample-free measurement”, ”specific 
objectivity” and ”invariant measurement” (Engelhard). After appropriate identification 
constraints of a latent variable, there is no difference concerning these concepts for the RM 
and the 2PL model. The 2PL model also provides sample-free measurements as the RM 
because the invariance property can hold for any IRT model. The invariance property is 
based on the local independence assumption and the absence of differential item 
functioning (DIF) with respect to age. Moreover, specific objectivity is usually equated with 
the concept of parameter separability for persons and items, which can also be achieved for 
the 2PL model (Irtel, Ballou). I do not ask authors to adopt the D-score to the 2PL or other 
alternative IRT models, but to remove their flawed statements about the ”unique 
properties” of the RM. 
 
Authors should be more careful with the statement that cross-cultural DIF implies biased 
measurement. There is rich literature arguing that the concepts of DIF and bias (or fairness) 
should not be equated (Camilli), and a DIF item is important for assessing differences 
between countries (or cultures). Hence, just removing DIF items is a misguided 
recommendation. 
 

5. 

In the same vein, removing items from the scale that does not fit the RM might threaten 
validity. This should be emphasized in the section ”validity” which is silent about this issue. I 
would rather see the RM as a device for linking items using equal weights for items. 
Typically, the RM is misspecified; but why bother about it? 
 

6. 

The authors propose the pairwise estimation approach (PAIR) of Zwinderman. If I read the 
chapter correctly, items are (partly) administered to children depending on their (expected) 
level of ability. This means that items are missing at random (MAR). PAIR estimation does 
not work for (general) MAR data but provides consistent estimates under MCAR. It might be 
that a particular missingness design does not lead to biased estimates in the PAIR method, 
but authors should elaborate on why preferring this estimation approach over likelihood-
based estimation approaches. 
 

7. 

See above. I do not think that the information function is a valuable concept for assessing 
the uncertainty of the D-score. First, local dependence seems to be ignored. Second, it 
presupposes a correctly specified measurement model, which is certainly violated. 
Resampling item (groups) is a much better alternative for quantifying standard errors.

8. 
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