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ABSTRACT Cell migration is astoundingly diverse. Molecular signatures, cell-cell interactions, and environmental structures
each play their part in shaping cell motion, yielding numerous morphologies and migration modes. Nevertheless, in recent years,
a simple unifying law was found to describe cell migration across many different cell types and contexts: faster cells turn less
frequently. This universal coupling between speed and persistence (UCSP) was explained by retrograde actin flow from front
to back, but it remains unclear how this mechanism generalizes to cells with complex shapes and cells migrating in structured
environments, which may not have a well-defined front-to-back orientation. Here, we present an in-depth characterization of an
existing cellular Potts model, in which cells polarize dynamically from a combination of local actin dynamics (stimulating protru-
sions) and global membrane tension along the perimeter (inhibiting protrusions). We first show that the UCSP emerges spon-
taneously in this model through a cross talk of intracellular mechanisms, cell shape, and environmental constraints, resembling
the dynamic nature of cell migration in vivo. Importantly, we find that local protrusion dynamics suffice to reproduce the UCSP—
even in cases in which no clear global, front-to-back polarity exists. We then harness the spatial nature of the cellular Potts model
to show how cell shape dynamics limit both the speed and persistence a cell can reach and how a rigid environment such as the
skin can restrict cell motility even further. Our results broaden the range of potential mechanisms underlying the speed-persis-
tence coupling that has emerged as a fundamental property of migrating cells.
SIGNIFICANCE The universal coupling between speed and persistence (UCSP) is the first general, quantitative law
describing motility patterns across the versatile spectrum of migrating cells. Here, we find that the UCSP emerges
spontaneously in an existing, highly popular model of cell migration, generalizing its mechanism to cells with a more fluid
definition of ‘‘polarity.’’ Importantly, this model now allows us to examine this migration law in many more complex
geometries and environments. Studying the UCSP in different model frameworks and environments can help uncover how
intracellular dynamics, cell shape, and environment interact to produce the diverse motility patterns found in migrating
cells.
INTRODUCTION

Imagine a T cell moving in the outer layer of the skin.
Tasked with patrolling the epidermis, it scans for early signs
of reinvasion by pathogens known from earlier attacks. Its
movement is rapid yet undirected; with narrow protrusions
almost resembling dendrites, it probes its surroundings
before choosing where to go next. Its decision made, it
squeezes its way through the tight junctions between the
skin’s keratinocytes, moving its attention to unexplored
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areas (1). Suddenly, the scene changes as a cut disrupts
the tissue layer. The released damage signals attract neutro-
phils, which rapidly crawl toward the wound with a motion
far more directed than that of the T cell patrolling this site
earlier. Upon arrival, they stimulate the movement of yet
another cell population; the epithelial sheet adopts a
directed, slow-but-steady collective motion that (combined
with proliferation) eventually closes the wound. Homeosta-
sis is restored (2,3).

The earlier described scenario illustrates just a few of the
many movement patterns and phenotypes found among
migrating cells. Although all mammalian cells share the
same basic mechanism of actomyosin-driven cell motion,
differences in their molecular signatures—as well as in the
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structure of the environment they move in—nevertheless
produce a rich spectrum of different migration modes (4).
Movement can be fast or slow, in a persistent or frequently
changing direction, across a two-dimensional (2D) surface
or inside a three-dimensional (3D) matrix. Cells can be
round or elongated, forming narrow or broad protrusions
that do or do not rely on focal adhesions. Cells can move
as isolated individuals or collectively as a cohesive sheet
or stream.

Interestingly, despite these highly diverse migratory be-
haviors observed in different cell types and contexts, one
universal law seems to describe motion patterns across
many migrating cells in various controlled experimental set-
tings: faster cells move more persistently (5–7). Maiuri et al.
(7) proposed that this universal coupling between speed and
persistence (UCSP) arises from a positive feedback on cell
polarity mediated by the actin cytoskeleton. Because
specialized clutch molecules provide friction between the
actin filaments and the cell’s surroundings, these actin fila-
ments move backward in the reference frame of the moving
cell. This ‘‘actin retrograde flow’’ depends linearly on cell
speed. A theoretical model revealed how actin retrograde
flow can also stabilize cell polarity (and thus persistence)
if it transports polarity cues toward the cell’s rear end. The
resulting polarity cue gradient in turn stabilizes actin retro-
grade flow in a positive feedback loop; higher speeds yield
higher persistence by stabilizing cell polarity through the
actin retrograde flow. As actin retrograde flow is a highly
conserved feature of cell migration, the UCSP holds for
cells with very different migration modes.

Maiuri et al. (7) proposed this theoretical model to
explain how the UCSP arises from the actin-based advection
mechanism described earlier. Their one-dimensional (1D)
model represented the cell as a nondeformable line that
always has a well-defined ‘‘front’’ and ‘‘back.’’ By contrast,
a real cell’s motion is linked closely to its shape (8), which
dynamically responds to both the cell’s inner machinery and
the environment, yielding a more promiscuous definition of
the ‘‘front’’ and ‘‘back’’ of the polarized cell. It currently re-
mains unclear how the UCSP mechanism generalizes to this
case of deformable cells with complex shapes and environ-
ments; when multiple, competing protrusions can form
along the cell perimeter (9,10), the direction of ‘‘polarity’’
becomes much less clear-cut. Indeed, exactly how migrating
cells dynamically coordinate local protrusions and actin dy-
namics into a global polarized state under different condi-
tions remains an open question in the field (11).

Here, we therefore examine a model in which speed and
persistence emerge from a migration machinery that inter-
acts with the cell’s shape and environment. We focus on the
cellular Potts model (CPM), a popular framework for
modeling cell migration that naturally captures complex
cell shapes and cell-environment interactions (1,12,13).
Rather than developing a new model, we explore an exist-
ing model inspired by actin dynamics that is known to
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reproduce cell migration with realistic cell shapes: the
‘‘Act-CPM’’ (12). Importantly, cell polarity in the Act-
CPM emerges from local protrusion dynamics alone,
without ever defining a global, cell-scale polarity direction.
This allowed us to ask the following question: can the
UCSP arise in a cell where no global front-to-back polarity
direction is explicitly defined? Moreover, the polarity and
motion of real cells also dynamically responds to surround-
ing obstacles. As the original experimental data mostly
established the UCSP in simple, obstacle-free geometries
(straight 1D adhesive lines or a free 2D surface) (5–7),
the question remains whether this seemingly fundamental
law is equally universal across the more diverse environ-
ments cells face in vivo. The spatial nature of the CPM
allowed us to examine how the UCSP translates to more
complex tissue environments.

Interestingly, we find that the UCSP emerges spontane-
ously in the Act-CPM in various environments through a
mechanism relying only on the local polarity defined at the
cell’s protrusions, without requiring one single, front-to-
back polarity direction at the global cell scale. This also has
consequences for the UCSP; in the Act-CPM, cell shape dy-
namics and the UCSP interact to define the patterns in which
cells canmigrate. Consequently, theUCSPmay not be univer-
sal throughout all environments; our simulations predict that a
strongly restrictive tissue may overrule speed-persistence
coupling in T cells patrolling the epidermis.
MATERIALS AND METHODS

Model

CPM

Our model is an extension of the CPM (14,15), which represents a space as

a discrete collection of pixels on a 2D or 3D grid. Each pixel p is assigned a

cell identity sp ¼ {0, 1, 2,., n}, indicating which cell it currently belongs

to (by convention, we use s ¼ 0 for the empty background and a unique

integer s > 0 for each of the n cells on the grid). Each pixel p locally ‘‘con-

tacts’’ its Moore neighborhood, N(p), including diagonal neighbors

(yielding eight neighbors in 2D and 26 in 3D).

Temporal dynamics arise because cells stochastically try to add or re-

move pixels at their borders in copy attempts (Fig. 1 A), where a source

pixel ps tries to ‘‘conquer’’ a target pixel pt of another cell; if it succeeds,

its identity is copied into pt ðspt /spsÞ. Any such changes are local because
we only consider attempts in which ps and pt are neighbors: pt˛ N(ps). Time

is then measured in Monte Carlo steps (MCS), for which every MCS, we

perform as many copy attempts as there are pixels on the grid.

These dynamics are regulated by the Hamiltonian H, the global energy of

the system. Rather than letting each copy attempt succeed, the success rate

Pcopy of an attempt depends on the energetic ‘‘cost’’ DH of changing

spt/sps:

Pcopyðps / ptÞ ¼
(
e�DH=T DH> 0

1 DH%0
: (1)

Thus, copy attempts tend to lower H because attempts with DH < 0 al-

ways succeed. The success rate of energetically unfavorable attempts

instead decays exponentially with their cost depending on the temperature
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FIGURE 1 In silico simulation of shape-driven cell migration within complex environments. (A) A CPM represents a tissue as a collection of pixels on a

grid, each belonging to a specific cell or the extracellular space. Pixels randomly try to copy their cell identity into pixels of neighbor cells, with a success

probability Pcopy depending on how that change would affect the ‘‘physical’’ properties of the involved cells (cell-cell adhesion and deviation from target

volume and/or perimeter, dashed lines). The weighted sum of these energetic effects (DH) is negative for energetically favorable copy attempts. (B) Example

track for a cell with only adhesion, volume, and perimeter constraints, resulting in Brownian, diffusion-like motion. Inset: distribution of instantaneous

speeds, which remain very small throughout the track. (C) In the Act-CPM (12), each pixel’s ‘‘activity’’ represents the time elapsed since its most recent

successful protrusion. Copy attempts into less active pixels are stimulated (negative DHact), and copy attempts into more active pixels are punished (positive

DHact). (D) Act cells alternate between persistent motion and ‘‘stops’’ in which they change direction (intermittent random walk, ‘‘I-RW’’). Plot shows

example tracks of five Act cells with overlaying starting point (black dot, t ¼ 0). Inset: distribution of instantaneous speeds during the I-RW, ‘‘stop-and-

go’’ motion, with peaks at zero (the ‘‘stops’’ in the track) and at high speeds (‘‘go’’ intervals). (E) Displacement plot of CPM cells. Brownian motion (without

the Act extension, gray line) results in a linear curve. Act cell movement appears as Brownian motion on large time scales (linear part of red line) but is

persistent on smaller time scales (nonlinear start of red line). To see this figure in color, go online.
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T (higher temperatures are more permissive for unfavorable attempts; see

also the online ‘‘Simulation 1’’ at https://ingewortel.github.io/artistoo-

supplements/ (16,17) to explore these dynamics interactively).

H itself is a function defined by the modeler. It may vary between CPM

models, but typically contains terms to let cells maintain their shape and

contacts with neighbor cells (Fig. 1 A). Here, we use three such terms to

control cell-cell adhesion (14), cell volume (14), and the cell’s perimeter

(18). The adhesion term in H assigns an energetic penalty to each pair of

neighboring pixels belonging to different cells s:

Hadhesion ¼
X

pixels p

X
q˛N pð Þ

(
0 sq ¼ sp

J sp; sq

� �
sqssp

: (2)
The contact energy J is a model parameter that depends on the types of

cells contacting each other; for example, contacts between two cells (non-

background, s> 0) can have a different energy than contacts between a cell

and the background (s ¼ 0); see Table S1. At J > 0, this term stimulates

pixels of the same cell to group together to minimize the number of contacts

(within-cell contacts with sp ¼ sq are ‘‘free’’ in Eq. 2, so there is no self-

adhesion energy).

The volume and perimeter terms further control cell shape by assigning

each cell a penalty for stretching or compressing beyond some specified

target size Vtarget or perimeter Ptarget:

Hvolume ¼
X

cells s> 0

lVðsÞ
�
VðsÞ � VtargetðsÞ

�2
(3)
and
Hperimeter ¼
X

cells s> 0

lPðsÞ
�
PðsÞ � PtargetðsÞ

�2
: (4)

Here, the parameters lV/lP scale the weight of each energy term. The vol-

ume V(s) of cell s is simply the number of pixels for which sp ¼ s. Its

perimeter P(s) sums, for each pixel p in the cell, the number of neighbors

q belonging to other cells (analogous to Eq. 2):

P sð Þ ¼
X

pixels p

X
q˛N pð Þ

(
1 sp ¼ s; sqss

0 otherwise
: (5)

The total cost DH of a copy attempt then depends on how each of these

energy terms would change by setting spt/sps:

DH ¼ DHadhesion þ DHvolume þ DHperimeter þ.;where DHX

¼ HX;after � HX;before:

(6)

This general framework has two key properties: 1) because pixels can

only have one identity s at a time, ‘‘volume exclusion’’ naturally arises

in the model; and 2) because all cells contribute to DH, Pcopy depends on

the shape of both the cell trying to move and the cell it tries to displace.

These properties allow the CPM to reproduce realistic, dynamic cell shapes

using only a few simple rules and parameters, making it a powerful tool for

modeling cell interactions in complex environments. However, the energy

described so far is based solely on adhesion and cell shape. Fluctuations

at the cell border can cause the cell’s center of mass to move slowly over

time, but because there is no energetic benefit for consistent motion in
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any direction, this is a Brownian, diffusion-like motion rather than actual

migration (Fig. 1 B; speeds are positive but very low).

Act-CPM extension

We therefore use an extension of the CPM that does allow for active migra-

tion (12) (see also the online interactive explanation at https://ingewortel.

github.io/artistoo-supplements/, ‘‘Simulation 2’’ (16,17). In this ‘‘Act-

CPM,’’ a pixel p newly added to a cell at t ¼ t* remembers its recent pro-

trusive ‘‘activity’’ A for a time of maxact MCS (with maxact a model

parameter):

A p; tð Þ ¼

8>>><
>>>:

1 t ¼ t�

A p; t � 1ð Þ � 1

maxact
t � t�%maxact

0 otherwise

: (7)

Copy attempts from active into less active pixels are rewarded via a nega-

tive energy contribution DHact to the overall energy cost DH, stimulating

copy attempts from source pixel ps in an ‘‘active’’ region into a less active

target pixel pt:

DHactðps / ptÞ ¼ � lactðGMactðpsÞ�GMactðptÞÞ; (8)

where GMact(p) of pixel p is the geometric mean of the activities A of all

pixels q in N(p) that belong to the same cell (sq¼ sp). Thus, maxact controls

the steepness and temporal stability of the activity gradient, whereas the La-

grange multiplier lact determines its weight in the total cost DH of the copy

attempt.DHact is negative whenever GMact(ps)>GMact(pt). Note that rather

than defining an energy Hact for the entire grid, we now consider the deriv-

ative DH for a specific copy attempt directly; thus, it can be interpreted as a

force rather than an energy (15).

This term adds to the CPM a positive feedback loop in which recently

added pixels are more likely to protrude again (Fig. 1 C). Consequently, local

groups of active pixels form stable protrusions that drag the cell in a certain

direction; at any given time, cells can have one protrusion, several protru-

sions, or no protrusion. As a result, cells typically alternate between intervals

of persistent movement (often coinciding with a single active protrusion) and

‘‘stops’’ (coinciding with the disappearance of the active protrusion or

appearance of competing protrusions) where they can switch direction

(Fig. 1 D). This motion pattern is known as an ‘‘intermittent random

walk’’ (I-RW) (7). On larger timescales, movement resembles Brownian mo-

tion (new protrusions form in random directions). Persistence is only evident

on the smaller timescales on which the cell has a stable protrusion and main-

tains its direction (Fig. 1 E). This I-RW behavior qualitatively resembles the

characteristic ‘‘stop-and-go’’ motility of T cells searching for antigen in the

lymph node (19,20), as well as the motility of other cell types (7).

Parameter choices

The parameters used throughout the study were chosen to be in the ‘‘motile-

but-stable’’ regime of the model. Far outside this regime, the model does not

describe robust motile cells or allows cells to rupture.

Selecting parameters for a CPM can be difficult because parameters are

interdependent. For example, the J and various l parameters balance the

terms in DH; when too low, the corresponding term effectively vanishes

from DH (causing artifacts because cells are no longer affected by the adhe-

sion/volume/perimeter constraints). If the l parameter of a term is too high,

that term can instead overshadow the other terms in DH. Thus, the l and J

parameters must be balanced such that each term contributes to the final

behavior. Choosing a temperature T > 0 is then equivalent to scaling all

J and l parameters by a factor 1/T.

Here, parameters were selected to yield cells with realistic shapes and

behavior as follows. The (2D) volume Vtarget of 500 pixels (Table S1)

was chosen to resolve the cell shape and protrusions in some detail; chang-
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ing it simply scales lengths in the model. Then, Ptarget must be large enough

relative to Vtarget so that cell borders can fluctuate while membrane tension

still keeps the cell intact: some deformation is required for cell migration,

but too large a perimeter can cause cells to rupture. Ptarget also depends on

the environment, as microchannel simulations required a larger perimeter to

account for the elongated cell shape in microchannels. Contact energies J, l

parameters lV/lP, and the temperature T were then balanced empirically

such that cells were deformable but stayed intact (as formally defined by

a ‘‘connectedness’’R95% forR95% of the time; see Supporting materials

and methods). For the microchannels, Jcell, channel is not too important as

long as it is within the same range as Jcell, background; very low Jcell, channel
/ 0 makes cells stick to the channel walls, whereas very high Jcell, channel
makes them stretch out to avoid any contact with the channel walls. For skin

simulations, the J
keratinocyte, keratinocyte

and lP, keratinocyte parameters were chosen

(again empirically) depending on the tissue type, with a higher lP, keratinocyte
for a stiffer (less deformable) tissue, as well as a higher J

keratinocyte, keratinocyte
so

that cells can still squeeze through the keratinocytes. Most parameters

were equal in 1D and 2D (except for Ptarget, as mentioned earlier); for 3D

simulations, we had to select other parameters to account for changes in sur-

face/volume ratio and the thus-altered relative contributions of the different

terms to the totalDH (especially important are the lower lP and J to account

for the much larger perimeters).

Maxact ‘‘actin lifetime’’ values were chosen to obtain a realistic range of

protrusion sizes (Table S2). Although maxact can in principle be infinitely

large, this would yield a cell where each of the cell’s border pixels has

the same (infinitely large) activity; no protrusion can form because there

is no symmetry breaking to polarize the cell. Because we are interested

in the motile parameter regime in which cells can break symmetry, we

instead selected a range of maxact values for which protrusion sizes varied

from small, local blebs to large protrusions occupying a substantial fraction,

but not all, of the cell volume (see Analysis later; again, this means that

maxact is chosen relative to the target volume Vtarget). For each maxact, a

range of lact scaling factors was then chosen to let cells go from completely

Brownian motion (persistence time ~5 MCS, the time between subsequent

measurements of cell location) to maximally persistent motion (persistence

time ~10,000 MCS). Persistence times higher than 10,000 MCS were not

considered, as such high persistences will likely be underestimated because

of the finite total simulation time (50,000 MCS). For skin simulations,

T cells were modeled with maxact ¼ 30 or 100 and variable lact in two

different types of tissues (Table S3).
Analysis

All simulations were built using Artistoo (RRID:SCR_020983 (16)). For

details on initial setup, see Supporting materials and methods; all simula-

tion and analysis code is available at https://github.com/ingewortel/

2020-ucsp (21). Every five MCS, we recorded both the position of the cell’s

centroid (to compute speed and persistence time) and several other cell

properties (to keep track of the cell’s shape and degree of polarization).

Quality control: shape and polarization

In the CPM, the pixels belonging to a single cell are held together mostly

via the adhesion term in the Hamiltonian (Eq. 2). However, the adhesive

force can become negligible relative to the other DH terms; for example,

when DHact is large because of a high lact. Thus, especially in 3D, cells

may break apart at high values of lact, despite the unfavorable changes in

adhesion energy associated with this break.

As frequent cell breaking causes artifacts in the tracking data that may

bias the measurement of speed and persistence, it is important to use param-

eter ranges that prevent such an unbalanced contribution of the different DH

terms. To estimate the frequency of cell breaking, we therefore recorded the

connectedness (C) of the cell every fiveMCS of each simulation. This num-

ber is 1 for an intact cell and approaches 0 for a collection of unconnected

pixels (see Supporting materials and methods for details). For all
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simulations reported in this manuscript, we checked that a connectedness

below 0.95 did not occur in more than 5% of the measured values, ensuring

that cells were intact for the majority of the simulation.

Additionally, to measure the total active protrusion area(s) of a cell, we

counted which percentage of each cell’s pixels had an activity A > 0.

Ranges of maxact and lact were chosen such that protrusions made up

>0% but <100% of the cell’s volume.

Track analysis: speed and persistence time

Cell centroids were recorded at regular time intervals (five MCS) to recon-

struct cell trajectories or ‘‘tracks.’’ All simulated tracks were analyzed in R

(RRID:SCR_001905, version 3.6.1) using the celltrackR package (version

0.3.1) (22) to compute speed and persistence time. Speeds were computed

from instantaneous ‘‘step’’ speeds along the track, and persistence time was

defined as the half-life of the autocovariance curve. Analyses were per-

formed in a step-based manner (combining steps from independent tracks

for robustness), using separate groups of five tracks each to estimate varia-

tion. See Supporting materials and methods for details.
RESULTS

Local polarity gradients in the Act-CPM
reproduce the UCSP observed in migrating cells

We first tested whether the Act-CPM could reproduce the
UCSP as observed in experimental data. Like in the UCSP
model (7), migration in the Act-CPM arises from a positive
feedback on cell polarity; persistent motion results in activ-
ity gradients, which in turn stabilize the direction of motion.
But even though this feedback conceptually resembles the
polarity stabilization driving the UCSP, the Act-CPM differs
from the Maiuri model in a crucial way: activity gradients
are local and arise dynamically from a combination of pro-
trusion and cell shape dynamics. Cells are not 1D lines with
a clearly defined ‘‘front’’ and ‘‘back,’’ but deformable ob-
jects that lack any single, cell-scale polarity direction (see,
for example, Fig. S1 A and Interactive simulation S1 at
https://ingewortel.github.io/2020-ucsp/; all black pixels are
equivalent in terms of polarity). This means that polarity
is fluid and can turn slightly within an existing protrusion
as the cell deforms. Polarity is also less absolute in the sense
that protrusions can split and merge dynamically and
competing protrusions can form elsewhere along the perim-
eter (although the global negative feedback from membrane
tension prevents this from happening too often). So,
although the protrusive feedback should intuitively lead to
some speed-persistence coupling in the Act-CPM, it is by
no means certain that this relationship should be of the
same (exponential) form as that reported by Maiuri et al.
(7) or that it should hold when the cell is free to deform.

This more emergent nature of polarity also means that the
effects of the main migration parameters lact and maxact on
speed and persistence are impossible to derive from simple
scaling arguments alone. Still, some qualitative relations can
be established. By scaling the strength of the protrusive
force DHact relative to other, opposing terms (adhesion, vol-
ume, perimeter), higher lact values yield larger and more
stable protrusions, as restoring forces like membrane ten-
sion are easier to overcome (Fig. S1, A and B); this should
intuitively increase both speed and persistence. The second
parameter, maxact, determines how long pixels remember
their activity and can loosely be interpreted as a ‘‘lifetime’’
of polymerized actin. It limits the protrusion width (i.e., how
much it can extend into the cell interior). Higher maxact
values stabilize protrusions even at small lact (Fig. S1 B).
However, the quantitative effect of these parameters on
speed and persistence are far less trivial because they
strongly depend on the dynamics of the cell boundary.
The shapes of CPM cells interact with their cell-intrinsic
motility and environment through an intricate interplay of
local energies DH—in fact, it is this emergent nature of
cell-cell interactions that makes the CPM such a popular
framework (15). Thus, a more empirical approach is needed
to assess whether the UCSP holds in our CPM model of
local actin dynamics.

We therefore used the Act-CPM to simulate the experi-
ments in which the UCSP was originally discovered. Maiuri
et al. (5,7) mostly considered cells moving along adhesive
tracks or within microchannels. To mimic this quasi-1D
setup in silico, we constrained Act cells between two paral-
lel walls, leaving a space of 10 pixels within the channel
(Fig. 2 A). The resulting cell elongation was comparable
to that observed for cells moving on 1D adhesive tracks
(compare Fig. 2 A to Fig. 1 B in (7)). Act cells moving in
these microchannels reproduce I-RW behavior, migrating
persistently in one direction until they lose their active pro-
trusion, at which point they wait for a new protrusion to
form and can stochastically switch direction (Fig. S1 A;
Video S1; Interactive simulation S1 at https://ingewortel.
github.io/2020-ucsp/).

To examine whether the less strict polarization of deform-
able Act cells still gave rise to the UCSP, we assessed speed
and persistence time in cell tracks for Act cells with various
lact and maxact values. (Here, the ‘‘persistence time’’ is the
average time over which the direction of motion changes,
computed from the speed autocorrelation function as
described in the Supporting materials and methods.) This
analysis revealed a weak exponential coupling between
speed and persistence (Fig. 2 B). Although weak in the het-
erogeneous data set of Act cells with highly different lact
and maxact parameters, this correlation became markedly
stronger when we stratified cells by maxact value (Fig. 2
C). There, we found the same exponential speed-persistence
coupling as was observed in experimental data (7).
Although the values of both speed and persistence are some-
what sensitive to other control parameters in the CPM (such
as lV, lP, and J), we note that the shape of their correlation is
not; for example, varying lP did not change the shape of the
speed-persistence curve as long as values were chosen in a
regime that allowed for cell migration without letting the
cell fall apart (Fig. S1, C and D). Likewise, this finding
was independent of the choice of maxact; curves were
similar for both values of maxact (Fig. 2 C).
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FIGURE 2 The Act-CPM reproduces the UCSP observed in experimental data. (A) Simulation setup for ‘‘1D’’ migration in microchannels. Color gradients

indicate active protrusions. Microchannels consist of two parallel walls with 10 pixels between them. (B) ‘‘Exponential’’ speed-persistence coupling arises in

the Act-CPM (i.e., there is a range in which speed is proportional to the log persistence time; r¼ Spearman correlation coefficient). Red line and shaded area

represent a loess fit 5 95% confidence interval. Both maxact and lact were varied; see Tables S1 and S2 for parameters used and (C) for the relationship at

fixed maxact. (C) Speed-persistence coupling is stronger for cells with the same maxact. Plot shows mean 5 standard deviation (SD) of persistence time

plotted against speed, for two values of maxact; numbers in the plot indicate the corresponding value of lact. Shaded gray areas in the background indicate

regions where the persistence time is lower than the time it takes for the cell to move 10% of its length. (D) Phase diagram of migration modes in micro-

channels for different maxact and lact (left), as based on the displacement distributions (right). Cells were classified as NM if they hardly moved (displacement

distribution with a single peak centered at 0). Cells were classified as P-RW if the displacement distribution had two clear peaks (for motion to the left and

right, respectively) and as I-RW if it had three peaks (with an extra peak at zero for the ‘‘stops’’); see Supporting materials and methods for details. This

classification yielded fairly consistent ‘‘phases’’ in the parameter space, although it was harder to distinguish peaks for cells that were barely moving

(e.g., point 3). Some lact and maxact combinations in the CPM are not viable because the protrusion tear the cell apart; these were classified as ‘‘broken.’’

In the diagram, colors represent migration mode, and the intensity of the color represents agreement of the classification between different independent es-

timates (see Supporting materials and methods). To see this figure in color, go online.
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Even though changes in maxact did not affect speed-
persistence coupling, they were associated with a change
in migration mode. Whereas cells with lower maxact values
switched from a nonmigratory (NM) phenotype to I-RW
‘‘stop-and-go’’ motion as lact increased, cells with higher
maxact values instead went from nonmigratory to a ‘‘persis-
tent random walk’’ (P-RW) mode with hardly any stops. To
illustrate this difference, we computed a ‘‘phase diagram’’ of
migration behavior with varying maxact and lact, using the
distribution of displacements to determine migration modes
(Fig. 2 D). This phase diagram strongly resembled that ob-
tained by Maiuri et al. using the original UCSP model (7)
(see Appendix A in the Supporting materials and methods
for a more extensive comparison between the two models).

In summary, the Act-CPM exhibits an exponential
speed-persistence relationship mediated by the lact param-
2614 Biophysical Journal 120, 2609–2622, July 6, 2021
eter; whereas speed increases linearly with lact (Fig. S2 A),
persistence time increases exponentially at higher lact
values (Fig. S2 B). Indeed, the linear relationship between
the Lagrange multiplier l and cell speed has previously
been explained for a similar CPM migration model based
on a chemotactic, rather than cell-intrinsic, force (15).
We find that the exponential relationship between lact
and persistence follows directly from CPM kinetics and
the size of the ‘‘energy barrier’’ cells need to cross to
lose an active protrusion (Appendix B in the Supporting
materials and methods). Thus, lact exponentially couples
speed and persistence in the Act-CPM, demonstrating
that local, actin-based protrusion dynamics suffice to
explain both the UCSP and migration modes observed in
migrating cells, even when there is no explicit global polar-
ity direction.
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Speed-persistence coupling in the Act-CPM
spans a range of migration modes

We then exploited the spatial nature of the Act-CPM to
examine the UCSP in environments other than a microchan-
nel, giving cells even more freedom to deform into complex
shapes (Fig. 3). Do local activity gradients still suffice to
reproduce the UCSP when cells can form protrusions in
any direction along their perimeter?

In addition to discovering the UCSP in cells navigating
‘‘1D’’ adhesive tracks, Maiuri et al. (7) also confirmed this
coupling in cells migrating on surfaces (‘‘2D’’) and within
3D environments. We mimicked these experiments by simu-
lating Act cell migration in large, unconfined 2D and 3D
spaces (Fig. 3 A). Like in the microchannel data (Fig. 2, B
and C), we again found a weak exponential correlation be-
tween speed and persistence (Fig. 3 C) that became stronger
when we stratified cells by maxact value (Figs. 3 D and S3
A). In fact, the exponential increase in persistence was
now accompanied by a transition in cell shapes (insets in
Fig. 3 D).
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FIGURE 3 Speed-persistence coupling in 2D and 3D spans a range of migrati

Migration modes in the Act-CPM; see also (12). Amoeboid cells form small, narr

like cells have broader, more stable protrusions. (C) Exponential speed-persistenc

S1 and S2 for exact parameters. Red line and shaded area represent a loess fit 5

same maxact and spans a transition from amoeboid to keratocyte-like motion. Plo

shapes as insets (note the competing protrusion in one of the amoeboid cells); in

length. See also Fig. S3 A. (E) Instantaneous speed distributions of 2D and 3D A

‘‘stop-and-go’’ motility (bimodal distributions), to near-continuous motion (sin

online.
In contrast to the uniform, elongated shape observed in
channels, Act cells moving in 2D and 3D can form different
types of protrusions (Fig. 3, A, B, and D; Video S2; Interac-
tive simulations S2 and S3 at https://ingewortel.github.io/
2020-ucsp/; (12)). Low values of lact and maxact promote
the formation of small and narrow protrusions that form
and decay dynamically, giving rise to an amoeboid (‘‘stop
and go,’’ I-RW) migration mode (Fig. 3, B, left, and D;
Video S2). By contrast, large values of lact and/or maxact
favor the formation of broad, stable protrusions, yielding a
more persistent ‘‘keratocyte-like’’ (P-RW) migration mode
(Fig. 3, B, right, and D; Video S2). This transition occurred
in both the 2D and the 3D model, although we note that the
‘‘amoeboid’’ behavior in 3D was slightly different in 3D
than in 2D. In 3D, the ‘‘stops’’ tended to be longer, and
many protrusions were too unstable to make the cell move
far from its place. The ‘‘go’’ intervals were less frequent
and required the cell to take on a somewhat broadened
shape, although not as broad as in the ‘‘keratocyte-like’’ mo-
tion (Video S2; Interactive simulations S2 and S3 at https://
ingewortel.github.io/2020-ucsp/).
C

E

on modes. (A) 2D and 3D simulations were performed in an empty grid. (B)

ow protrusions that decay quickly, yielding stop-and-go motion. Keratocyte-

e coupling for various (lact, maxact). r¼ Spearman’s correlation. See Tables

95% confidence interval. (D) The UCSP is stronger among cells with the

ts show mean 5 SD persistence time versus speed with representative cell

the gray area, persistence times are below the time needed to move 0.1 cell

ct cells. Cells transit from not moving (single peak at ~0 pixels/MCS), via

gle peak at high speed). See also Fig. S3 B. To see this figure in color, go
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This shift in migration mode is most clearly visible in the
instantaneous speed distributions from our simulated cell
tracks (Figs. 3 E and S3 B). The bimodal shape of this dis-
tribution—especially at low values of maxact—reflects the
‘‘stop-and-go’’ I-RW behavior of migrating Act cells; cells
in ‘‘stops’’ move at very low instantaneous speeds of ~0
pixels/MCS, whereas the ‘‘go’’ intervals yield peaks at
higher speeds (similar to the displacement distributions in
Fig. 2 D, except now we have more dimensions and an infin-
ite number of directions rather than just two. We therefore
look only at the magnitude of the displacement or velocity
vector, so the separate peaks for ‘‘left’’ and ‘‘right’’ motion
become one). At very low lact, the cell barely moves at all,
as indicated by a single peak at instantaneous speeds near
zero (Fig. 3 E). This corresponds to an NM cell without
protrusions, spending most of its time in ‘‘stops.’’ As lact in-
creases, the cell enters the ‘‘stop-and-go’’ (I-RW) amoeboid
migration regime (bimodal distributions). Higher lact values
not only increase migration speed (shifting this second peak
upward) but also reduce the amount of time a cell spends in
‘‘stops’’ (decreasing the size of the first peak). As stops
allow the cell to change its direction (Fig. 3 B), the reduced
‘‘stopping time’’ at high lact values explains why Act cells
with high lact values migrate not only faster but also more
persistently. Finally, at the highest maxact and lact values,
the cell takes on a keratocyte-like shape and almost never
stops moving (P-RW).

Together, these results demonstrate that the exponential
speed-persistence coupling holds in 2D and 3D and spans
different ‘‘regimes’’ of migration. Importantly, we find that
the Act-CPM activity gradients remain sufficient to repro-
duce the UCSP in these settings, even when cells no longer
have a clear ‘‘front’’ or ‘‘back.’’
Both Act cell speed and persistence saturate in a
cell shape-dependent manner

Interestingly, our data also show the saturation of the persis-
tence at higher cell speeds that was reported in the experi-
mental data (compare the 2D figures in Fig. 3 D to the
data in (7)). In fact, this saturation was not limited to persis-
tence. Whereas speed initially increased linearly with lact, it
plateaued at higher lact values (Figs. 4, A and B and S3 C).
The maximal speed reached depended on the protrusion
shape-parameter maxact (Fig. S3, D and E), and in all cases,
the initial linear part of the graph spanned the entire transi-
tion from amoeboid to a keratocyte-like shape. This finding
suggests that having to maintain a broad protrusion limits
the speed a cell can reach. In line with this idea, we did
not observe this saturation in microchannels, which prevent
the cell from acquiring the broad protrusions observed in 2D
and 3D (Fig. S2 A).

Similarly, the cell shape changes observed in 2D and 3D
seem to put an upper bound on persistence that disappears
when the cell is constrained by a microchannel (Figs. 4, A
2616 Biophysical Journal 120, 2609–2622, July 6, 2021
and B, S2 B, and S3, C–E). The initial exponential increase
in persistence again spanned the entire transition from
amoeboid to keratocyte protrusion shapes before eventually
saturating at a maxact-dependent value. Again, this phenom-
enon appears to be linked to protrusion shapes. Whereas
cells with low maxact do tend to form keratocyte-like protru-
sions at high lact values, these protrusions do not extend far
into the cell and are prone to splitting, forcing the cell to turn
toward one of the (competing) protrusion halves (Fig. 4 A;
Video S3). Although higher maxact values allow for larger
persistence times by letting broad protrusions extend farther
into the cell and preventing them from splitting (Fig. 4, A
and B), persistence still saturates eventually because of
slight, stochastic turning of the stable protrusion around
the cell perimeter (‘‘angular diffusion,’’ Fig. 4, A and B;
Video S3; (7)).

By showing how local protrusion dynamics and cell shape
place a natural upper bound on both the speed and the
persistence a cell can reach, these results explain the satura-
tion of persistence observed by Maiuri et al. (7). However,
there was a striking effect of dimensionality on this process;
although we observed shape-driven saturation in both 2D
and 3D, the shape of the speed-persistence curve was
different for 2D and 3D simulations (Figs. 3 B and 4). In
both settings, speed and persistence saturated at high lact af-
ter an initial increase (which was linear for speed and expo-
nential for persistence). Yet, whereas persistence saturated
before speed in 2D (Fig. 4 A), 3D Act cells showed a
much stronger saturation of speed that preceded the satura-
tion of persistence (Fig. 4 B). Thus, when both speed and
persistence have a natural upper bound, the dominant satu-
ration effect can be context dependent, altering the shape of
the speed-persistence curve.
Environmental constraints break the UCSP for T-
cell migration in the epidermis

So far, our models mimicked the environments in which the
UCSP was initially discovered, where cells can migrate
rather easily. But many cell types also need to move in
crowded or stiff environments that strongly constrain cell
shape. To investigate how such constraints would impact
speed-persistence coupling, we modeled T-cell migration
in the epidermal layer of the skin. As one of the key entry
points through which pathogens can enter the body, healthy
skin contains substantial numbers of T cells (23). T cells at-
tracted to the epidermis during an infection can remain there
for a long time; even a year after the resolution of an infec-
tion, specific T cells still persist in the same region of the
epidermis (24–27). Whereas subtle chemotaxis guides
T cells toward infected cells during the effector phase
(28), these remaining T cells actively patrol the epidermis
without such chemotactic guidance (1), migrating in
patterns shaped by a combination of cell-intrinsic factors
and environmental constraints. Importantly, even though
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FIGURE 4 Cell shape dynamics limit both the speed and persistence of migrating cells. Mean 5 SD of speed and persistence time of (A) 2D and (B) 3D

Act cells, plotted against lact for different values of maxact. Open circles indicate points where the persistence time is lower than the time it takes the cell to

move 10% of its length (corresponding to the points in the gray background in Fig. 3 B). Insets show cell shapes at the indicated parameter values. To see this

figure in color, go online.
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the tight contacts between keratinocytes make the epidermis
one of the most rigid environments T cells encounter
in vivo, T cells in the epidermis are nevertheless highly
motile (1).

We therefore focused on this extreme example to examine
how environmental structure can affect the UCSP. To this
end, we simulated T-cell migration in the skin as reported
previously (12), placing an Act cell in a grid covered
completely with keratinocytes (Fig. 5 A). In this setting,
Act T cells move by squeezing in between the keratinocytes
(Video S4), but because of the opposing forces from the sur-
rounding keratinocytes, cells now required higher lact forces
to counter this resistance and start moving (Fig. S4). At suf-
ficiently high lact values, they once again showed the char-
acteristic ‘‘stop-and-go’’ motility before eventually
switching to near-constant motion with hardly any stops
(Figs. 5 B and S4; Video S4; Interactive simulation S4 at
https://ingewortel.github.io/2020-ucsp/).

Unlike Act cells in an unconstrained environment, these
Act T cells could not fully switch from amoeboid to kerato-
cyte-like cell shapes as lact and/or maxact increased (Video
S4). Even though cells at high lact and/or maxact became
somewhat broader, they still mostly maintained their amoe-
boid shape, probing their surroundings with narrow protru-
sions and migrating in the direction of their longest axis.
However, when these cells approached a ‘‘T-junction,’’ they
sometimes formed a broad protrusion in the space between
the keratinocytes that eventually split up into two separate
protrusions going in opposite directions (Fig. 5 B). This pro-
trusion splitting caused the cell to slow down until one of the
two active regions gained the upper hand (Video S4).

In this setup, increases in lact were once again associated
with a higher speed that gradually saturated at high lact
values (Fig. S5 A), but persistence times now saturated
much earlier, reaching a plateau at ~90 MCS for maxact ¼
30 and 140 MCS for maxact ¼ 100 (Fig. S5 B). With cell
speeds around ~0.12 and ~0.07 pixels/MCS, respectively,
this corresponds to persistent movement over distances in
the range of ~10–12 pixels—just under the distance the
T cell can travel before arriving at another junction (Figs.
5 A and S5 C).

Thus, the structure of the environment appears to be a
limiting factor for T-cell persistence in this scenario. Indeed,
when we placed cells in a grid covered with more deform-
able cells, cells with a high maxact of 100 could once again
form their preferred broad protrusions and move in
straighter lines by pushing the surrounding cells apart
(Fig. 5 C; Video S5). This in turn resulted in a higher persis-
tence (Fig. S5 B) and a slighly increased speed (Fig. S5 A).
By contrast, cells with a low maxact of 30—which cannot
stably form broad protrusions even when unconstrained by
tissue (Fig. 4 A)—had similar speed and persistence in the
limit of high lact values, regardless of tissue stiffness
(Fig. S5, A and B). These results demonstrate how interac-
tions between the environment and cell shape determine
how strongly the tissue affects motility patterns.

The observed rapid saturation of persistence eclipsed the
UCSP for T cells migrating in the skin, removing the speed-
Biophysical Journal 120, 2609–2622, July 6, 2021 2617
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FIGURE 5 Environmental constraints limit T-cell persistence in a model of the epidermis. (A) An Act T cell (black) moving in between keratinocytes

(gray) in the epidermis. Simulations were performed in a 150 � 150 pixel grid with linked borders (for example, a cell moving off the grid toward the

red region on the right re-enters the grid at the equivalent red region on the left). (B) Shapes of Act T cells constrained between keratinocytes. At lower

lact/maxact values, T cells show typical amoeboid ‘‘stop-and-go’’ behavior. At higher lact and/or maxact values, cells do not obtain a broad, keratocyte-

like shape like they normally would (Fig. 3) but stay elongated because of environmental constraints. At junctions between keratinocytes, however, protru-

sions tend to split. (C) Whereas formation of broad protrusions is mostly prevented in ‘‘stiff’’ skin tissue, Act cells in a more deformable tissue can form broad

protrusions by pushing apart surrounding cells. (D) Mean persistence time plotted against speed for different combinations of lact and maxact, tissues with

different stiffness. Shaded gray background indicates regions where the persistence time is lower than the time it takes for a cell to move 10% of its length. To

see this figure in color, go online.
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persistence correlation (Fig. 5 D). This result was indepen-
dent of the rigidity of the surrounding keratinocytes;
although a reduction in tissue stiffness slightly increased
the maximal persistence time for cells with high maxact
(Fig. S5 B), this did not rescue speed-persistence coupling
(Fig. 5 D). Thus, although the UCSP appears to be valid
for all migrating cells, cell-intrinsic speed-persistence
coupling may be obscured when environmental factors
place additional, more stringent constraints on persistence.
DISCUSSION

The rich interplay between cell-intrinsic and environmental
factors has made cell migration a popular topic of study
among biophysicists and computational biologists, raising
questions such as how do single cells coordinate their mo-
tion to start moving collectively? How does each cell’s mo-
lecular machinery interact with its shape during motion?
How do constraints on cell shape posed by a crowded tissue
environment alter the (immune) cell migration patterns we
see? And what migratory pattern should immune cells adopt
to find their targets most efficiently? Over the years, many
studies have shed light on these questions by studying the
motion of single cells and collectives using both experi-
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mental and modeling approaches (13,29–32). The models
used are diverse, ranging from relatively simple particle
models to detailed physical models linking intracellular
signaling and cell shape (8,32). Here, we take a cell-intrinsic
law of cell motion derived from a detailed but 1D mathemat-
ical model (7), the UCSP, and examine its behavior in
different environments using the CPM. Although the CPM
describes intracellular dynamics in less detail, it excels at
predicting how single cells with dynamic cell shapes
interact in complex environments (13,15). We show here
that our model’s more local and dynamic definition of polar-
ity 1) still captures the UCSP, and 2) opens up new opportu-
nities to study the UCSP in more diverse and realistic
environments.

Migration in the Act-CPM arises through a combination
of local activation (the DHact force allowing protrusion)
and global inhibition (the ‘‘membrane tension’’ that makes
the cell retract its rear after the protruding front has
stretched its perimeter beyond the target value). This less
strict polarity mechanism apparently suffices to reproduce
the speed-persistence coupling observed in migrating cells
(7), even though it only encodes local polarity gradients
rather than imposing a global polarity with an explicit
‘‘front’’ and ‘‘back.’’ But although the UCSP holds in this
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more general case of deformable cells, it is not wholly unaf-
fected; the more fluid nature of polarity couples the UCSP to
cell shape dynamics. The increase in speed and persistence
coincided with a transition between cell shapes and migra-
tion modes. Indeed, membrane tension dynamically links
cell shape to motion in the CPM. Similar to shape-motility
interactions observed in real cells (8), Act cell shapes are
closely linked to both motility characteristics underlying
the UCSP: speed and turning behavior.

The observed link between cell shape and speed is consis-
tent with several other studies (30,33–36). In T cells, this
coupling arose from the same actin retrograde flow that
also underlies the UCSP (7,37). Lavi et al. (36) recently
extended the original UCSP model to a 2D free boundary
model with dynamic cell shapes, in which higher speeds
again correlated with broader cells, resembling the broad-
ening of Act cells with increasing lact (Fig. 4). Likewise,
cell shape is intricately linked to turning behavior. Fish ker-
atocytes have a broad protrusion (‘‘lamellipodium’’) that
normally allows them to migrate persistently. Yet, the stabil-
ity of the lamellipodium partly depends on its shape, and
deformation of the cell may destabilize the lamellipodium
or reinforce symmetry breaking within an existing protru-
sion, disrupting persistent motion (38–40). Similar exam-
ples of protrusion splitting and/or competition have been
observed in Dictyostelium cells, a popular model of amoe-
boid cell migration (9,10). Here, we again find an effect of
cell shape on protrusion stability and persistence, in which
existing protrusions may either become unstable (‘‘split-
ting’’) or break symmetry (‘‘angular diffusion’’) at certain
parameter values (Fig. 4).

Given this interplay between cell shape, speed, and
turning behavior, our model demonstrates how cell shape
limits both migratory speed and persistence; both saturated
at high lact levels at which cells had broader, more kerato-
cyte-like shapes (Fig. 4). A similar saturation was found
in fish keratocytes (30). These observations clearly show
that not only persistence but also cell speed has a natural up-
per bound determined at least partially by cell shape
dynamics.

Our results suggest a role for dimensionality in this pro-
cess, as speed and persistence saturated differently in 2D
versus 3D. However, we note that our cells behaved slightly
differently in 3D; they had a harder time forming stable pro-
trusions, but when they did, they almost always took on a
broad, keratocyte-like shape (at least temporarily). This
seemingly contradicts in vivo videos of T cells moving in
a 3D environment such as the lymph node (19,41), where
cells do seem to be able to move in an elongated shape
for prolonged periods of time. However, it should be noted
that whereas cells may move freely on the empty surface of
a 2D petri dish, there is no such thing as ‘‘free’’ migration in
3D; in reality, cells migrating in 3D always encounter envi-
ronmental barriers (be it the fibers of an extracellular matrix
or surrounding cells). It is unclear whether the slightly
altered behavior in 3D is an artifact of the model, of the
free environment, or both; comparing speed and persistence
saturation in different 3D models (42,43) may clarify this
issue in the future. Nevertheless, these effects of dimension-
ality and environment do further stress the intricate link be-
tween changes in cell shape and the resulting motility
patterns.

Together, these results shed new, to our knowledge, light
on the shape of the experimental UCSP curves: whereas
persistence saturated before speed in all experimental set-
tings tested (7), our model suggests that depending on the
cell’s shape, scenarios in which speed saturates earlier could
likewise exist. These findings generalize the mechanism
behind the UCSP to settings where cells can take on more
complex shapes and lack a globally defined polarity. Impor-
tantly, they suggest that the UCSP may likewise emerge in
other existing models of cell migration, especially those in
which cell shape, speed, and persistence emerge from a pro-
trusion mechanism combined with membrane tension
(10,44–49). In addition, several variations of the original
UCSP model have now been developed (36,50,51). Study-
ing the similarities and differences between these models
may further clarify how cell shape and motility interactions
can alter the shape of the speed-persistence curve.

The spatial nature of the CPM also allowed us to explore
the UCSP in a more natural environment. It is increasingly
recognized that environmental structure plays a crucial part
in shaping cell migration, which has led to an ever-growing
number of dedicated in vitro systems mimicking various
environmental geometries (52), as well as studies examining
how the cell’s inner machinery interacts with environmental
signals (11). The (Act-)CPM offers another approach to
probing migration and the UCSP in diverse geometries
that constrain the shape and direction of cellular protrusions.
For example, in our in silico model of T-cell migration in the
epidermis, constraints posed by the dense keratinocyte layer
restricted persistent movement and obscured the UCSP
(Fig. 5), showing that environmental constraints can over-
rule the UCSP in at least some of the environments cells
face in vivo. We therefore predict that speed-persistence
coupling may not be visible in in vivo imaging data of
T cells patrolling the epidermis; in such an environment,
both speed and persistence likely reflect the maximum of
what is feasible given the environmental constraints, rather
than an intrinsic coupling. In complex, highly restrictive en-
vironments, cells may choose the path of least resistance
(53), with a lesser role for their intrinsic polarity
mechanism.

Still, compared with most other tissues, the epidermis is
an extreme example of a confining environment, and the
UCSP could have a larger influence on persistence when
constraints on cell movement are less stringent. For
example, Sadjadi et al. (54) recently detected speed-persis-
tence correlations among T cells migrating in 3D collagen
matrices, after Read et al. (55) had found a similar link
Biophysical Journal 120, 2609–2622, July 6, 2021 2619
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between speed and turning behavior among T cells
migrating in an inflamed lymph node. Although the latter
study did not explicitly link this to the UCSP, random
walk models incorporating this correlation captured the
data better than those that did not, suggesting the UCSP
poses an essential constraint on in vivo motility in at least
some settings.

The universality of the UCSP has implications for compu-
tational models of cell migration used in different fields. For
example, in the last decade, several studies have investi-
gated the functional consequences of T-cell motility pat-
terns: how should T cells move to find their targets most
efficiently? Using mathematical or agent-based variations
of random walk models, these studies compare different
migratory strategies in terms of ‘‘search efficiency’’
(31,56–59). However, selecting and fitting these models is
difficult; multiple models can often fit the same experi-
mental data depending on the metrics used to quantify
migration (55,59,60), and even slight differences in the
model used can have large consequences for the area explo-
ration predicted on timescales beyond that of the experiment
(61). Moreover, these models treat speed and persistence as
input parameters that can be independently tuned when they
are in fact linked through the UCSP. This may yield models
that seemingly fit the data but in truth reflect motility pat-
terns impossible for a real cell to adopt. Indeed, two recent
studies showed how the UCSP can alter cell motion patterns
and space exploration (62,63), although this may also
depend on the environment. Incorporating the UCSP into
our models or using models like the CPM in which it arises
naturally depending on the structure of the environment may
be crucial to focus our research on those migration patterns
that are actually attainable by real cells.
CONCLUSIONS

The UCSP is a simple yet highly general quantitative law of
cell motion, which holds across a broad spectrum of
migrating cells. Given the incredible diversity of the mech-
anisms driving cell migration, it is remarkable that such a
general law exists at all. Nevertheless, after the UCSP’s
initial discovery (5), Wu et al. (6) later also found a robust
speed-persistence coupling in an independent study. Maiuri
et al. (7) explained it by showing that actin retrograde flow
can mechanistically couple cell polarity to migration speed,
and Yolland et al. (64) further strengthened this explanation
by demonstrating that the actin flow field controls stable cell
directionality. Here, we confirm this seemingly fundamental
law of cell migration in a completely different but popular
modeling framework (the CPM). We find that local protru-
sion dynamics at the front are sufficient to reproduce the
UCSP, even in the absence of a global front-to-back polarity
gradient, and show how cell shape dynamics and environ-
mental constraints alter the shape of the speed-persistence
curve. Models like the Act-CPM now allow us to probe
2620 Biophysical Journal 120, 2609–2622, July 6, 2021
these interactions in many more environments and
geometries.
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