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We present a novel machine learning (ML) based strategy to search for binary black hole (BBH) mergers
in data from ground-based gravitational wave (GW) observatories. This is the first ML-based search
that not only recovers all the compact binary coalescences (CBCs) in the first GW transients catalog
(GWTC-1), but also makes a clean detection of GW151216, which was not significant enough to be
included in the catalog. Moreover, we achieve this by only adding a new coincident ranking statistic
(MLStat) to a standard analysis that was used for GWTC-1. In CBC searches, reducing contamination by
terrestrial and instrumental transients, which create a loud noise background by triggering numerous false
alarms, is crucial to improving the sensitivity for detecting true events. The sheer volume of data and a large
number of expected detections also prompts the use of ML techniques. We perform transfer learning to train
“InceptionV3,” a pretrained deep neural network, along with curriculum learning to distinguish GW signals
from noisy events by analyzing their continuous wavelet transform (CWT) maps. MLStat incorporates
information from this ML classifier into the coincident search likelihood used by the standard PyCBC

search. This leads to at least an order of magnitude improvement in the inverse false-alarm-rate (IFAR) for
the previously “low significance” events GW151012, GW170729, and GW151216. We also perform the
parameter estimation of GW151216 using SEOBNRV4HM_ROM. We carry out an injection study to show that
MLStat brings substantial improvement to the detection sensitivity of Advanced LIGO for all compact
binary coalescences. The average improvement in the sensitive volume is ∼10% for low chirp masses
(0.8–5 M⊙) and ∼30% for higher masses (5–50 M⊙). Performance in the lower masses may become even
better if the training set for the ML classifier, currently restricted to black hole binaries with component
masses in the range 2–98 M⊙ only, is expanded to include binaries with neutron stars. Considering the
impressive ability of the statistic to distinguish signals from glitches, the list of marginal events from
MLStat could be quite reliable for astrophysical population studies and further follow-up. This work
demonstrates the immense potential and readiness of MLStat for finding new sources in current data and
the possibility of its adaptation in similar searches.
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I. INTRODUCTION

The Advanced LIGO [1,2] and the Advanced Virgo [3]
observatories have reported the detection of fifty compact
binary coalescences (CBCs) so far [4–10]. They consist of
binary black hole (BBH) mergers, including one with
asymmetric component masses [11], another one resulting
in the production of an intermediate mass black hole

(IMBH) [12], a possible neutron star—black hole
(NSBH) merger [13], and a couple of binary neutron star
mergers [14,15] in their data spanning the first two
observational runs (O1, O2) and the first half of the third
observational run (O3a). As the LIGO and Virgo detectors
advance their sensitivities and with KAGRA joining the
search [16,17], the rate of GW detection is expected to
increase multifold [18].
Currently, these detectors make use of both modeled and

unmodeled searches to detect potential GW signals in their
calibrated data [19–23]. Had the noise in the detectors been
Gaussian and stationary, only the time-coincidence of GW
signals in more than one detector would be a decisive
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criterion to find a candidate event. The quadrature sum of
signal-to-noise ratios (SNRs) in individual detectors would
suffice as the ranking statistic [24–27] and modeling
the background analytically would be possible in this
simplistic case [28,29]. However, the data are heavily
contaminated by nonstationary and non-Gaussian transi-
ents of instrumental and terrestrial origin, also known as
“glitches.” These noise transients mimic the astrophysical
signals and result in a persistent problem of false alarms
[30,31], which impact the search sensitivity of coalescing
compact binaries and GW bursts. As the detectors become
more sensitive, along with an improvement in detection rate
of GW signals the rate of occurrence of such glitches may
also increase, resulting in a considerable number of real
GW candidates being reported with reduced significance.
Various methods of compact binary coalescence search

[19,21,32] were used to detect gravitational wave sources
in LIGO’s first observational run (O1) [33,34]. These
searches resulted in two confident BBH detections viz.,
GW150914 and GW151226, each at a false-alarm rate
(FAR) of <6.0 × 10−7 yr−1 (> 5.3σ), and a much less
confident third detection viz. GW151012. The PyCBC

analysis detected GW151012 with a FAR of 0.37 yr−1

(1.7σ) [4,35,36]. Later, using an improved ranking statistic,
this value could be reduced to 0.17 yr−1 [9]. Similarly, in
the offline PyCBC analysis of the second observational run
(O2), GW170729 was detected with a FAR of 1.36 yr−1.1

The statistic used in 2-OGC [37] reduced the FAR values of
GW151012 and GW170729 to 0.0045 and 0.15, res-
pectively. An investigation shows that the triggers with
SNR ≈ 9 mainly consist of false alarms caused by glitches
[36], which increase the noise background and reduce the
significance of marginal events, thereby obstructing the
science we can do with them.
In this work, we demonstrate how application of a

machine learning algorithm, designed to discern real events
from spurious glitches, can be used to improve the standard
matched filtering based analysis used by LIGO [9]. We use
transfer learning with InceptionV3 [38] to classify CBCs
and glitches in the LIGO data. We construct a new
coincident ranking statistic (MLStat) by incorporating
the output of the ML classifier into the original ranking
statistic. Here, we extend the PyCBC search analysis used in
GWTC-1 [9,39]; however, a similar methodology can also
be implemented with other pipelines like cWB [21], GstLAL
[20], and MBTA [22] to seek sensitivity improvements. We
show significant improvement in the inverse-false-alarm
rates (IFARs) of the low-significance events GW151012
and GW170729 with MLStat. We also confirm the event

GW151216 from O1 [40,41] and report the parameter
estimation results for completeness.
In the past few years, machine learning methods have

been applied in GW data analysis extensively [42–53].
Though, most of the works have relied on simulated data,
there have been efforts in recent years to implement ML
methods on real LIGO data [47,50–52]. However, careful
considerations are required while working with real data.
For example, the results discussed in [47] appear convinc-
ing, but the data considered in the work are only limited to
4096 seconds around the three events from O1 and thus,
may not prove equally effective on longer durations of real
LIGO data which contain a much wider variety of noise
artifacts. Also, as discussed in [53], applying deep learning
models directly on a continuous stream of whitened data
may require additional postprocessing. The performance
metrics of the ML models should be evaluated using a data
handling scheme that is a priori blind to the locations of the
injections made. As our analysis is based on triggers
obtained after matched-filtering, which localizes the time
of merger for true events, this issue is avoided. We are not
aware of any ML based search that has been demonstrated
to be able to catch all the GWTC-1 events.
The paper is organized as follows. Section II introduces

the state-of-the-art deep learning model, viz., InceptionV3,
describes its implementation on the LIGO data using
transfer learning and gives details about training and
validation. Section III describes the construction and
operation of MLStat. Results of the injection study used
to test MLStat are given in Sec. III A. In Sec. IV, we give
details of the analysis of data from first and second
observing runs. The Sec. IVA discusses the approximation
method introduced by us to gauge the significance
improvement of the full foreground of first and second
observing runs. Section V concludes the paper.

II. INCORPORATING MACHINE LEARNING

Success for any ML classifier depends on its ability to
learn and optimally separate the relevant features from the
dataset. Within astronomy community, features are tradi-
tionally chosen by a domain expert as in the case of several
stellar [54–56], gamma-ray burst (GRB) [57], galaxy [58–
60], quasar [61–63], and GW classification schemes
[64,65]. The advent of graphics processing units (GPUs)
and the availability of larger training sets have resulted in
techniques based on deep learning to gain more promi-
nence in recent years. Convolutional neural networks
(CNNs), in particular, have shown remarkable success in
tasks pertaining to image classification and are consistently
outperforming feature-based classical ML techniques when
applied to standard bench-marking datasets [66,67]. Large
architectures of CNNs, like Google’s Inception model and
Microsoft’s Resnet model, have been trained using cutting-
edge GPU technology on large datasets containing images
of objects in day-to-day life [38,68]. Transfer learning

1Note that GstLAL detected GW151012 and GW170729 with
better significance than PyCBC. In cWB, GW151012 could not be
detected, while GW170729 was detected with a significance
higher than PyCBC and GstLAL [9,36].

JADHAV, MUKUND, GADRE, MITRA, and ABRAHAM PHYS. REV. D 104, 064051 (2021)

064051-2



makes use of the rich feature extraction capability of such
pretrained models and allows repurposing them for a
different classification task. The final few layers of a
pretrained network are replaced with trainable new layers
while the rest of the network is retained as before. The
training of such a network on a new image dataset
essentially maps the extracted features to new classes, thus
making the training faster while still maintaining the
accuracy. Another advantage of transfer learning is that
the amount of training data required to reach the prescribed
accuracy is hugely reduced.
Inception networks [69] put forward a strategy for

making effective deeper networks through tactics different
from merely increasing either the layers or neurons per
layer. For example, the InceptionV3 network [38] differs
from the traditional monolithic CNN architecture through
the usage of factorizing convolutions, parallel structures,
and extensive dimensionality reduction techniques. These
schemes make the architecture well suited for applications
with stringent memory and computational constraints but
still provide state-of-the-art performance without overfit-
ting the data.
The transients of astrophysical or terrestrial origin seen

in LIGO data have a peculiar evolution in the time-
frequency domain. This provides a 2D representation that
can be analyzed by the image-based classifiers mentioned
above. During the early inspiral phase of a CBC waveform,
the evolution of frequency with time can be approximated
as f ∝ ðtc − tÞ−3=8, where tc is the time of coalescence [70].
This explains the peculiar chirplike shape of CBC signals
in time-frequency maps, which can be exploited to differ-
entiate them from glitches. We get much more accurate
description of the full time-frequency evolution of CBCs
using the inspiral-merger-ringdown (IMR) waveforms. We
use transfer learning along with curriculum learning to
retrain InceptionV3 for the classification of continuous
wavelet transform (CWT) maps of transients in the LIGO
data. For each evaluated image, the network outputs a
posterior probability across the 17 transient classes used for
training. However, only the probability corresponding to
CBC class (PCBC) will be used in our analysis. The pro-
bability corresponding to other glitch classes may also
be incorporated in the future analyses provided the leak-
age between CBC and other glitch classes is carefully
evaluated.
Previously, omega scans have been used to map the

LIGO data to the time-frequency domain, where the
chirplike evolution of CBCs can be distinguished from
other noise transients more effectively [64,65]. We use the
continuous wavelet transform (CWT) with an analytic
Morlet (amor) wavelet to construct time-frequency scalo-
grams of the whitened strain data to be analyzed.
Wavelets, in general, provide a much better time and
frequency resolution compared to short-time Fourier trans-
form (STFT) [71]. Discriminator based on relative wavelet

energy has previously been demonstrated to be effective in
separating various transient classes and was successfully
applied to Advanced LIGO’s first observational run
data [64]. We create CWT scalograms by whitening and
bandpassing the data around a GPS trigger between 16 Hz
and 512 Hz. We consider a data slice of 1 second duration
with the trigger time kept at center, convert it into a
scalogram and save it as a grayscale image with pixels
denoting absolute values of CWT coefficients. As
InceptionV3 is trained on natural images, the features
extracted from different channels are most likely to differ
from each other based on the biases in the images of natural
objects. The choice of using grayscale colormap ensures
the complete glitch morphology is saved in each of the
three channels rather than getting divided based on the
colormap. The network’s convolution filters thus observe
the full evolution of a transient in each channel, and the
channel-based biases are marginalized.
The CWT image data were generated by using a subset

of GravitySpy data [65,72]. The data were manually
curated to remove images that lacked clear features or
where the features could not be covered in the 1 second
long CWT scalograms. The data were then split into
training (70%) and validation (30%) sets. As transfer
learning involves training a significantly fewer number
of neurons, typically, a very small amount of training data
(up to a thousand images per class) suffices. This size also
makes manual curation practically possible. Due to band-
passing, classes like 1080lines, 1400ripples, and violin
mode were rendered redundant and were thus excluded.
Also, the power-line class was divided into power line and
power line2 to separate shorter and longer transients. Data
for CBC class were generated by considering real LIGO
strain data and by injecting CBC signals having chirp
distances2 between 5 Mpc and 300 Mpc with the
SEOBNRv4 waveform approximant [74]. The component
masses were sampled between ð2 M⊙; 98 M⊙Þ with a
constraint on total mass, M ≤ 100 M⊙. Though some of
the low mass binaries would merge at frequencies higher
than 512 Hz, a major part of these signals contributing most
of the power would still be covered by the allowed
frequency band. Besides, the upper cutoff of 512 Hz
eliminates the relatively louder noise transients at higher
frequencies and allows the classifier to focus on the part of
signal lying in the most sensitive frequency band of LIGO.
A separate class named Gaussian noise was created, which
consisted of plain whitened strain data that did not contain
any transients. The classes koi fish, no glitch, paired doves
and none of the above were omitted from the data due to
similarity with at least one of the other classes or lack of
feature distinction or coverage in the 1 second long CWT

2Chirp distance accounts for the leading order chirp mass
dependence in the amplitude of a CBC signal; see Appendix F
in [73].
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maps. A total of 17 transient classes have been used, viz.,
air compressor (AC), blip (BL), extremely loud (EL),
Gaussian noise (GN), helix (HX), injected chirp (CBC),
light modulation (LM), low frequency burst (LFB), low
frequency lines (LFL), power line (PL1), power line2
(PL2), repeating blips (RBL), scattered light (SL), scratchy
(SC), tomte (TM), wandering line (WL) and whistle (WH).
To perform transfer learning, we load the 316 layers deep

directed acyclic graph (DAG) network of InceptionV3 and
freeze the weights of the first 250 layers. We also add a 40%
dropout layer and an additional fully connected layer of
size 1024 with leaky-relu activation function before the
final replaced fully connected layer which now maps to the
17 transient classes with softmax activation function. We
adopt a curriculum learning strategy specifically in CBC
class to train the network step-by-step, going from higher
SNR values to lower ones. We observed that this method
remarkably increased the network accuracy as compared to
a single training session with full data. The network was
trained using stochastic gradient descent with momentum
(SGD-M) [75]. After three levels of training, the trained
network achieved a training accuracy of 100% and a
validation accuracy of 95.8% (note that as the data is being
curated manually, very high accuracies are expected). In the
last level of learning, the training and validation accuracies
plateau after the 12th epoch and show only statistical
fluctuations.We analyzed all the checkpoints of the network
recorded at the end of every epoch and chose the best
checkpoint based on overall validation accuracy. In Fig. 1,
we show the confusion matrix for the entire validation data.
A high percentage of predictions lie on the diagonal
indicating satisfactory performance of the classifier.
Figure 2 shows the receiver operating characteristic
(ROC) curve for our network, demonstrating its efficiency
of detecting injections against other triggers (mostly origi-
nating from noise). Though we do not use the ROC curve to

set a threshold on PCBC, the high area under the curve (AUC)
scores are indicative of the network’s ability to distinguish
signals across all chirp mass bins from glitches.

III. CONSTRUCTION OF MLSTAT

We build our ML tool as an augmentation of one
of the standard pipelines used by the LIGO-VIRGO
Collaboration, viz. PyCBC. The PyCBC workflow performs
matched filtering on the data with a bank of templates.
Triggers are then collected by thresholding and clustering the
SNR time series. For each trigger, the SNR is reweighted
with two types of noise suppressing vetoes [76,77], and a
single detector ranking statistic is calculated ensuring
approximately constant trigger rate across the search param-
eter space [39]. The pipeline then finds triggers coincident in
Hanford and Livingston detectors with an allowed time
windowof 15ms,which accounts for the light travel time and
uncertainty in recorded timesof coalescence.A semicoherent
ranking statistic (we call it base statistic hereafter) is
evaluated for these foreground triggers [39]. To construct
the background, the same procedure is repeated between the
two detectors with time shifted triggers. A false-alarm-rate,
which decides the significance of each foreground trigger, is
then evaluated based on this background.
We analyze the triggers collected by the PyCBC workflow

with our classifier. For each trigger, our classifier gives the
probability (PCBC) of it belonging to the CBC class. The
likelihood ratio for the detection of a GW signal in the
given data from the ith detector is

ΛðHλjsiÞ ¼
pðsijHλÞ
pðsijH0Þ

; ð1Þ

FIG. 1. Confusion matrix (in percent) for the combined
validation data from all the levels of curriculum learning for
17 transient classes. The performance of CBC class is of
particular importance to MLStat.

FIG. 2. The receiver operating characteristic curves for different
chirp mass bins obtained by comparing simulated injections
against randomly chosen noise triggers from Hanford and
Livingston data. Log scales are used to visualize the differences
better. Masses for the noise triggers are taken from the respective
templates triggering them. As some injections lie out of the
training range, the performance in the 0.8–5 M⊙ chirp mass bin is
suboptimal as compared to other bins.
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where, siðtÞ is the time series strain data, Hλ is the
hypothesis stating that a signal hiðt; λÞ is present in
siðtÞ, and H0 is the null hypothesis. We update the above
likelihood ratio to include PCBC as follows3:

Λ0ðHλjsiÞ ¼
pðsijHλÞ � ðPCBCÞi

pðsijH0Þ
: ð2Þ

Thus, the combined likelihood ratio manifests a new
coincident ranking statistic (MLStat) ϱ̃ml, a simple exten-
sion to the coincident base statistic ρ̃c, as,

ϱ̃2ml ¼ ρ̃2c þ 2 � log½ðPCBCÞc�; ð3Þ

where, the combined probability,

ðPCBCÞc ¼ ðPCBCÞH � ðPCBCÞL: ð4Þ

Here, H and L in the subscripts denote Hanford and
Livingston observatories, respectively. Thus, for a detection

with MLStat, the signal should look CBC-like in both the
detectors within the timewindow required for coincidence.4

The astrophysical CBC signals should have PCBC values
close to 1, thus making the magnitude of second term on the
right-hand side of Eq. (3) very small. Thus, the MLStat
values will be very close to the base statistic for such
events. On the other hand, noise triggers in the background
which do not have a CBC-like composition in CWT maps
will be pushed to lower values. Thus, discriminating real
events from the noise contamination results in a decreased
background, which effectively improves the significance of
true CBC events. However, for louder signals, even the low
PCBC values in both the detectors will not result in any
significant difference between the base statistic and
MLStat. This works in our favor while recovering events
like GW170817 (shown in Table I), which lie outside our
present training range of the network but are recovered with

TABLE I. List of candidate events from the extended analysis of O1 and O2 sorted by FARml [78]. We report one to 2 orders of
magnitude improvements in IFAR for GW151012, GW170729, and GW151216, obtained by analyzing the respective data chunks
which makes them definite confident detections. The FARml values quoted for events lying outside these analyzed chunks are inferred
by assuming similar significance improvements across respective observational runs (see Sec. IVA). The table is split into two parts to
show these events separately. All the catalog events [9] are successfully found by the combined analysis (exception is GW170818 as it
was not found by PyCBC). GW170817 has very low PCBC values in both the detectors as it lies outside the training range of the network.
Nevertheless, it is still recovered due to its loudness (details in Sec. III). Three marginal events with FARml < 1=month are included,
which may be worth following-up and may prove to be useful for estimating astrophysical distributions. Mass and spin values (detector
frame) are those of the best matching search template giving highest coincident MLStat and need not match the full Bayesian parameter
estimation results. FARbase values are also given for comparison. The newly detected event GW151216 is shown in bold.

UTC MLStat
FARbase FARml mt

1 mt
2

st2z st1z ðPCBCÞH ðPCBCÞL[yr−1] [yr−1] [M⊙] [M⊙]

2015-10-12T09:54:43a, d 9.0 0.17 4.58 × 10−3 25.75 17.60 −0.36 0.73 0.889 0.996
2017-07-29T18:56:29a, d 8.7 1.36 1.79 × 10−2 67.52 32.53 0.27 −0.09 0.836 1
2015-12-16T09:24:16b, d 8.3 57.74 0.69 41.78 34.35 0.85 0.98 0.977 0.997
2017-07-28T04:54:39d 7.9 410.49 3.08 33.1 2.50 −0.85 −0.45 0.793 0.990
2015-10-16T13:57:41c, d 8.0 � � � 4.80 364.0 5.35 0.98 −0.24 0.998 0.885

2017-08-17T12:41:04a 28.3 <1.3 × 10−5 <1.3 × 10−5 1.46 1.30 −0.02 0.01 1.7 × 10−5 1.44 × 10−3

2017-08-14T10:30:43a 12.7 <1.3 × 10−5 <1.3 × 10−5 33.14 25.38 0.68 −0.95 1 1
2017-01-04T10:11:58a 10.8 <1.4 × 10−5 <1.4 × 10−5 40.87 13.91 −0.70 0.80 0.999 1
2015-09-14T09:50:45a 15.5 <1.5 × 10−5 <1.5 × 10−5 44.21 32.16 0.78 −0.86 1 1
2015-12-26T03:38:53a 11.8 <1.7 × 10−5 <1.7 × 10−5 14.83 8.50 −0.09 0.81 0.849 1
2017-08-23T13:13:58a 10.2 <3.3 × 10−5 <3.3 × 10−5 47.94 16.23 −0.92 0.64 0.999 1
2017-08-09T08:28:21a 10.5 <1.45 × 10−4 <1.45 × 10−4 47.62 16.21 −0.57 0.91 0.983 1
2017-06-08T02:01:16a 12.7 <3.1 × 10−4 <3.1 × 10−4 16.82 6.10 0.11 0.88 0.999 1
2016-12-14T16:26:40 8.0 847.26 6.02 15.09 11.77 0.79 0.54 0.996 0.973

aGWTC-1 events;
bNot present in GWTC-1 but FARml < 1 yr−1;
cNot present in the PyCBC analysis used in GWTC-1;
dDefinite FARml (obtained from analysed chunks)

3The factor ðPNOISEÞi was not included in the denominator of
the likelihood ratio to maintain the constraint ϱ̃ml ≤ ρ̃c.

4Note that we do not use PCBC for fitting the single detector
event rate as done in the base statistic which may give us further
improvements, especially in the regions of the parameter space,
which can suffer due to high false-alarm rates and thus show
reduced sensitivity.
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negligible reduction in the statistic. The ultimate target of
MLStat would be recovering the marginal events in the
base search.

A. Injection study

To test the performance of MLStat rigorously, an
injection study was performed in three chunks of LIGO
data containing the events GW151012, GW151216, and
GW170729, respectively. In total, 5720 simulated BBH
and BNS merger signals, isotropic in sky locations and
inclinations, having chirp distances between 5 Mpc to
300 Mpc, were injected in the real LIGO strain. The masses
for BBH injections were sampled such that the distribution
of total mass was uniform up to 100 M⊙ while component
masses were between 2 M⊙ and 98 M⊙. Whereas, for BNS
injections the component masses were sampled uniformly
in the range 1 M⊙ to 3 M⊙. The waveform approximant
used for BBH injections was SEOBNRv4 [74], while
for BNS it was SpinTaylorT5 [79]. The injections were
recovered using search pipelines based on MLStat and the
ranking statistic used in PyCBC analysis of GWTC-1 (base
statistic here). The IFAR values of the recovered injec-
tions were assigned using the background of the respective
chunks and statistics. The sensitive spacetime volume hVTi
estimates were made in different chirp mass bins [9]. Ratios
of the hVTi estimates with MLStat and base statistic are
plotted in Fig. 3 for different chirp mass bins. An overall
improvement of 30% in sensitivity can be observed for
chirp masses above 5 M⊙. Though, for chirp masses below
5 M⊙, the improvement in sensitivity with MLStat was not
expected as the training as well as data preprocessing is
limited to higher masses, the improvement is evident
mainly because of the aggressive reduction in overall
background. Thus, even if the low PCBC values result in
lower values of MLStat as compared to base statistic, the
overall IFAR values for these injections show a small
improvement.

IV. ANALYSIS OF O1 AND O2 DATA

We repurpose the offline analysis data of PyCBC search
described in GWTC-1 [9,80]. Initially, we analyzed two
chunks of data from O1 and O2 that contained the low
significance events GW151012 and GW170729, respec-
tively. The analysis consisted of ∼5.9 days of coincident
data during October 8–20, 2015 for O1 and ∼5.3 days of
coincident data starting from July 27 to Aug. 5, 2017 for
O2. As described in the next section, after finding the event
GW151216 with an improved estimated significance, the
corresponding chunk consisting of ∼5.1 days of coincident
data during December 3–18, 2015 was also analyzed.
CWT maps of duration 1 second were created keeping

the PyCBC triggers in the center. These images were then
analyzed with the ML classifier to get the respective PCBC
values. We observed that the classifier is immune to

changes in CWT maps corresponding to small translations
in time, thus allowing us to round off the trigger GPS times
to the first decimal place. Analyzing multiple triggers
lying within a time window of 0.1 second is thus avoided.
The PCBC values were recorded for all the triggers from
both the detectors and the coincident analysis was carried
out with MLStat. The improvement in significance of
GW151012 and GW170729 with MLStat is shown in
Fig. 4. The IFAR of GW151012 (GW170729) increases
from 5.84 (0.73) years in base statistic to 218.1 (55.8) years
in MLStat, thus making them very confident detections.

A. Estimation for full foreground

Though doing a full analysis of any of the observational
runs is beyond the scope of the current work, we wish to
get an estimate of what we should expect from the extended
analysis. We make an assumption that the factor by which
the background reduces as a function of base statistic
remains similar across all the chunks in an observational
run. We then note the improvement in the significance of
the full set of foreground triggers against the background of
the analyzed chunk of that run and estimate their improved
IFAR values with respect to the background of the original
chunks they belonged to. Calculating these MLStat IFAR
values of full O1 and O2 foregrounds, we report the event
GW151216 in O1 with improved significance, which has
been discussed in the literature before [37,40,41,81–83].
The IFAR for this event improved from 0.0173 years in
GWTC-1 to 1.656 years. When the chunk containing the
event was analyzed with MLStat, the actual IFAR value
was obtained to be 1.453 years, remarkably close to the
one predicted using the approximate projection mentioned

FIG. 3. Ratio of the sensitive volume-time (VT) estimates with
MLStat and base statistic for different IFAR thresholds and four
chirp mass bins obtained from the injection study is shown in the
top panel. The bottom panel combines the higher mass bins to
reduce the error bars, showing an average ∼10% improvement in
sensitive volume for low chirp masses (<5 M⊙) and overall
∼30% improvement for higher chirp masses.
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above (see Fig. 5). This confirmed the detection of
GW151216 with MLStat while also increasing the reli-
ability of the approximation. The comparison of foreground
and background triggers with MLStat and base statistic is
shown in Fig. 6. Notice that the background and most of the
foreground gets pushed to lower values with MLStat except
the event GW151216 (marked with star) which shows
minimal change in statistic value due to the high PCBC
values recorded in both the detectors. The CWT maps of
the events that become significant with our analysis are
shown in Fig. 7.
We list the combined foreground of O1 and O2 with

FARml < 1 per month in Table I. GW170818 was not
detected by PyCBC and thus does not show up in our

analysis. The recorded PCBC values for GW170817 are very
low in both the detectors as it falls out of the parameter
space used for training the classifier and the CBC-tracks for
such long duration signals may not be visible in the CWT
map. However, as mentioned towards the end of Sec. III,
the loudness of this event results in MLStat being only
slightly smaller than the base statistic. We intend to build a
more comprehensive ML tool better covering the parameter
space of CBCs to include neutron stars as well in the
follow-up work.
We report the parameter estimation results for

GW151216 using the fully Bayesian code BILBY [84,85].
For the analysis, we estimate the noise power spectral
density with BAYESWAVE [86] using 16 sec of data around

FIG. 4. Significance improvement for GW151012 (left) and GW170729 (right): Cumulative histograms of foreground events in base
statistic (yellow) and MLStat (blue) along with the expected background plotted against the inverse false-alarm rate. Shaded regions
show the sigma intervals for Poisson uncertainty. The loudness of first ∼20 foreground events with MLStat in O2 is not a systematic bias
and is rather an effect of the low number statistics which has been observed with other statistics before (see Fig. 2 and Fig. 3 in [9]). With
MLStat, IFAR value of the most significant foreground event GW151012 (GW170729) improves from 5.84 (0.73) years to 218.1
(55.8) years. We also observed that the event sequence according to IFAR values was considerably shuffled in MLStat. The second most
significant event viz., 151016, in O1 chunk has IFAR 0.21 years.

FIG. 5. Significance improvement for GW151216: With
MLStat, IFAR value of GW151216 improves from 0.0173 years
to 1.453 years making it the most significant foreground event of
the chunk.

FIG. 6. Comparative search results with MLStat and base
statistic for the chunk containing GW151216 (marked by star).
Notice the reduced background and a better separated foreground
with MLStat.
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GW151216. The posteriors with SEOBNRV4HM_ROM model
[87], which includes higher order modes, are shown in the
Fig. 8 for mass ratio, chirp mass, luminosity distance, and
effective spin. Other detailed analyses for the event which
take into account various waveform models and priors can
be found in [81–83]. We find that GW151216 has compo-
nent masses of 46.8þ12.5

−17.7 M⊙ and 23.6þ5.6
−9.6 M⊙ with the

inverse mass ratio of ∼2 with the luminosity distance of
2269þ1193

−1033 Mpc. Also, 90% credible intervals for effective

inspiral spin parameter show nonzero spins with χeff of
0.56þ0.23

−0.5 . The expected posteriors from the parameter
estimation also serves as a check that the event is indeed
a BBH merger. We also plan to analyse the other marginal
events in detail with data quality checks and parameter
estimation.

V. CONCLUSIONS

As the sensitivities of ground-based GW interferometers
improve, the rate of detection of astrophysical events is
going to increase, posing a challenge to the analyses to
cope up with the large number of events. The major hurdle
in this task arises from the terrestrial and instrumental
glitches, and their occurrence may increase with sensitivity.
This issue may become even more severe with time as the
density of events observed in the distant Universe with
statistically lower SNRs is expected to increase. Improving
the fraction of true events in the set of potential triggers can
significantly reduce this burden. Perhaps in the future, ML
will also help us in expanding the dimension and volume of
the parameter space for astrophysical searches.
In this work, we demonstrated the capability of machine

learning to improve the significance of CBC signals and to
discard false triggers by integrating it with the existing
analysis framework of PyCBC. We used transfer learning
with InceptionV3, a pretrained image based classifier,
for effective identification of binary black hole mergers
against glitches in LIGO data. We repurpose the PyCBC

offline search data to reanalyze the matched filter triggers
for two chunks of data from O1 and O2 that contained the
events GW151012 and GW170729. We use the retrained
InceptionV3 network to classify the continuous wavelet
transform maps, a representation of time series data in
time-frequency domain, of these triggers and get the PCBC
values which are used to construct a new ranking statistic
MLStat—a simple extension of the statistic used by PyCBC

in the first GW transient catalog (GWTC-1). This helped in
breaking the degeneracy between the real CBC signals and
the noise transients that result in an increased background.
For validating the performance of MLStat against the base
statistic, we performed a rigorous injection study with
simulated BNS and BBH signals which showed on the
average ∼10% increase in sensitive volume for chirp
masses between 0.8–5 M⊙ and ∼30% for chirp masses
higher than 5 M⊙. With the present training range being
restricted to and data preprocessing favourable for the
stellar mass BBHs (m1, m2 ∈ 2–98 M⊙; M ≤ 100 M⊙),
the ML network is not expected to identify signals in the
low chirp masses. However, due to aggressive reduction in
overall background with MLStat, the detection sensitivity
for low chirp mass signals is still enhanced. The sensitivity
across the parameter space should further improve once we
incorporate binaries involving neutron stars and intermedi-
ate mass BBHs in our training set. The preclassification

FIG. 7. CWT maps of events that gain significance with
MLStat. Whitened strain data of duration one second, bandpassed
between 16 Hz and 512 Hz, is used to generate the grayscale
images that are fed to the classifier.

FIG. 8. Bayesian parameter estimation posteriors for the event
GW151216 using SEOBNRV4HM_ROM waveform model. We can
clearly see the evidence for unequal masses with component
masses of 46.8þ12.5

−17.7 M⊙ and 23.6þ5.6
−9.6 M⊙ and nonzero spin with

χeff of 0.56
þ0.23
−0.5 and luminosity distance of 2269þ1193

−1033 Mpc. The
corresponding sky localisation map is also overlaid.
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information may also be fed to the ML model to make its
performance more robust.
With MLStat, we achieve a considerable reduction in

background and an improved separation of foreground. We
report 1 to 2 orders ofmagnitude reduction in false alarm rates
for the low significance events GW151012 and GW170729
with MLStat as compared to the values obtained by PyCBC in
GWTC-1. This is also the first time a machine learning based
search algorithm was able to detect all the CBCs in GWTC-1
with same or better significance. We also confirm the
detection of the event GW151216, which was not included
inGWTC-1 lists of confirmed andmarginal events due to lack
of significance. While the existence and nature of this event
is debated [37,41,81–83], for demonstration of completeness
of the process of obtaining a new detection using MLStat,
we perform parameter estimation for this event with an
improved waveform model with higher order modes
SEOBNRV4HM_ROM [87]. It is worth noting that the posteriors
of parameters and the sky localization contours donot suggest
any obvious presence of a glitch and thus, strengthen the
possibility of GW151216 being of astrophysical origin.
Considering the ability of our method to distinguish the false
triggers from astrophysical events, the list of subthreshold
events reported with MLStat may be more reliable for
astrophysics (e.g., population studies) but further follow-up
through a data quality check would still be required.
That, by tuning a generic ML algorithm and introducing

a simple extension to the ranking statistic, we could achieve
these significant improvements, shows the enormous

potential in ML, provided we can adapt it with fine
understanding of the problem in hand. There is ample
scope to improve our present analysis and, in general,
several avenues may be explored to introduce machine
learning based algorithms in GW analyses.
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