

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. © 2021 Society for Industrial and Applied Mathematics
Vol. 35, No. 3, pp. 2003--2038

PARAMETERIZED COMPLEXITY OF CONFLICT-FREE GRAPH
COLORING\ast

HANS L. BODLAENDER\dagger , SUDESHNA KOLAY\ddagger , AND ASTRID PIETERSE\S

Abstract. Given a graph G, a q-open neighborhood conflict-free coloring or q-ONCF-coloring
is a vertex coloring c : V (G) \rightarrow \{ 1, 2, . . . , q\} such that for each vertex v \in V (G) there is a vertex in
N(v) that is uniquely colored from the rest of the vertices in N(v). When we replace N(v) by the
closed neighborhood N [v], then we call such a coloring a q-closed neighborhood conflict-free coloring
or simply q-CNCF-coloring. In this paper, we study the NP-hard decision questions of whether for
a constant q an input graph has a q-ONCF-coloring or a q-CNCF-coloring. We will study these two
problems in the parameterized setting. First of all, we study running time bounds on fixed-parameter
tractable algorithms for these problems when parameterized by treewidth. We improve the existing
upper bounds, and also provide lower bounds on the running time under the exponential time hypoth-
esis and the strong exponential time hypothesis. Second, we study the kernelization complexity of
both problems, using vertex cover as the parameter. We show that both (q \geq 2)-ONCF-coloring and
(q \geq 3)-CNCF-coloring cannot have polynomial kernels when parameterized by the size of a vertex
cover unless \sansN \sansP \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy . On the other hand, we obtain a polynomial kernel for 2-CNCF-coloring
parameterized by vertex cover. We conclude the study with some combinatorial results. Denote
\chi ON (G) and \chi CN (G) to be the minimum number of colors required to ONCF-color and CNCF-
color G, respectively. Upper bounds on \chi CN (G) with respect to structural parameters like minimum
vertex cover size, minimum feedback vertex set size, and treewidth are known. To the best of our
knowledge only an upper bound on \chi ON (G) with respect to minimum vertex cover size was known.
We provide tight bounds for \chi ON (G) with respect to minimum vertex cover size. Also, we provide
the first upper bounds on \chi ON (G) with respect to minimum feedback vertex set size and treewidth.

Key words. conflict-free coloring, kernelization, fixed-parameter tractability, combinatorial
bounds

AMS subject classifications. 68Q25, 05C15

DOI. 10.1137/19M1307160

1. Introduction. Often, in frequency allocation problems for cellular networks,
it is important to allot a unique frequency for each client, so that at least one frequency
is unaffected by cancellation. Such problems can be theoretically formulated as a
coloring problem on a set system, better known as conflict-free coloring [8]. Formally,
given a set system \scrH = (U,\scrF), a q-conflict-free coloring c : U \rightarrow \{ 1, 2, . . . , q\} is a
function where for each set f \in \scrF , there is an element v \in f such that for all
w \not = v \in f , c(v) \not = c(w). In other words, each set f has at least one element that is
uniquely colored in the set. This variant of coloring has also been extensively studied
for set systems induced by various geometric regions [2, 13, 21].

\ast Received by the editors December 16, 2019; accepted for publication (in revised form) May 5,
2021; published electronically September 2, 2021. An extended abstract of this work appeared under
the same title in the proceedings of the 16th Workshop on Algorithms and Data Structures, WADS
2019, Springer, Cham, Switzerland, 2019, pp. 168--180. The research was partially done when all
three authors were associated with Eindhoven University of Technology. Part of this work was done
at the Lorentz center workshop on Fixed-Parameter Computational Geometry, May 14--18, 2018, in
Leiden, the Netherlands.

https://doi.org/10.1137/19M1307160
Funding: This research was done with support by the NWO Gravitation grant NETWORKS.

\dagger Department of Computer Science, Utrecht University, Utrecht, 3508 TB, The Netherlands
(h.l.bodlaender@uu.nl).

\ddagger Indian Institute of Technology, Kharagpur, India (skolay@cse.iitkgp.ac.in).
\S Department of Computer Science, Humboldt Universit\"at zu Berlin, Berlin, 10117 Germany

(astridpieterse@outlook.com).

2003

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/19M1307160
mailto:h.l.bodlaender@uu.nl
mailto:skolay@cse.iitkgp.ac.in
mailto:astridpieterse@outlook.com

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2004 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

A natural step to study most coloring problems is to study them in graphs. Given
a graph G, V (G) denotes the set of n vertices of G while E(G) denotes the set of
m edges in G. A q-coloring of G, for q \in \BbbN is a function c : V (G) \rightarrow \{ 1, 2, . . . , q\} .
The most well-studied coloring problem on graphs is proper-coloring. A q-coloring
c is called a proper-coloring if for each edge \{ u, v\} \in E(G), c(u) \not = c(v). In this
paper, we study two specialized variants of q-conflict-free coloring on graphs, known
as q-ONCF-coloring and q-CNCF-coloring, which are defined as follows.

Definition 1.1. Given a graph G, a q-coloring c : V (G) \rightarrow \{ 1, 2, . . . , q\} is called
a q-ONCF-coloring, if for every vertex v \in V (G), there is a vertex u in the open
neighborhood N(v) such that c(u) \not = c(w) for all w \not = u \in N(v). In other words, every
open neighborhood in G has a uniquely colored vertex.

Definition 1.2. Given a graph G, a q-coloring c : V (G) \rightarrow \{ 1, 2, . . . , q\} is called
a q-CNCF-coloring, if for for every vertex v \in V (G), there is a vertex u in the closed
neighborhood N [v] such that c(u) \not = c(w) for all w \not = u \in N [v]. In other words, every
closed neighborhood in G has a uniquely colored vertex.

Observe that by the above definitions, the q-ONCF-coloring (or q-CNCF-coloring)
problem is a special case of the conflict-free coloring of set systems. Given a graph
G, we can associate it with the set system \scrH = (V (G),\scrF), where \scrF consists of the
sets given by open neighborhoods N(v) (respectively, closed neighborhoods N [v]) for
v \in V (G). A q-ONCF-coloring (or q-CNCF-coloring) of G then corresponds to a
q-conflict-free coloring of the associated set system.

Notationally, let \chi CF (\scrH) denote the minimum number of colors required for a
conflict-free coloring of a set system \scrH . Similarly, we denote by \chi ON (G) and \chi CN (G)
the minimum number of colors required for an ONCF-coloring and a CNCF-coloring
of a graph G, respectively. The study of conflict-free coloring was initially restricted
to combinatorial studies. This was first explored in [8] and [20]. Pach and Tardos [18]
gave an upper bound of \scrO (

\surd
m) on \chi CF (\scrH) for a set system \scrH = (U,\scrF) when

the size of \scrF is m. In [18], it was also shown that for a graph G with n vertices
\chi CN (G) = \scrO (log2 n). This bound was shown to be tight in [12]. Similarly, [5] showed
that \chi ON (G) = \Theta (

\surd
n).

However, computing \chi ON (G) or \chi CN (G) is NP-hard. This is because deciding
whether a 2-ONCF-coloring or a 2-CNCF-coloring of G exists is NP-hard [11]. This
motivates the study of the following decision problems under the lens of parameterized
complexity.

q-ONCF-Coloring
Input: A graph G.
Question: Is there a q-ONCF-coloring of G?

The q-CNCF-Coloring problem is defined analogously.
Note that because of the NP-hardness for q-ONCF-Coloring or q-CNCF-Col-

oring even when q = 2, the two problems are para-NP-hard under the natural
parameter q. Thus, the problems were studied under structural parameters. Gargano
and Rescigno [11] showed that both q-ONCF-Coloring and q-CNCF-Coloring
have fixed-parameter tractable (FPT) algorithms when parameterized by (i) the size
of a vertex cover of the input graph G, and (ii) the neighborhood diversity of the
input graph. Gargano and Rescigno also mention that due to Courcelle's theorem,
for a nonnegative constant q, the two decision problems are FPT with the treewidth
of the input graph as the parameter.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2005

Our Results and Contributions. In this paper, we extend the parameterized study
of the above two problems with respect to structural parameters. Our first objective
is to provide both upper and lower bounds for FPT algorithms when using treewidth
as the parameter (section 3). We show that both q-ONCF-Coloring and q-CNCF-
Coloring parameterized by treewidth t can be solved in time (2q2)tn\scrO (1). On the
other hand, for q \geq 3, both problems cannot be solved in time (q - \varepsilon)tn\scrO (1) under
the strong exponential time hypothesis (SETH). For q = 2, both problems cannot be
solved in time 2o(t)n\scrO (1) under exponential time hypothesis (ETH).

We also study the polynomial kernelization question (section 4). Observe that
both q-ONCF-Coloring and q-CNCF-Coloring cannot have polynomial kernels
under treewidth as the parameter (assuming \sansN \sansP \not \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy), as there are straight-
forward and-cross-compositions from each problem to itself.1 Therefore, we will study
the kernelization question by a larger parameter, namely, the size of a vertex cover
in the input graph. The kernelization complexity of the q-Coloring problem (ask-
ing for a proper-coloring of the input graph) is very well studied for this parameter;

the problem admits a kernel of size \widetilde \scrO (kq - 1) [15] which is known to be tight unless
\sansN \sansP \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy [14]. From this perspective however, q-CNCF-Coloring and q-
ONCF-Coloring turn out to be much harder: q-CNCF-Coloring for q \geq 3 and
q-ONCF-Coloring for q \geq 2 do not have polynomial kernels under the standard
complexity assumptions, when parameterized by the size of a vertex cover. Interest-
ingly, 2-CNCF-Coloring parameterized by vertex cover size does have a polynomial
kernel and we obtain an explicit polynomial compression for the problem. Although
this does not lead to a polynomial kernel of reasonable size, we study a restricted
version called 2-CNCF-Coloring-VC-Extension (Section 4.4) and show that this
problem has an \scrO (k2 log k) kernel where k is the vertex cover size. Therefore, 2-
CNCF-Coloring behaves significantly differently from the other problems.

Finally, we obtain a number of combinatorial results regarding ONCF-colorings
of graphs. Denote by \chi (G) the minimum q for which a q-proper-coloring for G exists.
While \chi CN (G) \leq \chi (G), the same upper bound does not hold for \chi ON (G) [11]. For a
graph G, let \sansv \sansc (G), \sansf \sansv \sanss (G), and \sanst \sansw (G) denote the size of a minimum vertex cover, the
size of a minimum feedback vertex set, and the treewidth of G, respectively. From the
known result that \chi (G) \leq \sanst \sansw (G) + 1 \leq \sansf \sansv \sanss (G) + 1 \leq \sansv \sansc (G) + 1, we could immediately
obtain the fact that the same behavior holds for \chi CN (G). However, to show that
\chi ON (G) behaves similarly more work needs to be done. To the best of our knowledge
no upper bounds on \chi ON (G) with respect to \sansf \sansv \sanss (G) and \sanst \sansw (G) were known, while a
loose upper bound was provided with respect to \sansv \sansc (G) in [11]. We give a tight upper
bound on \chi ON (G) with respect to \sansv \sansc (G) and also provide the first upper bounds on
\chi ON (G) with respect to \sansf \sansv \sanss (G) and \sanst \sansw (G) (section 5).

Our main contributions in this work are structural results for the conflict-free
coloring problem, which we believe gives more insight into the decision problems
on graphs. First, the gadgets we build for the ETH-based lower bounds could be
useful for future lower bounds, but are also useful for understanding difficult examples
for conflict-free coloring which have not been known in abundance so far. We are
able to reuse these gadgets in the constructions needed to prove the kernelization
lower bounds. Second, our combinatorial results also give constructible conflict-free
colorings of graphs and therefore provide more insight into conflict-free colored graphs.

1This is true for a number of graph problems when parameterized by treewidth. For more
information, see [6, Theorem 15.12] and the example given for Treewidth (parameterized by solution
size) in [6, page 534].

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2006 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

Finally, the kernelization dichotomy we obtain for q-ONCF-Coloring and q-CNCF-
Coloring under vertex cover size as a parameter is a very surprising one.

2. Preliminaries. For a positive integer n, we denote the set \{ 1, 2, . . . , n\} in
short by [n]. For a graph G, given a q-coloring c : V (G) \rightarrow [q] and a subset S \subseteq V (G),
we denote by c| S the restriction of c to the subset S. For a graph G that is q-
ONCF-colored by a coloring c, for a vertex v \in V (G), suppose w \in N(v) is such that
c(w) \not = c(w\prime) for each w\prime \not = w \in N(v); then c(w) is referred to as the ONCF-color
of v. Similarly, for a graph G that is q-CNCF-colored by a coloring c, for a vertex
v \in V (G), a unique color in N [v] is referred to as the CNCF-color of v.

An edge-star graph is a generalization of a star graph where there is a central
edge \{ u, v\} and all other vertices w have N(w) = \{ u, v\} . A triangle is an example of
an edge-star graph.

In some of our lower bound constructions, we will use the following useful gadgets,
to construct our color palette. These gadget were first defined by Abel et al. [1, section
3.1].

Definition 2.1 (see [1]). For every positive integer k, a graph Gk is recursively
defined as follows:

1. G1 consists of a single isolated vertex. G2 is a K1,3 with one edge subdivided
by another vertex (refer also to Figure 4).

2. Given Gk and Gk - 1, Gk+1 is constructed as follows for k \geq 2:
\bullet Take a complete graph G = Kk+1 on k + 1 vertices.
\bullet To each vertex v \in V (Kk+1), attach two disjoint and independent copies
of Gk, adding an edge from v to every vertex of both copies of Gk.

\bullet For each edge e = \{ v, w\} \in E(Kk+1), add two disjoint and independent
copies of Gk - 1, adding an edge from v and w to every vertex of both
copies.

Let \chi \ast
\sansC \sansN (G) denote the minimum number of colors needed to CNCF-color G

when it is allowed to not color certain vertices. Abel et al. have shown the following
lemma.

Lemma 2.2 (see [1, Lemma 3.3]). For Gk constructed according to Definition 2.1,
it holds that \chi \ast

\sansC \sansN (Gk) = k.

We also have the following fact about ONCF-coloring of trees.

Observation 2.3. Let T be a tree. There is a polynomial time procedure that
outputs a 2-ONCF-coloring of T .

Proof. Let the color set be \{ 0, 1\} . Pick an arbitrary vertex r and root T at
r. Let \scrI be the ordering on the vertices in V (T) obtained from doing a breadth
first search traversal of T starting at the root r. The following 2-coloring function
f : V (T) \rightarrow \{ 0, 1\} is defined on V (T):

1. The root r is colored such that f(r) = 0.
2. Let v be the first child of r according to \scrI . Then we set f(v) = 0 and

\forall u \in N(r) \setminus \{ v\} , f(u) = 1.
3. Consider the smallest uncolored vertex u \in V (T) \setminus N [r]. We set f(u) =

1 - f(ug), where ug is the (unique) grandparent of u.
From the description of the coloring it is clear that the procedure takes polynomial

time. We claim that f 2-ONCF-colors T :
\bullet The root r has a uniquely colored neighbor in its first child v according to \scrI .
\bullet Due to point 3 of the definition of f , for any vertex v \in V (T)\setminus \{ r\} , its parent

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2007

gets a color different from all its children. Therefore, the uniquely colored
neighbor of v is its parent.

Thus, we are done.

2.1. Tree decompositions and treewidth. We define treewidth and tree de-
compositions.

Definition 2.4 (tree decomposition [6]). A tree decomposition of an (undirected
or directed) graph G is a tuple \scrT = (T, \{ X\bfu \} \bfu \in V (T)), where T is a tree in which each
vertex u \in V (T) has an assigned set of vertices X\bfu \subseteq V (G) (called a bag) such that
the following properties hold:

\bullet
\bigcup

\bfu \in V (T) X\bfu = V (G).

\bullet For any xy \in E(G), there exists a u \in V (T) such that x, y \in X\bfu .
\bullet If x \in X\bfu and x \in X\bfv , then x \in X\bfw for all w on the path from u to v in T .

In short, we denote \scrT = (T, \{ X\bfu \} \bfu \in V (T)) as T .

The treewidth tw\scrT of a tree decomposition \scrT is the size of the largest bag of \scrT
minus one. A graph may have several distinct tree decompositions. The treewidth
tw(G) of a graph G is defined as the minimum of treewidths over all possible tree
decompositions of G. Note that for the tree T of a tree decomposition, we denote
a vertex of V (T) in bold font. If T is rooted at a vertex r, for a vertex u \in V (T),
V\bfu =

\bigcup
\bfv \in T \prime X\bfv , where T \prime is the subtree rooted at u.

A tree decomposition \scrT = (T, \{ X\bfu \} \bfu \in V (T))) is called a nice tree decomposition
if T is a tree rooted at some node r where X\bfr = \emptyset , each node of T has at most two
children, and each node is of one of the following kinds:
Introduce node: a node u that has only one child u\prime , where X\bfu \supset X\bfu \prime and | X\bfu | =

| X\bfu \prime | + 1.
Forget vertex node: a node u that has only one child u\prime , where X\bfu \subset X\bfu \prime and

| X\bfu | = | X\bfu \prime | - 1.
Join node: a node u with two children u1 and u2 such that X\bfu = X\bfu 1

= X\bfu 2
.

Leaf node: a node u that is a leaf of T , and X\bfu = \emptyset .
One can show that a tree decomposition of width w can be transformed into a nice

tree decomposition of the same width w and with \scrO (w| V (G)|) nodes; see, e.g., [6].
We modify the definition of a nice tree decomposition slightly by ensuring that

no bag in the tree decomposition is empty. This can easily be done by adding an
arbitrary vertex z \in V (G) to all bags of the current nice tree decomposition. This
will ensure the nonemptiness property. Note that our nice tree decomposition will
have width w + 1.

2.2. Parameterized complexity. Let \Sigma be a finite alphabet. A parameterized
problem \scrQ is a subset of \Sigma \ast \times \BbbN .

Definition 2.5 (kernelization). Let \scrQ ,\scrQ \prime be two parameterized problems and let
h : \BbbN \rightarrow \BbbN be some computable function. A generalized kernel from \scrQ to \scrQ \prime of size
h(k) is an algorithm that given an instance (x, k) \in \Sigma \ast \times \BbbN , outputs (x\prime , k\prime) \in \Sigma \ast \times \BbbN
in time poly(| x| + k) such that (i) (x, k) \in \scrQ if and only if (x\prime , k\prime) \in \scrQ \prime , and (ii)
| x\prime | \leq h(k) and k\prime \leq h(k).

The algorithm is a kernel if \scrQ = \scrQ \prime . It is a polynomial (generalized) kernel if
h(k) is a polynomial in k.

Next, we describe a few methods that can be used to rule out the existence of
polynomial kernels. One such method is by a polynomial parameter transformation

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2008 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

[4] from a problem that is known to not admit a polynomial kernel. We repeat the
necessary information here for completeness.

Definition 2.6 (polynomial parameter transformation [4]). Let \scrQ and \scrQ \prime be
parameterized problems. A polynomial parameter transformation from \scrQ to \scrQ \prime is
an algorithm that takes an input (x, k) and outputs (x\prime , k\prime) such that the following
hold.

\bullet (x, k) \in \scrQ if and only if (x\prime , k\prime) \in \scrQ \prime , and
\bullet k\prime is bounded by a polynomial in k.

We denote this as \scrQ \leq ppt \scrQ \prime .

The following theorem follows from [3, Prop. 2.16] and shows how to obtain lower
bounds using polynomial parameter transformations.

Theorem 2.7 (see [3]). Let \scrQ and \scrQ \prime be parameterized problems with \scrQ \leq ppt \scrQ \prime .
If \scrQ \prime admits a polynomial generalized kernel, then \scrQ admits a polynomial generalized
kernel.

Another way to rule out the existence of polynomial kernels is using the framework
of cross-compositions [3]. We start by providing the necessary definitions.

Definition 2.8 (polynomial equivalence relation [3]). An equivalence relation
\scrR on \Sigma \ast is called a polynomial equivalence relation if the following two conditions
hold:

\bullet There is an algorithm that, given two strings x, y \in \Sigma \ast , decides whether x
and y belong to the same equivalence class in time polynomial in | x| + | y| .

\bullet For any finite set S \subseteq \Sigma \ast the equivalence relation \scrR partitions the elements
of S into a number of classes that is polynomially bounded in the size of the
largest element of S.

Definition 2.9 (cross-composition [3]). Let L \subseteq \Sigma \ast be a language, let \scrR be a
polynomial equivalence relation on \Sigma \ast , and let \scrQ \subseteq \Sigma \ast \times \BbbN be a parameterized problem.
An or-cross-composition of L into \scrQ (with respect to \scrR) is an algorithm that, given t
instances x1, x2, . . . , xt \in \Sigma \ast of L belonging to the same equivalence class of \scrR , takes
time polynomial in

\sum t
i=1 | xi| and outputs an instance (y, k) \in \Sigma \ast \times \BbbN such that the

following hold:
\bullet The parameter value k is polynomially bounded in maxti=1 | xi| + log t.
\bullet The instance (y, k) is a yes-instance for \scrQ if and only if at least one instance
xi is a yes-instance for L.

The following theorem shows how cross-compositions are used to prove kerneliza-
tion lower bounds.

Theorem 2.10 (see [3]). If an NP-hard language L or-cross-composes into the
parameterized problem \scrQ , then \scrQ does not admit a (generalized) polynomial kernel-
ization unless \sansN \sansP \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy .

2.3. Fast subset convolution computation. Given a universe U with n ele-
ments, the subset convolution of two functions f, g : 2U \rightarrow \BbbZ is a function (f \ast g) :
2U \rightarrow \BbbZ such that for every Y \subseteq U , (f \ast g)(Y) = \Sigma X\subseteq Y f(X)g(Y - X). Equivalently,
(f \ast g)(Y) = \Sigma A\uplus B=Y f(A)g(B).

Proposition 2.11 (see [9]). For two functions f, g : 2U \rightarrow \BbbZ , given all the 2n

values of f and g in the input, all the 2n values of the subset convolution f \ast g can be
computed in \scrO (2n \cdot n3) arithmetic operations.

In fact, this result can be extended to subset convolution of functions that map to

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2009

any ring, instead of (\BbbZ ,+,\times) [6]. Consider the set \BbbZ \cup \{ - \infty \} , with the added relation
that \forall z \in \BbbZ , \{ - \infty \} < z. The max operator takes two elements from this set and
outputs the maximum of the two elements. Notice that \BbbZ \cup \{ - \infty \} , along with max
as an additive operator and + as a multiplicative operator, forms a semiring [6]. We
will call this semiring the integer max-sum semiring. The subset convolution of two
functions f, g : 2U \rightarrow \BbbZ \cup \{ - \infty \} with max and + as the additive and multiplicative
operators, becomes (f \ast g)(Y) = maxA\uplus B=Y f(A) + g(B).

Proposition 2.12 (see [9]). Given two functions f, g : 2U \rightarrow \{ - M, . . . ,M\} ,
all the 2n values of f and g in the input, and all the 2n values of the subset convo-
lution (f \ast g) over the integer max-sum semiring can be computed in time 2nn\scrO (1) \cdot
\scrO (M logM log logM).

For more details about subset convolutions and fast calculations of subset convo-
lutions, please refer to [6, 9].

3. Algorithmic results parameterized by treewidth. In this section, we
state the algorithmic results obtained for the ONCF-Coloring and CNCF-Col-
oring problems parameterized by treewidth. On the algorithmic side, we have the
following theorem.

Theorem 3.1. q-ONCF-Coloring and q-CNCF-Coloring parameterized by
treewidth t admit a (2q2)tn\scrO (1) time algorithm.

We also obtain algorithmic lower bounds for the problems under standard as-
sumptions.

Theorem 3.2. The following algorithmic lower bounds can be obtained:
1. For q \geq 3, q-ONCF-Coloring or q-CNCF-Coloring parameterized by

treewidth t cannot be solved in (q - \varepsilon)tn\scrO (1) time under SETH.
2. 2-ONCF-Coloring or 2-CNCF-Coloring parameterized by treewidth t

cannot be solved in 2o(t)n\scrO (1) time under ETH.

In the remainder of this section, we will prove the two theorems stated above.

3.1. Algorithms. In this section, we prove Theorem 3.1. In the following
lemma, we describe an algorithm for q-ONCF-Coloring, parameterized by tree-
width. The algorithm for q-CNCF-Coloring parameterized by treewidth is very
similar and has the same running time.

Lemma 3.3. q-ONCF-Coloring parameterized by treewidth t admits a
(2q2)tn\scrO (1)-time algorithm.

Proof. We assume that a nice tree decomposition \scrT = (T, \{ X\bfu \} \bfu \in V (T)), rooted
at a leaf r, is given to us. Also, recall that no bag is empty, and that each leaf bag
or the root bag has exactly one vertex in it. We proceed with the following treewidth
dynamic programming. Given a bag X\bfi corresponding to the vertex i \in V (T), a state
for the bag is a tuple (i, c1, c2, f), where

\bullet i determines the bag;
\bullet c1 : X\bfi \rightarrow [q] is a vertex coloring of X\bfi . Intuitively, for a vertex x \in X\bfi , c1(x)
is the color x receives in the conflict-free coloring we are after;

\bullet c2 : X\bfi \rightarrow [q] is a color assignment to each vertex of X\bfi . For a vertex x \in X\bfi ,
c2(x) should be the color that occurs exactly once in the neighborhood of x;

\bullet f : X\bfi \rightarrow \{ 0, 1\} is an indicator function for the vertices of X\bfi . The idea is that
f(x) indicates whether x already has a neighbor of color c2(x) in the subtree
rooted at i.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2010 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

Let \scrS \bfi be the set of all states associated with X\bfi . A function \Gamma \bfi : \scrS \bfi \rightarrow \{ 0, 1\}
is defined as follows: For a state s = (i, c1, c2, f), suppose there is a vertex coloring
c : V\bfi \rightarrow [q] such that (i) its restriction to the vertices in X\bfi is the coloring c1; (ii) for
each v \in X\bfi , the color c2(v) is used at most once in N(v) \cap V\bfi ; (iii) for each v \in X\bfi ,
if there is a a vertex w \in N(v) \cap V\bfi such that c1(w) = c2(v), then f(v) = 1 and
otherwise f(v) = 0; (iv) for any vertex v \in V\bfi \setminus X\bfi , N(v) \subseteq V\bfi has a uniquely colored
vertex under coloring c. Then \Gamma \bfi (s) = 1. Otherwise, \Gamma \bfi (s) = 0. In other words, c is
such that except for the vertices in X\bfi the graph induced on V\bfi is ONCF-colored and
a state s stores a snapshot of c at the boundary X\bfi of the graph seen so far.

Our dynamic programming will calculate the function \Gamma \bfi for each bag i. Note
that for the root X\bfr = \{ z\} , if in \scrS \bfr there is a state (r, c1, c2, f) such that f(z) = 1
and \Gamma \bfr (s) = 1, then the graph G has a q-ONCF-coloring. We describe our dynamic
programming in cases according to the types of nodes of the tree decomposition.

Leaf node: Let X\bfi = \{ z\} be a leaf node. Then,

\Gamma \bfi (i, c1, c2, f) =

\Biggl\{
1 if f(z) = 0,

0 otherwise.

This can be calculated in 2q2 time. For the correctness, note that the uniquely colored
neighbor of z cannot appear in the graph seen so far as a leaf node only contains z.

Forget node: Let X\bfi be a forget node with its child being X\bfj . Also, let X\bfj =
X\bfi \cup \{ v\} . Consider a state s = (i, c1, c2, f) \in \scrS \bfi and a state s\prime = (j, d1, d2, g) \in \scrS \bfj . We
say that s\prime is consistent with s, or s\prime \leq c s if (i) d1| X\bfi

= c1, d2| X\bfi
= c2, (ii) g| X\bfi

= f
and g(v) = 1. Then,

\Gamma \bfi (i, c1, c2, f) =

\Biggl\{
\Gamma \bfj (j, d1, d2, g) if (j, d1, d2, g) \leq c (i, c1, c2, f),

0 otherwise.

This can be calculated in (2q2)| X\bfi | time. To prove correctness, first suppose that
\Gamma \bfi (i, c1, c2, f) = 1 and let c : V\bfi \rightarrow [q] be a coloring that is a witness to this. By
definition of consistency, there is only one state (j, d1, d2, g) such that (j, d1, d2, g) \leq c

(i, c1, c2, f). Since V\bfi = V\bfj , the same coloring c also witnesses that \Gamma \bfj (j, d1, d2, g) = 1.
Conversely, suppose \Gamma \bfj (j, d1, d2, g) = 1, where (j, d1, d2, g) is the unique state such
that (j, d1, d2, g) \leq c (i, c1, c2, f). Let c : V\bfj \rightarrow [q] be a coloring that is a witness to
this. Since V\bfi = V\bfj and by definition of consistency g(v) = 1, the same coloring c also
witnesses the fact that \Gamma \bfi (i, c1, c2, f) = 1. Thus, our recurrence correctly calculates
\Gamma \bfi (i, c1, c2, f).

Introduce node: Let X\bfi be an introduce node with its child being X\bfj . Also, let
X\bfi = X\bfj \cup \{ v\} . Consider a state s = (i, c1, c2, f) \in \scrS \bfi and a state s\prime = (j, d1, d2, g) \in \scrS \bfj .
We say that s\prime is consistent with s, or s\prime \leq c s (i) if c1| X\bfj

= d1, c2| X\bfj
= d2; (ii) if there

is a w \in N(v) \cap X\bfi such that c2(v) = c1(w) then there is exactly one such w and
f(v) = 1, otherwise there is no such w and f(v) = 0; (iii) if there is a w \in N(v) \cap X\bfi

such that c1(v) = c2(w) then g(w) = 0 and f(w) = 1; (iv) for all other u \in X\bfj ,
f(u) = g(u). Then,

\Gamma \bfi (i, c1, c2, f) =

\Biggl\{
maxs\prime \in \scrS j

\Gamma j(s
\prime) such that s\prime \leq c (i, c1, c2, f),

0 otherwise.

This can be calculated in (2q2)| X\bfi | time. To prove correctness, first suppose that
\Gamma \bfi (i, c1, c2, f) = 1 and let c : V\bfi \rightarrow [q] be a coloring that is a witness to this. By the

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2011

definition of consistency, there is at least one state s\prime such that s\prime \leq c (i, c1, c2, f) and
the same coloring c also witnesses the fact that \Gamma \bfj (s

\prime) = 1. Conversely, suppose there is
a state s\prime such that s\prime \leq c (i, c1, c2, f) and \Gamma \bfj (s

\prime) = 1. Then by definition of consistency,
\Gamma \bfi (i, c1, c2, f) = 1. Thus, our recurrence correctly calculates \Gamma \bfi (i, c1, c2, f).

Join node: Let X\bfi be a join node with its children being X\bfa and X\bfb . This
means that X\bfi = X\bfa = X\bfb . Consider a state s = (i, c1, c2, f) \in \scrS \bfi , and states
s\prime = (a, d1, d2, g) \in \scrS \bfa , s

\prime \prime = (b, e1, e2, h) \in \scrS \bfb . We say that \{ s\prime , s\prime \prime \} is consistent with
s, or \{ s\prime , s\prime \prime \} \leq c s; (i) if c1 = d1 = e1, c2 = d2 = e2; (ii) if there is a v \in X\bfi such that
g(v) = 1 (h(v) = 1) then h(v) = 0 (g(v) = 0) and f(v) = 1; (iii) for all other v \in X\bfi ,
f(v) = g(v) = h(v) = 0. Then

\Gamma \bfi (s) =

\Biggl\{
maxs\prime \in \scrS \bfa ,s\prime \prime \in \scrS \bfb

\Gamma \bfa (s
\prime) \cdot \Gamma \bfb (s

\prime \prime) such that \{ s\prime , s\prime \prime \} \leq c s,

0 otherwise.

As before, the correctness of the recurrence follows from the definition of consis-
tency.

It is straightforward to calculate this in (3q2)| X\bfi | time; we will further improve
this to (2q2)| X\bfi | time as follows.

Notice that if we fix c1 and c2, then d1, d2, e1, e2 get fixed for consistent states.
Also, given f , g, and h, consider the vertices B(f) = \{ v \in X\bfi | f(v) = 0\} . Then for
each vertex v \in B(f), g(v) = h(v) = 0. Now consider X = X\bfi \setminus B(f). For consistent
states, the following relations hold: (i) g - 1(1) \uplus h - 1(1) = X; (ii) g - 1(0) \setminus B(f) =
h - 1(1) and g - 1(1) = h - 1(0) \setminus B(f). Thus, if we are given the function g, we can
completely determine h when we are looking at consistent states. Now, fix a function
f . We define functions F\bfa , F\bfb : 2

Xi \rightarrow [0, 1] in the following way. For a subset
Z \subseteq X\bfi \setminus B(f), define a function g : X\bfi \rightarrow \{ 0, 1\} such that for any v \in Z, g(v) = 1 and
g(v) = 0 otherwise. Now, define F\bfa (Z) = \Gamma \bfa (a, c1, c2, g) and F\bfb (Z) = \Gamma \bfb (b, c1, c2, g).

Then,

\Gamma \bfi (i, c1, c2, f) =

\left\{
1 if Fa \ast Fb(X\bfi \setminus B(f)) =

maxZ\subseteq X\bfi \setminus B(f)\{ Fa(Z) + Fb((X\bfi \setminus B(f)) \setminus Z)\} = 2,

0 otherwise.

The correctness of this recurrence is same as the correctness of the previous re-
currence. Due to fast subset convolution over the max-sum semiring [6], this can be
calculated in (2q2)| X\bfi | time.

3.2. Running time lower bounds. In this section, we given the proof of The-
orem 3.2 by describing lower bounds on algorithmic running times for the ONCF-
Coloring and CNCF-Coloring problems parameterized by treewidth.

We start by providing a running time lower bound on 2-ONCF-Coloring under
ETH claimed in Theorem 3.2.

Lemma 3.4. 2-ONCF-Coloring parameterized by treewidth t cannot be solved
in 2o(t)n\scrO (1) time under ETH.

Note that a reduction from 3-NAE-SAT to 2-ONCF-Coloring was given in
Theorem 2 of [11]. Combining this with the fact that 3-NAE-SAT where each instance
variable appears in at most 4 clauses cannot be solved in 2o(m)n\scrO (1) time under
ETH [7], the reduction from 3-NAE-SAT to 2-ONCF-Coloring in [11] proves the
above lemma. In this paper, we provide an alternative reduction from 3-SAT that
gives further structural insight into the ONCF-Coloring problem and introduces a
useful gadget, which we will introduce next.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2012 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

g1

g2

g3

g4

g5

g6

g7

g8
g9

g10

g1

g2

g3

g4

g5

g6

g7

g8
g9

g10

g1

g2

g3

g4

g5

g6

g7

g8
g9

g10

Fig. 1. The ONCF-gadget (left). Observe that if g1, g2, and g3 are all red, then g9 must also
be red (middle), and if one of g1, g2, or g3 is blue, then g9 may be blue (right).

Definition 3.5. An ONCF-gadget is a gadget on ten vertices, as depicted in
Figure 1.

The objective of this gadget is the following. The vertices \{ g1, g2, g3, g10\} in
Figure 1 will be the interaction points of the ONCF-gadget with the outside world.
As will be proved in the following two lemmas, the gadget is designed so as to (i)
disallow certain 2-ONCF-colorings and (ii) allow certain 2-ONCF-colorings on its
interaction points.

Lemma 3.6. Let G be a ONCF-gadget with a coloring c : V (G) \rightarrow \{ red,blue\} such
that for all 4 \leq i \leq 9 the neighborhood of gi is ONCF-colored by c. If c(g1) = c(g2) =
c(g3) = red, then c(g9) = red.

Proof. Suppose c(g1) = c(g2) = c(g3) = red . Since N(g4) = \{ g1, g2, g6\} , this
implies c(g6) = blue. Similarly, we find c(g7) = blue. Since N(g8) = \{ g6, g7, g9\} now
has two blue vertices, we conclude that c(g9) = red .

Lemma 3.7. Let G be a ONCF-gadget. Let c\prime : \{ g1, g2, g3\} \rightarrow \{ red,blue\} be a
partial 2-ONCF-coloring of G. If there exists i \in [3] such that c\prime (gi) = blue, then c\prime

can be extended to a coloring c satisfying
1. for every 4 \leq i \leq 9, the neighborhood of vertex gi is ONCF-colored by c

(contains at most one red, or at most one blue vertex); and
2. c(g9) = blue, c(g8) = red, c(g4) = c(g5) = blue, and c(g10) = blue.

Proof. Let c equal c\prime on vertices g1, g2, and g3 and define c(g9) := blue, c(g8) :=
red , c(g4) := c(g5) := blue, and c(g10) := blue. If c\prime (g1) = blue or c\prime (g2) = blue,
define c(g6) := red else define c(g6) := blue. If c\prime (g2) = blue or c\prime (g3) = blue, define
c(g7) := red , otherwise let c(g7) := blue. This completes the definition of c. It is easy
to verify that both requirements are satisfied by this coloring; refer to Figure 1 for an
example coloring.

Now that we have introduced the necessary gadgets, we can prove the running
time lower bound for 2-ONCF-Coloring using a reduction from 3-SAT.

Proof of Lemma 3.4. We show this by giving a reduction from 3-SAT. Given an
instance of 3-SAT with variables x1, . . . , xn and clauses C1, . . . , Cm, create a graph
G as follows. Start by creating palette vertices R,R\prime , and B, and edges \{ R,R\prime \} and
\{ R\prime , B\} . For each variable i \in [n], create vertices ui, vi, wi and add edges \{ ui, vi\} and
\{ vi, wi\} . For the remainder of the construction we will reuse the ONCF-gadget as
defined in Definition 3.5. For each j \in [m], add an ONCF-gadget Gj and connect g10
of this gadget to R. Add vertices s1j , s

2
j , and s3j and connect sbj to gb in Gj for b \in [3].

Let clause Cj := (\ell 1, \ell 2, \ell 3). Now if \ell b = xi for some i \in [n], b \in [3], connect sbj to

ui. Similarly, if \ell b = \neg xi, connect s
b
j to wi. This concludes the construction of G, it

remains to show that G is 2-ONCF-colorable if and only if the formula was satisfiable.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2013

Suppose the satisfiability instance has satisfying assignment \tau : \{ x1, . . . , xn\} \rightarrow
\{ 0, 1\} , we show how to color G. Let c(R) := c(R\prime) := red , and c(B) := blue. Let
c(vi) := blue for all i \in [n] and define c(sbj) := red for all b \in [3], j \in [m]. Finally,
if \tau (xi) = 1, let c(ui) := red and c(wi) := blue. Otherwise, let c(ui) := blue and
c(wi) := red . For each gadget Gm, vertex gb for b \in [3] has neighbor sbj . Let v \in
\{ ui, wi | i \in [n]\} be the other neighbor of vertex sbj . Define c(gb) such that c(gb) \not = c(v).
Since the formula was satisfied by \tau , for each j \in [m] there hereby exists b \in [3] such
that c(gb) = blue. We use Lemma 3.7 to extend the partial coloring to color gadget
Gm, with c(g10) = blue and c(g4) = c(g5) = blue. It is straightforward to verify that
c is a 2-ONCF-coloring of G.

Suppose G has a 2-ONCF-coloring, we give a satisfying assignment \tau . Assume
without loss of generality that c(R) := red . Since N(vi) := \{ wi, ui\} for all i \in [n], it
follows that c(ui) \not = c(wi). We therefore define \tau (xi) := 1 if c(ui) := red and \tau (xi) = 0
if c(wi) := red . Let Cj be a clause; we will show that \tau satisfies Cj to conclude the
proof. Suppose for contradiction that \tau does not satisfy Cj . Then every vertex sbj
for b \in [3] had one neighbor in \{ ui, wi | i \in [n]\} that is blue in G. Thereby, its only
other neighbor gb in gadget Gj must be colored red. It follows from Lemma 3.6 that
c(g9) := red. Observe however that N(g10) := \{ g9, R\} and that both these vertices
are red, contradicting that c is a 2-ONCF-coloring of G. Thus, the formula is satisfied
by \tau .

Note that the graph induced by V (G) \setminus \{ ui, vi, wi | i \in [n]\} is a disjoint union of
ONCF-gadgets and has treewidth two. As such, G has treewidth at most 3n+ 2.

In this reduction a 3-SAT formula \phi on n variables and m clauses is reduced to
a graph G with treewidth at most 3n+ 2. We proved that \phi is satisfiable if and only
if G has a 2-ONCF-coloring. Since 3-SAT cannot be solved in 2o(n)n\scrO (1) time under
ETH, this also implies that 2-CNCF-Coloring parameterized by treewidth t cannot
be solved in 2o(t)n\scrO (1) time under ETH.

Lemma 3.8. For q \geq 3, q-ONCF-Coloring parameterized by treewidth t cannot
be solved in (q - \varepsilon)tn\scrO (1) time under SETH.

Proof. It was shown in [17] that for a constant q \geq 3, q-Coloring cannot be
solved in (q - \varepsilon)tn\scrO (1) time under SETH. For a graph G, let G\prime be the graph obtained
by subdiving every edge of E(G) once. It was shown in Theorem 3 of [11], that G
has a q-coloring if and only if G\prime has a q-ONCF-coloring. Also, note that tw(G\prime) \leq
tw(G) since it is a subdivision of G. Thus, for a constant q \geq 3, the lower bound of
(q - \varepsilon)tn\scrO (1) on the running time of any algorithm under SETH follows.

Lemma 3.9. 2-CNCF-Coloring parameterized by treewidth t cannot be solved
in 2o(t)n\scrO (1) time under ETH.

Proof. In [11], a reduction of 2-CNCF-Coloring was given from 3-SAT. In this
reduction a 3-SAT formula \phi on n variables and m clauses is reduced to a graph G
with treewidth at most 20m. It was shown that \phi is satisfiable if and only if G has a
2-CNCF-coloring. Since 3-SAT cannot be solved in 2o(m)n\scrO (1) time under ETH, this
also implies that 2-CNCF-Coloring parameterized by treewidth t cannot be solved
in 2o(t)n\scrO (1) time under ETH.

Lemma 3.10. For q \geq 3, q-CNCF-Coloring parameterized by treewidth t can-
not be solved in (q - \varepsilon)tn\scrO (1) time under SETH.

Proof. It was shown in [17] that for a constant q \geq 3, q-Coloring cannot be
solved in (q - \varepsilon)tn\scrO (1) time under SETH. For a graph G, Theorem 3.1 of [1] constructs

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2014 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

a graph G\prime such that G has a q-coloring if and only if G\prime has a q-CNCF-coloring. The
construction of G\prime requires the graphs Gk as described in the preliminaries (refer to
Definition 2.1); these graphs were first constructed in [1].

Returning to the construction of G\prime , we obtain G\prime from G in the following manner:
(i) for each vertex v \in V (G) we add two copies G1v

q and G2v
q of Gq and make v adjacent

to all vertices of G1v
q and G2v

q ; (ii) for each edge e = \{ u, v\} \in E(G) we add two copies
G1e

q - 1 and G2e
q - 1 of Gq - 1 and make the vertices u and v adjacent to all vertices of

G1e
q - 1 and G2e

q - 1. This completes the construction of G\prime . For the completion of our
proof it remains to show that \sanst \sansw (G\prime) \leq \sanst \sansw (G) in order to obtain a lower bound of
(q - \varepsilon)tn\scrO (1) on the running time of any algorithm under SETH.

Claim 3.11. For a graph Gk, \sanst \sansw (Gk) \leq k - 1.

Proof. We prove our statement by induction on k. In the base case, it is true that
\sanst \sansw (G1) = 0 and \sanst \sansw (G2) = 1. Let the induction hypothesis be that for any k\prime < k,
\sanst \sansw (Gk\prime) \leq k\prime - 1. We prove the statement for Gk. By construction, Gk contains a
clique C on k vertices. We create a bag X with all the vertices of C. By theinduction
hypothesis, for each copy of Gk - 1 we have a tree decomposition \scrT k - 1 of width k - 2.
Similarly, let \scrT k - 2 be a tree decomposition of Gk - 2 with width k - 3. Note that by
construction, each copy of Gk - 1 only has edges with a single vertex, say v from the
clique C. To each bag of the corresponding tree decomposition, we add the vertex
v, thereby making the treewidth of the tree decomposition at most k - 1. We pick
an arbitrary bag of the tree decomposition and attach it to the bag X containing the
vertices of C. Similarly, each copy of Gk - 2 only has edges with the end points of
a single edge, say \{ u, v\} from the clique C. To each bag of the corresponding tree
decomposition, we add the vertices u, v, thereby making the treewidth of the tree
decomposition at most k - 1. We pick an arbitrary bag of the tree decomposition and
attach it to the bag X. The resulting tree decomposition has width at most k - 1.
Thus, \sanst \sansw (Gk) \leq k - 1. \lrcorner

This helps us to show the desired treewidth bound for G\prime .

Claim 3.12. For a graph G\prime , \sanst \sansw (G\prime) \leq max\{ \sanst \sansw (G), q\} .

Proof. The construction of a desired tree decomposition is similar to the construc-
tion given in the previous claim. Let \scrT be a tree decomposition of G. By construction,
each copy of Gq - 1, that is added to G to form G\prime , is attached to a single vertex in
V (G), say v. From the previous claim, we have a tree decomposition \scrT q - 1 of width
q - 2 for this copy of Gq - 1. To each bag of \scrT q - 1, we add the vertex v, thereby in-
creasing the treewidth to at most k - 1. We pick an arbitrary bag of \scrT that contains
v and an arbitrary bag of \scrT q - 1 and attach them together. Similarly, each copy of
Gq - 2, that is added to G to form G\prime , is attached to the end points of a single edge
in E(G), say \{ u, v\} . From the previous claim, we have a tree decomposition \scrT q - 2 of
width q - 3 for this copy of Gq - 2. To each bag of \scrT q - 2, we add the vertices u, v,
thereby increasing the treewidth to at most k - 1. We pick an arbitrary bag of \scrT that
contains the edge \{ u, v\} and an arbitrary bag of \scrT q - 2 and attach them together. Note
that the resulting tree decomposition is a tree decomposition of G\prime and has width at
most max\{ \sanst \sansw (G), q\} . Thus, we are done. \lrcorner

As q is a constant, we can restrict ourselves to the case that \sanst \sansw (G) \geq q. Now,
\sanst \sansw (G\prime) \leq max\{ \sanst \sansw (G), q\} \leq \sanst \sansw (G). Thus, for a constant q \geq 3, the lower bound of
(q - \varepsilon)tn\scrO (1) on the running time of any algorithm under SETH follows.

Thus, using Lemmas 3.4, 3.8, 3.10, and 3.9 we complete the proof of Theorem 3.2.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2015

4. Kernelization. In this section, we will study the kernelizability of the ONCF-
and CNCF-coloring problems, when parameterized by the size of a vertex cover. We
prove the following two theorems to obtain a dichotomy on the kernelization question.

Theorem 4.1. q-ONCF-Coloring for q \geq 2 and q-CNCF-Coloring for
q \geq 3, parameterized by vertex cover size do not have polynomial kernels, unless
\sansN \sansP \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy .

Sections 4.1 and 4.2 together give a full proof of Theorem 4.1.

Theorem 4.2. 2-CNCF-Coloring parameterized by vertex cover size k has a
generalized kernel of size \scrO (k9).

We prove the above theorem in section 4.3. Note that by using an NP-complete-
ness reduction, this results in a polynomial kernel for 2-CNCF-Coloring parame-
terized by vertex cover size. We also obtain an \scrO (k2 log k) kernel for an extension
problem of 2-CNCF-Coloring and this is described in section 4.4.

4.1. Kernel lower bounds for \bfitq -ONCF-COLORING. In this part, we begin
the proof of Theorem 4.1 by showing that q-ONCF-Coloring parameterized by
vertex cover size has no polynomial kernel when q is at least 2. We first show the
relevant bound for q = 2 and then use a polynomial parameter transformation to
obtain the general lower bound.

For the construction in the following proof, we will again use the ONCF-gadget
that was introduced in Definition 3.5 (and shown in Figure 1). Recall the relevant
properties of this gadget that were given in Lemmas 3.6 and 3.7.

Lemma 4.3. 2-ONCF-Coloring parameterized by vertex cover size does not
have a polynomial kernel, unless \sansN \sansP \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy .

Proof. We show this by giving an or-cross-composition (see Definition 2.9) from
Clique to 2-ONCF-Coloring parameterized by vertex cover size. It is well known
that Clique is an NP-hard problem [10]. Therefore from Theorem 2.10, an or-cross-
composition from Clique to 2-ONCF-Coloring parameterized by vertex cover size
implies that the latter does not have a polynomial kernel unless \sansN \sansP \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy .

We proceed with the description of the OR-cross-composition. For the sake of
brevity, in this proof, we use 2-ONCF-coloring and ONCF-coloring interchangeably.
We define a polynomial equivalence relation \scrR (see Definition 2.8) as follows. Let 2
instances of Clique be equivalent under \scrR if the graphs have the same number of
vertices and they ask for a clique of the same size. It is easy to verify that \scrR is a poly-
nomial equivalence relation. Suppose we are given t instances of clique that are equiva-
lent under \scrR , label them as X1, . . . , Xt. Let every instance have n vertices and ask for
a clique of size k, and enumerate the vertices in each instance arbitrarily. We create an
instanceG for 2-ONCF-coloring by the following steps (see Figure 2 for a sketch ofG).

1. Create vertices R, R\prime , B, and B\prime . Connect R to R\prime , R\prime to B, and B to B\prime .
This ensures that R and B receive distinct colors in any coloring. (We will
without loss of generality assume that R receives the color red, and B receives
the color blue). Thus, the vertices R and B can be thought of as the palette
for any 2-ONCF-coloring for G.

2. Create 3t vertices \{ y\ell , y\prime \ell , y\prime \prime \ell | \ell \in [t]\} and let Y be the set containing these
vertices. These vertices will be used to ``select"" which instance has a clique
of size k.

3. Add a vertex a and connect a to all vertices in Y . Add vertices a1, a
\prime
1, a2,

and a\prime 2 and edges \{ a, a1\} , \{ a, a2\} , \{ a1.a\prime 1\} , and \{ a2, a\prime 2\} . Finally, connect a\prime 1

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2016 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

R

v1 v2 v3 v4 v5

h1

h2

h3

v11

v′11

v35

v′25

h1
1h′1

1

h2
3h′2

3

p3,5

p1,1

P

a
a1 a′

1

a2 a′
2

B

B′R′

s1,25,4
p1,5

p2,4 g3

g9
g10

y1
y′
1

y′′
1

y3
y′
3

y′′
3

y′
4

y′′
4

v′′25

Fig. 2. A sketch of the constructed graph G for k = 3, n = 5, and t = 4, assuming edge \{ 5, 4\}
is missing in instance X2 and present in all other instances. All vertices created in steps 7 and 8
of the construction are omitted for simplicity, except for vertex s1,25,4 and gadget G1,2

5,4.

to B and connect a\prime 2 to B. This ensures that vertices a1 and a2 are red in
any valid ONCF-coloring. Thereby, a must have exactly one blue neighbor,
implying exactly one vertex in Y is blue. The vertex that is colored blue in
Y will then correspond to the input instance that has a clique of size k.

4. Add vertices pi,j for i \in [k], j \in [n]. Let P be the set consisting of these
vertices. These vertices will be used to select the vertices that correspond to
a clique in one of the input instances.

5. Add a vertex hi for all i \in [k]. Connect hi to pi,j for all j \in [n]. For each
vertex hi, add vertices h1

i , h
\prime 1
i , h

2
i , and h\prime 2

i . Connect h to h1
i and h2

i . Connect
h1
i to h\prime 1

i , connect h2
i to h\prime 2

i . Connect h\prime 1
i and h\prime 2

i to R, in order to ensure
that h1

i and h2
i will both be colored blue in any ONCF-coloring. Let H be

the set of all vertices created in this step.
6. Add a vertex vj for j \in [n]. Connect vj to pi,j for all i \in [k]. Create vertex

v3j and connect it to vj . Furthermore, create vertices vxj , v
\prime x
j , and v\prime \prime xj for all

x \in [2] and connect vxj to vj . Furthermore, connect v\prime \prime xj to vxj . Then, connect
vxj to v\prime xj and v\prime xj to R for all x \in [2]. By this construction, vertex vj has
at least two blue neighbors, and one neighbor whose coloring can be freely
chosen. Let V be the set of all vertices created in this step.

7. For every i, i\prime \in [k] and j, j\prime \in [n], we add a vertex si,i
\prime

j,j\prime and let S be the set
containing all these vertices. For each \ell \in [t], i, i\prime \in [k], and j, j\prime \in [n], add the

edges \{ si,i
\prime

j,j\prime , y\ell \} , \{ s
i,i\prime

j,j\prime , y
\prime
\ell \} , and \{ si,i

\prime

j,j\prime , y
\prime \prime
\ell \} if and only if \{ j, j\prime \} /\in E(X\ell). The

idea is that vertex si,i
\prime

j,j\prime verifies that if we select vertices j and j\prime to be part of
the clique, then no instance X\ell where \{ j, j\prime \} /\in E(X\ell) can be selected as the
yes-instance. To do this, we add additional gadgets in the following step.

8. For each i, i\prime \in [k] and j, j\prime \in [n] add a new ONCF-gadget Gi,i\prime

j,j\prime . Identify
vertex g1 of the gadget with pi,j and identify vertex g2 of the gadget with

pi\prime ,j\prime . Add the edge \{ g3, si,i
\prime

j,j\prime \} . Finally, connect vertex g10 to R.
In the remainder, we observe that c(R) \not = c(B) for any 2-ONCF-coloring of G.

Thereby, we can safely rename the colors such that c(R) = red and c(B) = blue.

Claim 4.4. Let c be any 2-ONCF-coloring of G, then c(a1) = c(a2) = red,
c(v1j) = c(v2j) = blue for all j \in [n], and c(h1

i) = c(h2
i) = blue for all i \in [k].

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2017

Proof. This follows immediately from the fact that there is a degree-2 vertex
connecting these vertices to R or B, respectively. \lrcorner

Claim 4.5. For any 2-ONCF-coloring c of G, there exists exactly one vertex
y\ast \in Y such that c(y\ast) = blue and for all other vertices y \in Y \setminus \{ y\ast \} , c(y) = red.

Proof. Observe that N(a) = \{ a1, a2\} \cup Y and that c(a1) = c(a2) = red by Claim
4.4. Thereby, a must have a unique blue neighbor and this neighbor is in Y . \lrcorner

Claim 4.6. Let Gi,i\prime

j,j\prime be a gadget and let c be a 2-ONCF-coloring of G. Then
c(g1) = c(g2) = red in this gadget implies that c(g3) = blue.

Proof. Suppose c(g1) = c(g2) = c(g3) = red . It follows from Lemma 3.6 that
thereby c(g9) := red . Observe however that N(g10) = \{ R, g9\} by definition. Since
both these vertices are red, this contradicts the assumption that c is a proper ONCF-
coloring. \lrcorner

Claim 4.7. For any 2-ONCF-coloring c of G, there exist distinct j1, . . . , jk such
that c(pi,ji) = red and for all other p \in P , c(p) := blue.

Proof. We start by showing that for each i \in [k], there is exactly one j \in [n]
such that c(pi,j) = red . Consider the neighborhood of vertex hi. N(hi) := \{ h1

i , h
2
i \} \cup

\{ pi,j | j \in [n]\} . Since c(h1
i) = c(h2

i) = blue by Claim 4.4, it follows that indeed
\{ h1

i , h
2
i \} \cup \{ pi,j | j \in [n]\} contains exactly one red vertex, let this be vertex pi,ji . It

remains to show that all ji are distinct.
We show this by proving that for each j \in [n], there is at most one i \in [k] such that

c(pi,j) = red . Consider vertex vj , observe that N(vj) := \{ v1j , v2j , v3j \} \cup \{ pi,j | i \in [k]\} .
Since c(v1j) = c(v2j) = blue by Claim 4.4, it follows that vj has a unique red neighbor,
and thus there is at most one i \in [k] such that c(pi,j) = red . Hereby, the claim
follows. \lrcorner

Using the claims above, we can now prove the correctness of the given cross-
composition.

Claim 4.8. If there exists an instance X\ell that has a clique of size k, then G can
be 2-ONCF-colored.

Proof. Let \ell be such that X\ell is a yes-instance for clique. Choose j1, . . . , jk \in [n]
such that these vertices form a clique in X\ell . We now give an ONCF-coloring c for G;
see Figure 2 for an example ONCF-coloring of G.

1. Let c(R) := c(R\prime) := red and c(B) := c(B\prime) := blue.
2. Let c(y\ell) := blue. For all other vertices in y \in Y , let c(y) := red .
3. Let c(a) := blue and c(a1) := c(a2) := c(a\prime 1) := c(a\prime 2) := red .
4. Let c(pi,ji) := red for all i \in [k]. For all other vertices p \in P , let c(p) := blue.
5. Let c(hi) := red for all i \in [k]. Let c(h) := blue for all other vertices h \in H.
6. For j \in [n], let c(v3j) := red if j /\in \{ j1, . . . , jk\} , let c(v3j) := blue otherwise. Let

c(v\prime \prime xj) := red for all x \in [2]. Let c(v) := blue for all remaining vertices v \in V .
7. Let c(s) := red for all s \in S.
8. It remains to color the introduced gadgets. Observe that vertices g1 and g2 of

each gadget have already been colored, as they were identified with vertices

from P . We now proceed as follows. Define c(g3) := blue whenever si,i
\prime

j,j\prime

has no blue neighbor in Y and define c(g3) := red otherwise. Observe that
since j1, . . . , jk form a clique in instance X\ell , it never happens that c(g1) =
c(g2) = c(g3) = red by this definition. Color the remainder of each gadget

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2018 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

using Lemma 3.7, such that the coloring satisfies property 2 of the lemma
statement.

This defines a 2-coloring of G; it remains to verify that c is indeed a 2-ONCF-coloring.
We consider the neighborhood of each vertex in G.

1. N(R) := \{ R\prime \} \cup \{ v\prime 1j , v\prime 2j | j \in [n]\} \cup \{ h\prime 1
i , h

\prime 2
i | i \in [n]\} . Since c(R\prime) = red

and c(x) = blue for all x \in \{ v\prime 1j , v\prime 2j | j \in [n]\} \cup \{ h\prime 1
i , h

\prime 2
i | i \in [n]\} , N(R)

is ONCF-colored. N(B) := \{ R\prime , B\prime , a\prime 1, a
\prime
2\} , of which only R\prime is red. Thus,

N(B) is ONCF-colored. Furthermore, | N(B\prime)| = 1 and thereby it is trivially
ONCF-colored, and N(R\prime) = \{ R,B\} which have distinct colors as desired.

2. For any vertex y \in Y , N(Y) contains vertex a which is colored blue. Fur-
thermore, N(Y) \setminus \{ a\} \subseteq S and all vertices in S are red.

3. N(a) = Y \cup \{ a1, a2\} . Y contains exactly one blue vertex, and a1 and a2 are
colored red. N(a1) := \{ a, a\prime 1\} , which have distinct colors as desired. Similarly,
N(a2) := \{ a, a\prime 2\} and these vertices are blue and red, respectively. Finally,
N(a\prime 1) := \{ a1, B\} and N(a\prime 2) := \{ a2, B\} , it is easy to verify that these are
ONCF-colored.

4. For i \in [k] and j \in [n], N(pi,j) contains vertex hj which is red. Furthermore,
N(pi,j) \setminus \{ hj\} only contains vertices from V , which are blue, and vertices g4
and g5 from numerous ONCF-gadgets, which are also blue. Thereby it has
red as a unique color in its neighborhood.

5. For i \in [k], N(hi) := \{ pi,j | j \in [n]\} \cup \{ h1
i , h

2
i \} . Observe that all vertices

in N(hi) are blue, except vertex pi,ji which is red. For x \in [2], N(hx
i) :=

\{ h\prime x
i , hi\} and these vertices receive distinct colors. N(h\prime x

i) := \{ R, hx
i \} and

these vertices also receive distinct colors.
6. For j \in [n], we observe that vj has exactly one red neighbor in P and all

its other neighbors are blue. Vertices v1j and vj2 both have exactly one red

neighbor, namely, vertex v\prime \prime 1j or v\prime \prime 2j , respectively. Vertices v\prime xj have one blue

and one red neighbor for x \in [2]. The vertices v\prime \prime xj for x \in [2] and vertex v3j
have degree one and are thus ONCF-colored by definition.

7. For i, i\prime \in [k], j, j\prime \in [n], vertex si,i
\prime

j,j\prime has neighbors in Y and vertex g3 in

gadget Gi,i\prime

j,j\prime . It follows from the definition of the coloring of g3 and the fact

that Y has at most one blue vertex that si,i
\prime

j,j\prime has exactly one blue neighbor.
8. It remains to verify that all gadget vertices are ONCF-colored properly; con-

sider the vertices of gadget Gi,i\prime

j,j\prime . The neighborhoods of vertices g4, g5, . . . , g9
are ONCF-colored by definition. Vertices g1 and g2 were identified with ver-

tices from P and have already been discussed above. N(g3) = \{ g5, si,i
\prime

j,j\prime \} and
these are blue and red, respectively. N(g10) = \{ g9, R\} and these are also blue
and red. \lrcorner

Claim 4.9. If G can be 2-ONCF-colored, then there exists \ell \in [t] such that in-
stance X\ell has a clique of size k.

Proof. Let a 2-ONCF-coloring c of G be given. By Claim 4.5, there exists y \in Y
with c(y) := blue. Pick \ell such that y \in \{ y\ell , y\prime \ell , y\prime \prime \ell \} . By Claim 4.7, take distinct
j1, . . . , jk \in [n] such that c(p(i, ji)) = red . We will show that instance X\ell has a clique
of size k, by proving that vertices j1, . . . , jk form a clique in X\ell .

Suppose not, then there exist i, i\prime \in [k] such that ji and ji\prime are not connected by

an edge in X\ell . We show that this leads to a contradiction. Consider gadget Gi,i\prime

ji,ji\prime
.

Vertices g1 and g2 of this gadget are colored red, as they were identified with vertices

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2019

pi,ji and pi\prime ,ji\prime respectively. It follows from Claim 4.6 that thereby c(g3) := blue in this

gadget. Now consider the neighborhood of vertex si,i
\prime

ji,ji\prime
. It contains vertex g3 from

gadget Gi,i\prime

ji,ji\prime
and the vertices y\ell , y

\prime
\ell , y

\prime \prime
\ell since edge \{ ji, ji\prime \} does not occur in instance

X\ell . It now follows that vertex si,i
\prime

ji,ji\prime
has at least two blue and two red neighbors in

G, which contradicts that c is an ONCF-coloring of G. \lrcorner

From Claims 4.8 and 4.9, it follows that G can be 2-ONCF-colored if and only
if there exists an \ell such that X\ell has a clique of size k. To prove the lower bound, it
remains to bound the size of a vertex cover in G. Since Y is an independent set in G,
it follows that V (G) \setminus Y is a vertex cover of G. Observe that

| V (G) \setminus Y | = \scrO (n2 \cdot k2).

To conclude, since we have given a cross-composition from Clique to 2-ONCF-
Coloring parameterized by vertex cover size, the lower bound now follows from
Theorem 2.10.

Now, we use the lower bound obtained for 2-ONCF-Coloring in Lemma 4.3 and
exhibit a polynomial parameter transformation to obtain the general lower bound for
q-ONCF-Coloring for all q \geq 2. This completes the lower bound results for q-
ONCF-Coloring claimed in Theorem 4.1.

Lemma 4.10. For any q \geq 2, q-ONCF-Coloring parameterized by vertex cover
size does not have a polynomial kernel, unless \sansN \sansP \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy .

Proof. We prove the result by giving a polynomial parameter transformation
from 2-ONCF-Coloring parameterized by vertex cover size to q-ONCF-Color-
ing parameterized by vertex cover size for any constant q > 2. By Theorem 2.7
and Lemma 4.3, this implies that q-ONCF-Coloring parameterized by vertex cover
size, does not have a polynomial kernel unless \sansN \sansP \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy for q \geq 2. We will
do this by adding additional structures to the graph, that ensure that the original
graph is colored using only 2 colors, and that for any vertex in the original graph,
its ONCF-color is also one of these two colors. Suppose we are given a graph G for
2-ONCF-Coloring, we show how to obtain G\prime for q-ONCF-Coloring.

1. Start by initiating G\prime as G. Let V := V (G).
2. Add 2q vertices x0

1, x
0
2, . . . , x

0
q and x1

1, x
1
2, . . . , x

1
q. Let X be the set of all these

vertices. Add a clique on x0
1, x

0
2, . . . , x

0
q. Connect x1

j to x0
i for all i \not = j with

i, j \in [q]. Finally, subdivide all the edges between vertices in X. (Thus,
vertices x0

1, x
0
2, . . . , x

0
q form a subdivided clique in G\prime). Let the set of vertices

used to subdivide these edges be X \prime .
3. Add 2(q - 2) vertices y0\ell , y

1
\ell for \ell \in [q - 2]; let Y be the set containing all

these vertices. Connect y0\ell and y1\ell to all vertices in \{ x0
i , x

1
i | i \in [q] \wedge i \not = \ell \} .

Then, connect y0\ell to x0
\ell and connect y1\ell to x1

\ell . Finally, connect y0\ell and y1\ell to
every vertex v \in V .

4. For b \in \{ 0, 1\} and \ell \in [q - 2], use a subdivided edge to connect yb\ell to x0
j for

all j \not = \ell . Let Y \prime be the set containing all vertices used for subdividing these
edges. This ensures that yb\ell always receives color \ell .

Claim 4.11. If \chi \sansO \sansN (G
\prime) \leq q, then \chi \sansO \sansN (G) \leq 2.

Proof. Suppose G\prime has a q-ONCF-coloring c\prime : V (G\prime) \rightarrow [q], we will now show
that G has a 2-ONCF-coloring. It is easy to observe that c\prime (x0

i) = c\prime (x1
i) for all

i and, furthermore, c\prime (x0
i) \not = c\prime (x0

j) for all i \not = j \in [q], by the subdivided edges

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2020 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

GConnect to

X \ x0
1

X ∪X ′

X \ x1
2

X \ x0
2

x1
1

x0
1 x0

4

x0
2 x0

3

x1
2

x1
4

x1
3

y02

y12

y11

y01X \ x1
1

Fig. 3. Reduction from G to G\prime for q = 5. The subdivided edges from Y to X added in step 4
of the construction are omitted for simplicity.

introduced in step 2. By this observation, we may assume without loss of generality
that c\prime (x0

i) = c\prime (x1
i) = i. It is easy to observe using step 4 of the construction, that

in such a coloring c\prime (y0\ell) = c\prime (y1\ell) = \ell . Thereby, for every \ell \in [q - 2], N(v) contains
two vertices of color \ell , for all v \in V . This implies that for any \ell \in [q - 2] and v \in V ,
we know that \ell is not the color that ensures that N(v) is q-ONCF-colored.

Furthermore, N(y0\ell) contains two vertices of color i for all i \not = \ell (namely, x0
i and

x1
i), and one vertex of color \ell . Thereby, no vertex in v can have color \ell . This implies

that only two colors are used in V , namely, q and q - 1. We conclude that the coloring
c restricted to vertices in V is a 2-ONCF-coloring for G, after renaming the colors to
\{ 1, 2\} . \lrcorner

Claim 4.12. If \chi \sansO \sansN (G) \leq 2, then \chi \sansO \sansN (G
\prime) \leq q.

Proof. Suppose G has a 2-ONCF-Coloring-coloring c, we show how to q-
ONCF-color G\prime . First of all, let c\prime (x0

i) = c\prime (x1
i) = i for all i \in [q] and let c\prime (y0\ell) =

c\prime (y1\ell) = \ell for all \ell \in [q - 2]. For v \in V , let c\prime (v) = q - 1 when c(v) = 1 and let
c\prime (v) = q otherwise. For the vertex x0 on the subdivided edge from x0

q to x1
q - 1, let

c(x0) = q - 1. Similarly, for the vertex x1 on the subdivided edge from x1
q to x0

q - 1,
let c(x1) = q - 1. For all remaining vertices, let c\prime (v) := q. It remains to show that
this gives a q-ONCF-coloring of G\prime . See Figure 3 for a sketch of G\prime .

1. The neighborhoods of vertices in V are trivially q-ONCF-colored since they
have no vertices of color q or q - 1 outside V , and c was a valid 2-ONCF-
coloring.

2. For i \in [q - 2], b \in \{ 0, 1\} vertex xb
i has exactly one neighbor of color i, namely,

ybi . For i \in \{ q - 1, q\} , vertices in xb
i have exactly one neighbor of color q - 1,

namely, xb or x(1 - b). Vertices in X \prime have degree 2 and have neighborhoods
that are q-ONCF-colored by this definition.

3. Vertices y0\ell and y1\ell for \ell \in [q - 2] each have exactly one neighbor of color \ell
and are thus q-ONCF-colored.

4. Neighborhoods of the vertices used for subdividing edges always have two
vertices of distinct color, by definition. \lrcorner

Since G\prime is a copy of G to which we add \scrO (q) additional vertices, it follows that the
vertex cover of G\prime is bounded by k+\scrO (q) = \scrO (k), where k is the size of a vertex cover
in G. Thus, we have given a polynomial-parameter transformation from 2-ONCF-
Coloring to q-ONCF-Coloring with both problems having vertex cover size as
parameter, and the theorem statement follows from Theorem 2.7 and Lemma 4.3.

4.2. Kernel lower bound for CNCF-COLORING. In this part, we complete
the proof of Theorem 4.1 by showing that q-CNCF-Coloring parameterized by

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2021

denoteswhere

u

v

c1

c2

c3

c′3c′1

c′2

u

v

G2G2

Fig. 4. A palette-gadget (left) where every dashed edge should be interpreted as the gadget
depicted on the right.

vertex cover size has no polynomial kernel when q is at least 3. We will use the
gadgets from Definition 2.1 to define our own palette-gadget Cq.

Definition 4.13. To create a palette-gadget Cq, start from a complete graph on
vertices c1, . . . , cq. Then, add vertices c\prime i for i \in [q] and connect c\prime i to cj for all i \not = j.
Let D := \{ ci, c\prime i | i \in [q]\} be the set of distinguished vertices of the gadget. Finally,
for each edge \{ u, v\} \in E(Cq) with u, v \in D, add two new distinct copies of Gq - 1 and
connect all vertices in these copies to both u and v. See Figure 4 for an example of
the palette-gadget C3.

The next two lemmas are used to establish that a palette gadget can indeed serve
as a color palette for CNCF-Coloring.

Lemma 4.14. Let G be a graph and let C be a set of vertices such that G[C] is
isomorphic to the palette-gadget Cq for some q \geq 3. Let f be a q-CNCF-coloring of
G. Then f(ci) \not = f(cj) for all i, j \in [q] with i \not = j. Furthermore, f(ci) = f(c\prime i) for all
i \in [q].

Proof. We show this by showing that if \{ u, v\} is an edge such that there are two
distinct copies of Gq - 1, say G1

q - 1 and G2
k - 1, that are connected to both u and v and

no other vertices in the graph, then f(u) \not = f(v) in any q-CNCF-coloring of G. The
results of the lemma statement then follow from the definition of the palette.

Suppose for contradiction that there exists a q-CNCF-coloring f with f(u) = f(v).
Let i be a color such that | \{ f(u) = i | u \in N [v]\} | = 1. Observe that i \not = f(u) as
f(u) = f(v) and u, v \in N [v]. Therefore, either G1

q - 1 or G2
q - 1 does not use color i,

without loss of generality let this be G1
q - 1. We show that thereby \chi \ast

\sansC \sansN (G
1
q - 1) = q - 2,

which contradicts Lemma 2.2.
Define partial coloring f\ast of G1

q - 1 as follows. For any x \in V (G1
q - 1) with f(x) \not =

f(u), let f\ast (x) := f(x). For any x \in V (G1
q - 1) with f(x) = f(u), leave f\ast (x) unde-

fined. Observe that hereby, the range of f\ast is a subset of [q] \setminus \{ i, f(u)\} and thus f\ast

defines a (q - 2)-coloring of G1
q - 1. From the correctness of f and the fact that any

vertex in G1
q - 1 has two neighbors of color f(v) = f(u) under f , it follows that f\ast is

a partial (q - 2)-CNCF-coloring of G1
q - 1, which is a contradiction.

Lemma 4.15. Let Cq be a palette-gadget for q \geq 3. Then there exists a q-CNCF-
coloring f : V (Cq) \rightarrow [q] such that

1. f(ci) = f(c\prime i) = i for all i \in [q], and
2. for all i \in [q], N [ci] contains exactly one vertex of color i.

Proof. We start by defining f(ci) := f(c\prime i) := i for all i \in [q]. Let D := \{ ci, c\prime i |
i \in [q]\} , observe that the color of all vertices in D has now been defined. All vertices
in V (Cq) \setminus D induce distinct copies of Gq - 1. Consider an arbitrary copy of Gq - 1 in

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2022 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

v1 v2 v3 v4 v5

h1

h2

p3,5

p1,1

P

a

s1,25,4

p1,5

p2,4

h3

a1

a′
2a3

c2,

c2

h3
1

h3
2

c1
h1
1

h′2
3

h3
3

v11 v′25

c1,
c3

c1,
c2

. . .

y1

y2

y3

y4

f1,2
5,4

g1,25,4 b′1,25,4

c1,
c3

c1,
c2

c3
c2, c3
c1, c2
c1, c2

c1, c3

c1, c3

c1, c3

c1, c2

c1, c2

c1, c2

c1,
c3

c1,
c2

v31

Fig. 5. A sketch of the constructed graph G for q = 3, k = 3, n = 5, and t = 4. All vertices
created in steps 7 and 8 are omitted, except those created with i = 1, i\prime = 2, j = 5, and j\prime = 4,
assuming edge \{ 4, 5\} is not present in instance X2. The palette C is omitted; edges to the palette
are drawn as arrows.

Cq, and suppose it was added to the palette gadget for the edge \{ d, d\prime \} with d, d\prime \in D.
Color all vertices of this Gq - 1 with a color x \in [q] such that f(d) \not = x \not = f(d\prime). Observe
that such a color exists since q \geq 3.

Both requirements are satisfied by the definition of f ; it remains to show that f
is a q-CNCF-coloring of Cq. Vertices ci and c\prime i have color i and have no neighbors of
color i, and are thereby properly CNCF-colored. Vertices in V (G) \setminus D are distinct
copies of Gq - 1. It is easy to verify that in N(Gq - 1) there are two vertices with a
unique color, corresponding to the edge for which it was added. Since these colors are
not used to color Gq - 1, the result follows.

Using the gadget introduced above, we now prove the kernelization lower bound.

Lemma 4.16. For any q \geq 3, q-CNCF-Coloring parameterized by vertex cover
size does not have a polynomial kernel, unless \sansN \sansP \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy .

Proof. To prove this theorem, we will give a cross-composition starting from
Clique that is very similar to the one given in Lemma 4.3.

We define the same polynomial equivalence relation; let two instances of Clique
be equivalent if the graphs have the same number of vertices and they ask for a clique
of the same size. Suppose we are given t instances of clique that are equivalent under
this relation, labeled X1, . . . , Xt. Let every instance have n vertices and ask for a
clique of size k. We enumerate the vertices in each instance arbitrarily as 1, . . . , n.
We create an instance G for q-CNCF-Coloring by the following steps, refer to
Figure 5 for a sketch of G.

1. Create a palette-gadget Cq with distinguished vertices c1, . . . , cq and c\prime 1, . . . , c
\prime
q

by Definition 4.13.
2. Create t vertices y1, . . . , yt and let Y := \{ y\ell | \ell \in [t]\} . The idea is that exactly

one of these vertices y\ell will receive color 2 in any q-CNCF-coloring, and this
indicates that X\ell is a yes-instance for clique.

3. Add a vertex a and connect a to y\ell for all \ell \in [t]. Create vertices a1 and
a\prime 1 and connect both of these to vertices c2 and c3 in the palette-gadget.
Furthermore, create vertices a2 and a\prime 2 and connect them to vertices c1 and
c2. Finally, create vertex a3, connect a3 to c2, a1, a

\prime
1, a2, and a\prime 2. Connect a

to a1, a
\prime
1, a2, a

\prime
2, and a3. The idea is that in any q-CNCF-coloring, vertices

a1 and a\prime 1 receive the color of c1, a2 and a\prime 2 receive the color of c3 and that

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2023

a3 has exactly one neighbor of color 2 and two neighbors of both remaining
colors, implying that the color of a cannot be 2.

4. Add vertices pi,j for all i \in [k], j \in [n]. Let P be the set containing all of
these vertices. The idea is that vertices in P receive colors 1 and 3, such
that for every i there is exactly one vertex pi,j of color 1. The vertices of
color 1 will correspond to the vertices that form a clique in one of the input
instances.

5. Add a vertex hi for all i \in [k] and connect hi to pi,j for all j \in [n]. Add vertices
h1
i , h\prime 1

i , h2
i , h\prime 2

i , and h3
i . Add edges \{ c1, h1

i \} , \{ c1, h\prime 1
i \} , \{ c3, h1

i \} , \{ c3, h\prime 1
i \} ,

\{ c1, h2
i \} , \{ c1, h\prime 2

i \} , \{ c2, h2
i \} , and \{ c2, h\prime 2

i \} . For all i \in [k], add a vertex h3
i and

connect it to c1. Connect h3
i to h1

i , h
\prime 1
i , h

2
i , and h\prime 2

i . Finally, connect hi to
h1
i , h

\prime 1
i , h

2
i , h

\prime 2
i , and h3

i . Let H be the set of all vertices created in this step.
These vertices will ensure that for each i, there is exactly one vertex pi,j of
color 1.

6. Add a vertex vj for all j \in [n] and connect vj to pi,j for all i \in [k]. Add
vertices v1j and v\prime 1j and connect them to c1 and c3. Add vertices v2j and v\prime 2j
and connect these to c1 and c2. Add a vertex v3j . Finally, connect vertex

vj to v1j , v
\prime 1
j , v2j , v

\prime 2
j , and v3j . The vertices added in this step ensure that

there cannot be i, i\prime \in [k] such that both pi,j and pi\prime ,j receive color 1 for some
j \in [n].

7. For each i, i\prime \in [k] and j, j\prime \in [n], add vertex si,i
\prime

j,j\prime ; let the set containing all

these vertices be S. Connect si,i
\prime

j,j\prime to pi,j and pi\prime ,j\prime . Furthermore, connect

si,i
\prime

j,j\prime to y\ell whenever \{ j, j\prime \} is not an edge in instance X\ell . These vertices are
used to verify whether the vertices selected by P indeed form a clique in the
selected input instance.

8. For each i, i\prime \in [k] and j, j\prime \in [n], add vertices f i,i\prime

j,j\prime , g
i,i\prime

j,j\prime , b
i,i\prime

j,j\prime , and b\prime i,i
\prime

j,j\prime , and

connect all these vertices to si,i
\prime

j,j\prime . Connect g
i,i\prime

j,j\prime to c1 and c3, connect b
i,i\prime

j,j\prime to

c1 and c2, and finally connect b\prime i,i
\prime

j,j\prime to c1 and c2.
9. For every vertex in v \in V (G) \setminus V (Cq), add the edges \{ v, ci\} and \{ v, c\prime i\} for

all 3 < i \leq q. Thus, we connect every nonpalette vertex in G to all but the
first three colors from the palette. This step ensures that colors i > 3 are not
used to color V (G) \setminus Cq.

It follows from Lemma 4.14 that all ci receive distinct colors. Therefore, we will
from now on assume that c(ci) = i for any coloring c. Furthermore, we observe that
for i \in [q], vertex ci is connected to c\prime j and cj for all j \in [q]\setminus \{ i\} . It follows that vertex
ci has its own color (if any) as its CNCF-color, since it is connected to two vertices
of all remaining colors.

In the proofs of the remaining claims, we will regularly use that any nonpalette
vertex in G has two neighbors of color i for all i > 3.

Claim 4.17. For any q-CNCF-coloring c of G, there exists exactly one vertex
y\ast \in Y such that c(y\ast) = 2.

Proof. It follows from the observation above, that c(a1) = c(a\prime 1) = 1 and c(a2) =
c(a\prime 2) = 2. Furthermore, c(a3) \not = 2. Thereby, N [a3] contains vertex a, together with
one vertex of color 2 and two vertices of color i for all i \not = 2, implying c(a) \not = 2. It
follows that N [a] contains at least two vertices of color 1 and two of color 3 and that
N [a] \setminus Y contains no vertices of color 2. Thereby, N [a] \cap Y = Y must have exactly
one vertex of color 2. \lrcorner

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2024 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

Claim 4.18. For any 3-CNCF-coloring c of G, there exist distinct j1, . . . , jk such
that c(pi,ji) = 1 and for all other p \in P , c(p) \not = 1.

Proof. We start by showing that for each i \in [k], there exists ji \in [n] such that
c(pi,ji) = 1. We will then show that these ji are indeed distinct.

Let i \in [k], then \{ h1
i , h

\prime 1
i , h

2
i , h

\prime 2
i \} \subseteq N [hi] and thus N [hi] contains two vertices of

colors 2 and 3. Since hi is connected to h3
i and N [h3

i] contains at least one vertex of
color 1, and two vertices of both color 2 and 3, it follows that c(hi) \not = 1. Thereby, the
CNCF-color for hi is 1 and thus there exists a unique vertex in \{ pi,j | j \in [n]\} that
receives color 1.

It remains to show that these ji are indeed distinct. We do this by showing that
there cannot be vertices pi,j and pi\prime ,j such that c(pi,j) = c(pi\prime ,j) = 1. Suppose for
contradiction that there are j \in [n] and i, i\prime \in [k] such that c(pi,j) = c(pi\prime ,j) = 1. But
then N [vj] contains vertices v

1
j and v\prime 1j that have color 2, vertices v2j and v\prime 2j of color

3, and the aforementioned two vertices of color 1. Since it furthermore contains two
vertices of color i for all i \geq 4, this contradicts that c is a CNCF-coloring for G. \lrcorner

Using the claims above, we now prove the correctness of this cross-composition.

Claim 4.19. If there exists \ell \in [t] such that X\ell has a clique of size k, then G is
q-CNCF-colorable.

Proof. Take \ell such that X\ell is a yes-instance for Clique and let j1, . . . , jk be
such that vertices \{ j1, . . . , jk\} form this clique in instance X\ell . We give a coloring
c : V (G) \rightarrow [q] of G. We start by showing how to color the vertices defined in each
step of the construction; this coloring is also depicted in Figure 5.

1. We start by coloring the palette C as in Lemma 4.15, such that c(ci) :=
c(c\prime i) := i.

2. Let c(y\ell) := 2 and c(y) := 3 for all other vertices y \in Y .
3. Let c(a) := c(a1) := c(a\prime 1) := 1 and c(a2) := c(a\prime 2) := c(a3) := 3.
4. For all i \in [k], let c(pi,ji) := 1. For all other p \in P , let c(p) := 3.
5. For all i \in [k], let c(hi) := c(h1

i) := c(h\prime 1
i) := c(h3

i) := 2 and let c(h2
i) :=

c(h\prime 2
i) := 3.

6. For all j \in [n], let c(vj) := 3. For all j \in [n], let c(v1j) := c(v\prime 1j) := 2 and let

c(v2j) := c(v\prime 2j) := 3. Let c(v3j) := 2 if there exists i \in [k] such that ji = j.

Let c(v3j) := 1 otherwise.

7. For i, i\prime \in [k] and j, j\prime \in [n], let c(si,i
\prime

j,j\prime) := 3.

8. For i, i\prime \in [k] and j, j\prime \in [n], let c(gi,i
\prime

j,j\prime) := 2, c(bi,i
\prime

j,j\prime) := c(b\prime i,i
\prime

j,j\prime) := 3. Finally, if

si,i
\prime

j,j\prime at this point has no neighbor of color 1, let c(f i,i\prime

j,j\prime) := 1. Furthermore, if

si,i
\prime

j,j\prime is not connected to y\ell (meaning \{ j, j\prime \} is an edge in X\ell), define c(f
i,i\prime

j,j\prime) :=

1. Otherwise, let c(f i,i\prime

j,j\prime) := 2.
It remains to show that this indeed gives a q-CNCF-coloring of G. We verify this for
all vertices. C is CNCF-colored by the fact that ci and c\prime i are colored by their own
color and not connected to any other vertex of color i. Vertices in Y are CNCF-colored
by vertex a which has color 1. N [a] contains exactly one vertex of color 2, namely,
y\ell . N [a1], N [a\prime 1], N [a2], N [a\prime 2], and N [a3] all contain exactly one vertex of color 2,
namely, c2. For p \in P , N [p] contains exactly one vertex hi of color 2 and no other
vertices of color 2. For all i \in [k], N [hi] contains exactly one vertex pi,ji of color 1 and
no other vertices of color 1. Vertices h1

i , h
\prime 1
i , h

2
i , h

\prime 2
i , and h3

i have c1 as their unique
neighbor with color 1. Similarly, for all j \in [n], the vertex vj has exactly one neighbor

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2025

of color 1 from the set \{ pi,j | i \in [k]\} \cup \{ v3i \} . Vertices v1j , v
\prime 1
j , v2j , and v\prime 2j have c1 as

their only neighbor of color 1. Vertex v3j has a distinct color from its only neighbor

vj and thereby its closed neighborhood is CNCF-colored. Since c(f i,i\prime

j,j\prime) \in \{ 1, 2\} and

c(si,i
\prime

j,j\prime) = 3 for all i, i\prime \in [k], j, j\prime \in [n], vertex f i,i\prime

j,j\prime receives a different color than

its only neighbor. Vertices gi,i
\prime

j,j\prime , b
i,i\prime

j,j\prime , and b\prime i,i
\prime

j,j\prime all have a unique neighbor of color

1, namely, vertex c1. Finally we check the closed neighborhood of vertices si,i
\prime

j,j\prime for

i, i\prime \in [k], j, j\prime \in [n]. If si,i
\prime

j,j\prime is not connected to y\ell , it is ensured that it has exactly

one neighbor of color 2, namely, vertex gi,i
\prime

j,j\prime . Otherwise, observe that c(pi,j) \not = 1 or

c(pi\prime ,j\prime) \not = 1 as \{ j, j\prime \} is not an edge in X\ell . The choice of coloring for f i,i\prime

j,j\prime ensures

that in this case, si,i
\prime

j,j\prime has a unique neighbor of color 1. \lrcorner

Claim 4.20. If G has a q-CNCF-coloring, then there exists \ell \in [t] such that X\ell

has a clique of size k.

Proof. Let c be a CNCF-coloring of G. It follows from Claim 4.17 that there
exists a vertex y \in Y with c(y) = 2. Let \ell be such that c(y\ell) = 2. We show that
X\ell has a clique of size k. By Claim 4.18, there exist distinct j1, . . . , jk such that
c(pi,ji) = 1. We show that the vertices j1, . . . , jk form the desired clique in X\ell .

Suppose for contradiction that there are distinct i, i\prime \in [k] such that \{ ji, ji\prime \} is

not an edge in instance X\ell . We will show that N [si,i
\prime

ji,ii\prime
] is not properly CNCF-

colored. First of all, N [si,i
\prime

ji,ii\prime
] contains the two vertices pi,ji and pi\prime ,ji\prime with c(pi,ji) =

c(pi\prime ,ji\prime) = 1. Furthermore it contains the two vertices bi,i
\prime

ji,ii\prime
and b\prime i,i

\prime

ji,ii\prime
that have color

3, and finally it contains two vertices of color 2, namely, gi,i
\prime

ji,ii\prime
and y\ell . Furthermore,

N [si,i
\prime

ji,ii\prime
] contains two vertices of color i for all i > 3, by step 9 of the construction.

This however contradicts that c is a CNCF-coloring of G, and thus we conclude that
j1, . . . , jk form a clique of size k in instance X\ell . \lrcorner

It follows from Claims 4.19 and 4.20 that G has a q-CNCF-coloring if and only if
one of the given input instances was a yes-instance for Clique. It remains to bound
the size of a vertex cover in G, to conclude the cross-composition. It is easy to verify
that V (G) \setminus Y is a vertex cover for G, since Y is an independent set. Thereby the
size of a vertex cover in G is at most | V (G) \setminus Y | = \scrO (n2k2) + f(q), where f(q) is the
size of palette-gadget Cq. As this is properly bounded for a cross-composition, the
theorem statement follows from Theorem 2.10.

4.3. Generalized kernel for 2-CNCF-COLORING. In this part we prove
Theorem 4.2, by obtaining a polynomial generalized kernel for 2-CNCF-Coloring
parameterized by vertex cover size. This result is in contrast to the kernelization
results we obtain for q-CNCF-Coloring for q \geq 3 as well as q-ONCF-Coloring
for q \geq 2. We will start by transforming an instance of 2-CNCF-Coloring to an
equivalent instance of another problem, namely, d-Polynomial root CSP. We will
then carefully rephrase the d-Polynomial root CSP instance such that it uses only
a limited number of variables, such that we can use a known kernelization result for d-
Polynomial root CSP to obtain our desired compression. We start by introducing
the relevant definitions.

Define d-Polynomial root CSP over a field F as follows [16].

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2026 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

d-Polynomial root CSP
Input: A list L of polynomial equalities over variables V = \{ x1, . . . , xn\} . An
equality is of the form f(x1, . . . , xn) = 0, where f is a multivariate polynomial
over F of degree at most d.
Question: Does there exist an assignment of the variables \tau : V \rightarrow \{ 0, 1\} satis-
fying all equalities (over F) in L?

A field F is said to be efficient if both the field operations and Gaussian elimi-
nation can be done in polynomial time in the size of a reasonable input encoding. In
particular, \BbbQ is an efficient field by this definition. The following theorem was shown
by Jansen and Pieterse.

Theorem 4.21 (see [16, Theorem 3.1]). There is a polynomial-time algorithm
that, given an instance (L, V) of d-Polynomial root CSP over an efficient field
F , outputs an equivalent instance (L\prime , V) with at most nd + 1 constraints such that
L\prime \subseteq L.

Using the theorem introduced above, we can now prove Theorem 4.2.

Proof of Theorem 4.2. Given an input instance G with vertex cover S of size k,
we start by preprocessing G. For each set X \subseteq S with | X| \leq 2, mark 3 vertices in
v \in G \setminus S with N(v) = X (if there do not exist 3 such vertices, simply mark all). Let
S\prime \subseteq V (G) \setminus S be the set of all marked vertices. Remove all w \in V (G) \setminus (S \cup S\prime) with
deg(w) \leq 2 from G. Let the resulting graph be G\prime .

Claim 4.22. G\prime is 2-CNCF-colorable if and only if G is 2-CNCF-colorable.

Proof. In one direction, suppose G\prime has a 2-CNCF coloring c using colors \{ r, b\} .
Consider a vertex w \in V (G) \setminus V (G\prime). Let Xw \subseteq S be the neighborhood of w. Note
that | Xw| is at most 2. Consider N(Xw)\cap S\prime . Since w was deleted, there are 3 vertices
in N(Xw) \cap S\prime . Consider the color from \{ r, b\} that appears in the majority on the
vertices of N(Xw) \cap S\prime . If we color w with the same color, it is easy to verify that
this extension of c to G is a 2-CNCF coloring of G.

In the reverse direction, suppose G has a 2-CNCF coloring c using colors \{ r, b\} .
We describe a new coloring c\prime for G as follows. Consider a subset X \subseteq S of size at
most 2 and let N be the set of vertices in G \setminus S that have X as their neighborhood.
If | N | > 3 and N \setminus S\prime has a vertex w that is uniquely colored in the set N , then we
arbitrarily choose a vertex w\prime \in N \cap S\prime . We define c\prime (w\prime) = c(w) and c\prime (w) = c(w\prime).
All other vertices have the same color in c and c\prime . It is easy to verify that c\prime is also a
2-CNCF coloring of G and the restriction of c\prime to G\prime is a 2-CNCF coloring of G\prime . \lrcorner

We continue by creating an instance of 2-Polynomial root CSP that is sat-
isfiable if and only if G\prime is 2-CNCF-colorable. Let V := \{ rv, bv | v \in V (G)\} be the
variable set. We create L over \BbbQ as follows.

1. For each v \in V (G\prime), add the constraint rv + bv - 1 = 0 to L.
2. For all v \in V (G\prime), add the constraint

(- 1 +
\sum

u\in N [v]

rv) \cdot (- 1 +
\sum

u\in N [v]

bv) = 0.

3. For each v \in V (G\prime) \setminus (S \cup S\prime) of degree dv = | N(v)| add the constraint

(
\sum

u\in N(v)

ru)(- 1 +
\sum

u\in N(v)

ru)(- (dv - 1) +
\sum

u\in N(v)

ru)(- dv +
\sum

u\in N(v)

ru) = 0.

Note that such a constraint is a polynomial of degree at most 4.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2027

Intuitively, the first constraint ensures that every vertex is either red or blue. The
second constraint ensures that in the closed neighborhood of every vertex, exactly one
vertex is red or exactly one is blue. The third constraint is (currently) redundant,
saying that the open neighborhood of every vertex outside the vertex cover does not
have two red or two blue vertices, which is clearly forbidden. We will need this
requirement later, in the proof of Claim 4.26.

We show that this results in an instance that is equivalent to the original input
instance, in the following sense.

Claim 4.23. (L, V) is a yes-instance of 2-Polynomial root CSP if and only
if G\prime is 2-CNCF-colorable.

Proof. Suppose \tau : V \rightarrow \{ 0, 1\} is a satisfying assignment for (L, V). We show how
to define a 2-CNCF coloring c : V \rightarrow \{ red , blue\} for G\prime . Let c(v) := red if \tau (rv) = 1
and let c(v) := blue if \tau (bv) = 1. Note that this defines exactly one color for each
vertex, as by step 1, rv + bv = 1 and we used at most two distinct colors. It remains
to show that this is indeed a CNCF-coloring. Let v \in V (G\prime) be an arbitrary vertex;
we show that N [v] is conflict-free colored. It follows from the equations added in step
2, that one of the following holds.

\bullet (
\sum

u\in N [v] \tau (rv) = 1). In this case, N [v] contains exactly one vertex u \in N [v]

with c(u) = red , showing that N [v] is conflict-free colored.
\bullet (

\sum
u\in N [v] bv = 1). In this case, N [v] contains exactly one vertex u \in N [v]

with c(u) = blue, showing that N [v] is conflict-free colored.
This concludes this direction of the proof.

For the other direction, suppose G\prime has 2-CNCF-coloring c, we show how to define
a satisfying assignment \tau for (L, V). For v \in V (G\prime), let \tau (rv) := 1 if c(v) = red and let
\tau (rv) := 0 otherwise. Similarly, \tau (bv) := 1 if c(v) = blue and let \tau (rv) := 0 otherwise.
Observe that by this definition, \tau (rv) = 1 - \tau (bv) for all v \in V (G), showing that
we satisfy all equations introduced in step 1. For the equations introduced in step 2,
consider an arbitrary vertex v \in V (G\prime). Suppose its CNCF-color is red, then N [v]
contains exactly one vertex u with c(u) = red and thus

\sum
u\in N [v] ru = 1, implying

(- 1+
\sum

u\in N [v] rv) \cdot (- 1+
\sum

u\in N [v] bv - 1) = 0 as desired. Similarly, if its CNCF-color

is blue we obtain
\sum

u\in N [v] bu = 1 and again (- 1+
\sum

u\in N [v] rv) \cdot (- 1+
\sum

u\in N [v] bv) = 0.
It remains to prove that the equations added in step 3 are satisfied. For this, let v
be an arbitrary vertex for which the equation was added. Observe that if v is colored
red, then its neighborhood contains no red vertices, such that

\sum
u\in N(v) ru = 0 and

the equation is satisfied, or d - 1 red vertices, such that
\sum

u\in N(v) ru = d - 1 and
again the equation is satisfied. If v is colored blue, then either its neighborhood is
entirely red, such that

\sum
u\in N(v) ru = d or it contains exactly one red vertex, such that\sum

u\in N(v) ru = 1. In both cases the equation is satisfied. \lrcorner

Clearly, | V | = 2n if n is the number of vertices of G\prime . We will now show how to
modify L, such that it uses only variables for the vertices in S \cup S\prime . To this end, we
introduce the following function. For v /\in (S\cup S\prime), let fv(V) := g

\bigl(\sum
u\in N(v) ru, | N(v)|

\bigr)
,

where

g(x,N) = - (N - x)(x - 1)(N - 2(x+ 1))

N(N - 2)
.

Note that for any fixed N > 2, g(x,N) describes a degree-3 polynomial in x over \BbbQ .
The following is easy to verify.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2028 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

Observation 4.24. g(0, N) = g(N - 1, N) = 1, and g(N,N) = g(1, N) = 0 for
all N \in \BbbZ \setminus \{ 0, 2\} .

Observe that fv only uses variables defined for vertices that are in S. As such,
let V \prime := \{ rv, bv | v \in S\} \cup \{ rv, bv | v \in S\prime \} , and let L\prime be equal to L with every
occurrence of rv for v /\in (S \cup S\prime) substituted by fv and every occurrence of bv for
v /\in (S \cup S\prime) substituted by (1 - fv(V)).

Claim 4.25. If \tau : V \rightarrow \{ 0, 1\} is a satisfying assignment for (L, V), then \tau | V \prime is
a satisfying assignment for (L\prime , V \prime).

Proof. We show this by showing that for all v /\in (S\cup S\prime), fv(\tau (V)) = \tau (rv) in this
case. Since \tau (bv) = 1 - \tau (rv) by the constraints added in step 1, this will conclude
the proof. Consider an arbitrary vertex v /\in S. Observe that by the equations added
in step 2, we are in one of the following cases.

\bullet
\sum

u\in N [v] \tau (ru) = 1 and \tau (rv) = 1. In this case,
\sum

u\in N(v) \tau (ru) = 0 and

thereby fv(V) = g(0, | N(v)|) = 1 = \tau (rv) by Observation 4.24.
\bullet
\sum

u\in N [v] \tau (ru) = 1 and \tau (rv) = 0. In this case,
\sum

u\in N(v) \tau (ru) = 1 and

thereby fv(V) = g(1, | N(v)|) = 0 = \tau (rv) using Observation 4.24.
\bullet
\sum

u\in N [v] \tau (bu) = 1 and \tau (bv) = 1. In this case, since \tau (bv) = 1 - \tau (rv) for

all v, we obtain that
\sum

u\in N(v) \tau (bu) = 0, and thus
\sum

u\in N(v) \tau (ru) = | N(v)| .
Thereby, fv(V) = g(| N(v)| , | N(v)|) = 0 = 1 - \tau (bv) = \tau (rv) by Observation
4.24.

\bullet
\sum

u\in N [v] \tau (bu) = 1 and \tau (bv) = 0. Hereby,
\sum

u\in N(v) \tau (bu) = 1 and thus\sum
u\in N [v] \tau (ru) = | N(v)| - 1. Thus, fv(V) = g(| N(v)| - 1, | N(v)|) = 1 =

1 - \tau (bv) = \tau (rv) using Observation 4.24. \lrcorner

The next claim shows the equivalence of (L\prime , V \prime) and (L, V).

Claim 4.26. If \tau : V \prime \rightarrow \{ 0, 1\} is a satisfying assignment for (L\prime , V \prime), then there
exists a satisfying assignment \tau \prime : V \rightarrow \{ 0, 1\} for (L, V) such that \tau \prime | V \prime = \tau .

Proof. Let \tau be given, we show how to construct \tau \prime . For all x \in V \prime , let \tau \prime (x) :=
\tau (x). Furthermore, for rv \in V \setminus V \prime , let \tau (rv) := fv(\tau (V)) and let \tau (bv) := 1 - \tau (rv).
Since L\prime was simply obtained from L by substituting rv by fv(V) and bv by (1 - fv(V))
in all constraints, it is clear that \tau \prime satisfied all equations in L\prime . It remains to show
that \tau (rv) \in \{ 0, 1\} for all v \in V . If v \in V \prime , this is obvious, so suppose v \in V \setminus V \prime such
that \tau (rv) = fv(\tau (v)). Observe that an equation was added for v in step 3. Therefore,
we know that

\sum
u\in N(v) ru \in \{ 0, 1, dv - 1, dv\} and it follows from Lemma 4.24 that

fv(\tau (V)) takes a Boolean value. \lrcorner

Using the method described above, we obtain an instance (L, V) of 2-Polyno-
mial root CSP such that (L, V) has a satisfying assignment if and only if G is
2-CNCF-colorable by Claims 4.22 and 4.23. Then we obtain an instance (L\prime , V \prime) such
that (L\prime , V \prime) is satisfiable if and only if (L, V) is satisfiable by Claims 4.25 and 4.26.
As such, (L\prime , V \prime) is a yes-instance if and only if G is 2-CNCF-colorable and it suffices
to give a kernel for (L\prime , V \prime). Observe that | V \prime | = \scrO (k2).

We start by partitioning L\prime into three sets L\prime
S , L

\prime
1, and L\prime

2. Let L\prime
S contain all

equalities created for a vertex v \in S. Let L\prime
1 contain all equations that contain at least

one of the variables in \{ rv, bv | v \in S\prime \} and let L2 contain the remaining equalities.
Observe that | L\prime

S | = k by definition. Furthermore, the polynomials in L\prime
1 have degree

at most 2, as they were created for vertices in V (G\prime)\setminus S, and these are not connected.
As such, we use Theorem 4.21 to obtain L\prime \prime

1 \subseteq L\prime
1 such that | L\prime \prime

1 | = \scrO ((k2)2) = \scrO (k4)
and any Boolean assignment satisfying all equalities in L\prime \prime

1 satisfies all equalities in L\prime
1.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2029

Similarly, we observe that L\prime
2 by definition contains none of the variables in

\{ rv, bv | v \in S\prime \} , implying that the equations in L\prime
2 are equations over only k variables.

Since the polynomials in L\prime
2 have degree at most 6, we can apply Theorem 4.21 to

obtain L\prime \prime
2 \subseteq L\prime

2 such that | L\prime \prime
2 | \leq \scrO (k6) and any assignment satisfying all equations

in L\prime \prime
2 satisfies all equalities in L\prime

2.
We now define L\prime \prime := L\prime \prime

1 \cup L\prime \prime
2 \cup L\prime

S , and the output of our polynomial generalized
kernel will be (L\prime \prime , V \prime). The correctness of the procedure is proven above, it remains
to bound the number of bits needed to store instance (L\prime \prime , V \prime).

By this definition, | L\prime \prime | \leq \scrO (k6). To represent a single constraint, it is sufficient
to store the coefficients for each variable in V \prime . The storage space needed for a single
coefficient is \scrO (log(n)), as the coefficients are bounded by a polynomial in n. Thereby,
(L\prime \prime , V \prime) can be stored in \scrO (k6 \cdot k2 log n) bits. To bound this in terms of k, we observe
that we can solve 2-CNCF-Coloring in time \scrO (8k \cdot poly(n)) by Theorem 3.1, using
that the treewidth of a graph is bounded by its vertex cover size. Therefore, we can
assume that log(n) \leq k, as otherwise we can solve the 2-CNCF-Coloring problem
in \scrO (8k \cdot poly(n)) time, which is then polynomial in n. Thereby we conclude that
(L\prime \prime , V \prime) can be stored in \scrO (k9) bits.

4.4. Kernelization bounds for conflict-free coloring extension. We con-
tinue by studying a specific type of precoloring extension, where a partial conflict-free
coloring is given and needs to be extended to the entire graph. Generally speaking,
such a problem would be more general (and thus harder) than the original problem,
but in this case we will require that a vertex cover of the graph is precolored such
that it remains to color an independent set. More precisely, the studied extension
problems are defined as follows.

q-CNCF-Coloring-VC-Extension
Input: A graph G with vertex cover S and partial q-coloring c : S \rightarrow [q].
Question: Does there exist a q-CNCF-coloring of G that extends c?

We define q-ONCF-Coloring-VC-Extension analogously.
We obtain the following kernelization results when parameterized by vertex cover

size, thereby classifying the situations where the extension problem has a polynomial
kernel. The extension problem turns out to have a polynomial kernel in the same case
as the normal problem. However, we manage to give a significantly smaller kernel.
Observe that the kernelization result is nontrivial, since 2-CNCF-Coloring-VC-
Extension is NP-hard (see Theorem 4.30 below).

Theorem 4.27. The following results hold.
1. 2-CNCF-Coloring-VC-Extension has a kernel with \scrO (k2) vertices and

edges that can be stored in \scrO (k2 log k) bits. Here k is the size of the input
vertex cover S.

2. q-CNCF-Coloring-VC-Extension for any q \geq 3, and q-ONCF-Color-
ing-VC-Extension for any q \geq 2 parameterized by the size of a vertex cover,
do not have a polynomial kernel, unless \sansN \sansP \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy .

We start by noting that the kernelization lower bounds given in the previous
sections still apply. In particular, we obtain the following two corollaries.

Corollary 4.28. For any q \geq 2, q-ONCF-Coloring-VC-Extension param-
eterized by the size of a vertex cover does not have a polynomial kernel, unless
\sansN \sansP \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy .

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2030 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

B1 R1
u1

. . . um v1 v2 v3 . . . vn R2

w1,3if v3 ∈ C1

S

wi,j

if vj ∈ Ci

. . .

Fig. 6. The reduction from Monotone Exact Sat to 2-CNCF-Coloring-VC-Extension.

Proof. Observe that in the cross-composition given in Lemma 4.3, the vertices

H \cup \{ R,R\prime , B,B\prime , a, a1, a2, a
\prime
1, a

\prime
2\} \cup \{ vj , v1j , v\prime 1j , v\prime \prime 1j , v2j , v

\prime 2
j , v\prime \prime 2j | j \in [n]\}

\cup S \cup \{ all vertices in gadgets labeled g10, g8, g4, or g5\}

form a vertex cover of appropriately bounded size, and that these vertices always
receive the same color in the proof of Claim 4.8. Furthermore, in the linear parameter
transformation given in Lemma 4.10, we see that all additional added vertices always
receive the same color in the proof of Claim 4.12. Hence, all these vertices could be
safely precolored and the bounds still hold.

Furthermore, Lemma 4.16 immediately gives us the following result on this ex-
tension problem.

Corollary 4.29. For any q \geq 3, q-CNCF-Coloring-VC-Extension param-
eterized by the size of a vertex cover does not have a polynomial kernel, unless
\sansN \sansP \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy .

Proof. The result follows immediately from the same cross-composition as given

in the proof of Lemma 4.16. Observe that the vertices C \cup H \cup \{ vj | j \in [n]\} \cup \{ si,i
\prime

j,j\prime |
i, i\prime \in [k], j, j\prime \in [n]\} \cup \{ a, a1, a\prime 1, a2, a\prime 2, a3\} form a vertex cover of the created graph
G of size poly(n), and that they are always given the same coloring in the proof of
Claim 4.19.

The results above prove part 2 of Theorem 4.27. We will now show that 2-CNCF-
Coloring-VC-Extension has a simple polynomial kernel of size \scrO (k2 log k), where
k is the size of the vertex cover. This proves part 1 of Theorem 4.27. We start by
arguing that 2-CNCF-Coloring-VC-Extension is indeed NP-hard.

Theorem 4.30. 2-CNCF-Coloring-VC-Extension is NP-hard.

Proof. We prove this by a reduction from Monotone Exact Sat, which is
defined as follows.

Monotone Exact Sat
Input: A formula \scrF over variable set X that is a conjunction of clauses, where
each clause consists of a number of variables from X.
Question: Does there exist an assignment \tau : X \rightarrow \{ 0, 1\} such that every clause
in \scrF contains exactly one variable that is set to 1?

It is known that the Monotone Exact Sat problem is NP-hard, as it gen-
eralizes problem NP1 in [19]. Let an instance \scrF = C1 \wedge \cdot \cdot \cdot \wedge Cm over variables
X = \{ x1, . . . , xn\} be given, we show how to construct a graph G with vertex cover
S and precoloring f : S \rightarrow \{ red , blue\} for 2-CNCF-Coloring-VC-Extension. See
Figure 6 for a sketch of G.

\bullet Add vertices R1, R2, and B1 to G and to S. Let c(R1) := c(R2) := red and
let c(B1) := blue. Connect R1 to B1.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2031

\bullet For every clause Ci in \scrF , add a vertex ui to G. Let ui be contained in S and
let c(ui) := red . Connect all vertices ui to R2.

\bullet For every variable xj \in X, add a vertex vj to G, let vj be contained in S,
and set c(vj) := blue. Connect vj to R2.

\bullet For every i \in [m], j \in [n], if variable xj is in clause Ci, construct a new vertex
wi,j and connect wi,j to vj and ui. wi,j is not contained in S.

Clearly, S is hereby a vertex cover of G and it is colored by c. It is easy to see that
the construction above can be done in polynomial time. It remains to show that c
can be extended to a 2-CNCF-coloring of G if and only if \scrF is satisfiable.

(\Rightarrow) Suppose \scrF is satisfiable and has satisfying assignment \tau : X \rightarrow \{ 0, 1\} , we give
a 2-CNCF-coloring c\prime : V (G) \rightarrow \{ red , blue\} of G, such that c\prime extends c. Naturally,
for every vertex s \in S, let c\prime (s) := c(s). For i \in [m], j \in [n], let c(wi,j) := blue if
\tau (xj) = 1 and let c(wi,j) := red otherwise. It remains to show that this is a valid
CNCF-coloring of G. We check the neighborhoods of all vertices.

N [R1] = \{ R1, B1\} \cup \{ ui | i \in [m]\} . Here B1 is a unique blue vertex. N [R2] =
\{ R2\} \cup \{ vj | j \in [n]\} and R2 is a unique red vertex in this set. N [B1] := \{ B1, R1\} and
these vertices are red and blue, as desired. For any vertex ui, N [ui] contains one blue
vertex, namely, wi,j where j is such that xj is the unique variable in clause Ci with
\tau (xj) = 1. For any j \in [n], N [vj] := \{ wi,j | xj \in Ci\} \cup \{ vj , R2\} . Since all vertices in
\{ wi,j | xj \in Ci\} receive the same color, this set has a uniquely colored vertex which
is either vj (which is blue) or R2 (which is red). For any i \in [m], j \in [n], vertex wi,j

has exactly two neighbors and these receive different colors, and thus N [wi,j] has a
neighbor with a unique color.

(\Leftarrow) Let c\prime : V (G) \rightarrow \{ red , blue\} be a CNCF-Coloring of G. Let j \in [n], then
N [vj] = \{ wi,j | vj \in Ci\} \cup \{ R2, vj\} . Thereby, we observe that the vertices in Wj :=
\{ wi,j | vj \in Ci\} all receive the same color since c\prime (vj) = blue and c\prime (R2) = red . Let
\tau (xj) := 1 if all vertices in Wj have color blue, and let \tau (xj) := 0 otherwise. We show
that \tau is a satisfying assignment for \scrF . Let Ci be a clause of \scrF , we show that there
is exactly one xj such that \tau (xj) = 1, by showing that there is exactly one j \in [m]
such that vertex c\prime (wi,j) = blue. Consider vertex ui, then N [ui] = \{ ui, R1\} \cup \{ wi,j |
vj \in Ci\} . Since c\prime (ui) = c\prime (R1) = red since c\prime extends c, it trivially follows that there
is indeed a unique j such that c\prime (wi,j) = blue. This concludes the proof.

We now show that, unlike 3-CNCF-Coloring-VC-Extension, 2-CNCF-Col-
oring-VC-Extension has a simple polynomial kernel.

Lemma 4.31. 2-CNCF-Coloring-VC-Extension parameterized by the size of
the vertex cover has a kernel of size \scrO (k2 log k).

Proof. Let G with partial coloring c and vertex cover S be an instance of the
problem with | S| \leq k. We first show how to obtain an equivalent instance (G\prime , S\prime , c\prime)
such that | S\prime | \leq 3| S| and such that every vertex in V (G\prime)\setminus S\prime has degree at most two.
Then we can use a procedure given by Gargano and Rescigno [11] to further reduce
the number of vertices in V (G\prime) \setminus S\prime to at most \scrO (| S\prime | 2) = \scrO (k2).

If there exists a vertex that has at least two red and two blue neighbors by this
precoloring, output a trivial no-instance. For the rest of the kernelization, we can
thus assume that this case does not occur. Initialize (G\prime , S\prime , c\prime) as (G,S, c). Observe
that for any vertex of degree at least 3, its coloring is now completely determined.
While there exists a vertex v of degree at least three in G\prime \setminus S\prime , we define c\prime (v) as
follows. If v has only red neighbors, let c\prime (v) := blue. Otherwise, if v has at least
two red and exactly one blue neighbor, let c\prime (v) := red . Similarly, if v has only blue
neighbors let c\prime (v) := red and if v has exactly one red neighbor let c\prime (v) := blue. It is

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2032 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

easy to see that there is a 2-CNCF coloring of G that extends c, if and only if there
is one extending c\prime .

For each vertex u \in S\prime , mark two neighbors that are colored red by c\prime , and two
that are blue (if these exist). Add all marked vertices to S\prime , and delete all vertices
v \in G \setminus S\prime that have degree at least three and are not marked. Observe that hereby
c\prime is a coloring of the vertices of S\prime , S\prime is a vertex cover of G\prime , and each vertex in
V (G\prime) \setminus S\prime has degree at most two. We argue the following.

Claim 4.32. The graph G\prime has a 2-CNCF-coloring extension if and only if G has
a 2-CNCF-coloring extension.

Proof. Suppose G has a 2-CNCF-coloring extension of c; by the observation above
there is also a 2-CNCF-extension of c\prime , let this be c\prime \prime . We show that c\prime \prime | V (G\prime) is a
proper coloring of G\prime . Every vertex in G\prime - S has the same neighborhood as in G,
and thus this neighborhood is conflict-free colored by c\prime \prime . For every vertex in s \in S,
N [s] \cap (S \cup \{ v /\in S | d(v) \leq 2\}) is the same in G and G\prime . For the vertices in
S \cup \{ v /\in S | d(v) = 2\}) the color is the same for any 2-CNCF-coloring of G and we
kept two red and two blue vertices. As such, c\prime \prime is a CNCF-coloring of G\prime .

Suppose G\prime has a 2-CNCF-coloring extension c\prime \prime of c\prime . We define a 2-CNCF-
coloring d of G that extends c. Start by defining d(v) = c\prime \prime (v) for any vertex v \in
V (G) \cap V (G\prime). Hereby, all vertices in the vertex cover S of G are colored. Let
v \in V (G) \setminus S. Note that v has at least three neighbors in s, as otherwise v would
have been a vertex in G\prime . Note that N(v) \subseteq S. Define d(v) as red if N(v) has only
blue vertices. Furthermore, let d(v) := red if N(v) contains exactly one blue vertex.
In all other cases, define d(v) := blue. This concludes the definition of d, it remains
to show that d is indeed a CNCF-coloring.

Clearly, by this definition, for any v /\in S we have that N(v) is conflict-free colored
by d, as we assumed that no such vertex had two red and two blue neighbors. It
remains to show that for v \in S, N(v) is conflict-free colored. Suppose for contradiction
that it is not. Since any vertex v \in S was conflict-free colored by c\prime \prime in G\prime , this implies
that there exists a vertex v \in S that has two red and two blue neighbors under d.
Without loss of generality, suppose red was the conflict-free color of v in G\prime . Thus,
there is a vertex w \in V (G)\setminus V (G\prime) that is a neighbor of v, with d(w) := red . But this
contradicts that w is removed by the marking procedure, as we always keep at least
two red neighbors of v if they exist. Thereby, d is a CNCF-coloring of G. \lrcorner

To obtain the kernel, for every set X \subseteq S\prime of size at most two, mark 3 vertices
v \in V (G\prime) with X = N(v); if less than three such vertices exist, mark all. Remove all
unmarked vertices from V (G\prime)\setminus S\prime . This concludes the procedure. It follows from [11,
Lemma 6] that this last step does not change the 2-CNCF-colorability of G\prime ; observe
that this still holds after predefining the coloring of the vertex cover. It is easy to
observe that | S\prime | \leq 3| S| and | V (G\prime)| \leq | S\prime | 2 = \scrO (k2). Furthermore, since any vertex
in G\prime \setminus S\prime has degree at most two, | E(G\prime)| \leq | S\prime | 2 + 2| V (G\prime) \setminus S\prime | = \scrO (k2). Using
adjacency lists, this kernel can thus be stored in \scrO (k2 log k) bits.

This completes the proof of Theorem 4.27.

5. Combinatorial bounds. Given a graph G, it is easy to prove that \chi \sansC \sansN (G) \leq
\chi (G). However, there are examples that negate the existence of such bounds with re-
spect to \chi \sansO \sansN [11]. In this section, we prove combinatorial bounds for \chi \sansO \sansN with respect
to common graph parameters like treewidth, feedback vertex set, and vertex cover.

First, note that if G is a graph with isolated vertices then the graph can have no
ONCF-coloring. Therefore, in all the arguments below we assume that G does not

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2033

have any isolated vertices. We obtain the following result. Recall that for a graph
G, \sansv \sansc (G), \sansf \sansv \sanss (G), and \sanst \sansw (G) denote the size of a minimum vertex cover, the size of a
minimum feedback vertex set, and the treewidth of G, respectively.

Theorem 5.1. Let G be a connected graph that has at least two vertices. The
following statements hold:

1. \chi \sansO \sansN (G) \leq 2\sanst \sansw (G) + 1;
2. \chi \sansO \sansN (G) \leq \sansf \sansv \sanss (G) + 3;
3. \chi \sansO \sansN (G) \leq \sansv \sansc (G) + 1. Furthermore, if G is not a star graph or an edge-star

graph, then \chi \sansO \sansN (G) \leq \sansv \sansc (G).

In order to prove the above theorem, we prove each item separately. In the
following lemma, we consider the bound on \chi \sansO \sansN with respect to the treewidth of a
given graph.

Lemma 5.2. If G is a graph with treewidth t without isolated vertices, then it holds
that \chi \sansO \sansN (G) \leq 2t+ 1.

Proof. Consider a nice tree decomposition \scrT = (T, \{ X\bfu \} \bfu \in V (T))) of G with root
r. We give a vertex coloring c : V (G) \rightarrow [2t + 1] of G, which we will prove to be a
(2t + 1)-ONCF-coloring of G. Furthermore, we give a function f : V (G) \rightarrow [2t + 1]
such that f(v) is the color that is uniquely used in the neighborhood of v. We will
color the graph such that the following invariants hold after the handling of each bag.

\bullet If two vertices are in the same bag X\bfi of \scrT that has already been handled,
they receive distinct colors.

\bullet The graph induced by the colored vertices is ONCF-colored, with the excep-
tion of vertices that are isolated in G[Y], where Y is the set of vertices that
has been colored thus far. Furthermore, the color f(v) occurs exactly once in
the coloring of N(v).

Observe that by these two properties, c is not only a ONCF-coloring, but also a proper
coloring of G.

Let X\bfr be the bag corresponding to the root r, note that | X\bfr | \leq t + 1. Color
each of the vertices in X\bfr with a unique color from [t+ 1]. For each vertex v \in X\bfr ,
if N(v)\cap X\bfr \not = \emptyset , pick one arbitrary vertex u \in N(v)\cap X\bfr and let f(v) := c(u). Else,
let f(v) := 0.

Below, we give a procedure to handle each of the remaining bags; we handle the
bags of the tree decomposition in preorder. Let i be any vertex of T such that its parent
j has been handled. We show how to color the vertices of X\bfi . If X\bfi \subseteq X\bfj , all vertices
of X\bfi have already been taken care of. Given that T is a nice tree decomposition, the
only alternative is X\bfj is a forget node in T . Hence, X\bfi = X\bfj \cup \{ v\} for some v \in V (G)
and it only remains to color vertex v and possibly determine f(u) for some vertices
u \in X\bfi .

Let C := \{ c(v) | v \in X\bfj \} and let F := \{ f(v) | v \in X\bfj \} . Since | X\bfi | \leq t + 1,
it follows that | X\bfj | \leq t. Thereby, | F \cup C| \leq 2t. We color v with a color from
[2t + 1] \setminus (F \cup C). If there is a vertex u \in X\bfj for which f(u) was not yet set, and
\{ u, v\} \in E(G), we let f(u) = c(v). Furthermore, if v is not isolated in the graph
constructed thus far, we let f(v) = c(u) for some arbitrary u \in X\bfi . Note that in the
graph colored so far, N(v) \subseteq X\bfj .

We show that these choices preserve the two invariants. The first invariant is
immediate from the fact that v got a color distinct from the other vertices in its
bag. All remaining vertices in X\bfi have distinct colors because the vertices in X\bfj have
distinct colors.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2034 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

To show the second variant, we need to show that f(u) is set and occurs exactly
once in N(u), for all colored vertices u that have at least one colored neighbor. We
consider three cases. (i) Let u \not = v and f(u) be set before the handling of X\bfi , then
it is immediate that u has exactly one neighbor of color f(u) in N(u) \setminus \{ v\} . If v is
a neighbor of u, then since u is already colored, it must be true that both u and v
are present in X\bfi . Hence, we ensure that c(v) \not = f(u), preserving the invariant. (ii)
If u \not = v and f(u) was not yet set, then if \{ u, v\} is not an edge we do not set f(u) as
u is still isolated. If \{ u, v\} is an edge, then v is the only neighbor of u in the set of
colored vertices, and we correctly set f(u) := c(v). (iii) If u = v, we let f(v) be the
color of any of its neighbors in X\bfi . Since all neighbors of v that have been assigned a
color must be present in X\bfi and hence in X\bfj , this implies they all have distinct colors,
such that this choice is correct.

Since in the end, the entire graph is colored, the two invariants ensure that the
result is an ONCF-coloring assuming that G has no isolated vertices. Since we use at
most 2t+ 1 colors, \chi \sansO \sansN (G) \leq 2t+ 1.

A larger parameter than the treewidth of a graph is the size of a minimum feedback
vertex set of a graph. In the following result, we compare \chi \sansO \sansN with the size of a
minimum feedback vertex set.

Lemma 5.3. If G is a graph with a feedback vertex set (FVS) of size \ell , then
\chi \sansO \sansN (G) \leq \ell + 3.

Proof. Let X be an FVS of size \ell in G. Using the color set \scrC := \{ r, g, b\} \cup \{ cx |
x \in X\} , we define a vertex coloring c : V (G) \rightarrow \scrC , which we prove is a (\ell +3)-ONCF-
coloring of G. The general idea is as follows. Vertices in X are colored with cx, and
vertices not in X are conflict-free colored with \{ g, b\} . The only problem with this
coloring are vertices in x \in X with no neighbors in X. We resolve this issue by a
careful recoloring of some of these vertices with color r, and some of the vertices in
V (G) \setminus X with colors from \{ cx | x \in X\} .

Let I := \{ x \in X | N(x) \cap X = \emptyset \} . Initialize L = I. Color the vertices in G by
the following procedure.

1. For all x \in X \setminus L, let c(x) := cx.
2. Each connected component Y of G - X is a tree. If | Y | > 1, then ONCF-color

Y with colors g and b; this is possible by Observation 2.3. Otherwise (when
| Y | = 1), color the single vertex in Y with g.

3. while there exists u \in V (G) \setminus X such that N(u) \subseteq L
4. For each x \in N(u) let c(x) := cx
5. Let L := L \setminus N(u)
6. Pick an arbitrary x \in N(u) and let c(u) := cx
7. for each x \in L
8. Let c(x) := r
9. If there is no y \in L, v \in N(x) such that c(v) = cy
10. Pick an arbitrary v \in N(x) and recolor v by letting c(v) := cx
We argue that c is an ONCF-coloring. We consider the different vertices in G

and argue their ONCF-coloring by c. Let L be the set L as in line 7 of the procedure.
\bullet Consider a vertex v \in V (G) \setminus X if N(v) \setminus X \not = \emptyset . In line 2, N(v) \setminus X is given
a conflict-free coloring using the colors \{ b, g\} , which are not used for vertices
in X. In line 9, some of these vertices may be recolored to cx for x \in L, but
observe that any such color is used at most once in G. This implies that N(v)
is conflict-free colored by c.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2035

u∗ v∗ w∗

x

u∗ v∗ w∗u∗ w∗

v

Fig. 7. (left) A coloring of the graph when all vertices in G[S] are isolated. (middle) The case
where G[S] contains an edge and the endpoints have a common neighbor. (right) The case where
G[S] contains an edge and the endpoints have no common neighbors.

\bullet For a vertex v \in V (G) \setminus X, if N(v) \subseteq X, then it cannot be the case that
N(v) \subseteq \{ x \in X | c(x) = r\} as this would contradict the while loop in the
definition of the coloring. All other colors are used at most once on vertices
in X and therefore N(v) is ONCF-colored by c.

\bullet For a vertex x \in X \setminus I, there is a neighbor in X the color of which is unique
in V (G). Hence, N(x) is ONCF-colored by c.

\bullet Consider a vertex x \in I with c(x) = cx. Note that N(x) \subseteq V (G) \setminus X.
By definition of c, there is a vertex v \in V (G) \setminus X and y \in I such that
x, y \in N(v) \subseteq I and c(v) = cy. The color cy is used at most once in N(x),
and thus it is ONCF-colored by c.

\bullet Let x \in I be a vertex with c(x) = r. Note that N(x) \subseteq V (G) \setminus X. By
definition of c, there is a vertex w \in N(x) that obtains a color cy for some
y \in I. Since color cy is used only once in V (G) \setminus X, vertex w witnesses the
ONCF-coloring of N(x).

Thus, \chi \sansO \sansN (G) \leq \ell + 3.

Observe that the bound given in Lemma 5.3 is close to being tight. If we start
from a clique Kk and subdivide each edge, the resulting graph has a feedback vertex
set of size k - 2 and needs k colors to be ONCF-colored.

The next lemma bounds the value of \chi \sansO \sansN (G) for graphs with a vertex cover of
size k. In particular, we improve the bound given by Gargano and Rescigno [11,
Lemma 4], who showed that \chi \sansO \sansN (G) \leq 2k + 1.

Lemma 5.4. Let G be a connected graph with \sansv \sansc (G) = k. Then \chi \sansO \sansN (G) \leq k + 1.
Furthermore, if G is not a star graph or an edge-star graph, then \chi \sansO \sansN (G) \leq k.

Proof. See Figure 7 for a sketch of the colorings described in the proof.
We start by proving the bounds for the case where G is not a star and not an

edge-star. Let S be a minimum vertex cover of G and let k be the size of S. We do
a case distinction on the size and connectedness of S.

(k = 2 and S connected) First, we prove the bounds for k = 2 and G[S] is an
edge \{ u\ast , v\ast \} . Note that G is not an edge-star graph. Therefore at least one of u\ast

or v\ast have neighbors with degree exactly 1 in G \setminus S. We show that it is possible to
ONCF-color such a graph with 2 colors, namely, r and b. Without loss of generality,
let u\ast have degree-1 neighbor w\ast . We proceed as follows. Let c(u\ast) := c(w\ast) := r
and c(v\ast) := b. For any other vertex in V (G), let c(v) := b. It remains to verify
that this is an ONCF-coloring. Any v /\in S is clearly ONCF-colored by the fact that
their neighborhood is a subset of S, and the vertices in S receive different colors.
Furthermore, v\ast has exactly one neighbor of color r (namely, u\ast), and u\ast has one
neighbor of color r, namely w\ast , concluding this part of the proof.

(G[S] disconnected or k \geq 3) We now prove the bounds for k = 2 and G[S] is
disconnected, and k \geq 3. We consider a number of cases.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2036 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

(Suppose G[S] contains a connected component C of size at least three.) Let
v\ast \in C be a vertex such that G[C \setminus \{ v\ast \}] remains connected. We color the vertices in
G as follows. For every vertex u \in S, let c(u) := cu. For every vertex u \in S that is
isolated in G[S], pick an arbitrary neighbor v /\in S and (re)color v such that c(v) := cu.
Notice that a vertex v in G \setminus S may be picked multiple times as the candidate for an
arbitrary neighbor for an isolated vertex in S, and in this case the color of this vertex
v is set to the last color it is assigned. For every vertex v that is not yet colored, let
c(v) := cv\ast .

Note that by this definition, every vertex in S has a distinct color. The colors
that appear on vertices of G \setminus S are either cv\ast or the color of a vertex that is isolated
in G[S]. Also, by the choice of v\ast , every vertex in the component C of G[S] has at
least one other neighbor in C. We verify that c is an ONCF-coloring.

\bullet From the above, every vertex u \in S that belongs to a connected component
of size at least two in G[S] has a uniquely colored neighbor in S that witnesses
the ONCF-coloring of N(u). Note that this includes v\ast .

\bullet Every isolated vertex u in G[S] has N(u) \subseteq V (G) \setminus S. By description, every
color cv for v \not = v\ast occurs at most once in V (G) \setminus S, and u sees at least one
such vertex. Thus, N(u) is ONCF-colored.

\bullet Finally, since all vertices in S are distinctly colored, the neighborhoods of
vertices in V (G) \setminus S are ONCF-colored.

Also, notice that the number of colors used is k. Thus, we are done in this case.
(Suppose G[S] only contains connected components of size one.) Note that | S| >

1. Start by letting c(v) := cv for every vertex v \in S. Since G is connected, there
exists v /\in S such that | N(v)| \geq 2. Pick two vertices u\ast , w\ast \in N(v) with u\ast \not = w\ast . Let
c(v) := cu\ast . For every vertex u \in S \setminus \{ u\ast , w\ast \} pick an arbitrary neighbor v /\in S and
recolor v to cu. Color the vertices that remained uncolored by this procedure with
cw\ast . Note that by this procedure, every vertex in S has a distinct color. To see that
c is an ONCF-coloring:

\bullet Every vertex v in G[S] has N(v) \subseteq V (G) \setminus S. By description, every color cu
for u \not = w\ast occurs at most once in G \setminus S. Furthermore, v has at least one
neighbor with a color in \{ cu | u \not = w\ast \wedge u \in S\} . Thus, N(v) is ONCF-colored.

\bullet Finally, since all vertices in S are distinctly colored, the neighborhoods of
vertices in V (G) \setminus S are ONCF-colored.

Also, notice that the number of colors used is k. Thus, we are done in this case.
(Otherwise.) In this case G[S] has size at least 3, contains multiple connected

components, and at least one such component has size two. Let C = \{ u\ast , v\ast \} be a
connected component in G[S] and let w\ast be another arbitrarily chosen vertex. We do
a further case distinction.

\bullet Suppose there exists a vertex x /\in S with N(x) = \{ u\ast , v\ast \} ; take one arbitrary
such vertex. Then we let c(v) := cv for all v \in S, and we let c(x) := cw\ast .
For every vertex u \in S that is isolated in G[S], pick an arbitrary neighbor
v /\in S and recolor v to c(v) := cu. Define c(v) := cu\ast for all vertices v that
remained uncolored thus far. Notice that this coloring is very similar to the
colorings in the previous cases. The only verification to be done is that for
the sets N(u\ast) and N(v\ast) and both these neighborhoods have a vertex x that
is uniquely colored with cw\ast . Thus, with arguments similar to those in the
previous cases we obtain a k-ONCF-coloring for G in this case.

\bullet Alternatively, if there exists no vertex x with N(x) = \{ u\ast , v\ast \} , then we let
c(u\ast) = c(v\ast) = cu\ast , and we let c(v) := cv for all vertices in S \setminus \{ u\ast , v\ast \} .
For every vertex u \in S that is isolated in G[S], pick an arbitrary neighbor

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPLEXITY OF CONFLICT-FREE GRAPH COLORING 2037

v \in N(u) and recolor v to c(v) := cu. Color all remaining vertices with
cv\ast . Notice that N(u\ast) and N(v\ast) have v\ast and u\ast uniquely colored with cu\ast ,
respectively. Using arguments similar to previous cases, we can show that
the described coloring is a k-ONCF-coloring.

If G is not a star and not an edge-star, we are in one of the cases above. Otherwise,
it is easy to observe that stars have a vertex cover of size one and can always be
colored with two colors, and edge-stars can be colored with three colors while having
a minimum vertex cover size of two.

Observe that the bounds of Lemma 5.4 are tight. First, a star graph requires 2
colors and has vertex cover size 1 while an edge-star graph requires 3 colors and has
vertex cover size 2. On the other hand, given a q \geq 3, taking the complete graph Kq

and subdividing each edge once results in a graph that requires q colors [11] for an
ONCF-coloring and has a vertex cover of size q.

Using Lemmas 5.2, 5.3, and 5.4 we complete the proof of Theorem 5.1.

6. Open problems. The study in this paper leads to some interesting open
questions. In this paper we only exhibit a generalized kernel of size \scrO (k9) for 2-
CNCF-Coloring and it remains to resolve the size of tight polynomial kernels for
the problem. On the combinatorial side, with respect to minimum vertex cover, we
obtain tight upper bounds on \chi ON (G). It would be interesting to obtain corresponding
tight bounds for \chi ON (G) with respect to FVS and treewidth.

REFERENCES

[1] Z. Abel, V. Alvarez, E. D. Demaine, S. P. Fekete, A. Gour, A. Hesterberg,
P. Keldenich, and C. Scheffer, Conflict-free coloring of graphs, SIAM J. Discrete Math.,
32 (2018), pp. 2675--2702, https://doi.org/10.1137/17M1146579.

[2] D. Ajwani, K. Elbassioni, S. Govindarajan, and S. Ray, Conflict-free coloring for rectangle
ranges using O(n.382) colors, Discrete Comput. Geom., 48 (2012), pp. 39--52, https://doi.
org/10.1007/s00454-012-9425-5.

[3] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch, Kernelization lower bounds by cross-
composition, SIAM J. Discrete Math., 28 (2014), pp. 277--305, https://doi.org/10.1137/
120880240.

[4] H. L. Bodlaender, S. Thomass\'e, and A. Yeo, Kernel bounds for disjoint cycles and disjoint
paths, Theoret. Comput. Sci., 412 (2011), pp. 4570--4578, https://doi.org/10.1016/j.tcs.
2011.04.039.

[5] P. Cheilaris, Conflict-free Coloring, PhD thesis, City University of New York, New York,
2009.

[6] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, Cham, Switzerland,
2015, https://doi.org/10.1007/978-3-319-21275-3.

[7] A. Darmann and J. D\"ocker, On a simple hard variant of not-all-equal 3-sat, Theoret. Com-
put. Sci., 815 (2020), pp. 147--152, https://doi.org/https://doi.org/10.1016/j.tcs.2020.02.
010.

[8] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky, Conflict-free colorings of simple geo-
metric regions with applications to frequency assignment in cellular networks, SIAM J.
Comput., 33 (2003), pp. 94--136, https://doi.org/10.1137/S0097539702431840.

[9] F. V. Fomin and D. Kratsch, Exact Exponential Algorithms, Springer, Berlin, 2010.
[10] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory of

NP-Completeness, Freeman, New York, 1990.
[11] L. Gargano and A. A. Rescigno, Complexity of conflict-free colorings of graphs, Theoret.

Comput. Sci., 566 (2015), pp. 39--49, https://doi.org/10.1016/j.tcs.2014.11.029.
[12] R. Glebov, T. Szab\'o, and G. Tardos, Conflict-free colouring of graphs, Combin. Probab.

Comput., 23 (2014), pp. 434--448.
[13] S. Har-Peled and S. Smorodinsky, Conflict-free coloring of points and simple regions

in the plane, Discrete Comput. Geom., 34 (2005), pp. 47--70, https://doi.org/10.1007/
s00454-005-1162-6.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/17M1146579
https://doi.org/10.1007/s00454-012-9425-5
https://doi.org/10.1007/s00454-012-9425-5
https://doi.org/10.1137/120880240
https://doi.org/10.1137/120880240
https://doi.org/10.1016/j.tcs.2011.04.039
https://doi.org/10.1016/j.tcs.2011.04.039
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/https://doi.org/10.1016/j.tcs.2020.02.010
https://doi.org/https://doi.org/10.1016/j.tcs.2020.02.010
https://doi.org/10.1137/S0097539702431840
https://doi.org/10.1016/j.tcs.2014.11.029
https://doi.org/10.1007/s00454-005-1162-6
https://doi.org/10.1007/s00454-005-1162-6

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2038 H. L. BODLAENDER, S. KOLAY, AND A. PIETERSE

[14] B. M. P. Jansen and S. Kratsch, Data reduction for graph coloring problems, Inform. and
Comput., 231 (2013), pp. 70--88, https://doi.org/10.1016/j.ic.2013.08.005.

[15] B. M. P. Jansen and A. Pieterse, Optimal data reduction for graph coloring using low-degree
polynomials, Algorithmica, 81 (2019), pp. 3865--3889.

[16] B. M. P. Jansen and A. Pieterse, Optimal sparsification for some binary CSPs using low-
degree polynomials, ACM Trans Comput. Theory, 11 (2019), 28.

[17] D. Lokshtanov, D. Marx, and S. Saurabh, Known algorithms on graphs of bounded treewidth
are probably optimal, ACM Trans. Algorithms, 14 (2018), 13, https://doi.org/10.1145/
3170442.

[18] J. Pach and G. Tardos, Conflict-free colourings of graphs and hypergraphs, Comb. Probab.
Comput., 18 (2009), pp. 819--834, https://doi.org/10.1017/S0963548309990290.

[19] T. J. Schaefer, The complexity of satisfiability problems, in Proc. 10th STOC, ACM, New
York, 1978, pp. 216--226, https://doi.org/10.1145/800133.804350.

[20] S. Smorodinsky, Combinatorial Problems in Computational Geometry, PhD thesis, School of
Computer Science, Tel Aviv University, Tel Aviv, Israel, 2003.

[21] S. Smorodinsky, Conflict-Free Coloring and its Applications, Springer, Berlin, 2013.

D
ow

nl
oa

de
d

12
/2

0/
21

 to
 8

2.
72

.2
53

.2
31

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1016/j.ic.2013.08.005
https://doi.org/10.1145/3170442
https://doi.org/10.1145/3170442
https://doi.org/10.1017/S0963548309990290
https://doi.org/10.1145/800133.804350

	Introduction
	Preliminaries
	Tree decompositions and treewidth
	Parameterized complexity
	Fast subset convolution computation

	Algorithmic results parameterized by treewidth
	Algorithms
	Running time lower bounds

	Kernelization
	Kernel lower bounds for q-ONCF-COLORING
	Kernel lower bound for CNCF-COLORING
	Generalized kernel for 2-CNCF-COLORING
	Kernelization bounds for conflict-free coloring extension

	Combinatorial bounds
	Open problems
	References

