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Abstract: Achieving zonal isolation along wellbores is essential for upholding the containment
integrity of subsurface reservoirs and preventing fluid seepage to the environment. The sealing
performance of Portland cements conventionally used to create barriers can be severely compromised
by defects like fractures or micro-annuli along casing–cement–rock interfaces. A possible remediation
method would be to circulate reactive fluids through compromised cement sections and induce defect
clogging via mineral precipitation. We assess the sealing potential of two prospective fluids: sodium
bicarbonate and sodium silicate solutions. Reactive flow-through experiments were conducted
on 6-m-long cemented steel tubes, bearing ~20-µm-wide micro-annuli, at 50 ◦C and 0.3–6 MPa
fluid pressure. For the sodium bicarbonate solution (90 g/kg-H2O), reactive flow yielded only
a minor reduction in permeability, with values remaining within one order. Injection of sodium
silicate solution (37.1 wt.%, SiO2:Na2O molar ratio M = 2.57) resulted in a large decrease in flow
rate, effectively reaching the setup’s lower measurement limit in hours. However, this strong
sealing effect can almost certainly be attributed to gelation of the fluid through polymerisation,
rather than defect clogging via mineral precipitation. For both fluids investigated, the extent of
solids precipitation resulting from single-phase injection was less than anticipated. This shortfall is
attributed to ineffective/insufficient liberation of Ca-ions from the alkaline phases in the cement.

Keywords: wellbore integrity; cement; mineral precipitation; annular fluid migration; zonal isolation;
sustained casing pressure; microannuli; reactive flow; permeability; transport properties

1. Introduction

Ensuring wellbore integrity and long-term zonal isolation is of utmost importance
to many of our activities in the subsurface, such as geothermal energy production [1,2],
temporary underground storage of energy carriers, such as hydrogen or compressed
air [3], geological sequestration of wastes like CO2 [4], and oil and gas production [5–8].
While designed to have a low permeability, the Portland cements, typically used to create
hydraulic barriers against unwanted fluid seepage along wellbores, may become impaired
by permeable defects, such as fractures within the cement or debonding micro-annuli
along its interfaces with the casing pipe or rock formations. Such defects can have various
causes, including (i) ineffective cement placement [9–11], (ii) autogenous shrinkage and
debonding upon setting of the cement [12–18], or (iii) mechanical damage sustained by the
set cement [19–26]. The defects offer possible routes for annular gas migration, potentially
leading to sustained casing pressure (SCP), surface–casing vent flow (SCVF), or other
sealing integrity issues [27,28]. Both SCP and SCVF are relatively prevalent [29–31], though
statistics vary widely with factors such as wellbore age, design and status, as well as
the exploitation and regulatory history of the basin [32]. If the seepage poses a safety or
environmental risk in terms of its surface pressure, volume flux or chemical composition,
remedial action will generally be required.
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Annular fluid migration (i.e., seepage that occurs outside of the innermost casing pipe)
is inherently challenging to mitigate. One of the more common approaches is so-called
perforate and squeeze cementing [33,34]. During such operations, perforations are made
in the casing pipe, after which additional cement is forced through these perforations in
an attempt to seal off micro-annuli and other defects or voids in the annulus or adjacent
formation [27,35]. Unfortunately, squeeze cementing has a relatively low success rate.
Analysis of 137 operations performed on wells in Texas found only 47 (about 34%) were
effective on the first attempt, while the compounded success rate of multiple squeezes
remained below 60% [36]. Success rates of about 50% have been reported in Alberta [37]
and the Gulf of Mexico [38]. While surfactants may improve the effectiveness of squeeze-
cementing operations, often multiple attempts are still required [39].

A key challenge for squeeze-/cementing operations is achieving proper cement place-
ment. Portland cement slurries can be relatively viscous, quickly develop a gel (i.e., yield)
strength, and contain considerable volume fractions of fine solid particles (for typical
water-to-cement mass ratios, 35–60 vol.% at the time of mixing). These properties of cement
tend to complicate entry into narrow debonding defects and fractures, e.g., by screening
off the solid particles, which can prevent such defects from being sealed effectively [40].
This issue seems especially relevant for micro-annuli, which are typically only 5–100 µm
wide [13,41]. Significantly better placement and sealing results have been obtained by
instead injecting particle-free fluids of relatively low viscosity, such as thermosetting resins
or epoxies [42–45]. Unfortunately, the long-term stability of these organics-based materials
in downhole environments remains rather uncertain [46], especially at high temperature.
Such longevity issues severely limit their scope, particularly for wellbore plugging and
abandonment (P and A) applications [5], where zonal isolation integrity should ideally be
guaranteed for hundreds if not thousands of years.

Given the above, there is clear opportunity for alternative sealant materials that (i) can
be reliably injected into micro-annuli and narrow fractures in the cement, and (ii) are
confirmed to have long-term durability in downhole wellbore environments. Concentrated
aqueous solutions that cause stable solids to form, e.g., via mineral precipitation upon
interaction with the cement or resident formation fluids, could, in theory, meet both require-
ments [47–50]. In this study, we assess the sealing effectiveness of two prospective fluids,
namely sodium bicarbonate and sodium silicate-based solutions. Upon interaction with
Portland cement, these fluids may precipitate calcium carbonates and silicates, respectively,
i.e., produce solid minerals that are known to be stable in subsurface environments. To
assess whether precipitation could form an effective seal, reactive flow-through perme-
ametry tests were conducted on interconnected defects (micro-annuli and channels) in
6-m-long sections of wellbore casing–cement interface, simulated using cemented coils,
broadly following the approach of Wolterbeek et al. [48].

2. Rationale for Selected Mineral Fluids

The following sections provide brief motivations for choosing the fluid systems inves-
tigated in this study.

2.1. Sodium Bicarbonate

Our incentive for including a sodium bicarbonate solution stems from research evalu-
ating the wellbore seepage risk associated with geological storage of CO2 [4,51]. Substantial
experimental work has been directed at understanding how reactive flow of CO2-rich fluids
can affect and change the transport properties of damaged cement and micro-annuli along
casing–cement and cement–rock interfaces [48,52–61]. Carbonic acid causes dissolution
and leaching of alkaline phases in the cement such as portlandite (calcium hydroxide),
ultimately forming semi-crystalline aluminosilicates and calcium carbonates [51,62–64].
Under flow conditions, it was found these reactions can lead to effective self-sealing of
micro-annuli, provided that the precipitation of carbonates locally outstrips dissolution of
cement phases. This prompted several workers to speculate whether CO2-rich fluids could
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be employed in wellbore seepage remediation [49,50]. Conversely, however, if dissolution
dominates, then reactive transport could conceivably lead to extensive cement degradation
and self-enhanced seepage, with sealing integrity worsening over time [65]. Numerical
models have shown that the conditions under which reactive transport is self-sealing vs.
non-sealing can be circumscribed quite well in terms of the initial defect size and fluid
residence time [52,60,61,66–69]. Specifically, sufficient time will be required for dissolution
of cement phases to neutralise the carbonic acid and buffer the CO2-rich fluid (initially
in the pH 3–4 range [70]) to the more alkaline pH values required for carbonates to pre-
cipitate [48,66]. Compared to CO2-saturated brines, sodium bicarbonate solutions are
already mildly alkaline (in pH 6–10 range [71]). This may reduce the degree to which
cement phases need to be dissolved before pH levels are attained that allow carbonate
precipitation to initiate, provided that sufficient Ca-ion concentrations can be generated
from the portlandite and cement-pore fluid.

2.2. Sodium Silicate

Sodium silicate-based solutions are already find application in downhole wellbore
environments, for example, in achieving the flash-setting of the cement and thereby avoid
major losses during squeeze cementing [72]. Sodium silicate solutions have also been used,
in the form of microencapsulated admixtures, to enhance the autogenous self-repairing
capacity of concrete and other cement-based materials, allowing more effective sealing and
healing of microcracks [73]. The aforementioned applications make use of how sodium
silicate-based solutions interact chemically with cement phases and resident pore fluids.
Presence of solid aluminosilicates in the cement can induce polymerization of the sodium
silicate structure in the solution, which, in turn, can lead to gelation and geopolymer
formation [74]. Sodium silicate-based solutions also react with the portlandite present
in the hydrated cement (or Ca-ions available in the resident cement-pore fluid) to form
solid calcium silicate hydrates [73]. This combination of solids precipitation and gelation
of the fluid phase make sodium silicate solutions a promising candidate for reactive
mineralization and sealing of micro-annuli along wellbores.

3. Materials and Methods
3.1. Materials and Preparation of Cemented Coil Samples

For the reactive flow-through experiments, 6-m-long sections of wellbore casing–
cement interface were created by cementing coiled steel tubes (Figure 1a). These Portland
cement-filled coils were made from ST.35 steel tubes (EN 10305-3, inner diameter 8 mm,
outer diameter 10 mm) fitted with Nova high-pressure connections. The tubes were coiled
prior to cementing (diameter ~23 cm, pitch ~1 cm), such that the samples physically fit
inside the permeameter setup (Figure 1b).

The cement slurry used to plug the coiled steel tubes was prepared following API
Recommended Practice 10B-2 [75] using Class G HSR Portland cement (Dyckerhoff AG,
Lengerich) and tap water (0.44 water-to-cement mass ratio). A peristaltic pump was used
to inject the cement slurry into the steel tubes, after which one of the tube’s ends was
closed off. The other end of the sample was connected to an ISCO 500D syringe pump,
used to impose 10 MPa of water pressure during curing at ambient temperature. The
cemented samples were allowed to set under pressure for at least two weeks, during which
the windings of the samples were oriented vertically. Afterwards, the samples were slowly
depressurized and the cement was allowed to hydrate further at atmospheric pressure
for at least six months. Reference cement samples were prepared and stored for chemical
analysis of the initial materials.

After curing, the first ~7 cm of hardened cement was drilled out of both ends of the
samples, to free the connections and ensure that a uniform fluid pressure could be applied
on the tube inner wall. Subsequently, a hydraulic method was used to create continuous
micro-annuli along the steel–cement interfaces of the samples. This was done by connecting
a high-pressure hand-spindle pump to one end of the steel tube, closing off the other end
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with a pressure gauge. The steel tube was slowly pressurized to ~75 MPa using water,
causing the tube wall to yield and permanently inflate, debonding from the cement inside.
This procedure was executed very slowly, taking about two weeks, in order to obtain
a uniform expansion. The progression and creation of micro-annuli was monitored by
intermittent measurement of the outer diameter of the steel tubes.
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and bottom of the coil windings during cement curing are indicated. Note post-experimental cross-sections were obtained
from these locations; (b) photograph of sample SIL-1 mounted inside the permeameter setup, (c) schematic illustration of
the experimental permeameter setup, where PT denotes pressure transducer. See main text for detailed descriptions.

3.2. Materials and Preparation of Reactive Mineral Fluids

The sodium bicarbonate solution used in this study was prepared by dissolving 90 g
reagent grade sodium bicarbonate (Sigma-Aldrich) in 1000 g demineralised water. The
Erlenmeyer containing the solution was sealed off to limit interaction with lab air. The
solution was maintained at room temperature, stirred using a magnetic stirrer for at least
24 h, and filtered shortly prior to use in the experiment. The reagent grade sodium silicate
solution used for this study was acquired from Sigma-Aldrich (Product No. 338443) and
had a composition of ~10.6 wt.% Na2O and ~26.5 wt.% SiO2 [76], which corresponds to a
SiO2:Na2O molar ratio of M = 2.57. For both solutions, the relatively high concentrations
used were selected to maximise the solids precipitation potential.

3.3. Reactive Flow-Through Permeameter System

The reactive flow tests were performed in a permeameter (Figure 1c) that could impose
fluid pressure differences of up to 6 MPa across the samples, while their downstream
ends were held at atmospheric pressure. The main setup consisted of two model 500D
Teledyne ISCO syringe pumps, equipped with Honeywell Model TJE pressure transducers
(resolution ~10 kPa) and water ports. One pump was connected to the upstream end of the
cemented coil, allowing water-based and sodium bicarbonate solution-based measurements
to be performed (ISCO 500D-1, Figure 1c). The other pump (ISCO 500D-2, Figure 1c) was
used to pressurize a secondary syringe, which could be charged with sodium silicate
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solution using a peristaltic pump, allowing the reactive flow-through experiments to be
performed without risk of silicate precipitation inside the Teledyne ISCO pumps. An oven
was used to keep the sample at 50 ◦C (±0.2 ◦C) and preheat injected fluids to experimental
temperature during flow-through testing (Figure 1b). Effluent fluid was collected in a
container placed on a digital balance.

3.4. Experimental Procedure

The experiments involved a reference flow measurement using water, performed to
establish the initial transport properties of the cemented coil samples. This was followed
by the introduction of one of the reactive mineral fluids, continuously measuring flow and
applied pressure in order to monitor eventual changes in the transport properties of the
samples. The sample subjected to sodium silicate solution was subsequently unmounted
and exposed to pressurized dry air on its upstream side, in order to assess the possible
impact of drying-out effects.

The reference flow-through measurements were made by imposing a controlled fluid
pressure difference over the sample ends, deeming the resulting flow rate to be a direct
measure for the coiled tubes’ effective permeability. The fluid pressure difference imposed
across the cemented coils was varied between 0.2 and 6 MPa in several steps, in order to
assess whether the initial flow behaviour could be treated as laminar.

The switch to reactive flow-through testing was made by first isolating the water-filled
pump and then connecting the upstream end of the sample to the pressurized syringe
containing the sodium bicarbonate or sodium silicate solution. During this procedure,
the two pump systems were maintained at equal pressure. Subsequently, the equivalent
permeability of the samples was measured following procedures similar to those employed
during the reference measurements. Experiments would be terminated either when flow
rate became too low for effective measurement or when the transport properties of the
sample reached a stable, albeit still permeable state.

Testing with dry air involved direct connection to compressed air facilities, delivering
0.7 MPa pressure to the upstream side of the cemented steel tube. Eventual outflow of
gas was monitored using a water displacement method. To this end, a narrow measuring
cylinder filled with deaerated water was turned upside down in a larger water basin,
with the downstream side of the sample connected such that any gas appearing would be
collected in the measuring cylinder. This may be considered roughly comparable to an
industry bubble test [77].

3.5. Data Acquisition and Processing

LabView-based software was used to log the flow rate, volume and pressure signals
of the ISCO pumps, and the accumulated mass of effluent fluid once every 5 s. The logged
data were processed by first removing intervals corresponding to setup maintenance or
switching of fluids, offsetting volume and time accordingly. Assuming single-phase flow,
the data were subsequently used to calculate the evolving equivalent Darcy permeability
of the cemented steel coil samples, here denoted κequiv [m2] [78]:

κequiv =
µQ
A

L
∆P

, (1)

where Q [m3 s−1] denotes the flow rate, L [m] and A [m2] are the cemented length and inner
cross-sectional area of the steel tube, respectively, µ [Pa s] is the fluid viscosity, and ∆P [Pa]
denotes the pressure difference imposed over the cemented steel tube. The flow rate was
obtained by linear regression of intervals of pump volume data, using adaptive windows of
10 min duration. Corresponding values of the other properties were calculated as moving
averages over the same time windows. The data thus obtained are made available via the
Yoda data repository [79].

The principal source of uncertainty in the aforementioned calculations is likely to be
dynamic viscosity. For both the water-based reference measurements and the subsequent
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reactive flow tests, a constant µ of 0.55 mPa s was assumed in the calculations (pure
water at 50 ◦C and 5 MPa pressure—NIST Standard Reference Data). For the sodium
bicarbonate solution, the actual dynamic viscosity depends on the fluid’s ionic strength
and CO2 content [80–82], introducing relative errors in our permeability estimates of about
10% [48,82]. For the sodium silicate solution, however, the actual dynamic viscosity is
expected to vary significantly, as this property is highly sensitive to the concentration of
the solution itself and eventual contamination with other ionic species [72,74,83]. These
issues will be addressed in the discussion of the data.

The water-based flow measurements were used to calculate the initial hydraulic aper-
ture of the debonding defects along the steel-cement interface of the samples. Following
the approach of Wolterbeek et al. [48,60], the circumferential debonding defects in the
cemented steel tube sample were modelled for this purpose as regions between coaxial,
cylindrical plates [68,84]. The hydraulic aperture of the micro-annulus, w [m], can then be
obtained by solving:

κequiv =
1

8R2

(
R4 − (R− w)4 +

w2(2R− w)2

ln(1− w/R)

)
, (2)

where R [m] is the inner radius of the steel tube. The corresponding defect void volume,
Vvoid [m3], was calculated as:

Vvoid = π
(

R2 − (R− w)2
)

L. (3)

Note that this value, calculated on the basis of the hydraulic aperture, should be
considered an underestimate of the actual void volume, as the physical geometry of the
defects will be variable and may include hydraulically constricted but volumetrically large
domains (e.g., bubbles or short-ranged channels).

3.6. Post-Experiment Microstructural Analysis

After the reactive flow experiments were completed, a microstructural study was
performed on the cemented steel tubes. For this purpose, the tubes were cut into segments
of 3 cm in length. Subsequently, 2-mm thick discs were taken from the middle of selected
segments, yielding a sequence (from the coiled tube inlet to its outlet) of cross-sections
oriented perpendicular to the main direction of flow. With respect to the overall orientation
of the cemented steel tube, the selected cross-sections corresponded to either the top
or bottom of a coil winding (Figure 1a), i.e., locations where gravity worked roughly
perpendicular to the main flow direction. These sections were studied using reflected light
microscopy to reveal the defect architecture and explore for signs of chemical alteration
and mineral precipitation.

4. Results and Analysis

The main data obtained in the two reactive transport tests are summarized in Table 1.
Below, we will first provide descriptions of the flow-through permeability results and then
give a brief account of the microstructural observations.

4.1. Flow and Equivalent Permeability Evolution

The matrix permeability of wellbore cements, κcem [m2], typically attains very low val-
ues, in the order of 10−21 to 10−17 m2 [85,86]. Consequently, flow in the reactive transport
tests presumably occurred chiefly via the micro-annuli created along the steel–cement inter-
face. However, since the geometry of these defects is insufficiently constrained, the sealing
performance of the samples is here described in terms of the apparent Darcy permeability
of the samples (Equation (1)), i.e., defined with respect to A [m2]. An advantage of this
method is that the values thus obtained can be directly compared to the equivalent Darcy
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permeability a hypothetical, perfectly bonded and cemented tube, which would approach
the cement matrix permeability, κcem [m2].

Table 1. Overview of performed experiments and results.

Properties Sample BC-1 Sample SIL-1

steel tube length (L) [m] 6 6
steel tube inner diameter (2R) [mm] 8 8

internal defect geometry internal structure presumably
similar to sample SIL-1

micro-annulus plus short-ranged,
crescent-shaped voids

sample temperature (T) [◦C] 50 50
reactive flow experiment duration [h] 91.3 300
initial pressure difference (∆P0) [MPa] 0.3 0.6

max. pressure difference (∆Pmax) [MPa] 0.6 6.0
initial stable fluid flux (Q0) [mL h−1] 1.6 13.2

total volume of reactive fluid injected [mL] 133 35
assumed fluid viscosity 1 (µ) [mPa s] 0.55 0.55

initial equivalent permeability 1
(

κ0
equiv

)
[m2] 3.8 × 10−13 8.3 × 10−13

lowest equivalent permeability 1
(

κmin
equiv

)
[m2] 9.0 × 10−14 in range of 10−17–10−19

initial hydraulic aperture (w) [µm] 17.3 22.1
initial defect void volume (Vvoid) [mL] 2.6 3.3
1 Note the actual dynamic viscosity may have changed over the course of the experiments. However, the constant value listed here has
been assumed for the equivalent (apparent) sample permeability calculations. See main text for discussion.

4.1.1. Sample BC-1: Experiment with Sodium Bicarbonate Solution

During initial water-based testing of sample BC-1 (Figure 2a), the measured flow rate
increased linearly, from 7 to 71 mL h−1, as the pressure difference was increased from 0.6
to 6 MPa (Figure 2b). This suggests laminar flow behaviour and corresponds to an initial
equivalent Darcy permeability of 3.8 × 10−13 m2 and an initial apparent hydraulic aperture
of 17.3 µm, with an associated defect void volume of ~2.6 mL.

Following the pressure-step testing, sample BC-1 was subjected to 45 h of stable flow,
under ∆P = 0.3 MPa, during which ~135 mL of water was injected (Figure 3). Over
this period, the κequiv of sample BC-1 decreased only very slightly, from 3.5 × 10−13 m2 to
3.2× 10−13 m2 (Figure 3). Subsequently, at t = 0 h (Figure 3a), the permeameter system was
switched over to the second syringe pump to initiate flow of sodium bicarbonate solution,
still maintaining ∆P = 0.3 MPa. During the first 3.5 h of testing with sodium bicarbonate
solution, the permeability of sample BC-1 remained essentially unchanged. Note this
period saw the injection of about 10 mL of fluid, which is roughly the dead volume of
upstream tubing and thus likely reflected continued water-injection into the sample. From
t = 3.5 h onwards, flow rate began to decrease slowly, as illustrated by the proportional
κequiv-data shown (Figure 3). While a jump occurred around t = 12 h, the overall trend
remained one of slowly decreasing flow rate, at least until t = 40 h. At this point, after
injecting about 52 mL of fluid, κequiv attained a value in the range of 4 × 10−14 m2, which
constitutes nearly an order of magnitude decrease compared to the initial water-based
measurements (Figure 3). For the next 29 h, κequiv remained essentially stable or perhaps
showed a slight increase, albeit minor compared to uncertainties in the data. At t = 69 h,
after injection of ~63 mL of fluid, the pressure difference acting across sample BC-1 was
increased to 0.6 MPa. This produced an immediate upsurge in the flow rate (Figure 3) and
a corresponding increase in the equivalent sample permeability, which attained values in
the range of 3× 10−13 m2 (Figure 3). These changes are probably apparent effects, however,
related to sample pressurization (storativity) and other transient phenomena (see [48]). At
t = 77 h, after another ~35 mL of fluid was injected, κequiv began to decrease again. At
this stage, the data displayed five “peaks”, each consisting of a sudden increase followed
by a more gradual lowering of the equivalent permeability. After t = 82 h, the peaks
cease to occur, and κequiv attains a more stable value in the range of 1 × 10−13 m2. The
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equivalent permeability of sample BC-1 continued to decrease slowly, reaching a value of
~9 × 10−14 m2 after 91.3 h of reactive flow-through measurement (Figure 3). At this stage,
the experiment had to be terminated abruptly, because of a mandated lockdown of our lab
facilities in March 2020, related to the outbreak of the COVID-19 pandemic.
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4.1.2. Sample SIL-1: Experiment with Sodium Silicate Solution

As for sample BC-1, the initial flow behaviour of sample SIL-1 could be characterized
as laminar, where measured flow rates changed linearly, between ~0.3 and 103 mL h−1, as
the imposed pressure difference was varied between 0.2 and 4.2 MPa (Figure 4). Sample
SIL-1 was calculated to have an initial equivalent permeability of 8.3 × 10−13 m2, which
corresponds to a hydraulic aperture of 22.1 µm and defect void volume of ~3.3 mL, but
note that the latter is likely an underestimate of the physical void volume.



Energies 2021, 14, 7507 9 of 19

Energies 2021, 14, 7507 9 of 20 
 

 

 

Figure 3. Equivalent Darcy permeability of sample BC-1 versus (a) elapsed time and (b) injected 

fluid volume. Run time and volume are shifted such that they equal zero at the moment when 

injection of sodium bicarbonate solution was started (water-based reference results are thus plotted 

on negative domains of the x-axes). 

4.1.2. Sample SIL-1: Experiment with Sodium Silicate Solution 

As for sample BC-1, the initial flow behaviour of sample SIL-1 could be characterized 

as laminar, where measured flow rates changed linearly, between ~0.3 and 103 mL h−1, as 

the imposed pressure difference was varied between 0.2 and 4.2 MPa (Figure 4). Sample 

SIL-1 was calculated to have an initial equivalent permeability of 8.3 × 10−13 m2, which 

corresponds to a hydraulic aperture of 22.1 µm and defect void volume of ~3.3 mL, but 

note that the latter is likely an underestimate of the physical void volume. 

 

Figure 4. Results of initial, water-based flow measurements on sample SIL-1; (a) flow rate (in blue) 

and applied pressure difference (in black) versus time, (b) flow rate versus applied pressure 

difference, showing a linear dependence confirming laminar flow; the slope of a least squares fit 

line through these data has been used to estimate the initial permeability of the cemented coil 

sample. 

Following the pressure-step testing to establish the initial transport properties, 

sample SIL-1 was subjected to 1.1 h of water injection under a constant imposed pressure 

difference of 0.6 MPa. About 15 mL of water was injected during this period, at a more or 

less steady flow rate of ~13.2 mL h−1, corresponding to an 𝜅𝑒𝑞𝑢𝑖𝑣-value of ~7 × 10−13 m2 

(Figure 5b). At this point (𝑡 = 0 h, Figure 5a), the permeameter system was switched over 

to the second syringe pump, in order to initiate flow using sodium silicate solution, while 

maintaining ∆𝑃 =  0.6 MPa. Similar to observations for sample BC-1, the flow rate 

Figure 4. Results of initial, water-based flow measurements on sample SIL-1; (a) flow rate (in blue) and
applied pressure difference (in black) versus time, (b) flow rate versus applied pressure difference,
showing a linear dependence confirming laminar flow; the slope of a least squares fit line through
these data has been used to estimate the initial permeability of the cemented coil sample.

Following the pressure-step testing to establish the initial transport properties, sample
SIL-1 was subjected to 1.1 h of water injection under a constant imposed pressure difference
of 0.6 MPa. About 15 mL of water was injected during this period, at a more or less steady
flow rate of ~13.2 mL h−1, corresponding to an κequiv-value of ~7 × 10−13 m2 (Figure 5b).
At this point (t = 0 h, Figure 5a), the permeameter system was switched over to the second
syringe pump, in order to initiate flow using sodium silicate solution, while maintaining
∆P = 0.6 MPa. Similar to observations for sample BC-1, the flow rate remained nearly
constant during the first ~9 mL of injection, which likely represented inflow of water
remaining in the dead volume of tubing upstream of the cemented sample. Subsequently,
at t = 0.8 h, the flow rate started to decrease slowly, reaching ~3 mL h−1 at t = 3.2 h.
At this point, the decrease in flow intensified, altogether dropping about three orders of
magnitude (Figure 5a). Starting at t = 45.5 h, the pressure difference acting across sample
SIL-1 was increased in a series of brief steps, reaching ∆P = 3 MPa within two hours.
While this pressurization resulted in transiently higher flow rates, these quickly fell back to
values below 10 µL h−1. The experiment was terminated after 300 h, injecting ~35 mL of
sodium silicate solution in total. Assuming a dynamic viscosity of 0.55 mPa s throughout
the experiment, the final equivalent permeability of sample SIL-1 attains values in the range
of 10−16–10−19 m2, effectively reaching below the measurement limit of the permeameter
for cemented tubes of the dimensions tested (Figure 5). It should be noted, however, that
the actual dynamic viscosity of the sodium silicate solution may have varied orders of
magnitude, depending on the concentration of the solution and eventual changes due to
interactions with the cement. These effects are considered in more detail in the discussion.

Sample SIL-1 was subsequently subjected to 0.7 MPa of compressed dry air, while
measuring the outflow of gas at the downstream side of the sample using a water displace-
ment technique. No gas was observed during a two-week period of testing. At this stage,
sample SIL-1 was cut in half and the upstream 3 m were tested independently for one week.
Subsequently, the cutting process was repeated in order to assess the upstream-most 1.5 m
of the sample. In all three cases, no measurable amount of air flow occurred.
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4.2. Microstructural Observations

Upon retrieval and cutting of sample SIL-1, the cement inside was visibly still moist,
with the wetting fluid appearing somewhat more viscous than water. Cross-sections cut
perpendicular to the steel tube axis, hence the flow direction, further revealed the geometry
of the micro-annuli, fractures and other defects present, as well as possible chemical
alteration of the cement. Figure 6 shows reflected light images of sections obtained at
increasingly greater distances from the upstream end of sample SIL-1 (note the azimuthal
orientation may differ among the sections).

Sample SIL-1 showed two main defect features, namely (i) crescent-shaped voids and
(ii) circumferential micro-annuli (Figure 6). The crescent-shaped voids were present along
the top of each coil winding, occupying up to half of the internal cross-sectional area of
the tube (Figure 6b). Given their position and limited longitudinal extent, these voids are
likely caused by gravitational sagging of the cement before it fully cured and hardened (i.e.,
sample preparation features). Similar though much smaller voids could be observed along
the topside of the cross-sections originating from the bottom of coil windings (Figure 6d).
The size of the crescent-shaped voids decreased with distance from the inlet side, almost
disappearing about halfway the length of the steel tube (Figure 6j). In addition to the
crescent-shaped voids, all cross-sections showed circumferential micro-annuli (debonding
defects) between the cement core and inner surface of the steel tube (Figure 6). These
casing–cement micro-annuli appeared to have been fairly uniform in size along the length
of the coiled tube, mostly showing apertures of 10–50 µm.

Though studied in less detail, the defect geometry of sample BC-1 could be character-
ized by similar features, with throughgoing micro-annuli along the cement–steel interface,
complemented by short-ranged, crescent-shaped voids near the tops and bottoms of the
coil windings. In parts of the two coils where the steel tubes were oriented vertically during
cement curing, the cross-sections only revealed micro-annuli (not shown).

Regarding chemical alteration, all the cross-sections of sample SIL-1 showed broadly
similar features. The cement matrix appeared largely unaltered, though concentric and
horizontally layered colour zonations could be observed in some of the cross-sections
(Figure 6c,i,l). Based on comparisons with reference samples, however, it is not possible to
confirm whether this zonation was the result from chemical interaction with the sodium
silicate solution or a pre-existing feature related to cement curing. The micro-annuli were
often somewhat obscured by smeared-out steel from the tube wall (polishing artefacts)
or due to imbibition by the epoxy glue used to mount the cross-sections. Where reason-
ably visible, they appeared as an open fracture in some locations (Figure 6m) and filled
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with fine-grained debris in others (Figure 6n). The nature of these fine deposits could not
be determined. Perhaps the most prominent features were growths of up to mm-sized,
white, platy crystals, which could be observed in several of the crescent-shaped voids
(Figure 6a–c). Based on their morphology (and powder X-ray diffraction analysis of identi-
cal crystals obtained from reference cement cured in water), these hexagonal platelets likely
represent efflorescence of portlandite from the cement matrix into the defect void space.
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Figure 6. Photographs of cross-sections made through sample SIL-1 after completing the reactive
flow-through experiment. Panels (a–l) show cross-sections obtained at progressively greater distances
from the fluid inlet—the location of the origin, with respect to the coil windings. is indicated (see
also Figure 1a); (m) example of an open micro-annulus, visible as a black line along the circumfer-
ence of the cement; (n) example of a clogged up micro-annulus, visible as a white band along the
circumference of the cement. Wall thickness of the steel tube = 1 mm, for scale.

Preliminary study of sample BC-1 found chemical alteration in this sample mainly
consisted of orange discolouration along the first ~1 m of cement, similar to the reaction
zonation seen in the CO2-reacted cement samples [48].



Energies 2021, 14, 7507 12 of 19

5. Discussion and Conclusions

The results obtained from our cemented steel coil samples showed that, while initial
flushing with water did not affect the samples’ transport properties [87], subsequent
introduction of a sodium silicate solution into sample SIL-1 caused a decrease in flow
rate of several orders, effectively reaching the lower detection limit of the flow setup in
a few hours (Figure 5). The introduction of sodium bicarbonate solution, on the other
hand, produced only a minor reduction in the equivalent permeability of sample BC-1
(Figure 3). Post-experimental analysis showed the cemented steel coil samples contained
circumferential micro-annuli, characterized by apertures of 10–50 µm (Figure 6), in addition
to crescent-shaped voids that were presumably created due to free water formation during
cement curing (Figure 6). Sample SIL-1 showed some signs of possible solids formation
in the micro-annuli and crescent-shaped voids, but the extent of this precipitation was
generally limited. In the following subsection, we will first discuss the trends in equivalent
permeability observed, and then consider the implications for the applicability of these
reactive mineral fluids in seepage remediation along cemented wellbores. While the
present study was limited to two experiments, note the discussion below also draws on
prior experience with CO2-rich aqueous fluids, providing confidence in the methods used
and enabling us to consider the new findings in a broader context.

5.1. Defect Sealing Potential of Sodium Bicarbonate-Based Solutions

Based on the present findings, single-phase reactive flushing with a saturated sodium
bicarbonate solution seems to have relatively little sealing potential, at least on timescales
relevant to potential engineering applications. While sample BC-1 did show a reduction in
the equivalent permeability upon exposure, the magnitude of this effect was noticeably
small (Figure 3), especially when compared to the permeability decreases seen in similar
experiments using CO2-saturated water [48,88]. To better understand this shortfall, the
chemical reactions involved have to be considered more detail.

Experiments have long shown that steel and Portland cements are susceptible to
chemical alteration by carbonated fluids [51,57,89,90]. Dissolution of CO2 in aqueous fluids
causes the formation and dissociation of carbonic acid, establishing a series of equilibria
between various carbonate species:

CO2 (aq) + H2O (l) ↔ CO2−
3 (aq) + 2H+

(aq)
H2CO3 (aq) ↔ CO2−

3 (aq) + 2H+
(aq)

HCO−3 (aq) ↔ CO2−
3 (aq) + H+

(aq)
H+

(aq) + OH−
(aq) ↔ H2O (l)

. (4)

For CO2 dissolved in water, these equilibria yield acidic conditions, with the fluid pH
ranging from 3–5, depending on the temperature and CO2 partial pressure [70]. Focusing
on the major components in Portland-based cement, this acidification prompts dissolution
of the portlandite (calcium hydroxide) and decalcification of the calcium silicate hydrate
(C-S-H) phases, leaving behind a semi-crystalline aluminosilicate residue [62,91]:

Ca(OH)2 (s) ↔ Ca+
(aq) + 2OH−

(aq), (5)

C− S−H (s) ↔ Ca+
(aq) + OH−

(aq) + SiO2 (am). (6)

The above reactions release Ca-ions into solution and buffer the fluid pH to more
alkaline values, thereby shifting the carbonic acid equilibria (Equation (4)) towards the
right-hand side, producing (bi-)carbonate ions. Once sufficiently high concentrations are
attained, this in turn leads to precipitation of calcium carbonates [62,91]:

Ca+
(aq) + CO2−

3 (aq) ↔ CaCO3 (s). (7)
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The carbonates thus produced can subsequently re-dissolve, however, if the alkaline
cement phases that buffer the fluid pH become depleted. Whether the reactions result
in self-limiting or self-enhanced reactive flow will depend on whether precipitation or
dissolution predominates. Numerical modelling studies have successfully captured this
behaviour in terms of the effective transit time of the CO2 in the defect, τ = Vvoid/Q [s],
and the defect’s hydraulic aperture, w [m] [52,60,61,66–69]. Based on their simulations,
Brunet et al. [66] defined a critical residence time, τcrit [s], which must be exceeded in order
to attain self-sealing conditions, leading to the following stability criterion:

τcrit = α1w2 + α2w, (8)

where α1 = 0.0588 s µm−2 and α2 = 15.24 s µm−1 are empirical constants.
At this stage, it is interesting to consider the amount of time fluid spent traversing

sample BC-1 during our reactive flow-through test. Taking the average flow rate during
water injection under a fixed pressure difference of 0.6 MPa (Q = 1.6 mL h−1) and the
calculated defect void volume (Vvoid = 2.6 mL), we obtain an estimate of τ = 97 min.
The actual residence time was probably longer, as Vvoid, does not account for the physical
volume of the short-ranged, crescent-shaped voids (cf. Figure 6). Since the micro-annulus
in sample BC-1 has a calculated hydraulic aperture of 17.3 µm, the estimated fluid residence
time exceeds the critical value by a factor-20 (τcrit = 4.7 min). In other words, the Brunet
et al. [66] model predicts that sample BC-1 would have sealed up, had the experiment been
conducted using CO2-saturated water.

By contrast, however, flow-through of sodium bicarbonate solution under these resi-
dence time conditions resulted in only a minor reduction in the equivalent permeability
of sample BC-1 (Figure 3). Similar trends, involving a limited initial reduction, followed
by stagnation in a still permeable state, have previously been observed in CO2-based
experiments employing either near-static reaction conditions [57,92] or subcritical resi-
dence times [60,61]. Especially in the near-static experiments, the only minor decreases
in transport properties can likely be attributed to limited extents of reaction, e.g., due to
passivation effects [57].

Considering the reactions involved, this shortfall in carbonate precipitation can proba-
bly be attributed to a lack of available Ca-ions. Analogous to carbon dioxide, dissolving
sodium bicarbonate in aqueous fluid produces a range of carbonate species and establishes
the carbonic acid equilibria of Equation (4) via:

NaHCO3 (s) + H2O (l) ↔ Na+
(aq) + HCO−3 (aq) ↔ Na+

(aq) + H+
(aq) + CO2−

3 (aq). (9)

Unlike CO2-induced acidification, however, dissolution of sodium bicarbonate in
water produces mildly alkaline conditions only, with the fluid pH typically ranging from
6–10 depending on temperature and CO2 partial pressure [71]. Since these values remain
lower than the equilibrium pH of 11–13 that is typical for cement pore fluids [51,86], buffer-
ing through dissolution and decalcification of the cement phases (Equations (5) and (6))
will still occur, albeit to a lesser extent and presumably at a slower rate compared to the
response upon exposure to CO2-saturated water.

We envisioned this change in chemistry would have positive effects (see Section 2),
because reducing the extent of cement alteration limits the risk of dissolution-enhanced
permeability that is associated with CO2-induced cement degradation [93,94]. Moreover,
since the initial fluid composition is already mildly alkaline, a smaller extent of buffering
would be sufficient to shift the carbonic acid equilibria (Equation (4)) in favour of higher
carbonate concentrations. However, the dissolution and decalcification of cement phases
serves a second purpose: release of Ca-ions into the solution. Resident pore fluids of
sulphate resistant Portland cements like the one used in our experiment have equilibrium
Ca-ion concentrations of up to ~12 mM [95], depending on the initial alkalis concentration
in the cement pore fluid [96], while ~2 mM is typical for the pore waters inside ordinary
Portland cement [95,97]. Even if all Ca-ions initially present in such fluids are precipitated
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in the form of calcium carbonate, this would constitute <5% reduction in the defect void
volume. Whether carbonate precipitation can be sustained beyond this point will be reliant
on liberation of additional Ca-ions through dissolution of highly alkaline solid phases in
the cement, such as portlandite (Equation (5)). Even though precipitation in all likeliness
outstripped dissolution, our observations imply that the overall extent of reaction and the
actual volume of solids produced via carbonate precipitation was simply insufficient to
effectively clog-up the defects in sample BC-1.

5.2. Defect Sealing Potential of Sodium Silicate-Based Solutions

Based on the present findings, there seems to exist some scope for sodium silicate
solutions to be used as reactive sealant in the remediation of micro-annuli and fractures
along cemented wellbores. However, the actual potential will likely be contingent on
the nature of the seal that is formed upon injection. While the flow rate in sample SIL-1
decreased by several orders and effectively reached the lower measurement limit of the
setup within a few hours (Figure 5), post-experiment analysis of the sample microstructure
showed only limited evidence for defect clogging by solids precipitation, with the notable
exception of portlandite efflorescing from the cement matrix into the crescent-shaped voids
(Figure 6). Here it should be noted, however, that these deposits most likely represent a
pre-experimental feature, as similar growths of mm-sized portlandite crystals have been
observed in reference cement samples cured under similar, submerged conditions [21,60].
With regards to possible precipitation of calcium silicate hydrates, the occurrence of fine-
grained material inside the defect in some locations should be mentioned (Figure 6n). In
general, however, large domains of the defect geometry appear to have remained open, at
least at the locations of the twelve cross-sections studied (Figure 6m). This lack of solids
precipitation may have been caused by factors similar to those limiting precipitation in
the sodium bicarbonate experiment. Where sodium silicate solutions react vigorously
with cement slurries, leading to so-called “flash setting” [27,72,86], their interaction with
the much lower Ca-ion concentrations available in pore fluids of already set cement [95]
ostensibly produces insufficient solids to achieve effective sealing. Sodium silicate solutions
also react with portlandite present in the cement matrix to form a larger volume of calcium
silicate hydrates [73], but in the present experiments such processes were probably too slow.

With no microstructural evidence for extensive defect clogging due to mineral pre-
cipitation, the most probable explanation for the decrease in flow rate observed in sample
SIL-1 is a significant change in the properties of the fluid phase. Recalling that a constant µ
of 0.55 mPa s was used in the calculation of κequiv, an increase in the actual viscosity of the
fluid would be reflected as an apparent permeability decrease. Based on the viscosity data
for 25 ◦C in Table 1 of Yang et al. [83], the sodium silicate solution used in our experiment
(37.1 wt.% concentration, M = 2.57 composition) is estimated to have a dynamic viscosity
in the range of 20 to 80 mPa s at room temperature. The temperature dependence can be
described using an Arrhenius-type relation [83], yielding about an order-lower values at
50 ◦C. Taking µ = 5.5 mPa s as a convenient and representative value, replacement of water
by sodium silicate solution as the fluid medium in sample SIL-1 would explain about a
tenfold decrease in the apparent transport properties, i.e., less than was observed. However,
uncertainties with respect to the actual evolution of the fluid viscosity are compounded
by possible influences of ionic species derived from the resident cement pore fluid. While
gelation of sodium silicate solutions occurs chiefly upon acidification [98–100], which is
unlikely for our experiment, interactions with solid aluminosilicates present in the cement
can lead to geopolymerization [74]. The Ca-ion concentration, for example, may have
been insufficient for solid calcium silicate hydrates to precipitate, but high enough to bring
about significant gelation [73]. Given the foregoing, it is likely that the apparent decrease
in the equivalent permeability of sample SIL-1 was caused by a change in the effective
viscosity of the fluid, rather than solids precipitation in the micro-annulus and other defects.
Subsequent application of pressurized air was probably insufficient to displace the viscous
fluid (potentially aided by capillary entry pressure effects).
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5.3. Conclusions and Implications for Applicability to Wellbores

The aim of this study was to evaluate the sealing potential of aqueous solutions that
may induce mineral precipitation and thereby seal wellbore defects such as micro-annuli
along casing–cement–rock interfaces or fractures in cement sheaths. As prospective fluids,
the impact of sodium bicarbonate and sodium silicate solutions has been assessed in
reactive flow-through experiments performed on 6-m-long cemented steel tube samples
with about 20-µm-wide interfacial debonding defects. For both fluid systems investigated,
the amount of mineral precipitation resulting from single-phase injection was less than
anticipated. In the case of sodium bicarbonate-based solution (sample BC-1), reactive
flow translated into a minor decrease of the equivalent permeability of the sample only.
In the case of sodium silicate-based solution (sample SIL-1), injection brought about a
significant reduction in the flow rate, hence the apparent permeability of the wellbore
sample. Sample SIL-1 also passed subsequent zonal isolation integrity tests using 0.7 MPa
of compressed dry air, demonstrating that sodium silicate solutions could act as a sealant in
the remediation of micro-annuli. It is critical to note here, however, that the microstructural
analysis of sample SIL-1 suggests this strong sealing effect stems from gelation of the
fluid phase, e.g., via polymerisation of the sodium silicate (hydrates), rather than from
induced crystal growth. While viscous silicate gels could even offer certain advantages
compared to mineralogical seals, for example in terms of their mechanical flexibility [101],
large uncertainties remain regarding the long-term fate of such gelled materials. Chemical
interaction with formation fluids could perhaps facilitate a progressive transformation
into new, stable solid phases over time. On the other hand, the gradual loss of bound-
water or crystallization of the gel phase (typically involving densification) could also
lead to undesirable shrinkage effects [102]. Analogous to the drawbacks identified for
organics-based sealants [46], confident use of silicate(hydrate)-based gels in wellbore P and
A applications would therefore require further research with respect to their longevity in
downhole environments.

For both the sodium bicarbonate and sodium silicate solutions investigated, the lack
of solids precipitation could be attributed to insufficient availability of Ca-ions. A possible
way to solve this issue is to source the Ca-ions needed for precipitation directly, for example
in the form of a second mineral solution (e.g., calcium chloride). The downside of such
multiple-fluid approaches would be the increased complexity of placement procedures,
which will have to involve either pre-flushing or co-injection. On the other hand, it would
allow consideration of a wider range of fluid systems. Inducing precipitation of calcium
(alumino-)sulphates, for example, could be a promising option, based on learnings from
wastewater treatment [103–106]. Mechanical remediation methods, such as localized casing
expansion [107,108], might nonetheless prove more effective.
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