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Improving Audio Chord Estimation by Alignment and 
Integration of Crowd-Sourced Symbolic Music
Daphne Odekerken*, Hendrik Vincent Koops*,† and Anja Volk*

Automatic Chord Estimation (ACE) is a fundamental task in Music Information Retrieval (MIR) and has 
applications in both music performance and MIR research. The task consists of segmenting a music 
recording or score and assigning a chord label to each segment. Although it has been a task in the annual 
benchmarking evaluation MIREX for over 10 years, ACE is not yet a solved problem, since performance has 
stagnated and modern systems have started to tune themselves to subjective training data. We propose 
DECIBEL, a new ACE system that exploits heterogeneous musical representations, specifically MIDI and tab 
files, to improve audio-based ACE methods. From an audio file and a set of MIDI and tab files corresponding 
to the same popular music song, DECIBEL first estimates chord sequences. For audio, state-of-the-art 
audio ACE methods are used. MIDI files are aligned to the audio, followed by a MIDI chord estimation step. 
Tab files are transformed into untimed chord sequences and then aligned to the audio. Next, DECIBEL uses 
data fusion to integrate all estimated chord sequences into one final output sequence. DECIBEL improves 
all tested state-of-the-art ACE methods by 0.5 to 13.6 percentage points. This result shows that the 
integration of crowd-sourced annotations from heterogeneous symbolic music representations using data 
fusion is a suitable strategy for addressing challenging MIR tasks such as ACE.
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1. Introduction
Automatic Chord Estimation (ACE) is an important task 
in Music Information Retrieval (MIR), with the goal of 
automatically estimating chords in audio recordings or 
symbolic music representations. ACE segments a musical 
piece so that the segment boundaries represent chord 
changes and each segment has a chord label. This is 
typically represented by a sequence of ⟨start time, end 
time, chord label⟩ triples.

The estimation of chords in a musical piece is used 
in various MIR tasks, such as cover song identification, 
key detection, genre classification, lyrics interpretation 
and audio-to-lyrics alignment (McVicar et al., 2014). 
Furthermore, ACE has direct applications in online 
learning platforms, such as Chordify,1 that automatically 
extract chord sequences from any audio file, so that users 
can play along with their favourite songs.

ACE has been a task in the annual benchmarking 
evaluation Music Information Retrieval Evaluation 
eXchange (MIREX) since 2008. The main evaluation 
measure for ACE is (Weighted) Chord Symbol Recall 
(WCSR/CSR). CSR reflects the proportion of correctly 

labelled chords in a song. WCSR weights the CSR of songs 
in a data set by their length (Harte, 2010). State-of-the-
art ACE methods yield WCSRs of around 75–87%, given a 
chord vocabulary of major and minor chords.2

However, a study on MIREX results from 2010 to 2015 
reveals a stagnation in ACE performance (Scholz et al., 
2016). Besides, various studies (Ni et al., 2013; Humphrey 
and Bello 2015; Koops et al., 2019) throw light on another 
issue of ACE: chord annotations are inherently subjective, 
which can result in multiple, heterogeneous chord 
annotations. Recently, Koops et al. (2019) introduced 
a 50-song data set of popular music, annotated by 4 
professional musicians, and found only 73% overlap on 
average for the traditional major-minor vocabulary. The 
currently common practice to evaluate ACE by comparing 
the results to a single reference annotation is disputed by 
Humphrey and Bello (2015); Ni et al. (2013) and Koops 
et al. (2019). Ni et al. (2013) and Koops et al. (2019) even 
claim that modern ACE systems have started to overfit on 
standard ACE data sets, effectively mimicking the specific 
aspects of MIREX’s reference annotations. This shows the 
need to invest research into exploiting chord sequence 
heterogeneity and subjectivity to improve ACE, both in 
representation and evaluation of chord sequences. In this 
paper, we focus on the former. Heterogeneity in chord 
representations allows for the exploitation of different 
analytical approaches to harmony (e.g. modelling chords 
both in audio and symbolic music representations), as well 
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as the consideration of different subjective interpretations 
of the same musical piece (e.g. chord interpretations 
encoded in tab files).

Heterogeneity in representations is not unique for 
chord sequences. In fact, for a given musical work, often 
multiple different versions in the symbolic (e.g., MIDI 
or chord label representations), audio, and visual (sheet 
music) domain exist. Each of these domains have their 
own domain-specific variability regarding particular 
aspects. For example, audio recordings may differ in 
performance parameters such as tempo, expressive timing 
and dynamics. Symbolic and visual representations of 
a musical work might differ because of different music 
editing conventions, historical distance from the original 
composing process, or publications for a commercial aim 
rather than for scholarly accuracy (Preston et al., 2012).

The idea of exploiting multiple versions, from different 
domains or different manifestations within a domain, is 
often referred to as cross-version analysis (CVA) (Ewert et 
al., 2012). The main idea of CVA is that after alignment, 
different analytical results from the same piece can 
be analysed and compared. As such, it presents an 
opportunity to compare methods across different versions 
or to create methods that exploit the domain-specific 
strengths while attenuating their weaknesses in order to 
create higher quality analyses (e.g. Konz and Müller, 2012; 
Koops et al., 2016).

In this light of CVA, we propose DECIBEL (DEtection 
of Chords Improved By Exploiting Linking symbolic 
formats), a novel system that exploits heterogeneous 
symbolic music representations, specifically MIDI and tab 
files, for improving ACE on popular music. MIDI and tab 
files can be considered as crowd-sourced note and chord 
transcriptions and are widely available for this genre on 
websites like Ultimate Guitar3 and MIDI World.4 Since 
DECIBEL only relies to a small extent on training on 
reference annotations, it prohibits further overfitting to 
existing data sets.

To evaluate DECIBEL, we compare its performance 
to state-of-the art ACE systems submitted in the MIREX 
competitions of 2017 to 2020, as well as a commercial 
ACE method. Using the existing one-to-one MIREX 
metrics, we find that DECIBEL improves each of the twelve 
tested ACE systems. This shows that DECIBEL effectively 
exploits heterogeneous chord sequences when evaluated 
using these metrics. We consider this as a promising 
step towards exploiting heterogeneous chord sequences 
for multiple chord sequence evaluations in the future, 
once appropriate evaluation metrics for a simultaneous 
evaluation of multiple chord sequences have been 
established.

Contributions: Our work extends earlier research in 
two ways. First, we are the first to propose a framework 
to create a rich harmonic representation from three 
heterogeneous formats, exploiting the combination of 
audio, MIDI and tab files. Second, we show that we can 
use symbolic music representations for improving audio 
ACE, using twelve recent state-of-the-art audio-based 
ACE methods as baseline. For this purpose, we (re-)
implemented existing and new methods for tab scraping, 

tab parsing, tab-audio alignment, MIDI chord estimation, 
MIDI-audio alignment and data fusion in Python. We 
made our implementations available to the research 
community.5

Synopsis: The remainder of this paper is structured 
as follows. In Section 2, we discuss related work. Section 
3 gives an overview of the DECIBEL system, introduces 
our data set and describes DECIBEL’s audio subsystem. 
In Sections 4 and 5 we focus on DECIBEL’s MIDI and 
tab subsystems. We show how we combine harmonic 
information from audio, MIDI and tab files in Section 6, 
present our results in Section 7 and conclude in Section 8.

2. Related Work
In this section, we first describe existing methods for 
ACE. Next, we relate DECIBEL to earlier approaches 
that integrate symbolic music and audio in the chord 
estimation task.

2.1 Existing audio-based ACE methods
For a detailed overview of existing audio-based ACE 
methods we refer to McVicar et al. (2014) and Pauwels 
et al. (2019). Traditionally, most ACE methods used the 
following pipeline: first, audio data is partitioned into a 
training set and a test set and features are calculated on 
both partitions. Typically, features are either (variations on) 
the traditional chromagram (Wakefield, 1999) or features 
trained using deep neural networks (Korzeniowski and 
Widmer, 2016a). Subsequently, the features from the 
training set are used to train the parameters of a model. 
There is a wide variety of models used in earlier work, 
for example Hidden Markov Models (HMMs) (Sheh and 
Ellis, 2003), Dynamic Bayesian Networks (Mauch, 2010), 
Conditional Random Fields (Burgoyne et al., 2007) and 
Deep Recurrent Neural Networks (Sigtia et al., 2015). As 
a next step, the chord labels for the test set are estimated 
using this trained model. Finally, the performance of the 
system is evaluated by comparing the labels calculated by 
the model to the reference (ground truth) chord labels. In 
recent research on ACE, this modular approach is replaced 
by a deep learning approach, in which systems are trained 
more in an end-to-end fashion, for example the method 
by Chen and Su (2019).

2.2 Previous approaches of audio-symbolic integrated 
ACE
Our work builds on previous approaches to integrate 
symbolic music and audio in the chord estimation task.

2.2.1 Using MIDI
Ewert et al. (2012) introduce a CVA framework for 
comparing harmonic analysis results from different 
musical domains. After collecting a MIDI file for each 
audio file in a 112-song data set, they use two chord 
recognition methods for MIDI data and align each MIDI 
file to the corresponding audio recording. This way, they 
create a harmonic representation for each of the songs, 
which contains three chord label sequences: the ground-
truth labels and the re-aligned outputs that were obtained 
by the two MIDI chord recognition systems. By visualising 
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this harmonic representation, they demonstrate how it 
can be used for qualitative error analysis of automatically 
generated chord labels, which contributes to the 
understanding of an ACE algorithm’s behaviour and the 
properties of the underlying music material. This study 
lays the foundation for the work proposed in our paper, 
in which we expand the harmonic representation with 
chord labels from multiple MIDI and tab files for each 
audio recording. Furthermore, we show how this enriched 
harmonic representation can be used to improve ACE.

2.2.2 Using tabs
The integration of tab and audio files with respect to 
chord estimation was earlier researched by McVicar et al. 
(2011). They show that an HMM-based system for audio 
ACE can be improved significantly by incorporation of 
external information from guitar tabs. For this purpose, 
they introduce four variations on the traditional Viterbi 
algorithm. The most promising variation is Jump 
Alignment, which aligns the chords that are extracted 
from tabs to the audio file, thereby allowing jumps from 
the end of any line to the beginning of any line in the tab 
file. We implemented Jump Alignment as part of DECIBEL 
(see Section 5.2).

2.2.3 Data fusion
Exploring data fusion methods within machine learning 
for exploiting different web resources has been applied 
in several domains, such as for the modelling of book, 
restaurant, sport, flight, and stock data (Li et al., 2012). 
In our approach, we use different web sources of MIDI 
and tab files to improve audio ACE. The integration of 
heterogeneous output of multiple ACE algorithms in the 
context of MIR was first proposed by Koops et al. (2016). 
The authors experiment with three different techniques 
to combine chord sequence estimates from the MIREX 
2013 ACE submissions into one final output sequence 
for each song. They show that their data fusion method 
yields the best results in terms of WCSR. In our study, we 
broaden the definition from Koops et al. (2016) by also 
including chord sequences from other sources than audio. 
We use a similar data fusion method to combine the chord 
labels obtained not just from audio, but also from MIDI 
and tab files.

3. The DECIBEL Framework
In this section we describe how DECIBEL integrates 
heterogeneous symbolic music representations for 
improving ACE. This is illustrated in Figure 1.

DECIBEL uses a data set of audio, MIDI and tab files. For 
each song, each of the three representations (audio, MIDI 
and tab) is mapped to an audio-timed chord sequence, 
which is a sequence of chord events, consisting of a start 
time, end time and chord label. The possible chord labels 
are specified by the chosen chord vocabulary; in this 
study, we choose a vocabulary of all 24 major and minor 
chords and the no-chord symbol. The method for this 
chord estimation step depends on the representation: 
we used three different methods for audio, MIDI and 
tab representations. At this point, we have a harmonic 

representation, consisting of potential chord sequences 
for the song, obtained from symbolic and audio 
representations. As a final step, DECIBEL uses data fusion 
to combine these chord sequences into one final chord 
sequence.

3.1 Data set
DECIBEL’s data set of audio, MIDI and tab files is based on 
a subset of the Isophonics Reference Annotations (Mauch 
et al., 2009). The Isophonics data set contains chord 
annotations for 180 Beatles songs, 20 songs by Queen, 7 
songs by Carole King and 18 songs by Zweieck. We only 
use the songs by the The Beatles and Queen, as there were 
no MIDI or tabs for Zweieck available and we observed 
some inconsistencies in the Carole King annotations.

After acquiring the audio files and annotations, we 
collected MIDI and tab files and matched them to the 
songs in our data set. First, we downloaded MIDI files of 
the aforementioned 200 songs from 9 websites. This way, 
we found 770 MIDI files with unique MD5-checksums, 
hence multiple MIDI files (3.85 on average) map to a 
single audio file. We matched the MIDI and audio files by 
hand, based on the MIDI file name. Next, we obtained tabs 
from Ultimate Guitar by scraping all tabs from The Beatles 
and Queen from Ultimate Guitar’s website and manually 
matching the tabs to the audio files, based on song 
title. Tabs from songs that were not in the data set, were 
discarded. This resulted in 1668 matched tabs, consisting 
of 974 chord sheets and 694 guitar tablature files.

MIDI and tab files are easy to obtain, but their qualities 
are extremely diverse. We did not do any manual selection 
of these files, because that would influence the results. 
Instead, we designed DECIBEL in such a way that 

Figure 1: Diagram of DECIBEL’s framework. The M repre-
sents the matching between different representations 
of the same song. Data formats are depicted by rectan-
gles; procedures are represented as rounded rectangles. 
The grey elements show how DECIBEL extends existing 
audio ACE methods.
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high-quality files are more likely to be integrated than 
low-quality files, as we will describe in the next sections.

3.2 ACE on audio
We evaluate DECIBEL by considering various audio ACE 
systems. For each audio ACE system, we use the chord 
sequences that it estimated on our data set as input for 
DECIBEL. Subsequently, we compare DECIBEL’s chord 
sequences to the sequences estimated by the audio ACE 
system only. We experiment with twelve state-of-the-
art audio ACE systems: the submissions for the MIREX 
ACE competitions from 2017–2020 and the Chordify 
algorithm (based on Koops et al. (2017), version of 2017). 
Their performance in terms of WCSR is shown in the 
column “Audio WCSR” of Table 4. Note that the results 
slightly differ from the MIREX evaluation reported on the 
Isophonics data set, as we use a subset consisting of The 
Beatles and Queen songs.

Since we use state-of-the-art audio ACE systems, it is not 
trivial to improve them by integrating information from 
MIDI files and tabs.

4. ACE on MIDI
In this section, we discuss the subsystem of DECIBEL that 
detects an audio-timed chord sequence based on a MIDI 
file, illustrated in Figure 2. In order to receive audio-
timed chord labels for each MIDI file, DECIBEL first finds 
an optimal alignment from the MIDI file to the audio 
file, realigns the MIDI file using this alignment (Section 
4.1) and then uses a MIDI chord recogniser to estimate 
the chord labels on the realigned MIDI file (Section 4.2). 
Finally, output of the alignment and chord estimation 
methods is used to select the estimated best MIDI file for 
each song (Section 4.3).

4.1 MIDI-to-audio alignment
Music alignment is the procedure which, given any 
position in one representation of a piece of music, 
determines the corresponding position within another 
representation. Alignment methods are typically based 
on either statistical approaches, e.g. HMMs (Cuvillier and 
Cont, 2014), or Dynamic Time Warping (DTW) (Raffel and 
Ellis, 2016).

For alignment between MIDI files and audio recordings, 
DECIBEL uses a DTW algorithm by Raffel and Ellis (2016). 
We selected this algorithm for three reasons. First, it 
calculates an easily interpretable alignment error score, 
which gives a good indication of the alignment quality, 
without requiring ground truth data. Second, the 
algorithm is conceptually simple and easy to implement. 
Third, Raffel and Ellis (2016) optimised the parameter 
settings for a synthetically-created data set of 1000 MIDI 
files that is similar in size and genre to ours. We use these 
parameters without modification.

The output of the DTW system is an alignment path and 
its alignment error score. The alignment path specifies 
which time point in the MIDI file is aligned to which time 
point in the audio file. We utilise this path to adapt the 
timing in the MIDI file, using the pretty_midi package 
(Raffel and Ellis, 2014). The result of this is an audio-
aligned MIDI file.

The alignment error score is the mean distance between 
aligned pairs of frames on the optimal path divided by 
the mean distance in the entire submatrix containing 
the aligned portion of both feature sequences (Raffel 
and Ellis, 2015). This score gives an indication of the 
alignment quality. A qualitative evaluation on 500 real 
word MIDI/audio pairs by Raffel and Ellis (2016) showed 
that the alignment error score is a reliable measure for 
the quality of the alignment in most cases: in general, 
MIDI/audio pairs with an alignment error score below 
85% are aligned well. In order to verify whether these 
results are applicable to our data set, we evaluated the 
performance of the DTW system on a small random 
sample of 25 MIDI files. For each MIDI file, we synthesised 
the realigned MIDI version and played it simultaneously 
with the original audio file, listening to the realigned MIDI 
file on the left earphone and the original audio on the 
right earphone. In this listening test, we classified each 
MIDI file into one of three alignment quality categories: 
bad alignments; alignments with minor issues; or good 
alignments. Our evaluation confirmed Raffel and Ellis’s 
observation that alignments with a low alignment error 
score are good, while alignments with a high alignment 
error score (above 85%) have major issues, e.g. correspond 

Figure 2: Diagram of DECIBEL’s MIDI subsystem. The M 
represents the matching between different representa-
tions of the same song. Data formats are depicted by 
rectangles; procedures are represented as rounded rec-
tangles.
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to MIDI files that were transposed to another key or badly 
transcribed. We conclude that the alignment error score 
gives a good indication of the alignment quality. This 
turns out to be very useful for selecting the best realigned 
MIDI file, as we will see in Section 4.3.

4.2 Chord estimation on MIDI
In this section, we introduce our chord estimation 
algorithm CASSETTE, which extracts chord sequences from 
MIDI files that have been aligned to the audio recordings 
as described in the previous section.

Chord estimation from MIDI files is the task of dividing 
a MIDI file into segments, in such a way that each segment 
boundary corresponds to a chord change, and assigning 
a chord label to each segment. In contrast to audio 
chord estimation, only few methods have been proposed 
that extract chords from symbolic representations like 
MIDI. Early works (Winograd, 1968; Maxwell, 1992; 
Temperley and Sleator, 1999) are grammar- or rule-based 
approaches to perform automatic tonal (Roman numeral) 
analysis. Other systems combine segmentation and 
template matching, applying tie-breaking rules (Pardo 
and Birmingham, 2002; Scholz and Ramalho, 2008); use 
probabilistic models to perform functional harmonic 
analysis on MIDI data (Raphael and Stoddard, 2004); 
or perform chord estimation using an HMPerceptron 
model, in which the domain knowledge is modelled in 
Boolean features (Radicioni and Esposito, 2010). In more 
recent research by Masada and Bunescu (2019), a model 
based on semi-Markov Conditional Random Fields (semi-
CRFs) performs a joint segmentation and labelling of 
symbolic music. Each of these algorithms would require 
modification and/or labelled training data in order to 
be used in DECIBEL: (1) rule-based systems (Winograd, 
1968; Maxwell, 1992; Temperley and Sleator, 1999) are 
designed for a specific music genre (usually classical 
music); (2) some algorithms (Winograd, 1968; Maxwell, 
1992; Temperley and Sleator, 1999; Raphael and Stoddard, 
2004) recognise functional harmony instead of chord 
labels; and (3) other systems (Radicioni and Esposito, 
2010; Masada and Bunescu, 2019) are based on machine 
learning, which requires a lot of labelled training data that 
is not available for MIDI files of popular music. Therefore, 
we designed CASSETTE (Chord estimation Applied to 
Symbolic music by Segmentation, Extraction and Tie-
breaking TEmplate matching). CASSETTE is a template-
matching based algorithm for MIDI chord recognition 
that is easy to implement and understand and does not 
require any training. It is based on the method by Pardo 
and Birmingham (2002), but we adapted the segmentation 
method and use alternative tie breaking rules.

CASSETTE first segments the MIDI both on the bar and 
on the beat level. In many cases, segmentation on the 
bar level is sufficient for popular music, as chord changes 
in this genre are often placed on the downbeat, i.e. the 
first beat of a bar. An advantage of segmentation on the 
bar level is that non-harmony notes, which tend to be 
short, are less problematic in the template matching step 
as they have relatively lower weights than the (typically 
longer) harmony notes. On the other hand, segmentation 
on the bar level does not work well for songs that have 

chord changes at other positions than the start of a bar. 
Therefore CASSETTE also segments the MIDI file on the 
beat level, which typically results in a chord sequence with 
more chord changes. For segmentation, CASSETTE relies 
on the get_downbeats and get_beats functions of pretty_
midi (Raffel and Ellis, 2014).

As a second step, CASSETTE extracts a weighted pitch class 
profile for each of the segments of the MIDI file. For each 
given segment, CASSETTE (1) extracts the notes sounding 
between its start and end time; (2) computes for each note 
the product of the MIDI velocity and the proportion of the 
segment during which this note sounds; and (3) sums this 
product over all notes in the same pitch class. Consider for 
example a 44 bar that only contains a quarter note C with a 
MIDI velocity of 100. For bar segmentation, the weighted 
pitch class profile of this bar would be [25, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0]. For beat segmentation, the weighted pitch 
class profile corresponding to the first beat would be [100, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; for the next three beats, the 
weighted pitch class profile would be [0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0]. In the resulting vector, louder notes (with higher 
velocity) and longer notes (with greater duration) in the 
MIDI file are more important than softer or shorter notes. 
CASSETTE normalises the weighted pitch class profile by 
dividing each element by the total sum of all its elements 
(provided that this sum is larger than 0). This makes 
the feature invariant to the total loudness and duration 
of the notes in the segment. For bar segmentation, the 
resulting feature is [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. For beat 
segmentation, the feature for the first beat is [1, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0] as well; for the next three beats, the 
feature is [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Third, CASSETTE finds the best matching chord for each 
segment, by assigning the chord template that is most 
similar to the normalised weighted pitch class profile 
of the segment. In this study, we use a vocabulary of 25 
chords, consisting of all 24 major and minor chords and 
the no-chord symbol. A chord template is a 12-dimensional 
vector, in which an entry is 1 if the corresponding note 
occurs in that chord and 0 otherwise. For example: the 
D minor chord template is [0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0].

The similarity between a segment’s weighted pitch 
class profile and a template is measured by the template 
similarity score. This score is based on the score in Pardo 
and Birmingham (2002) and is calculated with the 
formula S = P – (N + M). P is the positive evidence: the sum 
of the weights of the pitch classes of the bar that match 
a template element. N is the negative evidence: the sum 
of the weights of the pitch classes of the bar that do not 
match a template element. M stands for misses: the count 
of template elements not matched by any note. High 
scores correspond to well-matched templates. For each 
segment, CASSETTE assigns the chord with the highest 
template similarity score. If the score is –3 or lower, the 
algorithm assigns a no-chord. If multiple templates have 
the same template similarity score, CASSETTE selects the 
template whose root pitch has the greatest weight in the 
segment’s pitch class profile.

In order to evaluate CASSETTE, we selected the 50 MIDI 
files with the lowest alignment error score from our data 
set and tested them against the Isophonics annotations. 
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With alignment error scores ranging from 0.458 to 0.603, 
these MIDI files are probably well aligned to the audio. 
Then, we ran the CASSETTE algorithm on the audio-aligned 
versions of these 50 MIDI files and calculated the WCSR 
for each of the resulting chord label sequences, as shown 
in Table 1. Note that particularly the beat-based MIDI 
chord recognition method performs quite well in terms of 
WCSR with a score of 80.0%. For beat segmentation, the 
CSR scores of the 50 best-aligned MIDI files range from 
66.1% to 95.8%, with a standard deviation of 0.072; for 
bar segmentation, the CSR scores range from 37.9% to 
95.8% with a standard deviation of 0.158. The reason for 
the very low CSR of 37.9% is that the corresponding lab 
file is strongly undersegmented. In general, the bar-based 
method is undersegmenting, whereas beat-based chord 
recognition has minor oversegmentation issues. This also 
explains the lower WCSR score of 71.0% of the bar-based 
method. We conclude that CASSETTE performs reasonably 
well on our data set with popular music and a limited 
chord vocabulary.

Another interesting property of CASSETTE is that 
it computes template similarity scores. A high score 
indicates a well-fitting chord label while a low-score 
segment probably has a less suitable chord label. The 
average of the scores over all segments is an approximate 
score for the quality of the estimated chord sequence. We 
call this score the average template similarity and we will 
discover its advantages in the next section.

4.3 MIDI file selection
In the previous section we showed that CASSETTE was 
quite successful for the 50 best-aligned MIDI files. Yet 
extending the aforementioned experiment to the full 
data set showed a considerably worse performance: when 
comparing the chord sequences found by the MIDI file 
alignment and chord recognition system on all MIDI 
files, and averaging the performance across all MIDI files, 
we found a WCSR of just 65.2% for beat-based chord 
recognition and 62.3% for bar-based chord recognition. 
For the songs that have at least one well-aligned MIDI 
file, these numbers are 66.5% and 63.4% respectively. 
These poor results are partly due to low-quality MIDI files. 
Table 2 shows that MIDI quality highly influences the 
ACE performance. To make sure that the rows in this table 
are mutually comparable, we only considered the songs 
for which at least one well-aligned MIDI file was available. 
If the worst MIDI file for each song is chosen, then the 
WCSR for our data set is 46.3% (beat) and 44.9% (bar); if 
the best MIDI file for each song is chosen, then the WCSR 
for our data set is 79.7% (beat) and 75.6% (bar).

In this section, we describe a method to select the 
estimated best MIDI file for each song. Since we cannot 
calculate the CSR for unlabelled data, we use a proxy 
measure based on the alignment error score and average 
template similarity.

As reported in Section 4.1, some MIDI files are badly 
aligned. Accordingly, these files will typically not yield 
good chord labels. Therefore, we discarded all MIDI files 
with an alignment error score higher than 85%. This 
leads to a great shift in performance: the WCSR on all 
MIDI files that are sufficiently aligned, is 73.8% (beat) 
and 70.1% (bar). Note that these WCSRs are measured 
over all songs for which there was at least one well-
aligned MIDI file; we had to exclude one song for which 
all MIDI files had an alignment error score of over 85% 
from the calculation.

After this MIDI file selection step based on alignment 
quality, we have 592 out of our initial 770 MIDI files 
left. We do an additional selection step to obtain the 
expected best MIDI file for each song, using the average 
template similarity score calculated by CASSETTE. The 
CSR correlates with the average template similarity: 
the Pearson correlation coefficient is 0.542 for beat 
segmentation and 0.587 for bar segmentation. For 
most songs, the CSR of the MIDI file with the highest 
average template similarity is (almost) as good as the CSR 
of the actual best file, as shown in Figure 3. The plot 
shows that there are very few songs for which there is 
a large difference between CSR of the best and CSR of 
the estimated best MIDI file: there are only three songs 
for which the difference is greater than 0.5. In two of 
these songs, the estimated best MIDI was a semitone 
transposed, compared to the original audio. In the third 
song, the estimated best MIDI is a transcription of only a 
part of the song. However, in the vast majority of songs, 
the difference in CSR between the estimated and actual 
best MIDI files is small: most points are close to the 
diagonal line. We conclude that the average template 
similarity is a suitable measure to select the estimated 
best MIDI file for each song. This is also reflected in the 
performance shown in Table 2: the chord sequences from 
MIDI files selected with our proposed selection method 
(Estimated best) have WCSRs of 76.3% and 72.2% and 
thereby outperform the performance of all well-aligned 
MIDI files by over two percentage points.

Figure 4 shows the CSR distribution for all MIDI files and 
all estimated best MIDI files for each song. It shows that 
MIDI files corresponding to the poorest chord estimates 
(blue peaks on the left) are typically not selected.

In this section, we introduced and evaluated the MIDI 
subsystem of DECIBEL. This subsystem extracts chord 
sequences from MIDI files by first aligning the MIDI file to 
the audio file and then running CASSETTE, a simple chord 
estimation method, on the re-aligned MIDI file. We also 
showed how we can select “good” (and in many cases the 
best) MIDI files for each song by (1) ignoring files with 
a high alignment error score and (2) selection of the file 
with the highest average template similarity. This resulted 
in WCSRs of 76.3% for the beat segmentation and 72.2% 
for bar segmentation for songs with at least one well-
aligned MIDI file.

Table 1: Results of MIDI chord recognition for the 50 
MIDI files with the lowest alignment error score, in 
terms of WCSR, oversegmentation (OvS), undersegmen-
tation (UnS) and segmentation (Seg) as defined by Harte 
(2010).

Segmentation WCSR OvS UnS Seg

Beat 80.0% 83.0% 89.1% 80.8%

Bar 71.0% 95.4% 67.2% 67.1%
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5. ACE on Tabs
Next, we describe the subsystem of DECIBEL that uses tab 
files for estimating chord labels. First, the tabs are parsed 
and the chord information is extracted (Section 5.1). Then, 
as described in Section 5.2, DECIBEL aligns the chord 
information to the audio file. This results in multiple 
chord estimates. Finally, DECIBEL selects the expected 
best tab file for each song as described in Section 5.3.

5.1 Tab parsing
Before aligning the tab files to the audio, DECIBEL first 
needs to parse them and extract the chord information. 
DECIBEL parses the tabs in a similar way to the parser 
proposed by Macrae (2012). First, it classifies each line in 
the tab file to a line type. Then, it segments the tab by 
splitting on empty lines. As a next step, all systems in each 
segment are identified. A system is a set of subsequent 
lines that belong to each other. For example: a tab system 
consists of exactly six subsequent tab lines. In chord 
sheets, a common system is the alternation between 
chord lines and lyrics lines. From these systems, DECIBEL 

then extracts the chord labels, retaining line information 
(i.e. the line of the chord in the text file).

5.2 Tab-to-audio alignment
Next, DECIBEL needs to align the chord labels to the 
audio file. To the best of our knowledge, there exist only 
four algorithms that use tabs in audio ACE, proposed by 
McVicar et al. (2011). The most promising of these four 
algorithms, which we use in DECIBEL’s tab subsystem, 
is Jump Alignment, an HMM-based approach. Following 
McVicar et al. (2011), we refer to the sequences of chords 
parsed from tab files as Untimed Chord Sequences (UCSs). 
We only use tabs with a UCS of at least five chords: if 
less than five subsequent chords were found in the tab 
parsing step, it is very unlikely that this tab will contribute 
to a better chord label estimation. For the large majority 
of tab files (1438 out of 1668), at least five chords were 
identified. There was just one song in our data set for 
which no suitable tab file remained.

Given an audio recording and a tab file from the same 
song, the hidden states in the HMM are the ordered indices 

Table 2: Performance comparison of five MIDI file selection methods on the songs for which there was at least one 
well-aligned MIDI file in terms of WCSR, oversegmentation, undersegmentation and segmentation as defined by 
Harte (2010).

WCSR OvSeg UnSeg Seg

Beat Bar Beat Bar Beat Bar Beat Bar

Min CSR 46.3% 44.9% 76.4% 89.7% 75.5% 62.0% 66.6% 61.1%

All (averaged) 66.5% 63.4% 79.2% 91.8% 83.3% 68.6% 73.9% 67.7%

Well-aligned (averaged) 73.8% 70.1% 80.2% 93.0% 86.8% 71.4% 76.8% 70.5%

Estimated best 76.3% 72.2% 81.5% 93.2% 87.5% 73.5% 78.3% 72.7%

Max CSR 79.7% 75.6% 82.8% 93.6% 87.9% 73.4% 79.6% 72.6%

Figure 3: CSR of the real best MIDI file compared to the CSR of the estimated best MIDI file for both beat and bar 
segmentation. Points on the diagonal line (i.e. x = y) correspond to songs for which the best MIDI file was estimated 
correctly. The vertical distance between each point and the line is the difference between the CSR of the best MIDI file 
and the CSR of the estimated best MIDI file.
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in the UCS of the tab file and the observed states are the 
audio feature vectors. The HMM’s transition probability 
distribution is defined in such a way that the transition 
from a state ei (i.e. the ith chord in the UCS) to a state ej is 
only valid if:

1.	 i = j (i.e. the chord is repeated) or i + 1 = j (i.e. we 
move to the next chord in the UCS);

2.	 i < j and i is the end and j is the beginning of a line 
(i.e. we jump forward to a later line); or

3.	 i > j and i is the end and j is the beginning of a line 
(i.e. we jump backward to an earlier line).

The probability of forward and backward jumps is 
dependent on the parameters pf and pb, as defined by 
McVicar et al. (2011). We use the parameter setting pf = 
0.05 and pb = 0.05.

The observed states of the HMM contain beat-
synchronised chroma features from audio. For feature 
extraction, we use the Python package librosa (McFee et 
al., 2018). First, we convert the audio file to mono and 
use the HPSS function to separate the harmonic and 
percussive elements of the audio. Subsequently, we apply 
a constant-Q transform with a sampling rate of 22050 Hz 
and a hop length of 256 samples on the harmonic part. 
This step yields chroma features for each sample. Then, 
we beat-synchronise the features by running the beat-
extraction function on the percussive part of the audio and 
averaging the chroma features between the consecutive 
beat positions. We beat-synchronise the chord annotations 
as well, by taking the most prevalent chord label between 
beats. Each mean feature vector with the corresponding 
beat-synchronised chord label is regarded as one frame. 
Now we have the feature vectors X and chord labels y for 
each song, which we use to train and test our HMM (using 
10-fold cross-validation). Note that this is the only part of 
DECIBEL’s MIDI and tab subsystems that requires training 
on the Isophonics annotations.

Tabs are often notated in a transposed key compared to 
the original audio file, because some keys are easier to play 
on the guitar than others. In order to correct for this, Jump 
Alignment considers the tab files in all 12 transpositions 
and selects for each tab file the transposition with the 
highest log-likelihood.

5.3 Tab file selection
The results of Jump Alignment are shown in Table 3. 
Taking the average CSR of all tabs for a song (for all 199 
songs for which there is at least one suitable tab file), the 
WCSR is 72.2%. If we select the best tab for each song, 
the WCSR is 78.5%. Since we do not know the CSR for 
unlabelled data, we select the expected best tab-file for 
each song based on the log-likelihood, following McVicar 
et al. (2011). By choosing the tab file with the highest log-
likelihood for each song, the resulting WCSR improves 
to 75.0%. The distribution of CSRs of selected tab files 
compared to all tab files is also shown in Figure 4.

In this section, we have examined DECIBEL’s tab 
subsystem. This subsystem consists of a parser that 
extracts UCSs from guitar tablature or chord sheets and 
Jump Alignment, which aligns these UCSs to the audio 
recording. When selecting the estimated best tabs for 
each song, the tab subsystem reaches a WCSR of 75.0%.

6. Integration Methods
DECIBEL estimates chord label sequences from different 
music representations, i.e. audio, MIDI and tab files, as we 
have seen in Sections 3.2, 4 and 5. This results in a set of 
chord label sequences for each song in our data set, which 
forms a rich harmonic representation. This representation 
is an interesting result already, since it can easily be 
visualised (see Figure 5). Such a visualisation contributes 
to a better understanding of an ACE algorithm’s behaviour 
and the song’s harmonic properties, as shown for the 
combination of MIDI and audio data by Ewert et al. (2012).

In order to test if DECIBEL improves current audio ACE 
systems, we need to combine these chord label sequences 
into one final sequence. DECIBEL achieves this using a 

Figure 4: Histograms showing the distribution of CSR for: (Left) MIDI files with bar segmentation; (Centre) MIDI files 
with beat segmentation; and (Right) tab files.

Table 3: WCSR of all songs, with different tab file 
selection methods.

WCSR

Worst CSR of all tabs 59.0%

Average CSR of all tabs 72.2%

Best log-likelihood of all tabs 75.0%

Best CSR of all tabs 78.5%
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data fusion step. In this section, we motivate the chosen 
data fusion method by an evaluation of various methods, 
based on Koops et al. (2016). In contrast to earlier work, 
DECIBEL needs to combine a varying number of sources 
per song. That is why we experimented with a selection 
strategy that selects only one source per representation. 
We compare two selection strategies in combination 
with three different integration methods. The two 
selection strategies are ALL and BEST: ALL takes the chord 
sequences of all tabs and MIDI files as sources. BEST only 
uses the sources of the expected best tab and MIDI file 
for each song, as described in Section 4.3 and 5.3. For one 
song, no MIDI file is selected, since all files were badly 
aligned; here, BEST only combines the audio and tab 
sequences. Similarly, BEST only combines the audio and 
MIDI sequence for the song without a suitable tab file.

The three integration methods are based on earlier 
work (Koops et al., 2016). We first divide each input chord 
sequence into 10 ms samples. Then we integrate the 
sources, selected using ALL/BEST, with either random 
picking (RND), majority voting (MV) or data fusion (DF). 
The implementations of RND and MV are unchanged 
compared to Koops et al. (2016): given a specific sample, 

RND takes the chord label of an arbitrary source, while MV 
assigns the chord label used by most of the sources.

Our implementation of the DF technique takes into 
account both the expected accuracy of sources and the 
probability of the labels provided by the sources. Let X 
be the set of samples, V be the chord vocabulary, S be 
the sources selected by the integration method and let 
L: S × X × V → {0, 1} be a labelling function such that 
L(s, x, v) = 1 if source s assigns chord v to segment x and 0  
otherwise.

The source accuracy A[s] is the probability that a source 
s provides appropriate chords; the chord label probability 
P[x, v] is the probability of chord label v at segment x, 
given the chord labels of the sources. The chord label 
probability is defined based on the labelling L and the 
chord label vote count VC[x,v]. This value determines the 
influence of each source on the final label, based on its 
source accuracy. These values are iteratively computed as 
follows:
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Figure 5: Visualisation of harmonic representation. The expected best MIDI file based on the average template similar-
ity is MIDI 2 with bar segmentation (shown in boldface); the expected best tab file (based on log-likelihood) is Tab 1. 
In this song, the audio method (JLCX1) was unable to correctly classify the percussive section between 19.6 and 24.8s, 
whereas DF-BEST uses information from the MIDI and tab files to classify this as a no-chord. Also note that DF-BEST 
performs better than each of the individual sources (MIDI 2 bar, Tab 1 and JLCX1_2018).
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A[s], VC[x,v] and P[x,v] are defined in terms of each other. 
Therefore, we use an alternative equation for the initial 
computation of the chord label probability P0[x,v]:
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The final chord labelling for DF is obtained by first 
computing Equation 4 and then updating Equations 
1–3 five times. In the work of Koops et al. (2016) these 
computations are repeated until convergence; we 
empirically tested the number of required repetitions and 
fixed this number to five. Subsequently, we assign the 
chord label v with the highest probability P[x,v] to each 
segment x to obtain the final DF chord sequence. See 
Figure 6 for an example.

7. Results
We now compare the performance of each of the six 
combinations of integration methods and selection 
strategies (i.e. RND-ALL, RND-BEST, MV-ALL, MV-BEST, 
DF-ALL and DF-BEST), applied to each of our twelve audio 
ACE systems. Friedman tests (Friedman, 1937) for each of 
these twelve systems show that the integration methods 
and selection strategies give significantly different results 
in terms of CSR. Subsequently, we perform a Tukey’s 
Honest Significant Difference post-hoc test (Tukey, 1949) 
to identify which integration-selection combinations are 
significantly different. The results for the Chordify audio 
system are visually represented in Figure 7. In this figure, 
differences are significant if the corresponding horizontal 
lines do not overlap. Both RND methods are significantly 
worse than the original audio ACE system (CHF). There 
is no significant difference between CHF and DF-ALL or 
MV-ALL. MV-BEST and DF-BEST perform significantly 
better than the original CHF system, with no significant 
difference between these two best-performing methods.

When examining the test results for all twelve audio 
ACE systems, we make four observations. First, the 
random picking integration method always performs 
worse than the original audio ACE system, regardless of 

Figure 6: Toy example illustrating the data fusion procedure for a song consisting of six segments (S1 to S6). The input 
for the data fusion step consists of three sources: a MIDI, a tab and an audio file. In this example, we have a chord 
vocabulary of five chords (C1 to C5). First, the probability of each chord in each segment is computed. From this 
matrix, the source accuracies of the MIDI, tab and audio files are calculated. Then the computation of vote counts 
for each chord-segment pair is based on these source accuracies. After iterating these three steps, the result of data 
fusion is obtained by assigning the chord with the highest chord probability to each segment.

Figure 7: Visual representation of the differences in terms of Chord Symbol Recall between different data fusion 
methods, for the CHF audio ACE algorithm. For each pair of horizontal lines that do not overlap, the difference in 
CSR between the corresponding data fusion methods is significant. For example, DF-BEST is significantly better than 
DF-ALL, but the difference between DF-BEST and MV-BEST is not significant.

1 2 3 4 5 6 7

DF-BEST
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MV-BEST

MV-ALL

RND-BEST

RND-ALL

Audio

CHF 2017
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the chosen selection strategy. This is consistent with the 
findings of Koops et al. (2016). From this observation, 
we conclude that agreement between sources should be 
taken into account. Second, the BEST selection method 
always performs better than the ALL selection method. 
The explanation for this is as follows: given a poor MIDI or 
tab file, DECIBEL’s MIDI or tab subsystem will find a poor 
chord label sequence. In the ALL selection method, this 
chord label sequence will, to a greater or lesser extent, be 
integrated in the final output sequence, which deteriorates 
the output sequence’s quality, whereas the BEST selection 
method (hopefully) ignores this poor chord label 
sequence. Third, we observe that the difference between 
BEST and ALL is even larger for the DF integration method 
than for MV. A possible explanation for this is that chord 
label sequences from tabs are often undersegmented, for 
example because chord changes in instrumental parts or 
very short chords are often not detected. This is typical for 
tabs and therefore can occur for multiple (independent) 
tabs of the same song. Consequently, suboptimal chord 
sequences from tabs could get a high source accuracy 
in DF-ALL, and therefore substantially influence the 
final output sequence. DF-BEST only considers the 
expected best tab and MIDI file. If the expected best 
tab is undersegmented, it will probably get a low source 
accuracy, because chord sequences from MIDI and audio 
have less undersegmentation issues. The difference 
between MV-ALL and MV-BEST is smaller, as MV does not 
use source accuracies. Our fourth and final observation is 
that DF-BEST performs better than the original audio ACE 

system, yielding significant improvement for all tested 
audio methods except JLCX1 and JLCX2. In comparison, 
MV-BEST significantly improves all tested audio methods 
except FK2, KBK2, JLCX1 and JLCX2.

From these observations, we conclude that DF-BEST 
is the best selection-integration combination. 
Table 4 compares the WCSR of each of the twelve 
audio ACE systems to DF-BEST applied to each system. 
Using DF-BEST improves ACE methods based on audio 
by 4.03% on average. The improvement is particularly 
clear for relatively weak methods, while ACE methods 
that are already strong are improved to a smaller extent. 
The columns DF-ALL MIDI WCSR, DF-ALL Tab WCSR, 
DF-BEST MIDI WCSR and DF-BEST Tab WCSR also show 
the results when combining the audio only with the 
(expected best) midi or tab file(s). From these columns 
it becomes clear that MIDI files contribute most to the 
improved performance, but adding tab files further lifts 
the performance. The final column of Table 4 (DF-GT-
BEST WCSR) shows the WCSR if DF is computed on the 
actual best MIDI and tab files. This gives an upper bound 
on the WCSR that can be obtained by improving MIDI/tab 
file selection methods.

Finally, we investigated the song-wise performance of 
DF-BEST compared to using only the original audio file. 
A comparison between the performances in terms of CSR 
distributions can be found in Figure 8. For the vast majority 
of songs in our data set, the chord label sequence found 
by DF-BEST was similar to or better than the sequence 
found by the original audio ACE system. However, we 

Table 4: WCSR of audio ACE systems and DF-BEST. Note that two of the 2017 systems were resubmitted in MIREX 2018 
and one system was also resubmitted in 2019. The Improvement column shows the improvement from DF-BEST com-
pared to the audio-only method, where significant improvements are shown in boldface. Using DF-BEST improves 
ACE WCSR on average by 4.03%.

Audio 
ACE

MIREX Audio 
WCSR

DF-ALL 
MIDI 
WCSR

DF-ALL 
Tab 
WCSR

DF-ALL 
WCSR

DF-BEST 
MIDI 
WCSR

DF-BEST 
Tab WCSR

DF-BEST 
WCSR

Improvement DF-GT-BEST 
WCSR

CHF – 82.0% 81.3% 76.2% 80.3% 83.5% 78.2% 84.6% 2.6% 87.0%

CM2/
CM1

’17–’19 75.7% 80.4% 75.9% 79.7% 80.9% 76.6% 81.6% 5.9% 85.0%

JLW1 ’17 79.0% 80.6% 76.0% 79.7% 82.4% 77.5% 83.0% 4.0% 85.5%

JLW2 ’17 78.5% 80.6% 76.0% 79.7% 82.2% 77.3% 82.7% 4.2% 85.3%

KBK1 ’17 82.8% 81.5% 76.5% 80.5% 84.1% 78.5% 85.3% 2.4% 86.7%

KBK2/
FK2

’17, ’18 87.3% 81.9% 76.6% 80.9% 86.6% 81.0% 87.9% 0.5% 89.2%

WL1 ’17 79.9% 80.8% 75.9% 79.8% 82.5% 77.3% 83.4% 3.6% 85.6%

JLCX1 ’18 86.3% 81.4% 76.1% 80.3% 85.8% 80.7% 87.2% 0.9% 89.2%

JLCX2 ’18 86.5% 81.4% 76.1% 80.4% 85.8% 80.7% 87.1% 0.6% 89.2%

SG1 ’18 79.5% 80.9% 76.2% 80.2% 82.1% 76.5% 83.8% 4.3% 86.1%

CLSYJ1 ’19 77.3% 80.3% 75.6% 79.6% 81.6% 75.6% 83.0% 5.7% 85.6%

HL2 ’20 67.2% 79.9% 75.9% 79.8% 76.0% 67.3% 80.8% 13.6% 84.2%

CHF: Koops et al. (2017), CM2/CM1: Cannam et al. (2018), JLW1 and JLW2: Jiang et al. (2017), KBK1 and KBK2/FK2: Korzeniowski 
and Widmer (2016b), WL1: Wu et al. (2017), JLCX1 and JLCX2: Jiang et al. (2018), SG1: Gasser and Strasser (2018), CLSYJ1: Lee et 
al. (2019), HL2: Ku and Lee (2020).6
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observed that DF-BEST performed consistently worse 
for the song Let It Be by The Beatles. For this song, our 
audio file was shifted compared to the audio file used in 
the MIREX competition. Consequently, the chord label 
sequence found by DF-BEST is shifted and therefore is 
not consistent with the Isophonics annotations. Another 
problematic song is We Will Rock You by Queen: this song 
starts with a lot of percussion and little harmonic content. 
Therefore, there are multiple different views on the chord 
labels for this song and the view selected by DF differs 
from the view adopted in the Isophonics annotations.

In this section we showed that DF-BEST (or MV-BEST) 
is the best combination of the tested selection strategies 
and integration methods. DF-BEST consistently performs 
better than the original audio algorithm in terms of WCSR.

8. Conclusion
We proposed DECIBEL, a novel method to improve ACE 
by aligning MIDI and tab files to audio recordings, using 
representation-specific chord estimation techniques to 
estimate chord sequences for each file. This way, we obtain 

a rich harmonic representation that reveals different 
views on the harmonic content of a song. Furthermore, 
DECIBEL integrates this harmonic representation into 
one final output sequence, combining representation-
specific selection strategies (Section 4.3 and 5.3) with 
a representation-independent data fusion technique 
(Section 6).

DECIBEL uses relatively simple techniques, such as 
our basic MIDI chord estimation system CASSETTE. 
Apart from the audio-tab alignment method, these 
methods do not require any training and therefore do 
not overfit to ground truth data. Still, DECIBEL improves 
twelve state-of-the-art audio ACE systems in terms of 
WCSR, increasing the performance with 0.5 to 13.6 
percentage points. We therefore conclude that the 
integration of multiple symbolic formats and audio is 
an interesting research direction for the improvement 
of ACE.

A first suggestion for future work would be to test 
DECIBEL’s performance on a larger data set or on songs of 
another genre. Given that the performance of audio-only 

Figure 8: Distribution of Audio CSR and DF-BEST WCSR. For the audio algorithms CHF, CM2, JLW1, JLW2, KBK1, WL1, 
SG1, CLSYJ1 and HL2 the improvement is evident. No significant improvement was found for the algorithms JLCX1 
and JLCX2. For KBK2, the improvement is mainly in the songs that already have a high CSR.
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algorithms on other (MIREX) data sets is typically lower 
than on the Isophonics data, we expect an even higher 
potential for DECIBEL to improve results for these data 
sets. Second, as Koops et al. (2016) observed that the 
performance of data fusion increases with larger chord 
vocabularies, we recommend extending DECIBEL with a 
larger chord vocabulary, in order to test how much the 
integration of symbolic formats helps in recognizing these 
complex chords. Third, we suggest experimenting with 
various alternative techniques for DECIBEL’s subtasks, 
such as the consideration of alternative methods to 
extract chords from MIDI files. Following the argument 
of inherent heterogeneity and subjectivity of chord 
sequences by Koops et al. (2019); Ni et al. (2013), this 
paper addresses heterogeneity and subjectivity in chord 
representations, while it can be argued that the current 
one-to-one (e.g. MIREX) evaluation methods are not 
optimal for evaluating multiple reference annotations. 
Our fourth suggestion would therefore be to establish 
evaluation methods that take into account multiple 
reference annotations.

Symbolic formats offer a wealth of information. We 
hope to encourage the research community to exploit 
these valuable sources for ACE and other MIR tasks by 
making our implementation and documentation of 
DECIBEL available.

Notes
	 1	 https://chordify.net/
	 2	 https://www.music-ir.org/mirex/
	 3	 https://www.ultimate-guitar.com/
	 4	 https://www.midiworld.com/
	 5	 https://github.com/DaphneO/DECIBEL
	 6	 https://github.com/ismir-mirex/ace-output/tree/

master/2020/Isophonics2009/HL2
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