
Frontiers in Microbiology | www.frontiersin.org 1 October 2021 | Volume 12 | Article 748178

REVIEW
published: 11 October 2021

doi: 10.3389/fmicb.2021.748178

Edited by: 
Danyu Shen,  

Nanjing Agricultural University,  
China

Reviewed by: 
Chuan Xu,  

Shanghai Jiao Tong University, China
Babak Momeni,  

Boston College, United States

*Correspondence: 
Francine Govers  

francine.govers@wur.nl

†These authors share senior 
authorship

‡Present address: 
Sander Y. A. Rodenburg,  

The Hyve B.V., Utrecht, Netherlands

Specialty section: 
This article was submitted to  

Evolutionary and Genomic 
Microbiology,  

a section of the journal  
Frontiers in Microbiology

Received: 27 July 2021
Accepted: 10 September 2021

Published: 11 October 2021

Citation:
Rodenburg SYA, Seidl MF,  

de Ridder D and Govers F (2021) 
Uncovering the Role of Metabolism in 

Oomycete–Host Interactions Using 
Genome-Scale Metabolic Models.

Front. Microbiol. 12:748178.
doi: 10.3389/fmicb.2021.748178

Uncovering the Role of Metabolism 
in Oomycete–Host Interactions Using 
Genome-Scale Metabolic Models
Sander Y. A. Rodenburg 1,2‡, Michael F. Seidl 1,3†, Dick de Ridder 2† and Francine Govers 1,†*

1 Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands, 2 Bioinformatics Group, 
Wageningen University & Research, Wageningen, Netherlands, 3 Theoretical Biology & Bioinformatics group, Department of 
Biology, Utrecht University, Wageningen, Netherlands

Metabolism is the set of biochemical reactions of an organism that enables it to assimilate 
nutrients from its environment and to generate building blocks for growth and proliferation. 
It forms a complex network that is intertwined with the many molecular and cellular 
processes that take place within cells. Systems biology aims to capture the complexity 
of cells, organisms, or communities by reconstructing models based on information 
gathered by high-throughput analyses (omics data) and prior knowledge. One type of 
model is a genome-scale metabolic model (GEM) that allows studying the distributions 
of metabolic fluxes, i.e., the “mass-flow” through the network of biochemical reactions. 
GEMs are nowadays widely applied and have been reconstructed for various microbial 
pathogens, either in a free-living state or in interaction with their hosts, with the aim to 
gain insight into mechanisms of pathogenicity. In this review, we first introduce the 
principles of systems biology and GEMs. We then describe how metabolic modeling can 
contribute to unraveling microbial pathogenesis and host–pathogen interactions, with a 
specific focus on oomycete plant pathogens and in particular Phytophthora infestans. 
Subsequently, we review achievements obtained so far and identify and discuss potential 
pitfalls of current models. Finally, we propose a workflow for reconstructing high-quality 
GEMs and elaborate on the resources needed to advance a system biology approach 
aimed at untangling the intimate interactions between plants and pathogens.

Keywords: genome-scale metabolic model, systems biology, metabolic networks, Phytophthora infestans, plant 
pathogenic oomycetes, plant–pathogen interactions

INTRODUCTION

The metabolism of an organism defines its capabilities to take up nutrients from the environment 
and to convert these into essential building blocks such as nucleic acids and amino acids 
(Lazar and Birnbaum, 2012). Cellular metabolism can be  described as a system of biochemical 
conversions (reactions), most of which are catalyzed by enzymes. Prokaryotic and eukaryotic 
genomes can encode hundreds to a few thousand metabolic enzymes (Yilmaz and Walhout, 
2017). Each enzyme acts on a selection of substrates and converts these into products, typically 
by adding or removing reactive groups. Reactions that share substrates or products can 
be  considered functionally connected. The collection of biochemical reactions within a cell 
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thus forms a large, interconnected network that represents the 
routes by which an organism converts simple nutrients into 
complex metabolites and vice versa. This network is distributed 
over different subcellular compartments (organelles), and 
transporter proteins as well as channels facilitate the transport 
of metabolites across lipid bilayers that surround the cell and 
the organelles (Sahoo et al., 2014). The overall system is subject 
to many parameters, such as variability in substrate 
concentrations, temperature, or the pH, not only in the 
extracellular space but also within cells. Cells regulate this 
system to maintain homeostasis, i.e., the ability to perform 
important cellular functions despite variations (perturbations), 
which provides robustness (Eberl, 2018; Nijhout et  al., 2018). 
The ability to sense environmental variations and metabolic 
cues, and to adapt metabolism accordingly, depends on a tightly 
interlinked regulatory system that involves feedback loops 
embedded in interaction networks crossing metabolic, protein, 
transcript, and (epi) genetic levels (Figure  1; Watson et  al., 
2015). As such, the phenotype of the cell is an emergent 
property of the system’s complexity (Aderem, 2005). The rates 
of individual metabolic reactions are tightly linked to the overall 
state of cellular metabolism, and therefore, understanding a 
small part of the system (e.g., a single enzyme or pathway) 
provides only limited insight into the complete system. Thus, 
holistic approaches are essential to understand how the state 

of a system can lead to the complex phenotype of an organism. 
Systems biology is a discipline based on such holistic approaches.

In this review, we  first provide a broad overview of the 
field of systems biology, with a focus on genome-scale metabolic 
models (GEMs). We  then discuss the relevance of GEMs to 
study pathogens and host–pathogen interactions, particularly 
oomycete plant pathogens such as Phytophthora infestans. 
We  provide an overview of recent developments in this field 
and discuss challenges in reconstructing GEMs in these 
organisms. Finally, we  propose a workflow for reconstructing 
high-quality GEMs and lay out a number of challenges that 
need to be  addressed for systems biology to provide its full 
potential to study the intimate interactions between plants 
and pathogens.

SYSTEMS BIOLOGY PROVIDES  
A HOLISTIC OVERVIEW

The rise of computational biology, high-throughput analyses 
tools, and advanced measurement technologies in the early 
twenty-first century enabled biologists to analyze the presence 
of basically all molecules in an organism and to measure 
their quantities and interactions at cell or tissue level (Reed 
et  al., 2006). Today, the genomes of numerous species have 

FIGURE 1 | The molecular layers of a cell are all interconnected and form a complex and integrated system. In the symbiosis between a pathogen and a host, their 
systems are connected, and interactions occur between all molecular layers.
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been sequenced, and transcriptome sequencing as a proxy 
for gene expression levels has become routine. Additionally, 
high-throughput methods such as mass spectrometry allow 
the analyses of the proteome and metabolome. Data analyses 
typically focus on differential abundances of transcripts, 
proteins, or metabolites between samples. Alternatively, omics 
data can be  used to construct models of molecular systems, 
as part of a scientific discipline known as systems biology 
(Bordbar et  al., 2014) that integrates—among others—
bioinformatics, mathematics, biochemistry, molecular biology, 
physics, and engineering (Breitling, 2010). In systems biology, 
omics data are integrated with prior experimental knowledge 
into models of molecular interactions at genome scale, aiming 
to capture the complete molecular systems that result in the 
phenotype of an organism (Yurkovich and Palsson, 2016). 
This includes models of protein–protein interactions, metabolic 
fluxes, regulatory interactions, or signaling pathways (Albert, 
2007). In systems biology, high-throughput data are integrated 
into computational models that describe the state of the 
whole system.

MODELING METABOLISM

Many different types of models exist, such as ordinary differential 
equation (ODE)-based models for enzyme kinetics, Bayesian, 
Boolean, or rule-based models for signaling and regulatory 
networks, or constraint-based steady-state models of metabolism 
such as GEMs; Box 1; Bordbar et  al., 2014; Bartocci and Lió, 
2016). Metabolism is arguably the best described cellular system, 
and the availability of reaction information (i.e., the conversions 
catalyzed by metabolic enzymes) makes GEMs particularly 
powerful tools to investigate this system and to model metabolic 
fluxes within an organism (DeBerardinis and Thompson, 2012; 
Gu et  al., 2019). They are based on the predicted enzyme 
repertoire found in the genome sequence, and the associated 
network of biochemical reactions with substrates and products. 

When assuming that enzymatic activity and substrate specificity 
of orthologs are conserved, the established metabolism in model 
organisms can serve as a Rosetta Stone for other organisms 
(Ideker et al., 2001). GEMs allow the integration of miscellaneous 
omics data and prior knowledge about the metabolic properties 
of an organism (Zhang and Hua, 2016). Furthermore, they 
can facilitate in silico identification of essential genes, reactions, 
or metabolites by predicting the effect of enzyme knockouts 
on the functioning of the system (Chavali et  al., 2012). Since 
metabolism is profoundly connected to all other systems in 
the cell, a GEM can be  used as a proxy to describe the 
phenotypic state of an organism and serves as a framework 
to guide future experimental research (McKnight, 2010).

Because of their integrative nature, by relating genes with 
reactions and metabolites, GEMs can serve as a knowledge 
base for species-specific information on the biochemical capacity 
of an organism, as deduced from its genome and from prior 
knowledge. Prior knowledge typically integrated in a GEM 
includes, for instance, the nutrients taken up and the metabolites 
produced in the form of biomass or secondary metabolites. 
Importantly, prior knowledge should be  used to correct the 
model where automated methods are limited, such as the 
inference of species-specific enzymatic substrates, gene–protein–
reaction associations (i.e., which genes catalyze what reactions, 
including subunits and isozymes), subcellular localization of 
enzymes, directionality of reactions, and substrates of transporters 
(Thiele and Palsson, 2010). Next to a knowledge base, GEMs 
provide a scaffold for the integration of additional omics data 
(O’Brien et  al., 2015). A cornerstone of systems biology is the 
continuous integration of new data and new information into 
existing GEMs, with the aim to improve the quality of a GEM 
and make it more trustworthy.

The main purpose of GEMs is enabling flux simulations 
that can be used to investigate system complexity and dynamics 
(Orth et  al., 2010). For instance, this can help unravel which 
flux distributions are thermodynamically optimal for growth 
(biomass production)—sometimes in various transcriptomic 

BOX 1 | Genome-scale metabolic models

Metabolism is a complex system of thousands of biochemical reactions, most of which are catalyzed by metabolic enzymes. GEMs have been developed 
as an effective way to generate hypotheses about cellular metabolism (Yurkovich and Palsson, 2016). A GEM is based on the repertoire of metabolic enzymes 
encoded in the genome, which are cross-referenced with biochemical databases or template models to obtain a set of biochemical reactions that can transform 
substrate metabolites into products. These reactions are interconnected by shared substrates or products, forming a complex network that is typically divided 
over several subcellular compartments, such as the mitochondria and the cytosol. The metabolic network can be  represented by a sparse integer matrix, 
denoting the stoichiometry of substrate and product metabolites of each reaction.

GEMs are assumed to be in steady state, which means the net uptake of nutrient mass is equal to the net production of biomass, implying there is no net 
accumulation of metabolites. This simplifies the model to a system of linear equations. Each reaction in the GEM is considered to have a flux, i.e., a steady-state 
reaction rate. The most popular method to model metabolism in this framework is called flux balance analysis (FBA; Orth et al., 2010). An assumption is that 
cells have a specific objective, often maximization of growth (production of biomass) or minimal usage of energy (García Sánchez and Torres Sáez, 2014). Linear 
optimization can find values for all fluxes that attain the specified objective, for instance, maximal flux toward biomass precursors. The production of biomass is 
modeled as a pseudo-reaction that consumes all biomass precursors (e.g., amino acids for proteins) with appropriate stoichiometry, often manually implemented 
based on experimental data (Feist and Palsson, 2010). As there is an infinite number of solutions that allow biomass production, constraints need to 
be implemented to find a single set of fluxes. Thermodynamic constraints can implement an upper and lower bound on each flux, specifying that reactions are 
either bidirectional (flux can be either negative or positive) or irreversible (Either the upper or lower bound is zero.) These constraints significantly limit the number 
of possible outcomes of the optimization problem. The flux values that yield a maximal value for the specified objective, within the constraints, are then selected 
as an optimal solution.

The integration of omics data can be used to impose additional model constraints or objective functions (Bordbar et al., 2014). Since most reactions of a 
GEM are associated with one or more genes, optimization can take into account gene expression and calculate the fluxes that concur with underlying gene 
expression. For instance, the INIT algorithm (Agren et  al., 2012) maximizes a global score, which increases when “expressed” reactions have a flux and 

(Continued)
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decreases when “non-expressed” reactions have a flux. As a result, the optimal solution depends on the expression of genes (i.e., context-specific submodels), 
which enables the comparison of fluxes between transcriptome conditions. Similarly, metabolomics data can be used to calculate fluxes that attain the presence 
of measured metabolites. Note that these are only two specific examples of omics integration into GEMs, in a rapidly expanding set of methods (Lewis et al., 
2012).

The linear program of a GEM can often be solved in a matter of seconds on modern computers, making it a powerful computational tool to predict the effect 
of perturbations to GEMs (Peyraud et  al., 2018). For instance, the impact of a different growth medium can be  analyzed (i.e., change of nutrient uptake 
reactions), or genes/reactions can be iteratively removed from the model to investigate the effect on the metabolic fluxes. Reactions that have large effects on 
the flux distribution or biomass production upon removal suggest biological relevance (Chavali et al., 2012). Essential genes or reactions can be predicted when 
their elimination yields an infeasible problem, i.e., no solutions respecting the implemented constraints (e.g., no biomass flux possible after removal; Pratapa 
et al., 2015). Similarly, synthetic lethal gene or reaction pairs can be identified that will only impair biomass production upon simultaneous deletion.

A

B

C

Basic principles of GEMs. (A) GEMs are reconstructed from a genome sequence and connect enzymes to reactions. (B) A GEM is a network that simulates 
fluxes from nutrient uptake to the production of biomass precursors. (C) The mathematical representation of a GEM. Reactions are stored in a stoichiometric 
matrix that is multiplied by a vector of fluxes. The solution space is limited by constraints. Here, only two fluxes are shown, but the optimization is in n dimensions.
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contexts. Moreover, these simulations can be used to investigate 
the system’s robustness to induced perturbations (e.g., gene 
deletions), yielding testable model-driven hypotheses. This 
process is key for the cyclic process in which model predictions 
are experimentally validated, driving technological advance, 
allowing for the integration of new data, and again enabling 
generation of new hypotheses (Kitano, 2002). A continuous 
cycle of improvements with additional data and knowledge 
can eventually lead to a highly predictive model to provide a 
deeper understanding of the molecular systems of an organism.

SYSTEMS BIOLOGY OF PATHOGENS 
AND HOST–PATHOGEN INTERACTIONS

Systems biology offers a powerful toolbox to study pathogens 
and their relation with their hosts (Horn et  al., 2012; Durmuş 
et  al., 2015; Dix et  al., 2016; Peyraud et  al., 2017; Cesur et  al., 
2018). Pathogens and hosts often interact extensively on all 
molecular levels, i.e., metabolic, protein, and DNA/RNA 
(Figure  1). Co-evolution shapes the host’s immune system to 
be  able to recognize the presence or action of a pathogen and 
to activate immune responses (Cook et  al., 2015). To counter 
these processes and to facilitate infection, pathogens secrete 
virulence factors in the form of proteins (effectors), small 
RNAs, or (secondary) metabolites (Frantzeskakis et  al., 2019). 
The symbiosis between pathogen and host can be  regarded as 
a single intertwined system separated into different compartments 
(Olive and Sassetti, 2016). Thus, the reconstruction of a model 
for the overall system can help to characterize pathogen–host 
interactions and their dependencies at unprecedented scale 
and detail.

Systems biology has been used in the study of various 
pathogens or pathogen–host interactions to identify drug targets 
or key factors that allow pathogens to interact with their host 
(Durmuş et  al., 2015). In pathogen–host interactions, protein–
protein or small RNA interaction networks have been investigated 
using graph theory to identify pathogen effectors and their 
host interactors, in which network centrality or degree is 
considered a proxy for functional importance (Durmuş Tekir 
and Ülgen, 2012). GEMs can simulate the system-wide metabolic 
fluxes of a pathogen and help identify important genes, reactions, 
and metabolites, which can inspire novel control strategies 
(Chavali et  al., 2012). Not surprisingly, the first GEM ever 
generated was for a microbial pathogen, i.e., the bacterium 
Haemophilus influenzae that causes disease in humans (Edwards 
and Palsson, 1999). Since then, GEMs have been reconstructed 
for many more pathogens, such as the tuberculosis bacterium 
Mycobacterium tuberculosis (Kavvas et al., 2018; Rienksma et al., 
2018) and the human and animal parasites of the genera 
Plasmodium (Plata et  al., 2010; Stanway et  al., 2019) and 
Leishmania (Subramanian et  al., 2015; Sharma et  al., 2017; 
Chauhan and Singh, 2019). Moreover, some GEMs integrated 
pathogen and host, thereby providing insight into the metabolic 
fluxes throughout infection (Bordbar et  al., 2010; Huthmacher 
et  al., 2010; Bazzani et  al., 2012).

In contrast to human pathogens, plant pathogens have thus 
far hardly been studied with a systems biology approach (Peyraud 
et  al., 2017). Similar to human pathogens, plant pathogens 
have a major negative impact on the well-being of their hosts. 
Plants are crucial for generating the oxygen (O2) we  breathe, 
for sequestering CO2 and maintaining the balance in the global 
ecosystem, and for the production of food and feed. However, 
plants are under constant threat of pathogens, such as fungi, 
oomycetes, bacteria, and viruses. In agriculture, the resulting 
yield losses can be  substantial, reaching up to 30% (Savary 
et  al., 2019). To combat plant diseases, a better understanding 
of plant–pathogen interactions is required. Thus far, there are, 
however, only few examples where systems biology was applied 
to provide insight into the molecular mechanisms underlying 
plant–pathogen interactions. In one study that was based on 
yeast-two-hybrid screenings, a protein–protein interaction 
network of Arabidopsis thaliana and pathogens of three kingdoms 
uncovered that effectors from different pathogens convergently 
target the same host proteins (Weßling et  al., 2014). In a more 
recent study based on mass spectrometry analyses of 
immunoprecipitated effector–host target protein complexes in 
Nicotiana benthamiana, the deduced protein–protein interaction 
network revealed the cellular vesicle trafficking machinery as 
a major effector-targeted process (Petre et  al., 2021). In other 
studies, GEMs have been reconstructed for the bacterial plant 
pathogens Ralstonia solanacearum, Xanthomonas oryzae, and 
Pectobacterium parmentieri (Peyraud et  al., 2016; Zoledowska 
et al., 2018; Koduru et al., 2020), and for the fungus Sclerotinia 
sclerotiorum (Peyraud et  al., 2019). However, despite the 
abundance of omics data for many plant pathogens, very few 
have been analyzed from a systems biology perspective.

OOMYCETE PATHOGENS

Oomycetes are filamentous eukaryotes that resemble fungi 
in terms of morphology but evolved independently from 
fungi (McGowan and Fitzpatrick, 2020). In the tree of life, 
oomycetes are clustered with the brown algae and diatoms 
in the Stramenopile lineage (Beakes et  al., 2011; Keeling 
and Burki, 2019). Many oomycetes are plant pathogens, 
while others are animal pathogens, parasitize on other 
microbes, or live as saprophytes (Derevnina et  al., 2016b). 
The plant pathogenic oomycetes vary in lifestyle, including 
necrotrophs that swiftly kill their hosts and feed off dead 
plant material (Fawke et  al., 2015) and biotrophs that need 
living host tissue to infect, feed, and proliferate. Most of 
the biotrophic oomycetes, such as the white rusts and downy 
mildews, are obligate pathogens implying that they cannot 
grow outside a living host (Baxter et al., 2010). They usually 
specialize on just one plant species and hence have a very 
narrow host range. Others are known as hemibiotrophs; 
they live as biotrophs during the initial phase of the disease 
cycle but switch to a necrotrophic lifestyle later on. 
Phytophthora species are mostly hemibiotrophs. To date, over 
150 Phytophthora species have been described, all with their 
own specific host range, sometimes limited to one or few 
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plant species within one family but more often multiple 
plant species from different families. Well-known narrow 
host range species are Phytophthora infestans that causes 
late blight disease on potato and tomato, and Phytophthora 
sojae, the soybean root and stem rot pathogen. Examples 
of broad host range species are Phytophthora ramorum, the 
sudden oak death pathogen, Phytophthora capsici that causes 
stem and fruit rot on many vegetables, and Phytophthora 
palmivora, a devastating pathogen on tropical crops such 
as cacao and date palm (Kamoun et  al., 2014; Perrine-
Walker, 2020). The type species of the genus is P. infestans 
which caused the Irish potato famine in the mid-nineteenth 
century. It was initially named Botrytis infestans but later 
renamed by de Bary (1876) who provided the formal proof 
that this organism is the causal agent of potato late blight 
and coined the term Phytophthora, Greek for plant (phyton) 
and destruction (phthora). Its arrival in Europe marked the 
birth of plant pathology as a discipline and ever since P. 
infestans has been a favorite subject of investigation (Turner, 
2005). Technological advancements in molecular genetics 
and genomics over the last four decades further boosted 
the interest in studying this important plant pathogen (Turner, 
2008). Although still considered a model organism for 
oomycetes, in research it is losing ground to other species 
that have smaller genome sizes and are more amenable to 
genetic modification.

THE INTERPLAY BETWEEN HOST  
AND OOMYCETE PATHOGENS

Biotrophic plant pathogens typically adhere to leaves or 
roots, break physical barriers, and scavenge nutrients from 
their host, while suppressing the host’s immune system 
(McDowell, 2011). They achieve this by depositing a large 
variety of enzymes and effector proteins in the apoplast or 
inside the plant cell that help in paving the way for a 
successful infection (Whisson et al., 2016). During infection, 
these biotrophs grow as filamentous hyphae inside their 
hosts. They colonize the apoplastic space in the leaf mesophyll 
and form feeding structures, so-called haustoria, inside host 
cells. At the site of the haustoria and the apoplastic hyphae, 
pathogen and host form a close interface through which 
effectors, enzymes, and small molecules can be  exchanged. 
This interplay often involves a prolonged symbiosis in which 
the pathogen feeds off the plant for growth and reproduction 
(Judelson and Ah-Fong, 2018).

The ability of oomycetes to live in close symbiosis with 
a host drives continuous adaptations of both pathogen and 
host. Oomycetes have dynamic genomes that allow swift 
adaptation (Leesutthiphonchai et  al., 2018). These genomes 
typically harbor hundreds of effector genes (McGowan and 
Fitzpatrick, 2017) Comparative genomics has revealed that 
obligate biotrophic pathogens have suffered extensive gene 
loss as a result of their biotrophic lifestyle (Kemen and 
Jones, 2012; Fletcher et  al., 2018). This adaptive capacity 
facilitates the evolutionary “arms race” between oomycete 

effectors and host resistance genes (Wang et  al., 2019b), 
but also allows adaptation of the core cellular machinery 
of pathogens, including metabolism and signal transduction, 
leading to various unique properties (Judelson, 2017). For 
instance, oomycetes have several genes encoding unique 
proteins with novel domain combinations (Seidl et  al., 2010; 
van den Hoogen and Govers, 2018a), as well as a number 
of horizontally transferred genes coding for proteins with 
functions in metabolism (Richards et  al., 2011). Oomycetes 
are osmotrophs, which means they secrete enzymes to digest 
large molecules (polymers) extracellularly and import the 
resulting small molecules as nutrients (Richards and Talbot, 
2013). This process is facilitated by a broad array of transporter 
proteins, suggesting that a plethora of host compounds can 
be  taken up during infection (Abrahamian et  al., 2016). 
However, some nutrients are indispensable for oomycetes. 
For instance, several oomycetes lost the ability to synthesize 
sterols (Wang et  al., 2021). These sterol auxotrophs secrete 
elicitins, oomycete-specific proteins that are thought to 
be  sterol carriers and likely exploited for recruiting sterols 
from the environment (Derevnina et  al., 2016a). Moreover, 
most oomycetes are auxotrophic for thiamine, a vitamin 
that acts as a cofactor in carbohydrate catabolism (Hohl, 
1991). Culturable oomycetes can be grown in vitro and seem 
to prefer amino acids as a substrate (Hodgson, 1958; Ah-Fong 
et  al., 2017b), but can utilize a wide variety of substances. 
Due to the complex nature of cellular metabolism, it is 
currently unclear which nutrients are more important than 
others, and how the differential usage of nutrients might 
influence infection. It is also not so easy to readily gain 
such knowledge. Many oomycetes are hard to culture and 
require complex media for in vitro growth, often prepared 
from seeds such as rye kernels, peas, or lima beans. This 
obviously complicates biochemical assays to investigate their 
metabolism, for which knowledge of the precise growth 
substrates is mandatory. For obligate biotrophs that exclusively 
grow inside their living host, it is even more challenging; 
unravelling the precise composition of their diets is extremely 
difficult if not impossible (McDowell, 2011).

Validation of the role of enzymes or transporters in 
metabolism by targeted mutagenesis is another challenge 
when investigating oomycetes. For several Phytophthora and 
Pythium species, successful DNA transformation has been 
described but transformation efficiencies are often relatively 
low. Until recently, functional gene analyses relied on gene 
silencing or overexpression of the target gene with the 
disadvantage that the variability in silencing or overexpression 
levels and potential off-target effects make phenotypic 
characterization of the transformants complicated and labor-
intensive. A major breakthrough was the achievement by 
Fang and Tyler (2015) who published the first successful 
application of CRISPR-Cas9-mediated gene editing in an 
oomycete, namely P. sojae, and by now, this is a standard 
method to create gene knockouts in several Phytophthora 
species (Wang et  al., 2019a; Pettongkhao et  al., 2020). In P. 
infestans, however, CRISPR-Cas9-mediated gene editing was 
not successful (van den Hoogen and Govers, 2018b). A recent 
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study by Ah-Fong et  al. (2021) showed that Cas9 is toxic 
for this species, but with Cas12a as nuclease they obtained 
transformants that are viable and have small deletions in 

the target gene, the inf1 elicitin gene. This is another major 
leap forward as it demonstrates the successful implementation 
of a promising gene editing tool in P. infestans.

A

B

FIGURE 2 | The integrated P. infestans–tomato model (reproduced and adapted from Rodenburg et al., 2019). (A) Diagram in which dots represent metabolites, 
arrows reactions, and dotted lines host–pathogen transport reactions. (B) Flux coupling analyses of the model identified 77 coupled (i.e., topographically related)  
P. infestans–tomato reaction pairs which are shown in the graph. Nodes represent reactions in tomato (red) or P. infestans (blue) and host–pathogen transport 
(yellow). Edges represent coupling between those reactions. The nodes with the largest diameter represent 112 reactions in P. infestans and 35 in tomato that were 
found to be essential for P. infestans biomass production. The various processes listed in the boxes are represented by highly connected nodes (1 to 5) and in 
shaded clusters (I to V). Further details in Rodenburg et al. (2019).
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SYSTEMS BIOLOGY ON OOMYCETES 
AND OOMYCETE–HOST INTERACTIONS

Oomycete pathogens are very challenging to control due to 
their high capacity for adaptation. It is therefore important to 
reconstruct holistic models that provide mechanistic insight 
into the molecular systems that allow oomycetes to proliferate 
and infect their hosts. Ultimately, a system-wide understanding 
of oomycete–host interactions might provide novel leads for 
control (Dunphy and Papin, 2018).

Shortly after the first genome sequences of oomycetes were 
published (Tyler et  al., 2006; Haas et  al., 2009), it was already 
proposed to reconstruct predictive models with the aim to 
reveal mechanisms of oomycete–host interactions (Pinzón et al., 
2009; 2010). One of the first studies that reconstructed a partial 
metabolic network for Phytophthora used the network to provide 
context for predicting horizontal and endosymbiotic gene transfer 
(Whitaker et al., 2009). In subsequent studies, Seidl et al. (2013) 
predicted a functional association network in P. infestans by 
projecting genomic, transcriptomic, and comparative genomic 
data on protein–protein interaction networks of model organisms, 
while Mukhtar et  al. (2011), Weßling et  al. (2014), and Petre 
et  al. (2021) created holistic networks uncovering a plethora 
of interactions between oomycete effectors and potential 
host targets.

Investigation of a static metabolic network can already 
provide new biological insights that do not come to the 
foreground when only smaller subsets of the data are considered. 
An example is a recent study in which we  identified and 
compared the metabolic enzymes of a broad range of oomycetes 
with different lifestyles and host preference and investigated 
their metabolic networks from an evolutionary perspective 
(Rodenburg et  al., 2020). Similar to Thines et  al. (2020), 
we  observed lineage-specific pathway loss, and convergent loss 
of metabolic enzymes in obligate biotrophs reflecting their 
reduced metabolic capacity and greater host dependency. 
Intriguingly, the gene losses predominantly affected the periphery 
of the metabolic network, an insight that remains hidden when 
solely comparing genomes.

MODELING PHYTOPHTHORA 
INFESTANS METABOLISM TO PREDICT 
PATHOGEN–HOST INTERACTIONS

In 2018, we  (Rodenburg et  al., 2017) and Botero et  al. (2018a) 
presented the first GEMs of P. infestans. Despite the slightly 
different reconstruction and analysis approaches and the more 
extensive transcriptome data set in Botero et al. (2018a) including 
in planta life stages, the overall findings were comparable. For 
instance, the models both pinpointed fatty acid biosynthesis 
as a key process in oomycetes and in both models, condition-
specific metabolic patterns were apparent.

As input for our modeling (Rodenburg et  al., 2017), 
we  extracted information on P. infestans metabolism from the 
literature and identified all putative enzymes encoded in its 

genome by homology-based enzyme annotation. We then divided 
reactions over the subcellular compartments and inspected the 
model topology to gain insight into the biochemical processes 
in each compartment. A further refinement was the integration 
of transcriptome data; the resulting life stage-specific models 
showed a sharp contrast in metabolic activity between sporangia 
and hyphae. In oomycetes, the sporangia, which are asexual 
spores, likely rely on stored nutrient reserves, such as glucans 
and fatty acids, that are catabolized for energy production 
(Judelson, 2017). When sporangia disperse and reach a suitable 
plant surface, zoospores are released and encyst. The cysts 
then germinate and form an appressorium-like structure at 
the tip of the germ tube.

For reconstruction of a GEM, information on growth 
phenotypes on defined substrates is pivotal and the availability 
of knockout mutants would greatly contribute to validate the 
predictions (Nakahigashi et  al., 2009; Monk et  al., 2014). 
Unfortunately, experimental data on metabolism in P. infestans 
are very limited and, as described above, tools for knockout 
mutagenesis still have to be further optimized. The information 
that is available in the literature includes data on minimal in 
vitro growth substrates (Hohl, 1991), verified subcellular 
localizations of enzymes (López-Calcagno et  al., 2009; 
Abrahamian et  al., 2017), and capacity to produce a mixture 
of long-chain polyunsaturated fatty acids (Griffiths et  al., 2003; 
Sun et  al., 2012). Perhaps the most important limitation that 
we  faced when reconstructing the P. infestans GEM was the 
lack of knowledge on biomass composition, i.e., the stoichiometry 
of P. infestans biomass precursors (Feist and Palsson, 2010). 
The biomass composition relates the fluxes in the model to 
a hypothetical growth rate, and as such, it can be  used as a 
proxy for metabolic fitness. Because a precise description of 
P. infestans biomass composition was not available, we estimated 
it from the literature but ignored relative abundance 
(stoichiometry; Rodenburg et  al., 2017). This rendered 
quantitative flux predictions infeasible, but still allowed us to 
investigate the model for connectivity and importance of different 
nutrients (Rodenburg et  al., 2019). Similar challenges were 
faced by others modeling pathogens. Tymoshenko et al. (2015), 
who published a GEM for the human parasite Toxoplasma 
gondii, also reconstructed a biomass composition from the 
literature, ignoring stoichiometry. For a GEM of Leishmania 
donovani, Sharma et  al. (2017) chose to infer the biomass 
composition from a Plasmodium GEM. For oomycetes, it may 
be  an option to adopt the biomass composition from curated 
GEMs of closely related organisms, such as the brown algae 
Phaeodactylum tricornutum (Levering et al., 2016) or Ectocarpus 
siliculosus (Prigent et  al., 2014), but this should be  weighted 
against the risk of introducing new biases and uncertainties. 
After all, the similarity of biomass composition between brown 
algae and oomycetes is unknown and, further complicating 
matters, the biomass composition of P. infestans in different 
life stages appears to be  radically different (Grenville-Briggs 
et  al., 2008).

Although the GEM of a plant pathogen is in principle 
suitable to predict essential metabolic genes and reactions, and 
to simulate growth (biomass production) in vitro, it is less 
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informative for predicting the pathogen’s metabolism during 
in planta growth. We  addressed this by integrating our initial 
P. infestans GEM (Rodenburg et al., 2017) with a tomato GEM 
published by Yuan et al. (2016), resulting in a multi-compartment 
metabolic model of the P. infestans–tomato interaction 
(Figure  2A; Rodenburg et  al., 2019). We  used modeling 
techniques such as flux coupling analysis, to identify metabolic 
reactions in tomato that are of importance to fluxes in  
P. infestans metabolism. An example is thiamine biosynthesis 
that is required to supply the thiamine auxotrophic pathogen 
with this essential vitamin (Rodenburg et  al., 2017). In this 
way, we  build a GEM of a pathosystem by approaching it as 
a single system and demonstrated that this GEM can be  used 
to predict metabolic changes in both host and pathogen 
(Figure 2B). Botero et al. (2018b) used an alternative approach: 
They constructed a GEM for potato (Solanum tuberosum) and 
modeled the metabolic changes in the plant when challenged 
by P. infestans, based on transcriptome data.

Nutrient uptake by a pathogen depends on location and 
stage of infection; however, a GEM of a pathosystem typically 
lacks resolution to take these factors into account. The first 
close encounter between a Phytophthora pathogen and a plant 
is when a germ tube emerging from a sporangium or cyst 
senses a suitable surface and starts swelling at the tip. Host 
entry by Phytophthora is facilitated by a mechanical slicing 
mechanism that breaches the epidermal cells (Bronkhorst et al., 
2021). Haustoria emerge from hyphae that colonize the apoplast 
and enter the mesophyll cells (Judelson, 2017). It is often 
assumed that these haustoria are the main site of nutrient 
uptake, as is the case for various plant pathogenic fungi (Wang 
et  al., 2018). However, many oomycetes do not form haustoria 
(Fawke et  al., 2015), and haustoria make up only a very small 
proportion of the total hyphal biomass (~2%), raising the 
question whether haustoria are truly the main site of nutrient 
uptake (Judelson and Ah-Fong, 2018). The plant apoplast is 
a nutrient-rich environment and might be  the main site of 

A B

FIGURE 3 | Statistics for 54 published Stramenopile genome sequences including 42 oomycetes. (A) Genome accumulation curves derived from Quast (Gurevich 
et al., 2013), showing cumulative genome size when contigs are ordered from large to small. X-axis represents the number of contigs, and Y-axis represents 
genome size. (B) Presence of near-universal single copy orthologs in the genomes, as determined by BUSCO. Species are in alphabetical order. Colors indicate the 
completeness of the detected BUSCO genes. For further details on the genome sequences used for these analyses see Rodenburg et al. (2020).
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nutrient uptake (Chen, 2013). Haustoria are nonetheless very 
important for the host–pathogen interaction. They form the 
site from where the pathogen deposits so-called cytoplasmic 
effectors into the plant cell for suppression of immune responses 
(Boevink et  al., 2020). The host recognizes the intracellular 
host–pathogen interface created by the haustorium as the site 
where defense responses have to be activated and, for example, 
relocate the nucleus to the interface (Wang et  al., 2017). Next 
to cytoplasmic effectors, the pathogen secretes apoplastic effectors, 
so also in the apoplast host and pathogen interact and likely 
this involves exchange of signals and compounds.

Because of the specialized tasks of the haustorium and 
hyphae in the apoplast, hyphal cells likely have a “division of 
labor,” which implies that the biological processes are tailored 
for the specific region of infection. This phenomenon was 
recently modeled for the fungal plant pathogen Sclerotium 
sclerotiorum, by mapping the transcriptome of the apex and 
the center of infection to a multi-cell GEM (Peyraud et  al., 
2019). In the reconstruction of the integrated P. infestans–tomato 
GEM, we  did not explicitly discriminate between the different 
sites of infection but rather focused on changes over time 
(Rodenburg et  al., 2019). We  integrated dual-transcriptome 
data obtained from infected tomato leaves. A time course of 
a full infection cycle was sampled with intervals of 4 h during 
4 days (2–6 days after inoculation), resulting in 25 submodels. 
This revealed various switches in metabolism and differential 
nutrient usage over time, with a “division of labor” of the 
two partners. As infection progresses, P. infestans performs 
less de novo synthesis of metabolites and scavenges more 
metabolites from tomato. This example nicely demonstrates 
how one can analyze transcriptome data in a system-wide 
context. In concordance with related transcriptome studies 
(Abrahamian et  al., 2016; Ah-Fong et  al., 2017a), the 
transcriptome-based submodels reflected reduced metabolic 
activity in the sporangial stages of P. infestans, and nutritional 
changes in the transition from a biotrophic to a necrotrophic 
stage of infection on tomato leaves (Rodenburg et  al., 2017, 
2019). Importantly, because these transcriptomic changes were 
analyzed in the context of a GEM, results were subject to the 
imposed model constraints (steady-state, reaction 
thermodynamics) and thereby to the topology of the metabolic 
network (Hyduke et  al., 2013). The transcriptomic changes are 
interpreted in terms of ensuing differences of metabolic fluxes, 
and as such, this system-wide approach can be more informative 
than the differential expression analyses of individual genes. 
The integrated metabolic model provides a framework to simulate 
the metabolic fluxes occurring during infection and as a result, 
new insights in the kind of nutrients that P. infestans extracts 
from its host during the subsequent phases of the infection cycle.

Metabolic enzymes are located in various organelles, and 
hence, specific metabolic processes take place in different parts 
of the cell. In the reconstructed P. infestans models, this 
compartmentalization was taken into account to represent the 
spatial distribution of metabolic pathways in different subcellular 
compartments (Rodenburg et al., 2017, 2019). The transporters 
and channels responsible for transfer of metabolic substrates 
across membranes were modeled by integrating transport 

reactions (Thiele and Palsson, 2010). Transporters typically have 
a wide substrate range. Because of the difficulty of predicting 
the substrate based on protein sequence, transporters are often 
manually added to a GEM based on prior knowledge. This 
is particularly challenging when creating an integrated pathogen–
host metabolic model, considering that metabolite transport 
across membranes is pivotal to pathogen nutrition. In modeling 
the P. infestans–tomato interaction, we  chose to not manually 
add transport reactions (Rodenburg et  al., 2019). Because too 
little is known about P. infestans nutrition in planta, manually 
adding host–pathogen transport reactions would bias fluxes 
toward a predefined set of nutrient transporters. Since one of 
our goals was to predict the nutrient pool of P. infestans during 
tomato infection, we  chose to draw conclusions based on the 
optimal fluxes in the model. In other words, the transport 
reactions in our models were largely based on network topology. 
Depending on the objective function, the most optimal set of 
transporters had a nonzero flux. The downside of this approach 
was that we  could not consider bidirectional transport, as this 
would imply unrestricted metabolite exchange between host 
and pathogen. This could lead to scenarios where the host 
would utilize certain P. infestans metabolites for profit, which, 
from a biological point of view, is not plausible. In reality, 
however, metabolite exchange is likely a two-way process, with 
the host providing nutrients and the pathogen secreting 
metabolites, for example, as waste products or virulence factors. 
There is a clear knowledge gap on the metabolic exchanges 
that P. infestans maintains with its environment. To fill this 
gap, broad substrate screening could be performed using various 
growth media and different time points of mycelial growth, 
combined with comparative metabolomics using mass 
spectrometry, guided by GEM predictions.

HIGH-QUALITY GENOME DATA ARE 
ESSENTIAL FOR RECONSTRUCTING 
RELIABLE GENOME-SCALE METABOLIC 
MODELS

GEMs are reconstructions of cellular systems that can be  used 
to investigate the genotype–phenotype relationship: How do the 
genes encoded by the genome result in the complex biological 
system that we  observe (Yurkovich and Palsson, 2016)? Quality 
and insights derived from genome-scale models therefore critically 
depend on the quality of the genome sequence and gene annotation.

Obtaining a high-quality genome assembly is still challenging, 
in particular for the more complex eukaryotic genomes that often 
have a high abundance of repetitive elements and are typically 
diploid, or sometimes even polyploid or aneuploid (Nagarajan 
and Pop, 2013). Sequencing and comparative analyses of the first 
oomycete genomes in 2006 (P. sojae and P. ramorum) and 2009 
(P. infestans) revealed that these species profoundly differ in genome 
size and content (Tyler et  al., 2006; Haas et  al., 2009). P. infestans 
has a large genome compared to its close relatives, primarily due 
to the high abundance of transposable elements, constituting 
roughly 74% of its genome. Oomycete genome assemblies are 
often still rather fragmented (Figure  3A; McGowan et  al., 2018), 
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in particular compared to fungal plant pathogens for which genome 
assemblies are nowadays often near-complete (Faino et  al., 2015). 
Only over the last few years, near-complete genome assemblies 
have been published for some oomycetes (Fletcher et  al., 2019; 
Malar et  al., 2019; Stajich et  al., 2021). Despite the fragmented 
genome assemblies, almost all oomycete genome sequences comprise 
over 95% of the near-universal single-copy conserved orthologs, 
as determined by BUSCO (Figure  3B; Seppey et  al., 2019), 
suggesting that a significant proportion of the coding genome 
is captured.

Another major challenge is to correctly identify the open 
reading frames with associated exon boundaries (gene models) 
within the assembled genome sequences (Salzberg, 2019), 
which is even more problematic in fragmented genome 
assemblies (Denton et  al., 2014). Eukaryotic genomes are 
typically annotated using gene predictors trained on the 
parameters of high-quality gene models from closely related 
species and aligned transcriptome data (Yandell and Ence, 

2012). Annotation of the first two sequenced Phytophthora 
genomes was performed using a gene predictor trained on 
expressed sequence tags (Tyler et al., 2006). Many subsequent 
oomycete genome annotations were performed by gene 
predictors trained on the gene models in other oomycete 
genomes (McGowan and Fitzpatrick, 2017). However, the 
error rate in predicted gene models is still high, emphasizing 
the need for specifically searching for potentially missing gene 
models when mining genome sequences of oomycetes. 
Consequently, the field would benefit greatly from manual, 
and preferably community-driven, curation efforts of genome 
annotations (Rödelsperger et al., 2019). This would be valuable 
even when applied to only a single species, preferably one 
with a near-complete genome assembly, which can then be used 
as a template to re-evaluate gene models of other oomycetes 
and train gene predictors.

Reliable functional annotation of the predicted proteome is an 
additional prerequisite for identifying the fundamental components 

FIGURE 4 | A proposed workflow (including possible methods and analyses) for reconstructing a high-quality genome-scale metabolic model (GEM) for P. infestans 
and, potentially, an integrated GEM for a P. infestans/host interaction. Model reconstruction is an iterative process of simulation and model improvement.
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of genome-scale models. When performing an automated proteome 
annotation for 54 Stramenopile species, we found that the majority 
of predicted proteins could not be assigned to a KEGG orthologous 
group (KO), a system to cluster protein orthologs with validated 
functions (Mao et  al., 2005), and this hampered the association 
of these proteins with a putative function (Rodenburg et al., 2020). 
Many effector genes in oomycetes (e.g., those encoding RxLR 
effectors) lack functional associations (McGowan and Fitzpatrick, 
2017). One should consider that orthologs in distantly related 
species are inherently harder to detect than in closely related 
ones, which poses a problem in homology-based annotations. 
However, even in the best studied eukaryotic model organism, 
the yeast Saccharomyces cerevisiae, about 20% of all genes lack 
any functional association (Wood et  al., 2019). Lineages that are 
evolutionarily distant to model organisms—such as the oomycetes—
have an even less functionally characterized proteome, partly 
because of limitations of homology-based inference of protein 
functions, but most importantly, because of lack of experimental 
characterization. An effective and sensitive tool to predict protein 
functions by homology is offered by hidden Markov models 
(HMMs). HMMs are trained on a multiple sequence alignment 
of a predefined cluster of homologous protein sequences and weigh 
conserved sequence regions heavier than variable regions. Therefore, 
HMMs are particularly suitable for detecting protein domains, as 
these are often highly conserved to retain their biological function 
(Pearson, 2013). KOs are predefined ortholog clusters and powerful 
resources to train HMMs (Aramaki et  al., 2019). In our studies, 
we  used KO-based HMMs to identify orthologs of metabolic 
enzymes in oomycetes and their close relatives.

In omics-based bioinformatics studies, it is common practice 
to search for overrepresentation (enrichment) of functional 
annotations in differentially abundant molecules such as mRNA 
or proteins (Reed et  al., 2006; Bordbar et  al., 2014). Over the 
last decade, there has been a continuous flow of studies presenting 
oomycete comparative genomics, transcriptomics, proteomics, 
proteogenomics, and metabolomics data (Andronis et  al., 2020; 
McGowan and Fitzpatrick, 2020). These large-scale omics datasets 
are analyzed to understand how oomycetes evolve, reproduce, 
and interact with their hosts. Despite omics studies being 
indispensable to investigate the transcriptional and/or translational 
responses of both pathogen and host during infection, these studies 
are often biased, as usually only a subset of functions is investigated 
and these are not necessarily representative or causative for the 
complex phenotype. Moreover, proteomic and metabolomic samples 
typically only capture the most ubiquitous molecules, and as the 
differential abundance of any molecule may be  influenced by 
subtle changes in the environmental or experimental conditions, 
the biological implications remain speculative.

TOWARD HIGH-QUALITY GEMS OF 
PATHOGENS AND PATHOGEN–HOST 
INTERACTIONS

Systems biology has been recognized years ago as a promising 
method to study plant pathogens (Pinzón et al., 2009; Pritchard 

and Birch, 2011). In the last few years, the potato and tomato 
late blight (P. infestans) pathosystem was subject of several 
systems biology studies (Seidl et  al., 2013; Rodenburg et  al., 
2017, 2019; Botero et  al., 2018a,b; Castro et  al., 2019; Thines 
et  al., 2020). Nevertheless, systems biology of this pathosystem 
and many others is still in its infancy. The level of knowledge 
on the organism to be  modeled is key for the success of a 
systems biology approach. Thus, to arrive at highly predictive 
models for P. infestans or any other pathogen in the near 
future, in vitro experiments need to be  performed to gain 
basal knowledge. In the case of P. infestans, valuable information 
would be, for instance, the substrates that P. infestans can 
assimilate from its environment, as well as its biomass 
composition and how this changes throughout its lifecycle. 
There is a lot we  can learn from the more advanced metabolic 
research in other pathosystems. For example, there are now 
several GEMs for Plasmodium spp., some of which are also 
integrated with GEMs of the host, the red blood cell (Huthmacher 
et  al., 2010; Plata et  al., 2010; Abdel-Haleem et  al., 2018). The 
foundation of these GEMs was provided by pathogen–host 
metabolomics analyses identifying growth substrates (Olszewski 
et  al., 2009). These data were integrated with new omics data 
and novel biochemical knowledge into GEMs (Bazzani et  al., 
2012; Carey et  al., 2017; Stanway et  al., 2019). Interestingly, 
these models have pinpointed several essential reactions, some 
of which turned out to be  leads for promising drug targets 
(O’Hara et  al., 2014). For protozoan parasites, isotope-labeled 
growth experiments have been successful to dissect their 
metabolism during parasitic growth (Kloehn et  al., 2016), and 
it can be anticipated that similar analyses will provide intriguing 
novel avenues to control oomycete and fungal plant pathogens.

To be  able to take full advantage of systems biology, several 
steps to create a higher-quality GEM for P. infestans as well 
as other plant pathogens are needed in the future (Thiele and 
Palsson, 2010). Obviously, complete functional characterizations 
of the substrates and characteristics of each individual metabolic 
enzyme in the pathogen as well as in the host would be  ideal, 
but this seems infeasible in the near future. Nevertheless, 
significant achievements could be  gained from in silico and 
in vitro procedures, designed specifically for the purpose of 
building a high-quality GEM (Figure  4).

First (near-)complete and ideally gapless genome assemblies 
of pathogens as well as their hosts are required. The genomes 
need to be  sequenced and assembled using novel technologies 
and advanced assembly methods to attain the complete coding 
information (Thomma et  al., 2016). Gene prediction should 
be  guided by RNA sequencing, homology-based evidence, and 
metabolics data, and predicted protein sequences should 
be functionally annotated. Moreover, manual gene model curation 
should be  performed to accurately predict the enzymes and 
all this information should be  linked to knowledge on the 
biochemical capacity of the pathogen (Fernandes et  al., 2019). 
Such manual curation is time-and labor-intensive, but will 
ultimately lead to a complete description of the enzyme catalogue 
encoded in the genomes and thus to better models.

Second, the identified enzymes are then used as input for 
reconstructing a draft metabolic network. Functional annotation 
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of (subunits of) metabolic enzymes and the associated reactions 
and metabolites should be  curated according to the literature 
and according to the established protocol (Thiele and Palsson, 
2010), pinpointing gene–protein–reaction associations. The 
metabolic network needs to be  manually inspected to identify 
potentially missing enzymes (gaps), by comparing the 
reconstructed pathway to reference pathways of well-characterized 
model organisms, and the annotations need to be  revisited to 
account for apparently missing enzymes (i.e., wrong or erroneous 
gene annotation). Additionally, these models should 
be  compartmentalized, i.e., reactions should be  assigned to 
the correct cellular location with transport reactions to simulate 
the transmembrane metabolite fluxes. We and others previously 
considered at least the cytosol, extracellular space, and the 
mitochondria essential, since these are hotspots of metabolism. 
Intracellular transport reactions need to be  manually included 
based on common biochemical knowledge, such as experimental 
data, textbooks, or literature. We  found that specifically for 
oomycetes the experimental data on transporter substrates are 
very limited, and it is unlikely that many more transporters 
are to be characterized, given the labor-intensive process (Savory 
et  al., 2018). Therefore, transport reactions may be  inferred 
from GEMs of related species and by analyzing network topology.

Third, in vitro assays can be  performed to characterize the 
pathogen’s growth behavior under different conditions. The 
ideal medium is similar in composition to the pathogen’s natural 
hosts to mimic natural growth. The medium needs to be analyzed 
by untargeted metabolomics (mass spectrometry and/or nuclear 
magnetic resonance) over multiple time points to provide insight 
into the presence and abundance of specific metabolites. 
Metabolites that strongly change in abundance during pathogen 
growth and between subsequent sampling stages are likely 
assimilated or secreted. This can be  indicative of a nutrient 
transporter on the plasma membrane that is capable of 
transporting the respective metabolite. In addition, isotope-
labeled metabolites can be  added to the medium to test the 
assimilation of specific nutrients (Ah-Fong et  al., 2019), such 
as carbohydrates and lipids. For metabolites for which changes 
in abundance are measured, uptake and demand (transport) 
reactions should be  added to the model.

Fourth, the relative pathogen biomass composition and growth 
rates should be  measured. A promising approach for this is 
Fourier-transform infrared spectroscopy (FTIR; Mayers et  al., 
2013). This method was optimized for analyses of brown algae 
and was successfully used in the reconstruction of a GEM for 
the diatom Phaeodactylum tricornutum to quantify the percentages 
of carbohydrate, protein, DNA/RNA, and fatty acids per gram 
of cellular dry weight (Levering et  al., 2016). Once the main 
classes of biomass components are quantified and are related to 
growth rate, more specific metabolites can be  assigned based on 
traditional metabolomics methods (e.g., chromatography and mass 
spectrometry) and incorporated into the GEM.

Fifth, predicted phenotypes, e.g., induced by specific nutrient 
starvation, should be  validated by growth experiments and 
gene/reaction essentiality should be  validated in knockout or 
knockdown mutants, for instance, as was done for the nitrate 
assimilation cluster (Abrahamian et  al., 2016). As discussed, 

we anticipate that CRISPR-Cas gene editing will be successfully 
employed in many pathogens in the coming years, but as an 
alternative, gene silencing mutants can be generated to investigate 
metabolic perturbations. The model should be  updated with 
novel findings, and discrepancies should lead to corrections 
of the model. For instance, when the knockout of a predicted 
essential gene is not lethal in vitro, there are likely alternative 
enzymes or metabolic routes that compensate for this mutation. 
The model should be  inspected on incorrect annotations or 
missing reactions accordingly.

Sixth, the refined pathogen GEM should be  integrated with 
a similarly refined GEM for its host. This necessitates deploying 
more sophisticated constraints and objective functions to simulate 
a more realistic symbiosis for this pathosystem, such as multi-
objective simulations to address the competition for nutrients 
(Jamshidi and Raghunathan, 2015).

In addition to the here proposed steps, there is a large and 
rapidly increasing number of methods and algorithms that 
can be  applied to GEMs to gain further insights into the 
complex system of pathogen–host interactions (Lewis et  al., 
2012). For instance, regulatory networks could be inferred from 
(anti-)correlated expression patterns in dual RNA-Seq data and 
other experimental data and integrated into GEMs to further 
constrain the fluxes, in order to learn how metabolism is 
regulated during infection (Peyraud et  al., 2018). Collectively, 
we anticipate that these steps will lead to high-quality pathogen 
and pathogen–host GEMs that can be  used to identify novel 
targets for disease control and further help to understand how 
pathogens interact with their hosts.

CONCLUSION

Systems biology, in particular GEMs, offers a unique approach 
to study oomycetes and their intricate interactions with their hosts. 
GEMs not only offer a holistic overview of metabolism, but also 
constitute a foundation on which to incorporate omics measurements 
at various levels, allowing integrated analyses of key processes in 
pathogenesis and pathogen–host interaction. Although there are 
still a number of remaining technical and methodological challenges, 
GEMs hold great promise for providing mechanistic insight into 
strategies exploited by oomycetes to proliferate and infect their 
hosts, ultimately allowing us to develop new means of controlling 
these highly relevant pathogens.
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