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Abstract

The conserved adapter protein Scribble (Scrib) plays essential roles in a variety of cellular

processes, including polarity establishment, proliferation, and directed cell migration. While

the mechanisms through which Scrib promotes epithelial polarity are beginning to be unrav-

eled, its roles in other cellular processes including cell migration remain enigmatic. In C. ele-

gans, the Scrib ortholog LET-413 is essential for apical–basal polarization and junction

formation in embryonic epithelia. However, whether LET-413 is required for postembryonic

development or plays a role in migratory events is not known. Here, we use inducible protein

degradation to investigate the functioning of LET-413 in larval epithelia. We find that LET-

413 is essential in the epidermal epithelium for growth, viability, and junction maintenance.

In addition, we identify a novel role for LET-413 in the polarized outgrowth of the epidermal

seam cells. These stem cell-like epithelial cells extend anterior and posterior directed apical

protrusions in each larval stage to reconnect to their neighbors. We show that the role of

LET-413 in seam cell outgrowth is likely mediated largely by the junctional component DLG-

1 discs large, which we demonstrate is also essential for directed outgrowth of the seam

cells. Our data uncover multiple essential functions for LET-413 in larval development and

show that the polarized outgrowth of the epithelial seam cells is controlled by LET-413 Scrib-

ble and DLG-1 Discs large.

Author summary

Most cells in multicellular organisms are organized along a directional axis of cell polarity.

One protein that is important for this polarized organization is the conserved polarity reg-

ulator Scribble. This protein has several functions, including forming the basolateral

domains of cells, promoting the formation of cell junctions, and promoting cell migration.

How Scribble performs these functions is not fully understood. In this paper we study the

role of Scribble during larval development of the small nematode Caenorhabditis elegans
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using an inducible protein degradation system. We show that Scribble, called LET-413 in

C. elegans, is essential in the epidermal epithelium for animal development, as depletion

of LET-413 in only this tissue blocks growth. We also demonstrate that LET-413 is

required for the polarized outgrowth of an epithelial cell type called the seam cells, a pro-

cess resembling cell migration. Finally, we show that one major function of LET-413 in

seam cell outgrowth is the localization of the junctional component Discs large (DLG-1),

which we demonstrate is also essential for this process. Our data thus uncover multiple

essential functions for LET-413 in larval development and provide new insights into how

the directional outgrowth of epithelial seam cells is controlled.

Introduction

Epithelial cells establish molecularly and functionally distinct apical, basal, and lateral mem-

brane domains to function as selectively permeable barriers. Epithelial cell polarity is estab-

lished through mutually antagonistic interactions between conserved groups of cortical

polarity regulators, including the Par, Crumbs and Scribble modules [1–4]. The Scribble polar-

ity module, which consists of the proteins Scribble (Scrib), discs large (Dlg), and lethal giant

larvae (Lgl), plays conserved roles in the establishment of basolateral identity and formation of

cell junctions [5–13]. In addition, Scribble module proteins are involved in the regulation of

cell proliferation and migration. In Drosophila, scrib, dlg, and lgl function as suppressors of

neoplastic overgrowth of imaginal disks [14–17]. Many human tumors show altered Scrib pro-

tein levels or protein mislocalization, and in both Drosophila and mammalian tumor models,

loss of Scrib increases the malignant and metastatic potential of oncogenic stimuli such as acti-

vation of Ras, Raf, Notch or Akt [18–21].

The ability of Scrib to affect metastasis may be linked to its role as a regulator of cell migra-

tion. In Drosophila, scrib is required for migration of epithelial cells during dorsal closure [2].

In vertebrates, Scrib is involved in the migration of multiple cell types [7,22–27]. How Scrib

affects cell migration is not well understood and may differ between cell types. In several epi-

thelial cell types, Scrib is thought to regulate actin dynamics at the leading edge by promoting

the recruitment or activation of the Rho-family GTPases Rac and Cdc42, or their effector pro-

teins p21-activated kinases (PAKs) [7,24,28]. In other cell types, effects on cell migration do

not appear to be mediated by small GTPases. In endothelial cells, Scrib regulates directed cell

migration on fibronectin-coated surfaces by binding to and protecting surface integrin α5

from lysosomal degradation [23]. In MDCK cells, Scrib affects cell migration through loss of

E-cadherin-mediated cell adhesion [26]. Finally, in dendritic cells and several cancer cell lines,

Scrib was found to control cell migration downstream of the transmembrane semaphorin 4A

(Sema4A) [27]. In this context, cell migration appeared to be promoted by the downregulation

of the activities of Scrib, Cdc42, and Rac1 [27]. These examples illustrate the complexities of

Scrib in cell migration.

The C. elegans genome encodes a single Scribble protein termed LET-413 that is essential

for junction formation and epithelial polarization. In epithelia of embryos lacking let-413
activity, junctional proteins fail to assemble into a continuous subapical belt and are found

expanded through the lateral domain [5,10,11,29–31]. In addition, let-413 embryonic epithelia

show basolateral invasion of apical proteins including PAR-3, PAR-6, and the intermediate fil-

ament protein IFB-2 [11,29]. Ultimately, let-413 embryos arrest due to a failure to elongate

beyond the 1.5–2-fold stage. Investigating let-413 in later stages of C. elegans development

could provide further insights in the cellular pathways in which let-413 participates, but the
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roles of let-413 in larval development are not well characterized. Larval let-413(RNAi) causes

sterility due to dysfunction of the spermathecal epithelium, where let-413 was shown to be

required for assembly of apical junctions and the maintenance of basolateral identify [32].

However, no defects in growth rate or motility were reported. The role of let-413 was also

investigated in the intestine, using an intestine-specific CRISPR/Cas9 somatic mutant [33].

Using this approach, LET-413 was shown to promote endocytic recycling. However, intestinal

let-413 CRISPR mutants continue larval development. Whether LET-413 is important in other

larval tissues remains unclear. Moreover, it is not known if the role of Scrib in cell proliferation

and migration is conserved in C. elegans.
Here, we use inducible protein degradation to investigate the roles of LET-413 in postem-

bryonic epithelial tissues of C. elegans. Consistent with previous data, the presence of LET-413

in the intestine in larval stages was not essential for larval development. In contrast, we find

that LET-413 is essential in the epidermis to support larval growth and viability, junctional

integrity, and the directional outgrowth of the epithelial seam cells. The stem cell-like seam

cells undergo an asymmetric division during each larval stage, followed by fusion of the differ-

entiating anterior daughter cells with the surrounding epidermal syncytium. The remaining

seam cells then form anterior–posterior directed protrusions of the apical domain to re-estab-

lish cell–cell contacts. To date, the mechanisms that mediate this dynamic shape change are

poorly understood. To begin to understand the roles LET-413 may play in this process, we per-

formed time-lapse imaging of membrane dynamics and investigated the localization of actin

during seam cell outgrowth. The seam cells showed active membrane dynamics with enrich-

ment of actin in the protrusions, indicating that seam cell outgrowth is an active actin-driven

process. This raised the possibility that LET-413 regulates actin dynamics through small

GTPases. However, inactivation of Rac family members or CDC-42 only resulted in a partial

block of seam cell outgrowth. Because LET-413 depletion resulted in disruptions in the integ-

rity of cell junctions, we next investigated the roles of the DLG-1/AJM-1 and cadherin-catenin

junctional complexes in protrusion formation. We show that LET-413 is required for proper

junctional localization of HMR-1 and DLG-1, and that DLG-1, but not HMR-1, is essential for

seam cell outgrowth. Thus, LET-413 controls the directed extension of seam cells in large part

by promoting the assembly or stability of DLG-1 at the apical junctions. Nevertheless, seam

cells depleted of DLG-1 show some remaining membrane dynamics, indicating that LET-413

may have additional functions in seam cell outgrowth. Together, our data show that the role of

Scrib in promoting protrusive cell shape changes is conserved in C. elegans and demonstrate

essential roles for a LET-413 Scrib/DLG-1 Discs large pathway in larval development and

directed seam cell outgrowth.

Results

LET-413 is essential for larval growth and viability

To investigate the role of LET-413 in larval epithelia of C. elegans, we used the auxin inducible

degradation (AID) system, which enables degradation of AID-degron-tagged proteins in a

time- and tissue-specific manner [34,35]. We tagged endogenous LET-413 at the N-terminus,

shared by all predicted isoforms, with the AID degron and a green fluorescent protein (GFP)

(Fig 1A). Before morphogenesis, we detected LET-413 ubiquitously at cell membranes by spin-

ning-disc fluorescence microscopy (Fig 1B). From the bean stage onward, LET-413 localized

to the basolateral membrane domain and at intercellular junctions of epidermal and intestinal

cells (Fig 1B). In larval stages and adults, LET-413 was expressed in the intestine, epidermis,

excretory canal, and the reproductive system (vulva, uterus, and spermatheca), where it also

appeared to localize to the basolateral membranes and cell junctions (Figs 1C and S1). These
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Fig 1. LET-413 is essential for larval development. (A) Schematic representation of predicted let-413 splice variants

and the insertion site of sequences encoding a green fluorescent protein (GFP) and the auxin-inducible degradation

degron (AID). (B) Expression of LET-413 in embryonic development (strain BOX466). (C) Expression of LET-413 in

the intestine and epidermis of Peft-3::TIR1::mRuby; GFP::AID::let-413 L4 animals in the absence (-auxin) or presence

(+auxin) of auxin for 2 h (strain BOX469). Drawings are a schematic representation of the LET-413 expression pattern.
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localization patterns are consistent with the results from previous studies that used antibody

staining and transgene expression [10,11,32,36].

To determine whether LET-413 is essential for larval development, we degraded LET-413

using ubiquitously expressed TIR1 under control of the eft-3 promoter, which is active in most

or all tissues during larval development (Zhang et al., 2015). After 2 h of exposure of L1 larvae

to auxin, LET-413 levels were depleted throughout the animal body. Quantifications of the

GFP levels at epidermal cell junctions and the basolateral domain of intestinal cells revealed

loss of GFP enrichment after auxin addition, confirming efficient degradation of LET-413 (Fig

1C). Degradation of LET-413 from hatching onward resulted in a growth arrest and larval

lethality (Fig 1D and 1E). At 6 h of development, LET-413-depleted animals were already

measurably smaller than control animals not treated with auxin (Fig 1E). At 24 h after hatch-

ing, we observed not only a lack of growth, but also ~80% larval lethality, as evidenced by lack

of response to physical stimulation and lack of motility. These results show that LET-413 is

essential for larval development.

LET-413 is essential in the larval epidermis, but not the intestine

We next wanted to determine which larval tissue(s) contribute to the observed growth defect

and lethality. We focused on two major larval epithelial tissues: the intestine and the epidermis.

To deplete LET-413 specifically in these tissues, we made use of single-copy integrated lines

expressing TIR1 from the tissue-specific promoters Pelt-2 and Pwrt-2, which are active in the

intestine and epidermis, respectively [37]. We examined intestinal morphology using an

endogenous fusion of mCherry to the junctional protein DLG-1 Discs large but did not

observe any defects in the characteristic junctional localization pattern, despite a lack of detect-

able LET-413 (Fig 2A and 2B and 2C). Animals depleted of LET-413 in the intestine also grew

as normal (Fig 2D). These data indicate that intestinal functioning does not critically depend

on the continuous presence of LET-413. We next tested the requirement for LET-413 in the

epidermis. Degradation of LET-413 occurred rapidly, with no GFP signal detected in the junc-

tions of seam cells 2 h after the addition of auxin (Fig 2E and 2G). In contrast to the intestine,

degradation of LET-413 in the epidermis resulted in severe growth defects and larval lethality

(Fig 2D and 2F). Compared to ubiquitous degradation of LET-413, the growth defect was

slightly less severe and more variable, while the larval lethality at 24 h of development was sim-

ilar (Fig 2H). These data show that LET-413 is essential for the functioning of the larval epider-

mis in C. elegans.

LET-413 is required for seam cell extension and reattachment

The epidermis of C. elegans larvae largely consists of the syncytial hypodermal cell hyp7 and

two lateral rows of end-to-end attached epithelial seam cells embedded within hyp7 (Fig 3A).

Animals hatch with a complement of 10 seam cells on each side (H0–H2, V1–V6 and T) (Fig

3A), which undergo a reproducible pattern of asymmetric and symmetric divisions at specific

times in development (Fig 3B) [38]. In each larval stage, the V1–V4 and V6 seam cells undergo

an asymmetric division, which generates an anterior daughter that differentiates and fuses

with the hypodermis, while the posterior daughter retains the seam cell fate. In the second lar-

val stage, the asymmetric division is preceded by a symmetric division that generates two seam

Images are maximum intensity projections. In this and all other figures, 3 mM auxin is used (D, E) Growth of Peft-3::

TIR1::mRuby; GFP::AID::let-413 animals in the absence (-auxin) or presence (+auxin) of auxin (strain BOX469).

Images in D were acquired 24 h post hatching. Growth curves in E show mean length ± SD upon continuous exposure

to auxin. N = 8, 10, 12, and 9 for -auxin; and 10, 14, 19, and 13 for +auxin.

https://doi.org/10.1371/journal.pgen.1009856.g001
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cells. V5 follows a similar division pattern, except for the anterior daughter of the L2 division

which becomes a neuroblast that generates a sensory structure termed the posterior deirid sen-

sillium. Following the asymmetric divisions and fusions of the anterior daughters, the remain-

ing seam cells extend anterior and posterior protrusions towards their neighbors and reattach,

closing the gaps left by the fused cells.

To understand how loss of LET-413 affects the epidermal epithelium, we followed the seam

cell division pattern in animals treated with auxin from hatching, using seam cell-specific GFP

reporters that mark the cell membrane (Pwrt-2::GFP::PHPLC1δ) and DNA (Pwrt-2::GFP::H2B)

[39]. Degradation of LET-413 did not affect the L1 asymmetric seam cell divisions or the

fusion of the anterior daughters with hyp7 (Fig 3D). Following cell fusion, however, the
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https://doi.org/10.1371/journal.pgen.1009856.g002
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remaining seam cells failed to extend protrusions towards their neighbors and remained iso-

lated (Fig 3C and 3D). In control animals, immediately following cell division the seam cells

formed small filopodia-like protrusions around the cell body (Fig 3D, 5h–6h, white arrows).

The apical domains of the seam cells then formed larger lamellipodium-like extensions

directed towards the adjacent seam cells, and cells reattached around 10 h after hatching (Fig

3C). Upon epidermal degradation of LET-413, the seam cells failed to form protrusions

directed towards neighboring cells and remained unattached (Fig 3C and 3D). Depletion of

LET-413 at later stages of development also resulted in isolated seam cells (S2 Fig). When

depleting LET-413 just before the L2 divisions, we observed isolated clusters of>2 seam cells

at a time where in control animals the posterior daughters had already reattached. This indi-

cates that anterior seam cell daughters delay fusion or fail to fuse with hyp7, a defect not

observed following L1 or L3 divisions. Presumably, the difference between larval stages is

related to the unique division pattern of the seam cells in the L2 stage, in which the asymmetric

divisions are preceded by a symmetric division that doubles the seam cell number. Neverthe-

less, LET-413 appears to be required for seam cell outgrowth throughout larval development.

Besides the seam cell extension defects, we also noticed defects in the retraction of the ven-

trolateral P cells (P1–P12). At hatching, 6 pairs of P cells cover the ventrolateral surface adja-

cent to V1 through V6 [38,40,41]. Around the middle of the L1 stage, adjacent P cells separate

from each other. Next, the P cells retract ventrally and interdigitate to form a single row of

cells on the ventral side [40–43]. In the presence of auxin, P cell pairs still became detached

from their anterior and posterior neighbors but did not retract ventrally and appeared to stay

in contact with the seam cells (Fig 3E). This failure to retract may be accompanied by a change

in cell fate or gene expression, as we noticed that LET-413 depletion results in reduced expres-

sion in P cells of the Pwrt-2-driven GFP::H2B and GFP::PH marker proteins (Fig 3E). Finally,

we tested whether LET-413 is required for migration of the Q neuroblasts, which are born

within the lateral rows of seam cells but migrate anteriorly and posteriorly during L1 develop-

ment [44]. However, LET-413 is not expressed in the Q cell lineage, and we did not observe

any defects in the migration of the Q cells or their descendants upon epidermal degradation of

LET-413 (S3A and S3B Fig).

Taken together, we conclude that LET-413 is required in the epidermis for outgrowth of

the seam cells and retraction of the P cells, but not for migration of the Q neuroblasts.

Actin dynamics and role of Rho-family small GTPases in seam cell

extension

To begin to understand how LET-413 might control seam cell extension, we first examined

this process in more detail. Time lapse imaging showed that the seam cell extensions are highly

dynamic, reminiscent of protrusions formed by migrating cells (S1 Video). As cell migration

relies on the dynamic reorganization of the actin cytoskeleton [45–47], we determined the

localization of actin during seam cell outgrowth. An actin marker consisting of the actin-bind-

ing domain of VAB-10 fused to mCherry (Plin-26::vab-10[ABD]::mCherry) [48] was enriched

in the protrusions of extending seam cells (Fig 4A, dashed boxes). In LET-413-depleted ani-

mals, we did not observe polarized enrichment of actin (Fig 4A). To determine if branched

actin organization is required for protrusion formation, we inactivated the WAVE (Wiskott-

Aldrich syndrome protein family verprolin-homologous) complex component GEX-2 by

retraction in LET-413-depleted (+auxin) or control animals (-auxin) (strain BOX582). Images were taken at 9 h post

hatching +0 min, +30 min, and +50 min. Blue asterisks indicate P cells. Seam-specific GFP::H2B and GFP::PH mark

DNA and cell membrane, respectively.

https://doi.org/10.1371/journal.pgen.1009856.g003

PLOS GENETICS Essential roles for C. elegans LET-413 Scribble in larval epidermal epithelia

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009856 October 21, 2021 8 / 30

https://doi.org/10.1371/journal.pgen.1009856.g003
https://doi.org/10.1371/journal.pgen.1009856


A B

Control ced-10(n1993);
mig-2(mu28);rac-2(RNAi)

wrt-2::ced-10(CA)

TIR-1(epidermis); GFP::AID::let-413

-auxin +auxin

ABDvab-10::mCherry

10 μm8h

gex-2 RNAi

GFP::PH/H2B

wrt-2::ced-10(DN)C

L1

10 μm

wrt-2::cdc-42(DN)

10 μm

10 μm

cdc-42(DN); ced-10(DN) 

10 μmμmmmmmmmmmmmmm10 10 μ0 μμ0 μμμmmmmmmmm10 μμμμmmmmmmm

D

10 μm

i ii iii
ced-10(n1993);mig-2(mu28);

rac-2(RNAi);Ex[wrt-2::ced-10(DN)]

iv v vi

wrt-2::cdc-42(CA)

10 μm

10 μm

L1 L4

L4

i

ii

GFP::PH/H2B

GFP::PH/H2B

GFP::PH/H2B

L3

partially penetrant, 1/11

Fig 4. Involvement of Rac and Cdc42 GTPases in seam cell extension (A) Distribution of the PH::GFP and H2B::

GFP markers and the VAB-10[ABD]::mCherry actin probe in the epidermis of Pwrt-2::TIR1::BFP; GFP::AID::let-413
animals without (-auxin) and in the presence of auxin (+auxin) at 8 h post hatching (strain BOX625). Images are single

planes of the apical domain of the seam cells. White dotted boxes indicate the enrichment of VAB-10[ABD] in the

seam cell protrusions. (B) Distribution of the GFP::PH and GFP::H2B marker in gex-2(RNAi) animals (strain SV1009).

Yellow arrows point to defects in seam cell protrusions and seam cell shape. Defects were observed in 7/31 gex-2
(RNAi) escaper animals examined. Due to severity of phenotype, an exact larval stage cannot be determined. (C)

Distribution of the GFP::PH and GFP::H2B markers in control animals, and in animals with indicated genetic

backgrounds and methods of reducing the activity of Rac family members or CDC-42. i = control (strain SV1009),

ii = triple Rac inactivation (strain BOX699), iii = CED-10(DN) (strain BOX697), iv = CED-10(DN) combined with
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RNAi feeding. gex-2 function is required for Arp2/3-mediated branched actin nucleation in

migrating embryonic epidermal cells [49,50]. Because gex-2(RNAi) causes embryonic lethality,

we placed adult animals on RNAi plates and examined rare escaper progeny. Animals also

expressed VAB-10[ABD]::mCherry to discern RNAi-affected from non-RNAi-affected escap-

ers. In escapers, we observed abnormal rounded seam cells and gaps between cells, indicative

of a lack of seam cell extension (Fig 4B, yellow arrows). Together, these observations indicate

that seam cell extension is a dynamic, actin-driven process.

One of the ways mammalian Scrib may promote cell migration is through regulating the

activity or cortical localization of Rac or Cdc42 small GTPases, which in turn promote actin

cytoskeleton rearrangements [7,25]. Indeed, inactivation of C. elegans CDC-42 by RNAi in lar-

val stages was reported to result in defects in seam cell extension [51]. We therefore investi-

gated the role of the Rac and Cdc42 families of GTPases in seam cell outgrowth. The C. elegans
genome encodes 3 Rac-related proteins: CED-10 Rac, MIG-2 RhoG, and RAC-2 Rac [52]. Null

alleles of ced-10 are maternal effect embryonic lethal [50,52,53]. To be able to examine the

function of Rac proteins in larval development, we therefore combined the hypomorphic ced-
10(n1993) allele with the predicted mig-2(mu28) null allele, a combination that causes a strong

reduction of protrusive activity in intercalating embryonic dorsal epidermal cells [54], and

inactivated rac-2 by RNAi. However, seam cell outgrowth and reattachment still occurred in

ced-10(n1993); rac-2(RNAi); mig-2(mu28) animals (Fig 4Ci, ii). We did notice an increase in

filopodia-like protrusions (arrowheads in Fig 4Cii), possibly due to a shift in the balance of

activity between small GTPases. As an alternative approach to disrupt ced-10 signaling, we

expressed a dominant negative (DN) T17N mutant of CED-10 in the epidermis [54,55]. In ani-

mals expressing CED-10(DN), seam cells still developed protrusions and reattached (Fig

4Ciii). However, expressing CED-10(DN) in ced-10(n1993); rac-2(RNAi); mig-2(mu28) ani-

mals resulted in one or more detached seam cells in 8/18 animals examined (Fig 4Civ). Thus,

strong disruption of Rac activity can interfere with the seam cell outgrowth process.

We next examined the contribution of CDC-42, the single Cdc42 subfamily member pres-

ent in C. elegans. Like CED-10, C. elegans CDC-42 is essential for embryonic development.

Hence, we expressed a dominant negative (DN) T17N mutant in the epidermis [54,55]. How-

ever, expression of CDC-42(DN) did not result in defects in the extension or reattachment of

the seam cells (Fig 4Cv). Finally, we co-expressed the dominant negative CED-10 and CDC-42

constructs in the epidermis, but again did not observe defects in seam cell extension and reat-

tachment (Fig 4Cvi). Thus, interfering with the functioning of these small GTPases was not

sufficient to prevent the formation of directed seam cell protrusions to the same extent

observed in LET-413 depleted animals, possibly because some Rac or Cdc42 activity remains

present.

As an alternative approach to determine if Rac or Cdc42 signaling promotes protrusion for-

mation, we expressed constitutively active (CA) Q61L mutants of CED-10 and CDC-42 in the

epidermis [54,55]. Expression of CED-10(CA) caused severe seam cell morphology defects,

characterized by the appearance of excessive membrane ruffles or filopodia around the cell

triple Rac inactivation strain, v = CDC-42(DN) (strain BOX747), and vi = combined expression of CED-10(DN) and

CDC-42(DN) (SV1009 strain injected with CED-10(DN) and CDC-42(DN). White arrowheads in (ii) point to

representative cortex abnormalities in the seam cells. Non-attached seam cell phenotype in (iv, arrowheads) was

observed in 8/18 animals examined. (D) Distribution of the GFP::PH and GFP::H2B markers in L1 and L4 animals

expressing constitutively active CED-10 (i) (strain BOX700) or CDC-42 (ii) (strain BOX739). Arrows in (i) indicate

undirected ruffling. Unattached seam cells in (ii) were observed in 1/12 L1 animals and 30/34 L4 animals examined.

Dominant negative and constitutively active variants of CED-10 and CDC-42 were expressed from extrachromosomal

arrays and used mCherry or mTagBFP2 separated from CED-10 or CDC-42 by the F2A self-cleaving peptide to detect

transgenic animals.

https://doi.org/10.1371/journal.pgen.1009856.g004
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circumference (Fig 4Di). In L4 stage older animals, we also observed undirected protrusions of

the seam cells (Fig 4Di, arrowheads). The expression of CDC-42(CA) resulted in rounded,

detached seam cells (Fig 4Dii). The penetrance of the defects increased with age of the animals,

ranging from 1 of 12 examined transgenic L1 animals to 30 of 34 L3 animals showing one or

more gaps between the seam cells. Possibly this reflects accumulating CDC-42(CA) protein

levels.

In summary, our data indicate that seam cell extensions are actin-driven, and that CED-10

and CDC-42 may play a role in reorganizing the actin cytoskeleton and driving anterior–pos-

terior directed outgrowth. However, in contrast to LET-413 depletion, interfering with Rac or

Cdc42 activity did not result in a complete block of seam cell outgrowth. Hence, our data do

not support regulation of small GTPases as the primary mode of action of LET-413 in regulat-

ing seam cell outgrowth.

Loss of LET-413 causes junction impairment but does not affect the

localization of apical PAR-6 or basolateral LGL-1

As regulation of actin dynamics may not be the primary mechanism through which LET-413

controls seam cell extension, we next investigated the effects of LET-413 depletion on other

aspects of the seam cells. In embryonic epithelial tissues, LET-413 is important for junction

assembly or integrity as well as for the basolateral exclusion of apical polarity determinants

[5,10,11]. To determine whether these roles are conserved in the larval epidermis, we exam-

ined the integrity of cell junctions and localization of apical–basal polarity markers upon

depletion of LET-413. We first examined the distribution of the apical polarity regulator PAR-

6 and the basolateral protein LGL-1. Under normal conditions, PAR-6 localizes to the apical

surface of the seam cells, with enrichment at the cell junctions (Fig 5A and 5C) [37]. Depletion

of LET-413 did not affect the levels of PAR-6 at the apical and junctional domains (Fig 5A and

5C), nor did it cause visible invasion of PAR-6 in the basolateral domain (Fig 5A). We also did

not detect apical invasion or reduced basolateral levels of LGL-1 (Fig 5B and 5D). Thus, the

depletion of LET-413 results in severe outgrowth defects but does not appear to affect the

maintenance of apical–basal polarity.

We next investigated the integrity of the C. elegans apical junctions (CeAJs) using a strain

that expresses endogenously tagged HMR-1::GFP E-cadherin and DLG-1::mCherry Discs large,

to mark the cadherin-catenin complex (CCC) and DLG-1/AJM-1 complex (DAC), respectively.

DLG-1 forms a homogeneous junctional band around the seam cells, while HMR-1 shows a

more punctate pattern (Fig 5E and 5F). Epidermal depletion of LET-413 caused severe defects

in the localization pattern of both HMR-1 and DLG-1. HMR-1 puncta became sparser, while

DLG-1 was no longer localized in a continuous belt and instead localized to discontinuous

short stretches and puncta (Fig 5E and 5F). HMR-1 localization was already highly abnormal at

4 h post-hatching, well before the first asymmetric division of the seam cells (Fig 5E). The first

defects in DLG-1 localization were apparent at 5 h post-hatching and increased in severity over

time (S4 Fig). Together, our results demonstrate that the loss of LET-413 causes junction

impairment but does not affect the apicobasal polarization of the seam cells.

LET-413 acts upstream of DLG-1 in the regulation of seam cell outgrowth

The severe defects in HMR-1 and DLG-1 localization we observed upon depletion of LET-413

raised the possibility that impairment of the cadherin-catenin or DLG-1/AJM-1 junctional

complexes underly the outgrowth phenotype of LET-413-depleted seam cells. We therefore

investigated the effects of tissue-specific depletion of HMR-1 and DLG-1 on seam cell exten-

sion. For HMR-1, we made use of an approach that combines auxin-dependent depletion with
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https://doi.org/10.1371/journal.pgen.1009856.g005
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Cre-mediated knockout of the hmr-1 locus (Fig 6A) (J. Cravo and S. van den Heuvel, manu-

script in preparation). Using this approach, HMR-1 levels were reduced below the level of

detectability by microscopy (Fig 6B and 6D). However, the seam cells still formed anterior and

posterior protrusions (Fig 6C) and reattached to the neighboring cells. Thus, HMR-1 is dis-

pensable for protrusion formation and the outgrowth of the seam cells.

To deplete DLG-1, we generated an endogenous C-terminal fusion of DLG-1 with AID::

GFP. DLG-1 proved relatively resistant to auxin-mediated depletion. We therefore extended

the auxin treatment by exposing newly hatched larvae to auxin for 24 h before initiating devel-

opment. Additionally, we used an alternative degron sequence (miniIAA7) that results in

improved degradation efficiency in mammalian cells [56] (Fig 6E). Using this approach, DLG-

1 levels were reduced to ~6% of non-auxin-treated controls (Fig 6F and 6H). The seam cells in

DLG-1-depleted animals showed severe outgrowth defects and did not extend towards the

neighboring seam cells (Fig 6G). Importantly, depletion of DLG-1 did not affect the localiza-

tion or levels of LET-413 in the epidermis (Fig 6I and 6J). This indicates that the seam cell out-

growth defects in LET-413-depleted larvae are a consequence of the defects in DLG-1

organization. Thus, in agreement with previous observations in the embryo and spermatheca

[5,10,11,29–32], LET-413 acts upstream of DLG-1 in the epidermis.

As loss of HMR-1 and DLG-1 caused distinct phenotypes, we more closely examined the

localization of these proteins in the seam cells, and their overlap with LET-413. All three pro-

teins are present in a junctional band surrounding each seam cell, but HMR-1 is additionally

present in the filopodia-like extensions (Fig 6C and 6K). This indicates that DLG-1 and LET-

413 are located just basal to the protrusions, which is consistent with the more basal position-

ing of the DAC relative to the CCC within the CeAJ [31,57]. We also investigated the func-

tional relationship between HMR-1 and DLG-1 in the seam cells. Depletion of HMR-1 did not

cause a loss of the DLG-1 junctional band (S5A and S5B Fig). We examined the effects of

DLG-1 loss on HMR-1 at two timepoints: 4 h post-hatching, before the seam cell divisions,

and 10 h post-hatching, when the seam cells in control animals have divided and reattached.

As DLG-1 depletion is not complete, we also quantified DLG-1 levels in the same cells. Despite

strong depletion of DLG-1, we still observed enrichment of HMR-1 at the subapical domain of

the seam cells, at levels comparable to non-auxin-treated controls (S5C and S5D and S5E and

S5F and S5G and S5H and S5I Fig). Thus, the localization of the DLG-1/AJM-1 and cadherin-

catenin complexes in the seam cells are independent of each other, as previously shown in

embryonic epithelia [5,10,11,30].

The findings above indicate that regulating the localization of DLG-1 is an essential func-

tion of LET-413 that is required for seam cell outgrowth. Nevertheless, the phenotypes caused

by DLG-1 depletion were somewhat less severe than those caused by LET-413 depletion. First,

depletion of DLG-1 did not cause a growth arrest, though animals did appear to develop more

slowly and became Dumpy. Additionally, the seam cells still formed small apical protrusions

and/or small blebs (Fig 6G, arrows and S2 Video). The finding that depletion of LET-413

results in a more complete loss of protrusive activity than depletion of DLG-1 may be due to

the incomplete depletion of DLG-1 but may also point to additional activities of LET-413 in

promoting seam cell outgrowth. Taken together, our data show that DLG-1 is essential for

directed seam cell outgrowth and indicate that LET-413 regulates seam cell outgrowth in large

part by promoting the assembly or stability of DLG-1 at the CeAJ.

Discussion

The cortical polarity protein Scrib plays conserved roles in promoting basolateral identity and

junction assembly in epithelial cells, and in regulating cell proliferation and migration. Studies
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Fig 6. LET-413 acts upstream of DLG-1 in the regulation of the seam cell outgrowth. (A) Schematic representation
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of the single C. elegans Scrib homolog LET-413 identified essential roles for LET-413 in junc-

tion assembly and apical–basal polarization in the embryo and spermatheca, as well as a role in

endocytic recycling in the intestine [5,10,11,29–33]. However, no essential roles in larval devel-

opment or cell migration have been reported. Here, we used auxin-inducible protein degrada-

tion to bypass embryonic requirements and inactivate LET-413 in larval tissues. Using this

approach, we find that expression of LET-413 in the larval epidermis is essential for growth

and viability, and to promote directed outgrowth of the epithelial seam cells.

LET-413 in growth and viability

The ubiquitous depletion of LET-413 from hatching onward caused a near complete lack of

animal growth and resulted in larval lethality. Epidermal-specific depletion of LET-413

resulted in similar levels of larval lethality and a larval growth defect that was only slightly less

severe. In contrast, we observed no growth defects or lethality when we depleted LET-413 in

the intestine, consistent with previous observations of an intestine-specific CRISPR/Cas9

mutant of let-413 [33]. Thus, the growth and viability defects appear to be largely due to an

essential requirement for LET-413 in the epidermis, while LET-413 is not required in the intes-

tine for larval development or viability. The more severe larval growth defects observed upon

ubiquitous LET-413 depletion may reflect a minor contribution of additional tissues. Alterna-

tively, it remains possible that TIR1 driven by the ubiquitous eft-3 promoter results in more

effective epidermal LET-413 depletion than TIR1 driven by the epidermal wrt-2 promoter,

even though we did not observe a difference in depletion by microscopy.

The underlying cause of the growth arrest following epidermal LET-413 degradation will

require further investigation. It is not likely to be connected to the seam cell outgrowth defects,

as the growth arrest is visible when the first seam cell divisions have not yet taken place. We

recently found that epidermal depletion of the apical polarity regulators PAR-6 or PKC-3 simi-

larly results in a larval growth arrest [37]. Thus, there may be a general requirement for apical–

basal polarity regulators in the epidermis to support growth. Whether the growth defects are

due to a loss of epidermal polarity or represent different functions of these polarity regulators

remains to be determined.

LET-413 in seam cell outgrowth

In LET-413-depleted animals, the posterior daughters of asymmetric seam cell divisions do

not extend protrusions towards their neighboring cells, and consequently fail to reattach to

each other. The process of directed seam cell extension has not been extensively studied. To

our knowledge, the only genes specifically implicated in this process to date are cdc-42 and

as in B, C (+ auxin), and in control animals (- auxin). Graph shows mean GFP fluorescence intensity ± 95% CI. N = 7

animals for control and 3 animals for the HMR-1-depleted conditions. (E) Schematic representation of the insertion of

GFP::AID-encoding sequences in the dlg-1 locus. (F, G) Distribution of DLG-1 and GFP::PH and GFP::H2B markers,

in control animals and DLG-1-depleted animals at indicated times post hatching. Genotypes are Pwrt-2::TIR1::BFP;
dlg-1::mIAA7::GFP for panel F (strain BOX824), Pwrt-2::TIR1::BFP; Pwrt2::GFP::PH Pwrt-2::GFP::H2B; dlg-1::mIAA7::

GFP for panel G (strain BOX804). Images are maximum projections of the apical domain. Asterisks indicate the

position of DLG-1-depleted seam cells. Arrows indicate small apical blebs, which were observed in one or more seam

cells in 5/6 animals examined. (H) Quantification of DLG-1 intensity across the hyp7–seam junction in animals

depleted of DLG-1 as in panels B, C. Graphs show mean apical GFP fluorescence intensity ± SD. N = 5 animals for

-auxin, and 7 animals for +auxin. (I) Distribution of LET-413 in control animals and DLG-1-depleted animals at

indicated times post hatching (strain BOX824). (J) Quantification of LET-413 intensity across the hyp7–seam junction

in animals depleted of DLG-1 as in panels B, C. Graphs show mean apical GFP fluorescence intensity ± SD. N = 5

animals for -auxin and +auxin conditions. (K) Distribution of LET-413, DLG-1, and HMR-1 endogenously tagged

with indicated fluorescent proteins in the extending seam cells. Arrowheads indicate the protrusions of the seam cells.

Strains used, from left to right, are BOX531, BOX530, and SV2496.

https://doi.org/10.1371/journal.pgen.1009856.g006
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nhr-25 [51,58]. CDC-42 is discussed further below. NHR-25 is a nuclear receptor family tran-

scription factor whose inactivation causes a similar seam cell extension defect as LET-413

depletion [58]. Transcriptional targets through which NHR-25 controls seam cell outgrowth

have not been identified, and nhr-25 has numerous roles in C. elegans development in addition

to seam cell outgrowth [59–62]. Nevertheless, ChIP-seq experiments have identified an NHR-

25 binding site in the let-413 promoter region [63], indicating a potential role for NHR-25 in

regulating the transcription of let-413.

Because of the strong growth defects caused by LET-413 depletion, which are already

apparent at the time of the first seam cell division, we considered whether the outgrowth

defects are a secondary consequence of the growth arrest. However, we do not think that this

is the case due to the highly specific nature of the seam cell phenotype. Division, fusion, and

cell outgrowth all occur within a short time span, with outgrowth overlapping in time with the

fusion process. Yet only outgrowth is affected by LET-413 depletion, and division and fusion

take place as normal. Moreover, we did not observe a growth arrest in DLG-1-depleted ani-

mals, in which seam cells similarly fail to extend and reattach.

In a previous study using seam-specific RNAi, inactivation of let-413 or the junction com-

ponents ajm-1 or dlg-1 was postulated to cause a loss of seam cell fate and inappropriate fusion

with the surrounding hypodermis, based on loss of an AJM-1::mCherry marker [64]. In our

experiments with a PH::GFP membrane marker driven by the wrt-2 promoter, we never

observed fusion of posterior seam cells upon depletion of LET-413 or DLG-1. Nevertheless,

depletion of LET-413 did not result in a complete loss of cell junctions nor in a complete loss

of DLG-1 junction localization. It remains possible therefore that a stronger loss of junctional

components could result in inappropriate fusion with the hypodermis. Alternatively, the

observed difference could be due to differences in the timing of protein depletion by RNAi

and auxin-inducible degradation.

LET-413 depletion also did not appear to affect the differentiation of the anterior daughter

cells, as these fused with the hypodermis with normal kinetics. The only exception we observed

followed the L2 seam cell divisions, with depletion of LET-413 starting in late L1 larvae. The

division pattern in the L2 stage differs from the L1, L3, and L4 stages in that the asymmetric

cell divisions are preceded by a symmetric division that increases the seam cell number. Thus,

following the asymmetric, second division, four seam cells are generated, of which two will

fuse with the hypodermis. At the time when fusion and reattachment of remaining seam cells

were completed in control animals, the anterior seam cell daughters in LET-413 depleted ani-

mals had not fused. Possibly, LET-413 depletion affects aspects of seam differentiation that are

particularly essential during the alternate L2 stage division pattern. Finally, the P cells in LET-

413 depleted animals showed a reduced expression of fluorescent marker proteins driven by

the wrt-2 promoter. This may indicate a change in cell fate but could also be a secondary con-

sequence of the failure in ventral retraction. Taken together, the loss of LET-413 may contrib-

ute to epidermal cell fate specification, but the primary defects we observe are in cell

outgrowth and junctional integrity.

Actin and Rho GTPase family members in seam cell outgrowth

The reported roles in some mammalian cell types for Scribble in controlling cell migration

through the small GTPases Rac and Cdc42 [7,28] prompted us to consider a similar mode of

action for LET-413. C. elegans Rho-family GTPases have already been shown to be involved in

many migratory events, such as long-range migration of the Q neuroblasts and the gonadal

distal tip cells [44,52,65], morphogenetic changes in embryonic epidermal cells during dorsal

intercalation and ventral closure [49,54,66–69], and growth cone migration in axonal
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pathfinding [52,53,70]. In addition, RNAi-mediated inactivation of cdc-42 was shown to pre-

vent seam cell outgrowth [51].

Our time-lapse and actin imaging data support an important role for the regulation of actin

dynamics in seam cell outgrowth. Indeed, overexpression of constitutively active variants of

CED-10 Rac or CDC-42 resulted in increased and undirected protrusive activity as well as

seam extension failures, indicating that the spatial activity of these proteins needs to be care-

fully regulated for proper seam cell outgrowth and reattachment. However, we only achieved a

partially penetrant and incomplete block in the formation of seam cell protrusions through

mutation, RNAi, or expression of dominant negative variants of Rac family members and cdc-
42. One possibility is that our inactivation experiments did not result in sufficient deregulation

of Rac and Cdc42 signaling to disrupt seam cell extension. C. elegans expresses three Rac-fam-

ily members, and in other migratory cell types redundancies have been shown between Rac

family members themselves, as well as between Rac proteins and CDC-42 [52,54,70–72]. A fur-

ther complicating factor is that the small GTPases play numerous essential roles in C. elegans
development that may cause the most severely affected animals to arrest before reaching the

stage of seam cell extension. Thus, determining whether regulation of actin dynamics by LET-

413 plays a role in seam cell outgrowth remains an important future challenge.

DLG-1 and cell junctions in seam cell outgrowth

The loss of LET-413 in the epidermis led to impaired cell junctions, evidenced by the highly

fragmented appearance of the junction components DLG-1 Discs large and HMR-1 E-cad-

herin. Similar junctional defects were demonstrated in embryonic epidermal cells and the

spermatheca upon let-413 inactivation [5,10,11,29–32]. We did not observe junctional defects

in the intestine, indicating that junction maintenance in this tissue does not require the contin-

ued expression of LET-413. In a previous study, intestine-specific CRIPSPR/Cas9-mediated

knockout of let-413 was reported to cause lateral displacement of HMP-1 α-catenin [33]. How-

ever, the vha-6 promoter used to express Cas9 in this study is active during embryonic intesti-

nal development, and the junctional defects may reflect a requirement in intestinal

development. Our data show that LET-413 acts upstream of DLG-1 in junction maintenance

in the seam epithelium, again in accordance with observations in the embryo and spermatheca

[5,10,11,29–32]. In Drosophila different localization hierarchies between Scrib and Dlg have

been described. In the adult Drosophila midgut epithelium, Scrib is required for the localiza-

tion of Dlg [73], while in the ovarian follicle epithelium, Dlg acts upstream of Scrib [74,75]. In

the embryonic epidermis, Scrib and Dlg are co-dependent for protein localization [14]. These

differences may in part reflect the different subcellular locations of Dlg and Scrib in these tis-

sues. In the midgut and embryonic epithelia, Dlg and Scrib localize to the septate junctions

[14,73], while in the follicle epithelium, Dlg and Scrib have a broader basolateral localization

pattern [74,75]. Thus, while LET-413 acts upstream of DLG-1 in all C. elegans tissues examined

to date, it remains possible that future studies of additional tissues uncover a different relation-

ship between these proteins.

One potential difference between our study and previous studies of let-413 is the effect of

LET-413 loss on apical–basal polarity. In embryonic epithelia, inactivation of let-413 results in

the basolateral invasion of apical proteins including PAR-3, PAR-6, and IFB-2 [11,29]. In the

spermatheca, let-413(RNAi) also resulted in a lack of apical PAR-3. In contrast, we did not

observe relocalization of the apical polarity protein PAR-6 or the basolateral polarity regulator

LGL-1 upon LET-413 depletion. One explanation for this difference is that we investigate dif-

ferent tissues, and the epidermis may be less reliant on LET-413 for apical–basal polarization.

We can also not rule out minor changes in localization not detectible with the markers and
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microscopy approaches used. The most likely explanation, however, is that the difference is

caused by the timing of inactivation. While previous studies inactivated let-413 from the start

of embryonic development or prior to development of the spermatheca, we depleted LET-413

only after epidermal tissues are established. While the seam cells do continue to divide, estab-

lished tissues may be less reliant on LET-413 expression for maintaining apical–basal domain

identity.

Interestingly, directed outgrowth of the seam cells appears to depend on the DLG-1/AJM-1

junctional complex, as depletion of DLG-1 resulted in a lack of seam cell outgrowth. What

could the role of cell junctions in this process be? Cell–cell junctions are essential in trans-

ducing mechanical forces generated by actomyosin contractions into coordinated morphoge-

netic changes during cell–cell intercalation and collective cell migration [76–79]. The seam

cells are somewhat similar to intercalating cells and cells undergoing collective migration in

that they maintain their overall apical–basal polarity and cell junctions during outgrowth.

However, force transduction is generally mediated by cadherin-based adherens junctions,

while our experiments indicate that HMR-1 E-cadherin is dispensable for the directed out-

growth of the seam cells. A more likely possibility is that the DLG-1/AJM-1 junctional complex

is involved in organizing the protrusive activity at the apical domain. Potential mechanisms

for such spatial restriction include functioning as a hub for signaling components or promot-

ing actin enrichment. For example, in the intestinal epithelium, DLG-1 has been shown to be

required for the apical enrichment of actin [80]. Finally, we cannot exclude that DLG-1 has

additional roles not related to cell junctions. For example, recent data in Drosophila point to a

role for Dlg in transcriptional regulation by a nuclear pool of Dlg [81]. Regardless of the mech-

anism, our results demonstrate an essential role for LET-413 Scrib and DLG-1 Discs large in

regulating the outgrowth of the epithelial seam cells.

Materials and methods

C. elegans strains and culture conditions

C. elegans strains were cultured under standard conditions [82]. Only hermaphrodites were

used, and all experiments were performed with animals grown at 20˚C on Nematode Growth

Medium (NGM) agar plates. Table 1 contains a list of all the strains used.

CRISPR/Cas9 genome engineering

All gene editing made use of homology-directed repair of CRISPR/Cas9-induced DNA dou-

ble-strand breaks. Final genomic sequences are available in S1 File. The sgRNA sequences and

primers used to check integration can be found in Table 2. The GFP::AID::let-413, hmr-1::GFP,

and let-413::mCherry edits were generated using plasmid-based expression of Cas9 and

sgRNAs and plasmid repair templates containing 190–600 bp homology arms and a self-excis-

ing cassette (SEC) for selection of candidate integrants [83]. The GFP::AID::let-413 and hmr-1::

GFP repair templates were cloned using SapTrap assembly into vectors pDD379 and pMLS257

[84,85]. The let-413::mCherry repair template was cloned using Gibson assembly into vector

backbone pJJR83 (Addgene #75028) [86,87]. All sgRNAs were expressed from plasmids under

control of a U6 promoter. To generate GFP::AID::let-413, the sgRNAs were incorporated into

assembly vector pDD379 using SapTrap assembly. For all other sgRNAs, antisense oligonucle-

otide pairs were annealed and ligated into BbsI-linearized pJJR50 (Addgene #75026) [88].

Injection mixes were prepared in MilliQ H2O and contained 50 ng/ml Peft-3::cas9 (Addgene

ID #46168) [89] 50–100 ng/ml U6::sgRNA, and 50–75 ng/ml of repair template. All mixes also

contained 2.5 ng/ml of the co-injection pharyngeal marker Pmyo-2::GFP or Pmyo-2:: tdTomato
to aid in visual selection of transgenic strains. Young adult hermaphrodites were injected in
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Table 1. List of strains.

Strain Genotype

N2 Wild type

BOX043 mibIs25 [cdc-42::GFP-2TEV-Avi 10ng + Pmyo-3::mCherry 10ng + lambda DNA 60ng] X

BOX245 let-413(mib29[let-413::mCherry loxP]) V

BOX260 dlg-1(mib35[dlg-1::AID::GFP loxP]) X

BOX449 mibIs49[Pwrt-2::TIR1::mTagBFP2 lox511 tbb-2 3’UTR, IV:5014740–5014802 (cxTi10882 site)]) IV; let-

413(mib81[GFP::loxP::AID::let-413]) V

BOX466 let-413(mib81[GFP::loxP::AID::let-413]) V

BOX468 let-413(mib81[GFP::loxP::AID::let-413]) V; mibIs48[Pelt-2::TIR1::mTagBFP2-lox511::tbb-2-3’UTR,

IV:5014740–5014802 (cxTi10882 site)]) IV

BOX469 ieSi57[Peft-3::TIR1::mRuby::unc-54 3’UTR + cb-unc-119(+)] II; unc-119(ed3) III; let-413(mib81[GFP::

loxP::AID::let-413]) V

BOX527 mibIs49[Pwrt-2::TIR1::mTagBFP2 lox511 tbb-2 3’UTR, IV:5014740–5014802 (cxTi10882 site)]) IV; let-

413(mib29[let-413::mCherry LoxP]) V; dlg-1(mib35[dlg-1::AID::GFP-LoxP]) X

BOX530 mib48[Pelt-2::TIR1::mTagBFP2-lox511::tbb-2-3’UTR]) IV; let-413(mib81[GFP::loxP::AID::let-413]) V;

dlg-1(mib23[dlg-1::mCherry loxP]) X

BOX531 let-413(mib81[GFP::loxP::AID::let-413]) V; huls166[Pwrt-2::mCherry::PH + Pwrt-2::mCherry::H2B] X

BOX582 mibIs49[Pwrt-2::TIR1::mTagBFP2 lox511 tbb-2 3’UTR, IV:5014740–5014802 (cxTi10882 site)]) IV; let-

413(mib81[GFP::loxP::AID::let-413]) V; heIs63[Pwrt-2::GFP::PH + Pwrt-2::GFP::H2B + Plin-48::

mCherry]V

BOX584 hmr-1(he298[hmr-1::GFP loxP]) I; mibIs49[Pwrt-2::TIR1::mTagBFP2 lox511 tbb-2 3’UTR, IV:5014740–

5014802 (cxTi10882 site)]) IV; let-413(mib81[GFP::loxP::AID::let-413]) V

BOX585 mibIs49[Pwrt-2::TIR1::mTagBFP2 lox511 tbb-2 3’UTR, IV:5014740–5014802 (cxTi10882 site)]) IV; let-

413(mib81[GFP::loxP::AID::let-413]) V; dlg-1(mib23[dlg-1::mCherry loxP]) X

BOX625 mibIs49[Pwrt-2::TIR1::mTagBFP2 lox511 tbb-2 3’UTR, IV:5014740–5014802 (cxTi10882 site)]) IV; let-

413(mib81[GFP::loxP::AID::let-413]) V; heIs63[Pwrt-2::GFP::PH + Pwrt-2::GFP::H2B + Plin-48::

mCherry] V; mcIs40 [Plin-26::ABDvab-10::mCherry + Pmyo-2::GFP]

BOX692 par-6(mib24[par-6::eGFP LoxP] I; mibIs49[Pwrt-2::TIR1::mTagBFP2 lox511 tbb-2 3’UTR, IV:5014740–

5014802 (cxTi10882 site)]) IV; let-413(mib81[GFP::loxP::AID::let-413]) V; mibEx251[Pwrt-2::mCherry::

H2B + Pwrt-2::mCherry::PH + Plin-48::tdTomato]

BOX693 par-6(mib24[par-6::eGFP LoxP]) I; let-413(mib29[let-413::mCherry LoxP]) V; mibEx251[Pwrt-2::

mCherry::H2B 60ng + Pwrt-2::mCherry::PH 60 ng+ Plin-48::tdTomato 15ng + lambda DNA 50ng]

BOX694 mibIs49[Pwrt-2::TIR1::mTagBFP2 lox511 tbb-2 3’UTR, IV:5014740–5014802 (cxTi10882 site)]) IV; let-

413(mib81[GFP::loxP::AID::let-413]) V; mibIs23[lgl-1::GFP::2xTEV::Avi 10 ng + Pmyo-3::mCherry 10 ng

+ lambda DNA 60 ng] V

BOX697 heIs63[Pwrt-2::GFP::PH + Pwrt-2::GFP::H2B + Plin-48::mCherry] V; mibEx264[Pwrt-2::mcherry::T2A::

ced-10(T17N) 30ng + PMyo-2::tdtomato 3ng + lambda DNA 47ng]

BOX699 ced-10(n1993)/tmC25[unc-5(tmIs1241)] + Pmyo-2::Venus]; heIs63[Pwrt-2::GFP::PH + Pwrt-2::GFP::

H2B + Plin-48::mCherry] V; mig-2(mu28)X

BOX700 heIs63[Pwrt-2::GFP::PH + Pwrt-2::GFP::H2B + Plin-48::mCherry] V; mibEx253[wrt-2::mCherry::T2A::

ced-10(Q61L):: tbb-2UTR 30ng + Myo2::tdtomato 3ng + lambda DNA 47ng]

BOX739 heIs63[Pwrt-2::GFP::PH + Pwrt-2::GFP::H2B + Plin-48::mCherry] V; mibEx265[Pwrt2::cdc-42(Q61L)::

F2A::BFP::NLS::tbb-2UTR 40ng + PMyo-2::tdtomato 3ng + lambda DNA 37ng]

BOX747 heIs63[Pwrt-2::GFP::PH + Pwrt-2::GFP::H2B + Plin-48::mCherry] V; mibEx266[Pwrt2::cdc-42(T17N)::

F2A::BFP::NLS::tbb-2UTR 40ng + PMyo-2::tdtomato 3ng + lambda DNA 37ng]

BOX804 mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740–5014802 (cxTi10816 site)]) IV;

heIs218[Pwrt-2::mCherry::PH, Pwrt-2::mCherry::H2B, Plin-48::GFP]; dlg-1(mib163[dlg-1::IAA7[37–104]

(co)::GFP(co)]) X

BOX824 mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740–5014802 (cxTi10816 site)]) IV; let-

413(mib29[let-413::mCherry-LoxP]) V; dlg-1(mib163[dlg-1::IAA7[37–104](co)::GFP(co)]) X

BOX825 hmr-1(he298[hmr-1::egfp::loxP]) I; mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740–

5014802 (cxTi10816 site)]) IV; dlg-1(mib167[dlg-1::IAA7[37–104](co)::mScarlet(co)]) X

BOX826 mibIs49[Pwrt-2::TIR-1::tagBFP2-Lox511::tbb-2-3’UTR, IV:5014740–5014802 (cxTi10816 site)]) IV;

heIs63 [Pwrt-2::GFP::PH + Pwrt-2::GFP::H2B + Plin-48::mCherry] V; dlg-1(mib167[dlg-1::IAA7[37–104]

(co)::mScarlet(co)]) X

(Continued)
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Table 1. (Continued)

Strain Genotype

BOX832 hmr-1(he377[hmr-1::LoxP::aid::gfp::LoxP] I; heSI175[Pscm::CRE] X; mib69[Pwrt-2::TIR-1::BFP] IV; dlg-

1(mib159[dlg-1::mCherry(co)]) X

CA1200 unc-119(ed3); ieSi57 [Peft-3::TIR1::mRuby unc-54 3’UTR + cb-unc-119(+)] II

FT1459 xnIs506 [Pcdc42::GST::GFP::wsp-1(GBD) + unc-119(+)]

KN2598 huls166[Pwrt-2::mCherry::PH + Pwrt-2::mCherry::H2B] X

SV1009 heIs63[Pwrt-2::GFP::PH + Pwrt-2::GFP::H2B + Plin-48::mCherry] V

SV1550 heIs1175 [Pscm::CRE] X

SV1955 hmr-1(he298[hmr-1::GFP loxP]) I

SV1984 hels218[Pwrt-2::mCherry::PH + Pwrt-2::mCherry::H2B + Plin-48::GFP]

SV2239 hmr-1(he377[hmr-1::loxP::AID::loxP]) I

SV2475 mibIs49[Pwrt-2::TIR1::mTagBFP2 lox511 tbb-2 3’UTR, IV:5014740–5014802 (cxTi10882 site)]) IV; dlg-1

(he380[dlg-1::loxP::AID::GFP::loxP]) X; huIS166[Pwrt-2::mCherry::H2B + Pwrt-2::mCherry::PH] X

SV2479 hmr-1(he377[hmr-1::loxP::AID::GFP::loxP]) I; heIs175[Pscm::CRE] X; mibIs49[Pwrt-2::TIR1::mTagBFP2

lox511 tbb-2 3’UTR, IV:5014740–5014802 (cxTi10882 site)]) IV; heEx616[Pwrt-2::mCherry::H2B + Pwrt-

2::mCherry::PH + Plin-48::tdTomato + Prps-0::HygR + lambdaDNA]

SV2496 hmr-1(he298[hmr-1::GFP loxP]) I; hels218[Pwrt-2::mCherry::PH + Pwrt-2::mCherry::H2B + Plin-48::

GFP] IV

https://doi.org/10.1371/journal.pgen.1009856.t001

Table 2. Reagents to generate CRISPR/Cas9 lines.

GFP::AID::LET-413

sgRNA sequence gcagaagaaagccggcattgTGG

Integration check primer left 5’-CGGTGTCACCTACGCCTAAT

Integration check primer right 5’-GCTTCGAGAACTCGCAGATTC

DLG-1::mIAA7::GFP, DLG-1::mIAA7::mScarlet, and DLG-1::mCherry

sgRNA sequence gccacgtcattagatgaaatTGG

Integration check primer left 5’-CAGTAGCTGCGTTCCACGTA

Integration check primer right 5’-TCATCAGTAGAGAGTCGGGAATATG

mIAA7::GFP Sp9 oligo F GTGAATCGCAGACGCCAATTTGGGTGCCACGTCATggcggtgggggaGGATTCTCCGAGACCGTCG

mIAA7::GFP Sp9 oligo R aaacgattatttgtctaaaaaatatccaatttcatCTACTTGTAGAGCTCGTCCATTCCG

mIAA7::mScarlet Sp9 oligo F GTGAATCGCAGACGCCAATTTGGGTGCCACGTCATggcggtgggggaGGATTCTCCGAGACCGTCG

mIAA7::mScarlet Sp9 oligo R aacgattatttgtctaaaaaatatccaatttcatCTACTTGTAGAGCTCGTCCATTCCTC

mCherry Sp9 oligo F GTGAATCGCAGACGCCAATTTGGGTGCCACGTCATggcggtgggggaATGTCCAAGGGAGAGGAGG

mCherry Sp9 oligo R cgattatttgtctaaaaaatatccaatttcatCTACTTGTAGAGCTCGTCCATTCCTC

LET-413::mCherry

sgRNA sequence agtaggccatgtgagtattgAGG

Integration check primer left 5’-CTTGCCGCAGGCACTCAAAA

Integration check primer right 5’-GTTGTGTGAGCTCATGAGAGTTGGG

HMR-1::GFP and HMR-1::AID::GFP (with first LoxP site)

sgRNA sequence cgaaagtgcccaataaacgaCGG

Integration check primer left cgtggcctacattacatgca

Integration check primer right tgttacgtctcgcatgccta

LoxP-HMR-1::AID::GFP-LoxP (second LoxP site addition)

sgRNA sequence gtgtcgaaatgcaccataatCGG

ssODN gttttgaagcttgtgtcgaaatgcaccataATAACTTCGTATAGCATACATTATACGAAGTTATatcggaattctggttgagttttgtgaaaat

Integration check primer left ctcctccacctctgtcgttttc

Integration check primer right ttcacaaccccccaaatccat

https://doi.org/10.1371/journal.pgen.1009856.t002
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the germline using an inverted micro-injection setup (Eppendorf FemtoJet 4x mounted on a

Zeiss Axio Observer A.1 equipped with an Eppendorf Transferman 4r). Candidate edited

progeny were selected on plates containing 250 ng/ml of hygromycin and correct genome edit-

ing was confirmed by Sanger sequencing (Macrogen Europe) of PCR amplicons encompassing

the edited genomic region. From correctly edited strains, the hygromycin selection cassette

was excised by a heat shock of L1 larvae at 34˚C for 1 h in a water bath.

The LoxP::hmr-1::AID::GFP::LoxP allele was generated using plasmid-based expression of

Cas9 and sgRNAs in two stages. In the first stage, AID::GFP::LoxP was inserted using a plasmid

repair template cloned using SapTrap into vector pMLS257, using the procedure described

above. In the second stage, the second LoxP site was inserted using a single strand DNA repair

oligo (Table 2) and PCR based selection of correct inserts.

The dlg-1::mIAA7::GFP, dlg-1::mIAA7::mScarlet, and dlg-1::mCherry alleles were generated

using the Alt-R CRISPR/Cas9 system (IDT). Repair templates were synthesized with 5’

Sp9-modified oligos (IDT) and Q5 polymerase (NEB) from plasmids pJJS001 (mIAA7 GFP),

pRS188 (mIIA7 mScarlet) and pRS066 (mCherry), and purified using the MinElute PCR Puri-

fication kit (Qiagen). See Table 2 for oligo’s used and S1 File for plasmid templates. Injection

mixes were prepared with melted dsDNA repair templates as described [90]. Positive F1 from

injected P0 animals were selected based on fluorescence. Correct genome editing was con-

firmed by Sanger sequencing (Macrogen Europe) of PCR amplicons encompassing the edited

genomic region.

CED-10 and CDC-42 Q61L and T17N expression plasmids

Plasmids for expression of constitutively active and dominant negative variants of CED-10

and CDC-42 were generated using Gibson assembly. Final plasmid sequences are available in

S1 File. CED-10b and CDC-42 coding sequences carrying the appropriate base pair changes

were ordered as gBlocks Gene Fragments (Integrated DNA Technologies). cdc-42 was codon

optimized [91], while ced-10 was not optimized due to inability to synthesize the gBlock for an

optimized variant. Plasmids contain 2A self-cleaving peptide sequences [92] between GTPase

and fluorophore, to enable visual identification of expressing cells while minimizing the risk of

altering the activity of the GTPase. Plasmids contain homology arms for insertion at the

cxTi10816 Mos transposon site on chromosome IV but were only used as extrachromosomal

arrays. For the generation of the lines, 20–30 ng/ul of the plasmids were injected with 50 ng/ul

of lambda DNA and co-injection marker Pmyo-2::tdTomato (2,5 ng/ul).

Animal synchronization and auxin treatment

NGM + auxin plates were prepared using the natural indole-3-acetic acid (IAA) from Alfa

Aesar (#A10556). The stock powder was stored at 4˚C and was diluted in NGM agar cooled to

50˚C to a final concertation of 3 mM. The plates were left to dry at room temperature for 1–2

days covered with aluminum foil before seeding with OP50 bacteria. The plates were then kept

at room temperature for another 1–2 days before storing at 4˚C in the dark for a maximum of

2 weeks. For auxin treatment in liquid M9, the water-soluble synthetic analog of IAA,

1-naphthaleneacetic acid (NAA), from Sigma Aldrich (#317918) was used. A 250 mM stock

solution was prepared in M9 buffer and was further diluted in M9 buffer to 3 mM final

concertation.

To synchronize animals, plates with eggs were washed with M9 buffer (0.22 M KH2PO4,

0.42 M Na2HPO4, 0.85 M NaCl, 0.001 M MgSO4) to remove larvae and adults but leave the

eggs behind. After 1 h, plates were washed again to collect larvae hatched within that time

span. Synchronized larvae were then transferred onto NMG-OP50 plates with auxin. For the
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depletion of DLG-1 in Fig 5, gravid adult animals were bleached, and eggs were hatched in

M9. Newly hatched larvae were kept in M9 with auxin but without food for 24 h before trans-

ferring onto NMG-OP50 plates with auxin. For non-auxin treated controls, NGM plates and

M9 buffer lacking auxin were used.

Feeding RNAi

For feeding RNAi experiments, bacteria were pre-cultured in 2 ml Lysogeny Broth (LB) sup-

plemented with 100 μg/ml ampicillin (Amp) and 2.5 μg/ml tetracycline (Tet) at 37˚C in an

incubator rotating at 200 rpm for 6–8 h, and then transferred to new tubes with a total volume

of 10 ml LB for overnight culturing. To induce production of dsRNA, cultures were incubated

for 90 min in the presence of 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG). Bacterial

cultures were pelleted by centrifugation at 4000 g for 15 min and resuspended in LB with

100 μg/ml ampicillin (Amp) and 2.5 μg/ml tetracycline (Tet) at 5x the original concentration.

NGM agar plates supplemented with 100 μg/ml Amp and 1 mM IPTG were seeded with 250 μl

of bacterial suspension, and kept at room temperature (RT) for 48 h in the dark. Six to eight L4

hermaphrodites per strain were transferred to individual NGM-RNAi plates against target

genes and phenotypes were analyzed in the F1 generation.

Larval lethality

To determine larval lethality, synchronized L1 animals were placed on NGM plates seeded

with E. coli OP50, and either containing or lacking auxin. After 24 h animals were classified as

dead or alive based on movement and response to physical touch.

Microscopy and image processing

Imaging of C. elegans on agar plates for growth analysis was done using a Zeiss Axio Zoom.

V16 equipped with a PlanNeoFluar Z 1x/0.25 objective and an Axiocam 506 color camera,

driven by Zen Pro software. All other imaging of C. elegans was done by mounting embryos or

larvae on a 5% agarose pad in a 10 mM Tetramisole solution in M9 buffer to induce paralysis.

Nomarski DIC imaging was performed with an upright Zeiss AxioImager Z2 microscope

using a 63 x 1.4 NA objective and a Zeiss AxioCam 503 monochrome camera, driven by Zeiss

Zen software. Spinning disk confocal imaging was performed using a Nikon Ti-U microscope

driven by MetaMorph Microscopy Automation and Image Analysis Software (Molecular

Devices) and equipped with a Yokogawa CSU-X1-M1 confocal head and an Andor iXon DU-

885 camera, using 60x or 100x 1.4 NA objectives. All stacks along the z-axis were obtained at

0,25 μm intervals. Maximum intensity Z projections were done in ImageJ (Fiji) software

[93,94]. For quantifications, the same laser power and exposure times were used within experi-

ments. Time-lapse imaging of C. elegans seam cell membrane dynamics was performed on a

Zeiss Lattice Lightsheet 7 pre-serial system equipped with 13.3x/0.44 excitation and 44.83x/1

observation lenses, 15x550, 15x650, 30x700, 300x1000, 100x1400 and 100x1800 sinc3 light

sheets, 488/561/640 nm excitation lasers, BP 420-480/BP 495-550/LP 650, LP 655, BP 570-650/

LP 750, BP 495-575/LP 750, LBF 405/488/561/642 nm emission filters, controlled by ZEN 3.4

(blue edition, Zeiss) software. Precision cover glasses thickness no. 1.5H (Marienfeld-superior)

and 5% agarose in MQ H2O pads on glass slides (incubated for 5 minutes in M9 buffer) were

used to mount synchronized L1 larvae in M9 buffer + 10 mM tetramisole. Images were

acquired at a 20 s intervals with 0,2 um spacing (685 slices). Resulting data sets were deskewed

and deconvolved using ZEN 3.4 (blue edition, Zeiss) software, and finally rendered using

Vision4D 3.5 (arivis AG). Image scales were calibrated for each microscope using a microme-

ter slide. For display in figures, level adjustments, false coloring, and image overlays were done
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in Adobe Photoshop. Image rotation, cropping, and panel assembly were done in Adobe Illus-

trator. All edits were done non-destructively using adjustment layers and clipping masks, and

images were kept in their original capture bit depth until final export from Illustrator for

publication.

Quantitative image analysis

All quantifications were done using ImageJ.

C. elegans growth curves. Synchronized L1 animals were placed on NGM plates seeded

with E. coli OP50 and either lacking or containing 3 mM auxin, and images were taken after 3,

7, 24, and 30 h. Animal lengths were measured by drawing a spline along the center line of the

animal.

Fluorescence intensity measurements. For all fluorescence intensity measurements,

mean background fluorescence levels were subtracted from measured values. Mean back-

ground intensity was determined in a circular region of ~50 px diameter in areas within the

field-of-view that did not contain any animals.

Distribution plots of fluorescence intensity of GFP::AID-tagged LET-413 in the larval intes-

tine and epidermis, as well as AID::GFP-tagged DLG-1, GFP-tagged LGL-1, and mCherry-

tagged LET-413 in the epidermis were obtained by averaging the peak values of intensity pro-

files from 2–4 10 px-wide line-scans perpendicular to the membrane per animal. In the auxin-

treated samples, where LET-413 is no longer enriched at the membrane, DLG-1::mCherry or

the PH marker were used to determine the position to quantify. The intensity profiles of differ-

ent animals were aligned at their peak values and trimmed manually to exclude values outside

the cells/compartments of interest. For the intensity of GFP-tagged PAR-6, peak values of

intensity profiles from multiple 10 px-wide line-scans in the apical side of the cytoplasm of the

seam cells were obtained, averaged, and corrected for the background of the same animal. In

all cases the graphs indicate the mean intensities of the values.

Statistical analysis

All statistical analyses were performed using GraphPad Prism 8. For population comparisons,

a D’Agostino & Pearson test of normality was first performed to determine if the data was sam-

pled from a Gaussian distribution. For data drawn from a Gaussian distribution, comparisons

between two populations were done using an unpaired t test, with Welch’s correction if the

SDs of the populations differ significantly, and comparisons between >2 populations were

done using a one-way ANOVA, or a Welch’s ANOVA if the SDs of the populations differ sig-

nificantly. For data not drawn from a Gaussian distribution, a non-parametric test was used

(Mann-Whitney for 2 populations and Kruskal-Wallis for >2 populations). ANOVA and

non-parametric tests were followed up with multiple comparison tests of significance (Dun-

nett’s, Tukey’s, Dunnett’s T3 or Dunn’s). Tests of significance used and sample sizes are indi-

cated in the figure legends. No statistical method was used to pre-determine sample sizes. No

samples or animals were excluded from analysis. The experiments were not randomized, and

the investigators were not blinded to allocation during experiments and outcome assessment.

Numerical data for graphs and summary statistics are available in spreadsheet form in S2 File.

Supporting information

S1 Fig. Larval expression of LET-413. Expression of GFP::AID::LET-413 in the pharynx

(left), reproductive system (middle), and excretory canal (right) of L4 stage GFP::AID::let-413
animals (strain BOX466). Sp: spermatheca, Ut: Uterus, Vul: Vulva. Related to Fig 1.

(PDF)
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S2 Fig. LET-413 is required for seam cell outgrowth throughout development. Time series

of L2 and L3 seam cells divisions and subsequent extension in LET-413-depleted (+auxin) or

control animals (-auxin) (strain BOX582). Seam-specific GFP::H2B and GFP::PH mark DNA

and cell membrane, respectively. Times indicate hours post hatching. For the L2 division pat-

tern (blue), auxin was added from 8h after hatching, and for the L3 division pattern (red) from

19h after hatching. Related to Fig 3.

(PDF)

S3 Fig. Degradation of LET-413 in the epidermis does not affect Q cell migration. (A) Q

cell descendant QRa and QRb during anterior migration (4–5 h post hatching), marked with

epidermal-specific mCherry::H2B and mCherry::PH (strain BOX531). No expression of GFP::

AID::LET-413 is detected. (B) Migration and division of Q cell descendants in LET-

413-depleted (+auxin) or control animals (-auxin) at 2–3 h and 4–5 h post hatching (strain

BOX582). Related to Fig 3.

(PDF)

S4 Fig. LET-413 depletion disrupts the localization of DLG-1. Distribution of DLG-1::

mCherry in the epidermis of Pwrt-2::TIR1::BFP; GFP::AID::let-413; dlg-1::mCherry animals

without (-auxin) and in the presence of auxin (+auxin) at 5 h and 7 h post hatching (strain

BOX527). Boxed region in top overview panels is shown enlarged below. Related to Fig 5.

Note that 7 h timepoint is also shown in Fig 5E, and replicated here for ease of comparison

between time points.

(PDF)

S5 Fig. DLG-1 and HRM-1 localize independently in the epidermis. (A) Distribution of

DLG-1::mCherry upon depletion and degradation of HMR-1 at 10 h post hatching. Left panels

are controls not expressing CRE and not treated with auxin, right panels show animals

expressing CRE and treated with auxin. Genotypes are hmr-1::LoxP::AID::GFP::loxP; Pwrt2::

GFP::PH Pwrt-2::GFP::H2B for the control (strain BOX832) and hmr-1::LoxP::AID::GFP::loxP;
Pscm::CRE; Pwrt-2::TIR1::BFP; Pwrt2::GFP::PH Pwrt-2::GFP::H2B for the CRE and auxin-

treated animals (strain BOX832). (B) Quantification of HMR-1 intensity across the hyp7–

seam junction in animals depleted of HMR-1 as in A (+ auxin), and in control animals (-

auxin). Graph shows mean mCherry fluorescence intensity ± 95% CI. N = 5 animals for con-

trol and 5 animals for the HMR-1-depleted conditions. (C, F) Distribution of HMR-1::GFP

upon depletion of DLG-1 at 4 h (C) and 10 h (F) post hatching. Left panels are controls not

treated with auxin, and right panels are animals in which DLG-1 was depleted by auxin treat-

ment. Genotype is hmr-1::GFP; Pwrt-2::TIR1::BFP; dlg-1::mIAA7::mCherry (strain BOX825).

(D, E, H, I) Quantification of DLG-1::mIAA7::mScarlet or HMR-1::GFP intensity across the

hyp7–seam junction in animals depleted of DLG-1 as in C, F (+ auxin), and in control animals

(- auxin). Graph shows mean mCherry fluorescence intensity ± 95% CI. N = 6 animals for con-

trol and 5 animals for the DLG-1-depleted conditions. Related to Fig 6.

(PDF)

S1 Video. Time-lapse imaging of seam cell extension and fusion. GFP::PHPLC1δ and GFP::

H2B mark the cell membrane and DNA (strain SV1009). Images were taken at 20 sec intervals

at 7 h post hatching. Related to Fig 4.

(MP4)

S2 Video. Time-lapse imaging of seam cells upon depletion of DLG-1. GFP::PHPLC1δ and

GFP::H2B mark the cell membrane and DNA (strain BOX826). Images were taken starting at
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7 h post hatching at 10 min. intervals. Maximum intensity projections are shown. In this

video, left side is anterior and top is ventral. Related to Fig 6.

(MP4)

S1 File. DNA files. This.zip file contains DNA files of the genomic regions of all CRISPR engi-

neered loci, of plasmids used as PCR templates for the generation of repair templates, and of

dominant active and dominant negative constructs of CED-10 and CDC-42. Files are present

in two formats: a binary SnapGene file, which can be opened with the SnapGene viewer, and a

text-based Genbank file, which is compatible with all text editors but contains less extensive

feature formatting.

(ZIP)

S2 File. Numerical data for graphs and summary statistics. Numerical data for graphs and

summary statistics in Microsoft Excel format.

(XLSX)
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44. Rella L, Fernandes Póvoa EE, Korswagen HC. The Caenorhabditis elegans Q neuroblasts: A powerful

system to study cell migration at single-cell resolution in vivo. Genes N Y N 2000. 2016; 54: 198–211.

https://doi.org/10.1002/dvg.22931 PMID: 26934462

45. Ridley AJ. Life at the leading edge. Cell. 2011; 145: 1012–1022. https://doi.org/10.1016/j.cell.2011.06.

010 PMID: 21703446

46. Schaks M, Giannone G, Rottner K. Actin dynamics in cell migration. Essays Biochem. 2019; 63: 483–

495. https://doi.org/10.1042/EBC20190015 PMID: 31551324

47. Warner H, Wilson BJ, Caswell PT. Control of adhesion and protrusion in cell migration by Rho

GTPases. Curr Opin Cell Biol. 2019; 56: 64–70. https://doi.org/10.1016/j.ceb.2018.09.003 PMID:

30292078

48. Gally C, Wissler F, Zahreddine H, Quintin S, Landmann F, Labouesse M. Myosin II regulation during C.

elegans embryonic elongation: LET-502/ROCK, MRCK-1 and PAK-1, three kinases with different roles.

Dev Camb Engl. 2009; 136: 3109–3119. https://doi.org/10.1242/dev.039412 PMID: 19675126

49. Patel FB, Bernadskaya YY, Chen E, Jobanputra A, Pooladi Z, Freeman KL, et al. The WAVE/SCAR

complex promotes polarized cell movements and actin enrichment in epithelia during C. elegans

embryogenesis. Dev Biol. 2008; 324: 297–309. https://doi.org/10.1016/j.ydbio.2008.09.023 PMID:

18938151

50. Soto MC, Qadota H, Kasuya K, Inoue M, Tsuboi D, Mello CC, et al. The GEX-2 and GEX-3 proteins are

required for tissue morphogenesis and cell migrations in C. elegans. Genes Dev. 2002; 16: 620–632.

https://doi.org/10.1101/gad.955702 PMID: 11877381

51. Welchman DP, Mathies LD, Ahringer J. Similar requirements for CDC-42 and the PAR-3/PAR-6/PKC-3

complex in diverse cell types. Dev Biol. 2007; 305: 347–357. https://doi.org/10.1016/j.ydbio.2007.02.

022 PMID: 17383625

52. Lundquist EA, Reddien PW, Hartwieg E, Horvitz HR, Bargmann CI. Three C. elegans Rac proteins and

several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis.

Dev Camb Engl. 2001; 128: 4475–4488. PMID: 11714673

53. Shakir MA, Gill JS, Lundquist EA. Interactions of UNC-34 Enabled with Rac GTPases and the NIK

kinase MIG-15 in Caenorhabditis elegans axon pathfinding and neuronal migration. Genetics. 2006;

172: 893–913. https://doi.org/10.1534/genetics.105.046359 PMID: 16204220

54. Walck-Shannon E, Reiner D, Hardin J. Polarized Rac-dependent protrusions drive epithelial intercala-

tion in the embryonic epidermis of C. elegans. Dev Camb Engl. 2015; 142: 3549–3560. https://doi.org/

10.1242/dev.127597 PMID: 26395474

55. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular

mechanism. Nature. 1991; 349: 117–127. https://doi.org/10.1038/349117a0 PMID: 1898771

56. Li S, Prasanna X, Salo VT, Vattulainen I, Ikonen E. An efficient auxin-inducible degron system with low

basal degradation in human cells. Nat Methods. 2019; 16: 866–869. https://doi.org/10.1038/s41592-

019-0512-x PMID: 31451765
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