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ABSTRACT

We present a bright galaxy sample with accurate and precise photometric redshifts (photo-zs), selected using ugriZY JHKs photometry
from the Kilo-Degree Survey (KiDS) Data Release 4. The highly pure and complete dataset is flux-limited at r < 20 mag, covers
∼1000 deg2, and contains about 1 million galaxies after artifact masking. We exploit the overlap with Galaxy And Mass Assembly
spectroscopy as calibration to determine photo-zs with the supervised machine learning neural network algorithm implemented in
the ANNz2 software. The photo-zs have a mean error of |〈δz〉| ∼ 5 × 10−4 and low scatter (scaled mean absolute deviation of
∼0.018(1 + z)); they are both practically independent of the r-band magnitude and photo-z at 0.05 < zphot < 0.5. Combined with the
9-band photometry, these allow us to estimate robust absolute magnitudes and stellar masses for the full sample. As a demonstration of
the usefulness of these data, we split the dataset into red and blue galaxies, used them as lenses, and measured the weak gravitational
lensing signal around them for five stellar mass bins. We fit a halo model to these high-precision measurements to constrain the
stellar-mass–halo-mass relations for blue and red galaxies. We find that for high stellar mass (M? > 5 × 1011 M�), the red galaxies
occupy dark matter halos that are much more massive than those occupied by blue galaxies with the same stellar mass.

Key words. galaxies: distances and redshifts – catalogs – large-scale structure of Universe – gravitational lensing: weak –
methods: data analysis

1. Introduction

Galaxies are not distributed randomly throughout the Universe:
they trace the underlying dark matter distribution, which itself
forms a web-like structure under the influence of gravity in an
expanding universe. For a given cosmological model, the growth
of a structure can be simulated using cosmological numerical
simulations, and the statistical properties of the resulting mat-
ter distribution as a function of scale and redshift can thus be
robustly predicted. Given a prescription that relates their proper-
ties to the matter distribution, the observed spatial distribution
of galaxies can thus be used to infer cosmological parameter

? Data available from http://kids.strw.leidenuniv.nl/DR4/
brightsample.php

estimates (e.g., Percival et al. 2001; Cole et al. 2005; Alam et al.
2017, 2021).

The galaxy redshift is a key observable in such analyses,
and large spectroscopic surveys have therefore played an impor-
tant role in establishing the current cosmological model. For
large-scale clustering studies, it is advantageous to target spe-
cific subsets of galaxies rather sparsely because the survey can
cover larger areas more efficiently. Consequently, most current
results are based on redshift surveys that target specific galaxy
types, such as luminous red galaxies (LRGs; Dawson et al. 2013;
Blake et al. 2016). The downside of such strategies, however, is
that detailed information about the environment is typically lost.

In contrast, a highly complete spectroscopic survey can
only cover relatively small areas because fiber collisions or slit
overlaps prevent or limit simultaneous spectroscopy of close
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galaxies; repeat visits are required to achieve a high com-
pleteness. For studies of galaxy formation and evolution, this
can nonetheless be fruitful, as the Galaxy And Mass Assem-
bly survey (GAMA, Driver et al. 2011) has demonstrated (e.g.,
Gunawardhana et al. 2011; Robotham et al. 2011; Baldry et al.
2012). Although many of these applications rely on spectro-
scopic redshifts, several questions can still be addressed with less
precise (photometric) redshift information over large areas.

To study the connection between galaxy properties and the
dark matter distribution around galaxies, weak gravitational
lensing has become an important observational tool. The fore-
ground galaxies, which are embedded in dark matter dominated
halos, act as lenses that distort space-time around them, lead-
ing to correlations in the shapes of more distant galaxies. This
so-called (weak) galaxy-galaxy lensing (GGL) is used to study
the stellar-mass–halo-mass relation (e.g., Leauthaud et al. 2012;
Coupon et al. 2015; van Uitert et al. 2016) to examine the galaxy
bias (Hoekstra et al. 2002; Dvornik et al. 2018), or to test mod-
ified gravity theories (Tian et al. 2009; Brouwer et al. 2017).
Combined with measurements of the clustering of galaxies and
the cosmic shear signal, so-called 3× 2 pt analyses provide com-
petitive constraints on cosmological parameters (Abbott et al.
2018; Joudaki et al. 2018; van Uitert et al. 2018; Heymans et al.
2021). These applications rely on an overlapping sample of
lenses with precise redshifts and a background sample with a
large number of distant sources with reliable shape measure-
ments. The latter are improving thanks to large, deep, multi-
band imaging surveys that cover increasingly larger areas of
the sky, with the aim of measuring cosmological parameters
using weak gravitational lensing, such as the Kilo-Degree Sur-
vey (KiDS, de Jong & Verdoes 2013), the Dark Energy Sur-
vey (DES, The Dark Energy Survey Collaboration 2005), and
the Hyper-Suprime Cam Subaru Strategic Program (Aihara et al.
2018).

In this paper we focus on KiDS, which covers 1350 deg2 in
nine broadband filters at optical and near-infrared (NIR) wave-
lengths. Unfortunately, the spectroscopic samples that overlap
with the survey only yield ∼110 lenses per square degree in
the case of the Baryon Oscillation Spectroscopic Survey (BOSS,
Dawson et al. 2013), and ∼40 deg−2 for the 2-degree Field Lens-
ing Survey (2dFLenS, Blake et al. 2016). They jointly cover the
full final KiDS area of 1350 deg2, and they have been exploited
to test general relativity (Amon et al. 2018; Blake et al. 2020)
and to constrain cosmological parameters (Joudaki et al. 2018;
Heymans et al. 2021; Tröster et al. 2021), but their low number
density limits the range of applications.

In contrast, GAMA provides a much denser sampling of
up to 1000 lenses per deg2 (albeit at a lower mean redshift
than BOSS or 2dFLenS), allowing for unique studies of the
lensing signal as a function of environment (e.g., Sifón et al.
2015; Viola et al. 2015; Brouwer et al. 2016; van Uitert et al.
2017; Linke et al. 2020), but its overlap with KiDS is limited
to ∼230 deg2. Hence for studies of the small-scale lensing sig-
nal, or studies of galaxies other than LRGs, we cannot rely on
spectroscopic-only coverage over the full KiDS survey area. For-
tunately, for many applications less precise photometric redshifts
(photo-zs) suffice (e.g., Brouwer et al. 2018), provided that the
actual lens redshift distribution is accurately known.

In Bilicki et al. (2018, B18 hereafter), we used the third
KiDS data release (DR3, de Jong et al. 2017) covering 450 deg2

and showed that by applying a limit of r . 20 to the imaging
data, it was possible to extract a galaxy sample with a surface
number density of ∼1000 deg−2 at a mean redshift 〈z〉 = 0.23.
Taking advantage of the overlap with GAMA spectroscopy, and

using optical-only photometry (ugri) available from KiDS DR3,
we obtained photo-zs that had a negligible bias with 〈δz〉 ∼
10−4 and a small scatter of σδz/(1+z) ∼ 0.022. These redshift
statistics were achieved by deriving photo-zs using a supervised
machine-learning (ML) artificial neural networks (ANN) algo-
rithm (ANNz2, Sadeh et al. 2016), which was trained on galax-
ies with spectroscopic redshifts (spectro-zs) in common between
KiDS and GAMA. Such a good photo-z performance was pos-
sible thanks to the very high spectroscopic completeness of
GAMA in its three equatorial fields (G09, G12, and G15): at
the limit of r < 19.8, only ∼1.5% of the targets (preselected
from SDSS) do not have a spectroscopic redshift measured there
(Liske et al. 2015). As GAMA is essentially a complete subset
of the much deeper KiDS dataset, restricting the latter to the flux
limit of the former allowed us to take full advantage of the main
supervised ML benefit: if a well-matched training set is avail-
able, then photo-zs derived with this technique is accurate and
precise.

Here we extend the successful analysis of B18 to a larger
area and broader wavelength coverage using the imaging data
from the fourth public KiDS data release (DR4; Kuijken et al.
2019). We improve upon the earlier results and derive statisti-
cally precise and accurate photo-zs for a flux-limited sample of
bright galaxies without any color preselection. The imaging data
cover about 1000 deg2 in nine filters, combining KiDS optical
photometry with NIR data from the VISTA Kilo-degree Infrared
Galaxy survey (VIKING, Edge et al. 2013). As shown in B18,
the addition of the NIR data should improve the photo-z per-
formance with respect to the earlier work. Following that pre-
vious study, we take advantage of the overlapping spectroscopy
from GAMA, which allows for a robust empirical calibration.
This leads to better individual redshift estimates for bright, low
redshift galaxies, both in terms of lower bias and reduced scat-
ter, compared to the default photo-z estimates that are provided
as part of KiDS DR4. Those photo-zs were derived with the
Bayesian Photometric Redshift approach (BPZ; Benítez 2000),
with settings optimized for relatively faint (r > 20) and high-z
cosmic shear sources, which makes them suboptimal for bright,
low-redshift galaxies (B18; Vakili et al. 2019).

Over the full KiDS DR4 footprint of ∼1000 deg2, we selected
a flux-limited galaxy sample, closely matching the GAMA depth
(r < 20), and we derived photo-zs for all the objects with 9-band
detections. We call this sample KiDS-Bright for short. The final
catalog includes about a million galaxies after artifact masking,
that is ∼1000 objects per square degree. The inclusion of the
NIR photometry reduces the photo-z scatter to σδz/(1+z) ∼ 0.018,
whilst still retaining a very small bias of |〈δz〉| < 10−3.

As a further extension of the previous results (B18),
we derived absolute magnitudes and stellar masses for the
KiDS-Bright sample, using the LePhare (Arnouts et al. 1999;
Ilbert et al. 2006) spectral energy distribution fitting software.
As an example of a scientific application of this dataset, we
present a study of the stellar-to-halo-mass relation using GGL,
where we split the sample into blue and red galaxies.

This paper is organized as follows. In Sect. 2 we describe
the data used: KiDS in Sect. 2.1, GAMA in Sect. 2.2, and the
selection of the KiDS-Bright sample in Sect. 2.3. In Sect. 3 we
present the photometric redshift estimation, quantify the photo-z
performance (Sect. 3.1), and provide a model for redshift errors
(Sect. 3.2). In Sect. 4 we discuss the stellar mass and abso-
lute magnitude derivation, validate it with GAMA, and provide
details of the red and blue galaxy selection. We present the GGL
measurements using this sample in Sect. 5, compare them to
the signal from GAMA in Sect. 5.1, and use them to constrain
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the stellar-to-halo mass relation in Sect. 5.2. We conclude in
Sect. 6.

The paper is accompanied by the public release of the data
presented here1, including the photo-zs and estimates of physi-
cal properties for the full KiDS-Bright galaxy sample over the
∼1000 deg2 footprint of KiDS DR4.

2. Data and sample selection

2.1. KiDS imaging data

To select our galaxy sample, we used photometry in nine bands
from a joint analysis of KiDS (ugri) and VIKING (ZY JHKs)
data that form the fourth public KiDS data release (Kuijken et al.
2019)2. This combined data set, which we refer to as “KV”, cov-
ers an area of approximately 1000 deg2, limited by the KiDS
4-band observations obtained by January 24, 2018 (VIKING
had fully finished earlier). KiDS imaging was obtained with the
OmegaCAM camera (Kuijken 2011) at the VLT Survey Tele-
scope (Capaccioli et al. 2012), while VIKING employed the
VIRCAM (Dalton et al. 2006) on the Visible and Infrared Sur-
vey Telescope for Astronomy (VISTA, Emerson et al. 2006).

The imaging data were processed using dedicated pipelines:
the Astro-WISE information system (McFarland et al. 2013) for
the production of co-added images (“coadds”) in the four opti-
cal bands, and a theli (Erben et al. 2005) r-band image reduc-
tion to provide a source catalog suitable for the core weak
lensing science case. The VIKING magnitudes for KiDS DR4
were obtained from forced photometry on the theli-detected
sources, using a re-reduction of the NIR imaging that started
from the VISTA “paw-prints” processed by the Cambridge
Astronomical Survey Unit (CASU).

Photometric redshift estimates rely on robust colors, for
which we use the Gaussian Aperture and Photometry (GAaP,
Kuijken 2008) measurements, which in DR4 are provided for all
the bands. They are obtained via a homogenization procedure
in which calibrated and stacked images are first “Gaussianized”,
that is the point-spread-function (PSF) is homogenized across
each individual coadd. The photometry is then measured using a
Gaussian-weighted aperture (based on the r-band ellipticity and
orientation) that compensates for seeing differences between the
different filters (see Kuijken et al. 2015 for more details). Our
ML photo-z derivation requires that magnitudes are available in
all of the filters employed. Hence we require that the sources
have data and detections in all nine bands.

The GAaP magnitudes are useful for accurate color esti-
mates, but they miss part of the flux for extended sources.
Various other magnitude estimates are, however, provided for
the r-band data. Here we use the Kron-like automatic aperture
MAG_AUTO and the isophotal magnitude MAG_ISO, as measured
by SExtractor (Bertin & Arnouts 1996). These are not cor-
rected for Galactic extinction and zero-point variations between
different KiDS tiles (unlike the published GAaP magnitudes).
To account for this, we define rKiDS

auto = MAG_AUTO + DMAG −
EXTINCTION_R (and analogously for MAG_ISO), where DMAG are
per-tile zero-point offset corrections, and the Galactic extinction
at the object position was derived from the Schlegel et al. (1998)
maps with the Schlafly & Finkbeiner (2011) coefficients. Where
unambiguous, we do not use the “KiDS” superscript.

1 Data available from http://kids.strw.leidenuniv.nl/DR4/
brightsample.php.
2 See http://kids.strw.leidenuniv.nl/DR4/index.php for
data access.

In order to separate galaxies from stars, we used three
star-galaxy separation indicators provided in the KiDS DR4
multiband dataset. The first one is the continuous CLASS_STAR
derived with SExtractor, ranging from 0 (extended) to 1
(point sources). The second separator is the discrete SG2DPHOT
classification bitmap based on the r-band detection image source
morphology (e.g., de Jong et al. 2015), which for instance is set
to 0 for galaxies and 1, 4, or 5 for stars. Lastly, also SG_FLAG
is a discrete star-galaxy separator that is equal to 0 for high-
confidence stars and 1 otherwise3.

The catalogs contain two flags that can be used to identify
problematic sources (artifacts). The first one is IMAFLAGS_ISO,
a bitmap of mask flags indicating the types of masked areas that
intersect with the isophotes of each source, as identified by the
Pulecenella software (de Jong et al. 2015). We require this
flag to be 0. The second flag is the KV multiband bit-wise MASK,
which combines Astro-WISE and theli flags for the KiDS
and VIKING bands4. It indicates issues with source extraction,
such as star halos, globular clusters, saturation, and chip gaps.
The recommended selection in DR4 is to remove sources with
(MASK& 28668) > 0. We did not apply this mask by default in
the final dataset, but instead we provide a binary flag indicating
whether an object meets this masking criterion or not.

In Sect. 5 we explain how we measured the lensing signal
around our sample of bright galaxies using shape measurements
that are based on the r-band images. The galaxy shapes were
measured using lensfit (Miller et al. 2013), which was calibrated
with image simulations described in Kannawadi et al. (2019).
Those are complemented with photo-z estimates based on an
implementation of the BPZ code (Benítez 2000). For further
details on the image reduction, photo-z calibration, and shape
measurement analysis for these background sources, we refer the
interested reader to Kuijken et al. (2019), Giblin et al. (2021),
and Hildebrandt et al. (2021).

2.2. GAMA spectroscopic data

The Galaxy And Mass Assembly survey (Driver et al. 2011)
is a unique spectroscopic redshift and multiwavelength photo-
metric campaign, which employed the AAOmega spectrograph
on the Anglo-Australian Telescope to measure galaxy spectra
in five fields with a total ∼286 deg2 area. Four of these fields
(equatorial G09, G12, and G15 of 60 deg2 each, and Southern
G23 of ∼51 deg2) fully overlap with KiDS, and we exploited
this to optimize the bright galaxy selection and calibrate the
photo-zs. Unique features of GAMA include the panchromatic
imaging, spanning almost the entire electromagnetic spectrum
(Driver et al. 2016; Wright et al. 2016), and the detailed red-
shift sampling in its equatorial fields: it is 98.5% complete for
SDSS-selected galaxies with r < 19.8 mag, providing an almost
volume-limited selection at z . 0.2, and it includes a sizable
number of galaxies up to z ∼ 0.5.

In our work we use the “GAMA II” galaxy dataset
(Liske et al. 2015) from the equatorial fields, which includes,
but is not limited to, the first three public GAMA data
releases. The GAMA targets for spectroscopy were selected
there from SDSS DR7 imaging (Abazajian et al. 2009), requir-
ing a Petrosian (1976) magnitude rPetro < 19.8. Only extended
sources were targeted, primarily based on the value of ∆sg =

3 See Kuijken et al. (2015) Sect. 3.2.1 for a description of this star-
galaxy separation.
4 See http://kids.strw.leidenuniv.nl/DR4/format.php#
masks for details.
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rpsf−rmodel (Strauss et al. 2002), where the two latter magnitudes
are the SDSS PSF and model r-band measurements, respec-
tively. To improve the point source removal further, the J−K
NIR color from the UKIRT Infrared Deep Sky Survey (UKIDSS,
Lawrence et al. 2007) was also used (Baldry et al. 2010).

In the equatorial fields, GAMA also includes sources fainter
than r = 19.8 and/or selected differently than the main flux
limited sample (“filler” targets; see Baldry et al. 2010, 2018;
Liske et al. 2015 for details). We used these in the KiDS photo-z
training together with the flux-limited sample, but not to cal-
ibrate the bright-end selection. KiDS also overlaps with the
southern G23 field, but the targets there were selected at a
brighter limit (i < 19.2) than in the equatorial areas, and they
were observed at a lower completeness. We therefore did not use
that field for our sample selection and photo-z calibration.

We used the equatorial fields of GAMA TilingCatv46, which
cover roughly 180 deg2 fully within the KiDS DR4 footprint.
To ensure robust spectroscopy, we required a redshift quality5

NQ ≥ 3 and limited the redshifts to z > 0.002 to avoid residual
contamination by stars or local peculiar velocities. Thus cross-
matching selected GAMA with KV imaging data yields over
189 000 sources with a mean redshift of 〈z〉 = 0.23. When unam-
biguous, by “GAMA”, from now on we mean this selection of
GAMA galaxies in the equatorial fields.

A small fraction (∼4500 in total) of GAMA galaxies do not
have counterparts in the KiDS multiband catalog. About 1300 of
these are located at the edges of the GAMA fields, where KV
coverage did not reach. The rest are scattered around the equato-
rial fields and include a considerable fraction of z < 0.1 galaxies,
of low surface brightness galaxies, and of GAMA filler targets.
These missing objects should not affect the analysis presented in
this paper.

In Sect. 4 we use the stellar mass estimates of GAMA galax-
ies for a comparison with our results from the KiDS-Bright cat-
alog. For this we employ the StellarMassesLambdarv20 dataset,
which includes physical parameters based on stellar popula-
tion fits to rest-frame u−Y SEDs, using Lambda Adaptive
Multi-Band Deblending Algorithm in R (LAMBDAR, Wright
2016) matched aperture photometry measurements of SDSS and
VIKING photometry (Wright et al. 2016) for all z < 0.65 galax-
ies in the GAMA-II equatorial survey regions. This sample con-
tains over 192 000 galaxies, with a median log(M?/M�) ∼ 10.6
assuming H0 = 70 km s−1 Mpc−1, and a range between the
1st and 99th percentile of (8.4; 11.2) in the same units. Here
and below by “log”, we mean the decimal logarithm, log10.
For further details on the GAMA stellar mass derivation, see
Taylor et al. (2011) and Wright et al. (2016).

2.3. KiDS-Bright galaxy sample

To ensure that the highly complete, flux-limited GAMA catalog
is the appropriate photo-z training set for the KiDS-Bright sam-
ple, the selection of the latter should mimic that of the former
as closely as possible. The differences between the KiDS and
SDSS photometry, filter transmission curves, as well as the data
processing of both surveys prevent an exact matching. In par-
ticular, Petrosian magnitudes were not measured by the KiDS
pipeline; even if they had been though, the different r-band PSF

5 GAMA galaxies with NQ < 3 are often fainter than the completeness
limit, so in principle they could be helpful in the KiDS-Bright sample
selection and calibration. However, their redshifts have lower than a
90% probability of being correct (Liske et al. 2015), and they are not
recommended for scientific applications.

(subarcsecond in KiDS versus median ∼1.3′′ in SDSS), and
depth (∼25 mag of KiDS versus ∼22.7 in SDSS) would mean
that the sources in common would on average have a much
higher signal-to-noise in KiDS. Due to the photometric noise
(Eddington bias, etc.), even applying the same cut to the same
magnitude type (if possible) would not result in the same selec-
tion for the two surveys.

Instead, we used the overlap with GAMA and designed an
effective bright galaxy selection from KiDS, aiming at a trade-
off between completeness and purity of the dataset. To select
only extended sources (galaxies), we verified how the three star-
galaxy separation metrics available in KiDS DR4 (CLASS_STAR,
SG2DPHOT and SG_FLAG) perform for the GAMA sources. We
found that the optimal approach is to jointly apply the follow-
ing conditions: CLASS_STAR < 0.5 and SG2DPHOT = 0 and
SG_FLAG = 1. These remove less than 0.5% of the matched
KiDS×GAMA rPetro < 19.8 galaxies, so this selection ensures a
completeness of more than ∼99.5%.

As far as the magnitude limit of the KiDS-Bright galaxy
selection is concerned, we verified which of the r-band magni-
tude types – AUTO or ISO – is the most appropriate for the selec-
tion. We find that ISO matches the SDSS Petrosian magnitude
slightly better: the median difference ∆iso ≡ rKiDS

iso − rGAMA
Petro '

−0.02 as compared to ∆auto ' −0.06. However, the scatter in
∆auto is smaller than in ∆iso: the former is more peaked (i.e., nar-
rower interquartile and 10- to 90-percentile ranges around the
median) than the latter. We therefore decided to use rauto < 20 for
the bright sample selection. This ensures a completeness level of
over 99% with respect to the GAMA r < 19.8 selection.

Figure 1 presents a comparison of the SDSS Petrosian and
KiDS AUTO r-band magnitudes for the galaxies in common with
GAMA, including those beyond the completeness limit of the
latter. The vertical and horizontal gray lines show the GAMA
flux limit and the cut we adopted for the selection of the KiDS-
Bright galaxy sample, respectively. The combination of rauto <
20 and the star removal results in an incompleteness in the galaxy
selection of ∼1.2% with respect to GAMA.

Quantifying the purity of the resulting KiDS-Bright sample
is more challenging as this formally requires a complete flux-
limited sample of spectroscopically confirmed galaxies, quasars,
and stars deeper than GAMA. As such a dataset is not available
at present, we assess the purity using indirect methods instead.
Possible contaminants are artifacts, incorrectly classified stars,
or quasars for which galaxy photo-zs may be inaccurate (espe-
cially if at high-z).

A small fraction of the bright sources have nonphysical or
otherwise spurious photo-zs (derived as described in Sect. 3),
that is zphot < 0 or zphot > 1; these constitute only ∼0.05% of
the sample after applying the default mask. The stellar contami-
nation should be minimal as we combined three flags for galaxy
selection, which should yield a robust classification for objects
detected with a high signal-to-noise ratio. Indeed, a cross-match
with the SDSS DR14 spectroscopic star sample (Abolfathi et al.
2018) yields only 170 matches out of ∼50 000 SDSS stars in
the KiDS-North area; extrapolated to KiDS-South, this would
imply a contamination of this type of at most 0.05%. Although
SDSS stars do not constitute a uniform and flux limited sample
at this depth, this still supports our expectation that the star con-
tamination should be negligible. We also do not expect quasars
to be significant and problematic contaminants: a similar cross-
match, but with SDSS DR14 spectroscopic quasars, results in
about 650 common sources, of which 90% have zspec < 0.5.
Matching the KiDS-Bright data with a much more complete,
photometrically selected sample of KiDS quasars derived by
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Fig. 1. Comparison between the KiDS rauto and the Petrosian r-band
from SDSS for galaxies in common between the two data sets. The
GAMA selection is based on the latter magnitude, whereas we used the
former to determine the flux limit of our galaxy sample. The relevant
magnitude limits are indicated with the gray lines, and the black diago-
nal is the identity line.

Nakoneczny et al. (2021), which covers the whole DR4 foot-
print, gives ∼1400 common objects, of which 90% have
zQSO

phot < 0.66 (the “QSO” superscript refers to the quasar photo-
z as derived in that work). Both of these tests suggest that the
possible contamination with high-z quasars is also a fraction of a
percent. The photo-zs of such residual quasars are worse than for
the general galaxy sample, but the very small number of them
does not influence the overall statistics and the quality of the
dataset.

Finally we examine the impact of KiDS-Bright objects that
are fainter than the completeness limit of GAMA, that is they
have rPetro > 19.8 (see Fig. 1). Following the analysis above,
these are most likely galaxies, and as such should not be con-
sidered contaminants, but they are not well represented by the
GAMA spectroscopic sample or, alternatively, not represented
at all. The photo-z estimates of such galaxies could be affected
by the fact that their calibration is based on the incomplete and
nonuniform sampling of GAMA filler targets beyond the nomi-
nal flux limit of the survey. On the other hand, the KiDS-Bright
objects beyond the GAMA limit, but with colors similar to those
included in the flux-limited spectroscopic sample, should still
attain reliable photo-zs.

One way to estimate the number of such faint-end sources is
to compare the catalogs for the GAMA equatorial fields. After
all the selections, the KiDS-Bright sample comprises less than
192 000 galaxies, whereas the GAMA sample, with rPetro < 19.8,
contains more than 182 000 objects. The difference of approxi-
mately 9000 objects provides an upper limit of ∼4.7% for galax-
ies that are not fully represented in the GAMA catalog. The
true fraction is likely below this number because only galax-
ies with misestimated photo-zs based on extrapolation beyond
GAMA should be considered as potentially problematic. Their
number is difficult to estimate without a comparison against a
complete flux-limited galaxy spectroscopic sample, deeper than
GAMA and overlapping with KiDS. Such a dataset is presently
unavailable; we can, however, estimate how many of the KiDS-
Bright galaxies are similar to GAMA “filler” targets. In the

cross-matched KiDS×GAMA sample, there are about 4800
GAMA fillers with rPetro > 19.8 out of the ∼146k selected in
the same way as the KiDS-Bright (rauto < 20 plus the galaxy
selections and masking detailed above); this yields about 3.3%.
The photo-z performance of such a filler sample is worse, but
not catastrophic: their 〈δz〉 ' 1.6 × 10−3 and σz ' 0.024(1 + z)
at a mean redshift of 〈z〉 = 0.33. For those KiDS-Bright galaxies
which are not represented in GAMA at all, we cannot reliably
estimate the overall photo-z performance: deeper spectroscopic
samples overlapping with KiDS are not sufficiently complete.

To summarize, we estimate that the KiDS-Bright sample has
a very high purity level close to 100%, as contamination from
stars, high-redshift quasars, or artifacts is at a small fraction
of a percent. There is, however, an inevitable mismatch with
GAMA flux-limited selection, with up to 3% of the galaxies
in KiDS-Bright not being fully represented by GAMA spec-
troscopy. These could potentially have photo-zs based on ML
extrapolation that are less reliable.

3. Photometric redshifts

To obtain photo-z estimates that are optimized for our sample
of bright low-redshift galaxies, we took advantage of the large
amount of spectroscopic calibration data. To do so, we used
supervised ML in which a computer model (based on ANNs in
our case) learns to map the input space of “features” (magni-
tudes) to the output (redshift) based on training examples, which
in our case are the KiDS galaxies with a GAMA spectro-z. The
trained model was subsequently applied to the entire “infer-
ence” dataset, which in our case is the galaxy sample selected
as described in Sect. 2.3.

Similarly to B18, we used the ANNz2 software6 (Sadeh et al.
2016) to derive the photo-zs for the KiDS-Bright galaxy sam-
ple. This package implements a number of supervised ML mod-
els for regression and classification. Throughout this work, we
employed ANNz2 in the “randomized regression” mode, in
which a preset number (here: 100) of networks with random-
ized configurations is generated for each training, and a weighted
average is provided as the output. We trained ANNs using the
GAMA-II equatorial sources that overlap with KiDS DR4. We
verified that adding the Southern GAMA G23 data does not
improve the final photo-z statistics – G23 is shallower and less
complete than the equatorial data, and including it does not
add any new information in the feature space that the networks
could use to improve the photo-z performance. For similar rea-
sons, we did not employ other wide-angle spectroscopic data,
such as SDSS or 2dFLenS, to the training set. Those samples
include flux-limited subsets shallower and less complete than
GAMA, while at the fainter end they encompass only color-
selected galaxies, mostly red ones, which if employed in photo-z
training, would bias the estimates against blue sources.

The galaxies were used in various configurations for the
photo-z training, validation, and tests. To enable some level of
extrapolation by the ML model in the range of rPetro > 19.8 and
rauto < 20 (see Fig. 1), we did not limit them to the GAMA com-
pleteness cut. As the ANNs in our setup cannot handle missing
data, we require photometry in all nine bands, also for the tests
we discuss below. However, as the galaxies are much brighter
than the magnitude limits of both KiDS and VIKING, we only
lose ∼1500 objects out of a total of 189 000 spectroscopic
galaxies.

6 Available for download from https://github.com/Iftach-
Sadeh/ANNZ. We used version #2.3.1.
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Table 1. Statistics of photometric redshift performance for the KiDS-Bright sample and selected subsamples.

Sample Number of Mean Mean of Mean of St. dev. of SMAD of
galaxies redshift δz = zph − zsp δz/(1 + zsp) δz/(1 + zsp) δz/(1 + zsp)

Full KiDS-Bright (a) 1.24 × 106 0.226 1.2 × 10−4 6.7 × 10−4 0.0246 0.0180
After masking (b) 1.00 × 106 0.229 4.6 × 10−4 9.0 × 10−4 0.0237 0.0178
Red galaxies (c) 3.91 × 105 0.243 −2.7 × 10−4 2.0 × 10−4 0.0194 0.0159
Blue galaxies (c) 4.25 × 105 0.212 1.5 × 10−3 1.8 × 10−3 0.0274 0.0200
Luminous red galaxies (d) 7.18 × 104 0.305 1.1 × 10−3 1.1 × 10−3 0.0161 0.0141

Notes. The sample sizes refer to the full photometric selection. (a)Flux-limited galaxy sample (rAUTO < 20); see Sect. 2.3 for other details of the
selection. (b)Using the KiDS MASK flag, removing the sources meeting the condition (MASK& 28668) > 0 (bit-wise). (c)Selected using the r-band
absolute magnitude and rest-frame u−g color based on LePhare output; see Sect. 4 for details. (d)Selected using the Bayesian model detailed
in Vakili et al. (2020), jointly encompassing the “dense” and “luminous” samples. Numbers refer to the LRGs overlapping with the KiDS-Bright
sample and the photo-z statistics are based on the ANNz2 derivations.

In the testing phase, we randomly selected 33% of the galax-
ies with redshifts from GAMA as a joint training and validation
set, while the rest were used for testing. In all cases, the actual
validation set (used internally by ANNz2 for network optimiza-
tion) was randomly selected as half of the input training and
validation sample. For the final training of the photo-zs of our
bright galaxies, we used the entire cross-matched sample, again
with a random half-half split for actual training and validation
(optimization) in ANNz2. As shown in B18, these proportions
between training, validation, and test sets can be varied within
reasonable ranges without much influence on the results; we
dealt with sufficiently large samples to ensure robust statistics.

To evaluate the performance, we measured the “scatter”,
defined as the scaled median absolute deviation (SMAD) of
the quantity ∆z ≡ δz/(1 + ztrue) with δz ≡ zphot − ztrue and
SMAD(x) = 1.4826 × median(|x − median(x)|). As ztrue, we
used the spectro-zs from the test sample. In B18 we showed
that adding NIR VIKING magnitudes to the ugri-only setup
available in KiDS DR3 reduced the scatter of the photo-zs at
the GAMA depth by roughly 9%, from σz ' 0.022(1 + z) to
0.020(1 + z). The VIKING measurements employed there were
based on GAMA-LAMBDAR forced photometry (Wright et al.
2016), using SDSS apertures as input and without PSF cor-
rections that are applied in KV processing (Wright et al. 2019;
Kuijken et al. 2019). We therefore expect that the improved color
measurements in DR4 should reduce the errors even further.
Indeed, we find that the scatter of 9-band KiDS DR4 photo-
zs for our bright galaxies is further reduced with respect to the
KiDS DR3 + LAMBDAR VIKING statistics, in total by ∼18%
from the DR3 ugri-only derivation (see Table 1 below). We also
verified that omitting any of the 9 bands worsens the perfor-
mance. None of the VIKING bands stand out, which is expected,
because for the redshifts covered by GAMA (z < 0.5), the NIR
data do not trace clear features in the spectrum; rather they sam-
ple the Rayleigh-Jeans tail, and thus each of the VIKING bands
adds a similar amount of information.

The photo-zs could be potentially improved if additional fea-
tures are included in the training. In B18 we studied this in
detail for a similar bright sample of galaxies, and found that
adding colors (magnitude differences) and galaxy angular sizes
(semi-axes of best-fit ellipses) did lead to better photo-z esti-
mates, compared to the magnitude-only case. For the 9-band
data, however, there are 36 possible colors and feeding the
ANNs with all of them, together with the magnitudes, would be
very inefficient without specific network optimization each time;
some prior feature importance quantification to choose the most

relevant subset would be needed. This is beyond the scope of
this work and therefore we limit the photo-z derivation to mag-
nitudes only. Unlike B18, we decided not to use any size infor-
mation because the available estimates are not PSF-corrected.
Using the uncorrected sizes could introduce a systematic vari-
ation of photo-z quality with the PSF at a source position. As
one of the applications of the KiDS-Bright sample is to use it
for cosmological measurements, we decided to employ only the
PSF-corrected GAaP magnitudes for redshift estimation.

As already mentioned in Sect. 2.1, each KiDS object is
assigned a MASK flag, indicating issues with source extraction.
The default masking, used to create the KiDS-1000 weak lens-
ing mosaic catalogs, is to remove the sources matching bit-wise
the value 28 668. We checked the importance of this masking for
photo-z quality by performing two ANN trainings: one includ-
ing all the training sources with any mask flag, and another one
where only the sources with the default masking were used. For
each of the cases, the performance was evaluated using the same
blind test set. We did not observe any difference between the
photo-z statistics for the two training cases. Our interpretation is
that the ANNs are able to “learn” the noise related to the MASK
flag. By ignoring this flag in the training phase, they are still able
to robustly estimate photo-zs. At the same time, as far as the eval-
uation is concerned, there is a clear deterioration in the photo-
z performance for the sources that should be masked out with
respect to those that pass the default selection, for both train-
ing setups. Motivated by these findings, we ignored the MASK
value for the training set for the final sample. We however pro-
vide a flag with our photo-z estimates that indicates which of the
galaxies meet the condition (MASK& 28668) > 0 and should be
preferably masked out for science applications.

3.1. Photometric redshift performance

We compare the KiDS-Bright photo-zs with the overlapping
spectro-zs from GAMA in Fig. 2. The left panel shows that the
photo-zs are overestimated at low-z and underestimated at high-
z, which is common for ML approaches. Nonetheless, the overall
performance is excellent, with a low average bias and a small and
near constant scatter as a function of redshift.

The redshift distributions presented in the right panel of
Fig. 2 indicate that for the matched KiDS×GAMA galaxies,
dN/dzphot (blue dashed line) closely follows the general shape
of the true dN/dzspec (red bars), preserving even the “dip”
observed in GAMA at z ∼ 0.25 (emerging by chance due to
large-scale structures passing through the equatorial fields; e.g.,
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Fig. 2. Comparison of the KiDS-Bright photometric redshifts with the overlapping GAMA spectroscopic data. Left: direct spectro-z – photo-z
comparison. The thick red line is the running median of the function zphot(zspec) and the thin red lines illustrate the scatter (SMAD) around the
median. The black dashed line shows the identity. Right: comparison of redshift distributions of the GAMA spectroscopic training set (red bars),
photo-zs for the common KiDS×GAMA sources (blue dashed line), and the full KiDS-Bright photo-z sample (black line). The histograms are
normalized to the unit area.

Fig. 3. Photometric redshift errors in the KiDS-Bright sample as a function of photo-z (left) and of the KiDS r-band AUTO magnitude (right),
calibrated on overlapping GAMA data. Each dot is a galaxy, with contours overplotted in the highest number density areas. The thick red line
is the running median and the thin red lines illustrate the scatter (SMAD) around the median. The stripes in the left panel originate from the
large-scale structures present in the GAMA fields.

Eardley et al. 2015). As far as the redshift distribution of the full
photometric sample is concerned (black solid line), we observe
some piling up of photo-zs at the very same range where the
GAMA dip is present, but also at zphot ∼ 0.35. This might be the
result of the extrapolation by ANNz2 in the regime rauto ∼ 20,
where sources can be fainter than the GAMA completeness limit
(Fig. 1), or for sources that are for some other reason under-
represented in GAMA (as discussed in Sect. 2.3).

To illustrate the KiDS-Bright photo-z performance in more
detail, we show the redshift errors δz/(1 + z) as a function of
photo-z and r-band magnitude in Fig. 3. The errors show lit-
tle dependence on the r-band magnitude or photometric red-
shift, except for the range zphot < 0.05. Since at this redshift
range the number density of the photometric KiDS galaxies is
very small, and as it is additionally very well covered by wide-
angle spectroscopic samples such as SDSS Main (Strauss et al.
2002), 6dFGS (Jones et al. 2009), and GAMA itself, this worse
photo-z performance is irrelevant for scientific applications of
the KiDS-Bright sample. We however recommend using only
the zphot > 0.05 sources; this cut affects less than 1% of the sam-
ple. At the high-redshift end of the dataset, zphot & 0.4, both
the KiDS-Bright and GAMA calibration samples become very

sparse (Fig. 2). However, the photo-z quality remains compa-
rable to the rest of the dataset (Fig. 3), so the galaxies with
zphot . 0.5 should be safe for scientific applications once the
flux-limited character of the sample is taken into account.

The fact that the photo-zs are practically unbiased as a func-
tion of the photo-z is typical for ML-based derivations, as the
algorithms usually search for the best-fit solution for the photo-
zs as calibrated on known spectro-zs. As the redshift distribu-
tion is not constant but has a well-defined maximum (especially
for flux-limited samples such as ours), this then leads to an
inevitable bias as a function of spectro-z at the extremes of the
coverage, as already illustrated in Fig. 2. However, in most appli-
cations it is important to be able to select in photo-z and calibrate
the true redshift distribution of a given sample a posteriori (e.g.,
in photo-z bins). For this, knowledge of the photo-z error dis-
tribution (discussed below in Sect. 3.2) plus the dN/dzphot are
usually sufficient to build a reliable model.

The relative paucity of zspec ∼ 0.25 galaxies in the GAMA-
equatorial data, used here for the photo-z training, is caused
by a large-scale structure in these fields. This could potentially
affect our redshift estimates if it was spuriously propagated by
ANNz2. As we have already pointed out, this dip is correctly
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reproduced in the dN/dzphot of the matched GAMA×KiDS sam-
ple, but it is not present in the overall photo-z distribution of
the full KiDS-Bright sample. This suggests that the training is
not significantly affected. As an additional test, we compared
dN/dzspec and dN/dzphot of a cross-match between KiDS-Bright
and spectroscopic redshifts in the Southern GAMA G23 field,
in which such a lack of z ∼ 0.25 sources is not observed. As
mentioned earlier, the latter dataset was not used for the photo-
z training because it is shallower and less complete than the
GAMA-equatorial data. A comparison of the redshift histograms
shows no spurious lack of photo-zs at z ∼ 0.25. Nonetheless,
close inspection of the left-hand panel of Fig. 3 does suggest
some variation in photo-z performance in this range; a similar
effect is also observed in a zspec versus δz comparison. Such
“wiggles” in the photo-z error as a function of redshift are still
present if the G23 data are added to the ANNz2 training. How-
ever, for the current and planned applications of the KiDS-Bright
sample, these issues are not significant. Nonetheless, this might
need revisiting for future analyses with the full-area KiDS DR5
data.

Table 1 provides basic photo-z statistics for our KiDS-Bright
sample. We list the total number of sources, their mean redshift,
as well as photo-z bias and scatter (evaluated on overlapping
GAMA spectroscopy). Comparison of the statistics for the full
KiDS-Bright sample with that after masking demonstrates that
masking improves the photo-z statistics somewhat; interestingly,
it also slightly enlarges the mean redshift. We also report results
when the sample is split by color based on the r-band absolute
magnitude and the rest-frame u−g color, derived with LePhare,
as detailed in Sect. 4. With the adopted split, the red galaxies are
slightly less numerous than the blue ones, but their photo-z per-
formance is noticeably better.

For reference we also provide the results for the galaxies that
overlap with the LRG sample from Vakili et al. (2020), but using
our ANNz2 redshift estimates. This particular subsample stands
out with SMAD(∆z) ∼ 0.014, albeit with a slightly larger overall
bias of 〈δz〉 ∼ 10−3, which is still over an order of magnitude
smaller than the scatter. These values are comparable to those
obtained in Vakili et al. (2020) using the dedicated red-sequence
model, which confirms the excellent quality of our photo-zs. The
blue galaxies, despite performing worse overall in terms of their
photo-z statistics, still have very well constrained redshifts with
SMAD(∆z) ' 0.02. For the blue and red galaxies, we find similar
trends as the ones presented in Fig. 3 for the full sample, albeit
with different levels of scatter.

The quality of photo-zs can vary as a function of various sur-
vey properties. In Appendix A we present a short summary of
the photo-z error variation for the KiDS-Bright sample versus a
number of both KiDS-internal (PSF, background, and limiting
magnitudes) and external (star density and Galactic extinction)
observational effects. We find that both the photo-z bias and scat-
ter are generally stable with respect to these quantities.

As mentioned earlier, the photo-z performance could poten-
tially be improved if we additionally used galaxy colors, sizes,
or other measurements correlated with redshift (e.g., B18).
Some other avenues to explore here are to employ dedicated
photometry, which is targeted better at apparently bright and
large galaxies, such as those in our sample; this exists already
for the GAMA fields (Bellstedt et al. 2020) and will be avail-
able for the entire KiDS footprint from the 4MOST WAVES
team (Driver et al. 2019). One could also inspect other empir-
ical photo-z methods, for instance the “scaled flux matching”
(Baldry et al. 2021) or even deep learning techniques (e.g.,
Pasquet et al. 2019). We plan to study these aspects in the final

Fig. 4. Histogram of photometric redshift errors in the KiDS-Bright
sample (magenta bars) fitted with a generalized Lorentzian (Eq. (1),
black line) with parameters a = 2.613 and s = 0.0149, compared to
best-fit Gaussian (orange) with σ = 0.0180. The top-right inset eluci-
dates the differences in the wings as seen in log-scaling.

KiDS data, as well as in the mocks resembling the KiDS-
Bright sample (van den Busch et al. 2020), to verify how much
improvement in the photo-zs we can still hope for.

3.2. Analytical model of the redshift errors

For a number of applications, such as angular clustering, GGL,
or cross-correlations with other cosmological tracers, it is useful
to have an analytical model of the photo-z errors, which can be
used in theoretical predictions (e.g., Balaguera-Antolínez et al.
2018; Peacock & Bilicki 2018; Hang et al. 2021). The photo-
metric redshift error distribution usually departs from a Gaussian
shape due to a considerable number of several-σ out-
liers and generally broader “wings” (e.g., Bilicki et al. 2014;
Pasquet et al. 2019; Beck et al. 2021). This is why SMAD, or
alternatively percentiles (e.g., Wolf et al. 2017; Soo et al. 2018;
Alarcon et al. 2021), are better suited to quantify the photo-z
scatter than the standard deviation, which is sensitive to out-
liers. Functional forms to fit the empirical photo-z error distri-
bution include the “modified Lorentzian” (Bilicki et al. 2014;
Peacock & Bilicki 2018; Hang et al. 2021) or the Student’s
t-distribution (Vakili et al. 2020). The former is provided by
(Bilicki et al. 2014)

N(∆z) ∝
(
1 +

∆z2

2as2

)−a

, (1)

where we have assumed that the photo-zs are on average unbi-
ased, which is a good approximation in our case as 〈∆z〉 �
SMAD(∆z) (see Table 1). This can be easily generalized to
the case of non-negligible bias by introducing an extra param-
eter (Hang et al. 2021). In Eq. (1), the parameter s is related
to the width of the distribution, while a encodes the extent of
the wings. We note that both a and s can be parameterized as
photo-z-dependent to build an analytical model of redshift error
(Peacock & Bilicki 2018).

We used Eq. (1) to fit the photo-z error distribution in the
KiDS-Bright sample and find the best-fit parameters to be a =
2.613 and s = 0.0149. Qualitatively, this is indeed a very good
fit to the ∆z histogram, as illustrated in Fig. 4, clearly outper-
forming the best-fit Gaussian with σ = 0.0180 (also assuming
an average zero bias). The inset, with a log-scale to highlight
the wings, shows that the Gaussian fails to account for the out-
liers. We do not quantify the goodness of fit of the two models
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as we do not have meaningful information on the errors on the
∆z histogram.

Such an empirical shape for the photo-z error distribution
could be the result of combining galaxy populations with differ-
ent redshift precision, as illustrated in Table 1 for the red and
blue selections. We have however verified that for both these
galaxy subpopulations, selected as described in Sect. 4 below,
their respective ∆z distributions are also better fitted with the
modified Lorentzian Eq. (1) than with a Gaussian. Similarly, as
shown in Vakili et al. (2020), photo-zs for luminous red galax-
ies, albeit derived with a different approach, also display a non-
Gaussian error distribution. This might indicate that such an
error distribution is an inevitable outcome of at least some empir-
ical photo-z methodologies.

4. Stellar masses and rest-frame absolute
magnitudes

We estimate a number of rest-frame properties for each KiDS-
Bright galaxy in the same manner as was done for the full-
depth KV data within the DR3 footprint (KV450, Wright et al.
2019). We did this by fitting model spectral energy distribu-
tions (SEDs) to the 9-band GAaP fluxes of each galaxy using
the LePhare (Arnouts et al. 1999; Ilbert et al. 2006) template
fitting code. In these fits, we employed our ANNz2 photo-
z estimates as input redshifts for each source, treating them
as if they were exact. In practice, this has little influence
on the fidelity of the stellar mass estimates (see Taylor et al.
2011). We used a standard concordance cosmology (Ωm = 0.3,
ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1), a Chabrier (2003)
initial mass function, the Calzetti et al. (1994) dust-extinction
law, Bruzual & Charlot (2003) stellar population synthesis mod-
els, and exponentially declining star formation histories. The
input photometry to LePhare was extinction corrected using
the Schlegel et al. (1998) maps with the Schlafly & Finkbeiner
(2011) coefficients, as described in Kuijken et al. (2019). For the
optical VST bands, we utilized the filter profiles measured at the
center of the field of view, available from the ESO webpages7.
For the NIR VISTA data, we used the averaged filter profile of
all 16 filter segments per band (Edge et al. 2013).

The LePhare code returns a number of quantities for each
source, detailed in Appendix C. The best-fit MASS_BEST is the
one that should be used as the estimate of galaxy’s stellar mass;
this quantity is available for almost all KiDS-Bright objects,
except for a few hundred which have unreliable photo-zs (e.g.,
zphot < 0). When using these stellar mass estimates, it is however
important to take into account the “flux scale correction” related
to the fact that the GAaP magnitudes used by LePhare under-
estimate fluxes of large galaxies. The correction that we used is
based on the difference between the AUTO and GAaP r-band
magnitudes (see Eq. (C.1)) and it was added to the logarithm of
the stellar mass estimate given by MASS_BEST (Eq. (C.2)).

The code also outputs MASS_MED, which is the median of
the galaxy template stellar mass probability distribution func-
tion. This quantity can take a value of −99, which indicates
that a galaxy was best-fit by a non-galaxy template; although,
the MASS_BEST value still reports the mass from the best-fitting
galaxy template. In some cases this could highlight stellar con-
tamination for sources that are best-fit by a stellar template and
additionally have a small flux radius, and this could be even
used for star-galaxy separation (see the related discussion in

7 https://www.eso.org/sci/facilities/paranal/
instruments/omegacam/inst.html

Fig. 5. Comparison of the derived stellar masses between the photo-
metric KiDS-Bright sample (this work) and the spectroscopic GAMA
dataset for galaxies common to both catalogs. The light gray to black
scaling illustrates the bulk of the sample, while the outliers where the
number density is smaller, are shown with individual large gray dots.
The thick red line is the running median, and thin red lines illustrate the
scatter (SMAD).

Wright et al. 2019). This is, however, not a concern for our sam-
ple: out of over 270 000 objects with MASS_MED = −99, only a
few lie on the stellar locus. This further confirms the very high
purity level of the KiDS-Bright catalog, as already concluded in
Sect. 2.3.

The median stellar mass of the KiDS-Bright sample is
log(M?/M�) ∼ 10.5, with a range between the 1st and 99th
percentile of roughly 8.5 < log(M?/M�) < 11.4. In order
to assess the quality of these stellar mass estimates, we com-
pared them with the GAMA stellar mass catalog (Taylor et al.
2011; Wright et al. 2016), introduced in Sect. 2.2. First of all,
it is worth noting that the overall distributions of the stel-
lar masses (normalized histograms of dN/d(log M?)) are very
similar, and in particular their maximum (mode) is at ∼10.75
in both cases. Cross-matching the two samples gives about
145 000 galaxies with stellar masses from both KiDS-Bright
and GAMA. We compare these directly in Fig. 5, where we
also plotted the running median relation together with the corre-
sponding SMAD (respectively thick and thin red lines). We see
that the relation is within ∼1σ from the identity line (dashed)
over a wide range in stellar mass and significantly departs from
it only at the tails of the distribution. On average, the KiDS-
Bright stellar mass estimates are smaller than those of GAMA by
∆log M? ≡ log MKiDS

∗ − log MGAMA
∗ = −0.09± 0.18 dex (median

and SMAD). Such an overall bias between the former and the
latter is expected: while our flux-scale correction is meant to
compensate for the flux missed by the GAaP measurements with
respect to auto magnitudes, an analogous correction in GAMA
serves to account for a flux that falls beyond the finite SDSS-
based auto aperture used for the SEDs.

Nonetheless, the overall consistency is remarkable, given
that the stellar masses were determined using different data
and methodology: GAMA employed spectroscopic redshifts
together with LAMBDAR photometry from SDSS+VIKING u
to Y bands, while we used photo-zs and GAaP KiDS+VIKING
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Fig. 6. Distribution of the u−g rest-frame color versus absolute r-band
magnitude for the KiDS-Bright galaxy sample, based on LePhare
derivations with ANNz2 photo-zs as input redshifts. We used the loca-
tion of the green valley to derive an empirical split into red and blue
galaxies above the upper dashed and below the lower dashed lines,
respectively.

u to Ks measurements. While the GAMA stellar masses cannot
be treated as the “ground truth” due to inevitable systematics
in the modeling, it is worthwhile to explore trends in the stel-
lar mass differences between the two data sets. We observe no
significant trend of ∆log M? with magnitude or with color. Not
surprisingly, the use of photo-zs does affect the performance for
galaxies, especially at very low redshifts (zspec . 0.07).

In general, we observe a linear trend in ∆log M? with
δz/(1 + z). If we account for this trend, the SMAD in ∆log M?

is ∼0.17 dex, that is ∼9% lower than for the entire matched sam-
ple; this difference can be regarded as the effective increase in
the scatter between GAMA and KiDS-Bright stellar mass deriva-
tions due to the photo-zs only. Overall, we find that the results
are robust, with roughly constant scatter, if we select galaxies
with zphot > 0.1, for which the SMAD in ∆log M? reduces to
∼0.17 dex. Therefore we restrict the GGL analysis presented
in the next section to this redshift range; the removed galaxies
would not be of much importance for the lensing analysis in any
case.

We used the absolute r-band magnitude and the rest-frame
u−g color derived with LePhare (employing the ANNz2 photo-
zs as input redshifts) to select red and blue galaxies based on an
empirical cut through the green valley in the color-magnitude
diagram. We identified the ridge of the blue cloud to define the
slope and locate the minimum at the absolute magnitude of Mr =
−19. This results in a line that delimits the red and blue sample:

u−g = 0.825−0.025 Mr. (2)

Based on this cut, we define our red sample as those galaxies
whose u−g color is at least 0.05 mag above the cut line and the
blue sample as those whose color is at least 0.05 mag below
the line. The color-magnitude distribution and the cut through
the green valley are shown in Fig. 6. The photo-z statistics for
the red and blue galaxies defined this way have been presented
in Sect. 3; below in Sect. 5, we use this split as well as the stellar
masses in GGL measurements.

5. Galaxy-galaxy lensing measurements

As shown in the previous section, the excellent photometric red-
shift estimates for the galaxies in the KiDS-Bright sample allow
for robust estimates of their physical characteristics, in partic-
ular the stellar mass. In this section we combine this informa-
tion with accurate shape measurements for more distant KiDS
sources from Giblin et al. (2021) to measure the GGL signal. We
first compared the lensing signal for a similar selection of lenses
from GAMA and KiDS around the mode of the stellar mass dis-
tribution. We then split the sample of bright lens galaxies into
blue and red subsamples (see Sect. 4 and Fig. 6), which were
subsequently subdivided by stellar mass. To quantify the weak
gravitational lensing signal, we used source galaxies from KiDS
DR4 with a BPZ photo-z in the range 0.1 < zB < 1.2.

The lensing signal of an individual lens is too small to be
detected, and hence we computed a weighted average of the tan-
gential ellipticity εt as a function of projected distance rp using
a large number of lens-source pairs. In the weak lensing regime,
this provides an unbiased estimate of the tangential shear, γt,
which in turn can be related to the excess surface density (ESD)
∆Σ(rp), defined as the difference between the mean projected sur-
face mass density inside a projected radius rp and the mean sur-
face density at rp.

We computed a weighted average to account for the varia-
tion in the precision of the shear estimate, captured by the lensfit
weight ws (see Fenech Conti et al. 2017; Kannawadi et al. 2019,
for details), and the fact that the amplitude of the lensing sig-
nal depends on the source redshift. The weight assigned to each
lens-source pair is

w̃ls = ws

(
Σ̃−1

cr,ls

)2
, (3)

the product of the lensfit weight ws and the square of Σ̃−1
cr,ls – the

effective inverse critical surface mass density, which is a geo-
metric term that downweights lens-source pairs that are close in
redshift (e.g., Bartelmann & Schneider 2001).

We computed the effective inverse critical surface mass den-
sity for each lens using the photo-z of the lens zl and the full
normalized redshift probability density of the sources, n(zs). The
latter was calculated by employing the self-organizing map cal-
ibration method, originally presented in Wright et al. (2020),
and then applied to KiDS DR4 in Hildebrandt et al. (2021). The
resulting effective inverse critical surface density can be written
as follows:

Σ̃−1
cr,ls =

4πG
c2

∫ ∞

0
(1 + zl)2D(zl)

(∫ ∞

zl

D(zl, zs)
D(zs)

n(zs) dzs

)
p(zl) dzl,

(4)

where D(zl), D(zs), and D(zl, zs) are the angular diameter dis-
tances to the lens, source, and between the lens and the source,
respectively.

For the lens redshifts zl, we used the ANNz2 photo-zs of the
KiDS-Bright foreground galaxy sample. We implemented the
contribution of zl by integrating over the individual redshift prob-
ability distributions p(zl) of each lens. This method is shown to
be accurate in Brouwer et al. (2021). The lensing kernel is wide
and therefore the results are not sensitive to the small wings in
the lens redshift probability distributions (see Sect. 3.2). We can
thus safely assume that p(zl) can be described by a normal dis-
tribution centered at the lens’s photo-z, with a standard deviation
of σz/(1 + zl) = 0.018 (see Sect. 3). This simplification over the
better-fitted Lorentzian model (Eq. (1)) does not induce signifi-
cant biases in the present analysis as it will only lead to slightly
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underestimated errorbars of the lensing signal. In the future, as
the statistical power of such measurements increases, these types
of details might need to be taken into account, however.

For the source redshifts zs, we followed the method used in
Dvornik et al. (2018) by integrating over the part of the redshift
probability distribution n(zs) where zs > zl. Thus, the ESD can be
directly computed in bins of projected distance rp to the lenses
as follows:

∆Σgm(rp) =

∑ls w̃lsεt,sΣ
′
cr,ls∑

ls w̃ls

 1
1 + m

, (5)

where Σ′cr,ls ≡ 1/Σ̃−1
cr,ls, the sum is over all source-lens pairs in the

distance bin, and

m =

∑
i w′imi∑

i w′i
(6)

is an average correction to the ESD profile that has to be applied
to account for the multiplicative bias m in the lensfit shear esti-
mates. The sum goes over thin redshift slices for which m was
obtained using the method presented in Kannawadi et al. (2019),
weighted by w′ = ws D(zl, zs)/D(zs) for a given lens-source sam-
ple. The value of m is around −0.014, independent of the scale
at which it was computed.

We note that the measurements presented here are not cor-
rected for the contamination of the source sample by galaxies
that are physically associated with the lenses (the so-called boost
correction). The impact on ∆Σ is minimal, however, as a result of
the weighting with the inverse square of the critical surface den-
sity in Eq. (4) (see for instance the bottom panel of Fig. A.4 in
Dvornik et al. 2017). We also did not subtract the signal around
random points, which suppresses large-scale systematics and
sample variance (Singh et al. 2017; Dvornik et al. 2018). This
improves the robustness of the measurements on scales above
2 h−1 Mpc (Dvornik et al. 2018), which are not particularly rele-
vant in constraining the halo model and halo occupation distribu-
tion parameters, and mostly affect the bias present in the 2-halo
term, which we do not consider here (see Sect. 5.2).

5.1. Comparison with lenses from GAMA

As a first demonstration of the statistical power of the KiDS-
Bright sample for GGL measurements, and to verify the quality
of our photometrically selected lens sample, we directly com-
pared the stacked excess surface density profile, ∆Σ, with that of
lenses extracted from GAMA. For the comparison, we used the
stellar masses from the two respective surveys and defined a bin
of 0.5 dex around the mode of the log M? distribution, which in
both cases is ∼10.75. This selection of 10.5 ≤ log(M?/M�) ≤
11.0 gives about 68 000 galaxies in GAMA and 352 000 in
KiDS-Bright; in both cases, this is ∼35% of the full sample. The
resulting excess surface density ∆Σ, multiplied by the projected
distance from the lens rp to enhance the large-scale signal, is
presented in Fig. 7 as a function of rp.

The two measurements agree remarkably well, demonstrat-
ing that our photo-zs are sufficient for GGL studies. The small
differences in the central values in Fig. 7 most likely arise from
the inclusion of the whole KiDS-South area to the lensing study.
The reduction in uncertainties also agrees with our expectation:
for all scales, δ∆ΣGAMA/δ∆ΣKiDS ≈ 2.4, which reflects the fact
that the KiDS-Bright sample contains ∼5.6× more galaxies. We
also tested how much statistical power we lose by using photo-
zs. For this we extracted the lensing signal in the same way as for
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Fig. 7. Stacked excess surface density profiles, ∆Σ (multiplied
by the distance from the lens rp in megaparsecs), around lenses
with log(M?/M�) ∈ [10.5, 11.0]. The red points show results for
68 000 lenses selected from GAMA, whereas the blue points show the
signal around 352 000 lenses from the KiDS-Bright sample. The KiDS
measurements were shifted slightly to the right for clarity.

GAMA, namely using the point estimate of the redshift, without
its uncertainty (by dropping the integration over p(zl) in Eq. (4)).
We found that the statistical power is worsened by only ∼5%
when propagating the redshift uncertainty through to the final
lensing signal stack.

The precision improves slightly when the data for the full
survey area (1350 deg2) are included. This will make it possi-
ble to revisit the earlier study by Brouwer et al. (2018) of the
lensing signal of “troughs” and “ridges” in the density field of
KiDS galaxies, based on the much smaller catalog derived by
B18. The sample we present in this paper has already been
used in other analyses. Brouwer et al. (2021) selected isolated
galaxies to measure the radial gravitational acceleration around
them based on weak lensing measurements, thus extending the
so-called radial acceleration relation into the low acceleration
regime beyond the outskirts of the observable galaxies. The sam-
ple was also used by Johnston et al. (2021) as a test-bed for a new
method to mitigate observational systematics in angular cluster-
ing measurements, in which self-organizing maps are taught the
multivariate relationships between observed galaxy number den-
sity and systematic tracer variables. This was then used to create
corrective random catalogs with spatially variable number den-
sities, mimicking the systematic density modes in the data.

The improvement in statistical power will also allow for bet-
ter constraints on the halo model and the associated halo occu-
pation properties. The small-scale measurements accessible with
such a sample will provide better constraints on the galaxy bias
in the nonlinear regime and allow us to test our assumption about
the validity of the halo model. Finally, we anticipate that this
kind of wide-angle lens sample can improve cosmological con-
straints from multi-probe analyses employing GGL.

5.2. Stellar-to-halo–mass relation

As a further demonstration of the quality of our data, we used
the KiDS-Bright sample to explore the stellar-to-halo–mass
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Table 2. Overview of the number of lens galaxies, median stellar masses
of the galaxies, and median redshifts in each selected mass bin.

Bin log M? range Nred log M(red)
?,med z(red)

med

1 [9.5,10.0) 52 813 9.83 0.16
2 [10.0,10.4) 119 038 10.23 0.23
3 [10.4,10.8) 147 342 10.58 0.29
4 [10.8,11.2) 52 320 10.92 0.36
5 [11.2,11.6) 4342 11.28 0.43

Bin log M? range Nblue log M(blue)
?,med z(blue)

med

1 [9.5,10.0) 97 786 9.75 0.22
2 [10.0,10.4) 85 594 10.20 0.29
3 [10.4,10.8) 60 541 10.55 0.36
4 [10.8,11.2) 8839 10.88 0.40
5 [11.2,11.6) 428 11.31 0.41

Notes. Stellar masses are given in units of log
(
M?/[h−2 M�]

)
. The

median stellar masses are used as an estimate of the stellar contribu-
tion to the total lensing signal described as a point-like source.

relation (SHMR) for the blue and red galaxies separately. Earlier
GGL studies have shown that these differ (e.g., Hoekstra et al.
2005; Velander et al. 2014; Mandelbaum et al. 2016), which is
also seen in hydrodynamic simulations (e.g., Correa & Schaye
2020). Nonetheless there is no consensus in the literature yet
because other approaches have arrived at different conclusions
(see Wechsler & Tinker 2018, for a detailed overview and dis-
cussion). Some of the differences may arise from the stellar mass
estimates and the specific selection of the subsamples. For this
reason we do not compare our findings to the literature, but defer
such a detailed comparison to future work. Our aim is merely to
demonstrate the potential of our data for studies of the SHMR.

We split the KiDS-Bright sample by color using the cut
defined in Sect. 4 (see Fig. 6). We selected lenses with zphot > 0.1
and used our stellar mass estimates to subdivide the blue and
red galaxies into five stellar mass intervals, with the bin edges:
log

(
M?/[h−2 M�]

)
= {9.5, 10.0, 10.4, 10.8, 11.2, 11.6}. In this

section we give results in terms of an explicitly h-dependent
mass unit, as used in our modeling, rather than adopting the spe-
cific value h = 0.7, as used elsewhere. The properties of the
subsamples are reported in Table 2. For each stellar mass bin
of the two color selections, we measured the lensing signal as
described above, and the results are shown in Fig. 8. For all sub-
samples we detect a significant signal, demonstrating the value
of our bright galaxy selection.

To infer the corresponding halo masses, we need to fit a
model to the lensing signal. Numerical simulations show that the
dark matter distribution in halos is well described by an Navarro-
Frenk-White (NFW) profile (Navarro et al. 1997), but the signals
shown in Fig. 8, especially those of the red galaxies with low
stellar masses, show a more complex dependence with radius.
At large radii the lensing signal is enhanced by the clustering of
galaxies, whereas on small scales satellite galaxies contribute,
causing a wide “bump” around 1 Mpc.

The influence of neighboring galaxies can be reduced
by selecting “isolated” lenses, so that a simple model can
still describe the measurements. This approach was used by
Hoekstra et al. (2005) and Brouwer et al. (2021), but at the
expense of significantly reducing the lens sample size. Here,
inspired by the halo model (Seljak 2000; Cooray & Sheth 2002),
we estimate the mean halo mass of central galaxies as a function

of stellar mass by modeling the contributions of both central and
satellite galaxies jointly. The SHMR of central galaxies is param-
eterized using the following equation:

M?(Mh) = M0
(Mh/M1)γ1

[1 + (Mh/M1)]γ1−γ2
· (7)

This relation has an intrinsic scatter, and we assume that the
distribution of log(M?) at a fixed halo mass is a Gaussian
with a dispersion σc. It is important to include this intrinsic
scatter as it enables the model to account for Eddington bias
(Leauthaud et al. 2012; Cacciato et al. 2013).

The model itself is based on the halo model implementation
presented in van Uitert et al. (2016), but in our case we adopted
a separate normalization of the concentration of the dark mat-
ter density profile for central and satellite galaxies, a free nor-
malization of the two-halo term, and a fixed subhalo mass for
satellite galaxies. The free parameters that describe the lensing
signal around a galaxy with a given mass are thus the following:
the normalization of the concentration-mass relation for central
galaxies, fc; the normalization of the SHMR, M0; its character-
istic mass scale, M1; the low and high mass end slopes, γ1 and
γ2; and the normalization of the concentration-mass relation for
satellite galaxies, fs. We simply fit for the normalization of the
2-halo term, b, but did not aim to interpret its value.

The number density of halos of a given stellar mass is not
uniform, and this needs to be accounted for in the model. More-
over, in doing so, we need to distinguish between central and
satellite galaxies because the satellite fraction itself depends on
mass. To do so, we used the conditional stellar mass function
(CSMF), which we describe in more detail in Appendix B. This
introduces the following additional parameters: the high mass
slope of the Schechter function, αs, and the free parameters for
the normalization of the Schechter function used for satellite
galaxies, b1 and b2. Finally, we note that we assume that none of
the parameters depend on redshift and that the parameters of the
Schechter function are constrained by the lensing signal alone.

The model, as detailed in Appendix B, implicitly assumes
that we employed a complete volume-limited sample of lenses.
This is not the case here because the cut in apparent r-band
magnitude leads to incompleteness that is larger for low stel-
lar masses, with the selection of red galaxies affected the most.
A proper analysis, which is beyond the scope of our exploratory
study, would have to explicitly include the apparent magnitude
cut of the sample in the model. This is also required if one would
like to jointly model the GGL signal, the stellar mass function,
and the clustering signal.

The observed lensing signal is, however, most sensitive to the
average halo mass of the sample of lenses, so that the resulting
mean SHMR for central galaxies is expected to be close to the
true one. We stress, however, that the parameters that describe
the CSMF will be biased. To test this expectation, we examined
how the magnitude cut changes the stellar mass and halo mass
distributions. We used the MICEv2 simulations8 (Carretero et al.
2015; Crocce et al. 2015; Fosalba et al. 2015a,b) to select central
galaxies with 0.1 < z < 0.5, which we split into blue and red
samples. We used the definitions of stellar mass bins listed in
Table 2 and computed the corresponding mean stellar and halo
masses. We also repeated the measurements, after we applied
a cut in apparent magnitude, mr < 20, to mimic the selection
of the KiDS-Bright sample. As expected, the resulting stellar
mass functions are biased low for low stellar masses, with the red
galaxies being affected the most. In contrast, the changes in the

8 http://maia.ice.cat/mice/
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Fig. 8. Stacked excess surface density profiles, ∆Σ, of the red and blue lenses (points in corresponding colors) in our KiDS-Bright sample in the
four stellar mass bins labeled at the top. The lines indicate the best-fitting halo model, with contributions from both centrals and satellites (red
and blue lines with shaded bands enclosing the 68% credible intervals). We note that the model was fit to all stellar mass bins simultaneously, but
separately for the red and blue populations.

mean SHMR are small: the mean log(M?) is less than 0.05 dex
lower and the intrinsic scatter is not significantly affected either.
Given the uncertainties in the stellar masses themselves, we
therefore conclude that the magnitude cut has a negligible impact
on the inferred SHMR. Nonetheless, we defer a quantitative
interpretation of the results to future work.

We fit our model (see Appendix B for a summary) to the
lensing signal of each of the color-selected subsamples (that is,
a single model for all the stellar mass bins). The priors that we
used are listed in Table 3. Most priors are flat in the given ranges;
the instances with a Gaussian prior are indicated as N(x̄, σ(x)),
with mean x̄ and a standard deviation σ(x). In the fit we used
the bootstrap covariance matrix measured directly on the data
(for details see Viola et al. 2015; Dvornik et al. 2018), with the
correction from Hartlap et al. (2007) applied to account for noise
in the covariance matrix.

The best-fit parameters obtained with the Markov chain
Monte Carlo method (Foreman-Mackey et al. 2013) for the halo
model are reported in Table 3, and we show the corresponding
models in Fig. 8 as lines, with shaded areas indicating the uncer-
tainty. The reduced χ2

red of the halo model fit is 1.92 and 1.91
for the red and blue samples, respectively, with 48 degrees of
freedom. Although the χ2

red values are high, we note that our
model is only an effective description of the signal; our small
statistical uncertainties may already point to the need to improve
the modeling itself (e.g., Mead & Verde 2021; Sugiyama et al.

2020). The best-fit SHMR models and their uncertainties for
the red and blue samples are shown in Fig. 9. The data can-
not constrain the concentration normalization of blue central and
satellite galaxies, and for these parameters we recover their prior
ranges.

Our lensing results suggest that red galaxies with observed
stellar masses of M? < 5×1010 h−2 M� occupy dark matter halos
that are about a factor of two more massive than those of blue
galaxies with similar stellar masses. At the high mass end, how-
ever, the differences are larger and red galaxies at a given stel-
lar mass are found in much more massive halos. Qualitatively,
these results are in good agreement with the bimodality found
by Mandelbaum et al. (2016).

The accuracy of the stellar mass estimates from SED mod-
eling suffer from systematic uncertainties, arising from assump-
tions about the star formation history, the initial mass function,
or the photometry itself. Although our split by rest-frame color
might exacerbate such systematics, the difference we observe
is too large to be solely attributed to them. Nonetheless, a
more detailed investigation is needed before we can quantify the
various sources of bias more reliably. Moreover, as discussed
above, our model does not fully capture the impact of the mag-
nitude limit of the KiDS-Bright sample. Similarly, a quantita-
tive comparison with previous results (e.g., Velander et al. 2014;
Mandelbaum et al. 2016) requires a careful replication of their
sample selections and stellar mass determination.
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Table 3. Parameter space ranges and marginalized posterior estimates of
the free parameters used in our model, for both the red and blue sample.

Parameter Priors Red Blue

fc [0, 1] 0.993+0.002
−0.021 –

log(M0/[h−2 M�]) [7, 13] 10.39+0.14
−0.15 10.11+0.980

−0.087

log(M1/[h−2 M�]) [9, 14] 11.74+0.18
−0.20 11.78+0.59

−0.38

γ1 N(3, 3) 5.0+2.2
−1.6 2.1+1.0

−1.0

γ2 [0, 10] 0.47+0.17
−0.14 0.65+0.56

−0.50

σc [0.05, 2.5] 0.064+0.046
−0.014 0.28+0.36

−0.18

b [0.2, 5] 0.90+0.15
−0.11 0.73+0.26

−0.25

fs [0, 1] 0.56+0.29
−0.15 –

αs N(−1.1, 0.9) −1.286+0.121
−0.079 −0.75+0.23

−0.14

b1 N(0.0, 1.5) −0.65+0.12
−0.14 −0.42+0.41

−0.22

b2 N(1.5, 1.5) 0.97+0.18
−0.13 0.63+0.81

−0.61

Notes. M0 is the normalization of the stellar-to-halo mass relation
(SHMR); M1 is the characteristic mass scale of the same SHMR; fc
is the normalization of the concentration-mass relation; σc is the scatter
between the stellar and halo mass; γ1 and γ2 are the low and high-mass
slopes of the SHMR; fs is the normalization of the concentration-mass
relation for satellite galaxies; and αs, b0, and b1 govern the behavior of
the satellite galaxies. As the parameters fc and fs of the blue sample
are not constrained and they recover the prior ranges, we do not pro-
vide their values. As discussed in the text, the parameters that describe
the CSMF are biased as a result of the cut in apparent magnitude that
defines the KiDS-Bright sample.

Fig. 9. Predicted halo mass as a function of the stellar mass for red and
blue galaxies from this study, using the halo model parameters listed in
Table 3.

6. Conclusions and future prospects

We selected a sample of bright galaxies using the 9-band pho-
tometry from KiDS DR4 (Kuijken et al. 2019) that closely
resembles the highly complete spectroscopic dataset from
GAMA (Driver et al. 2011). For an optimal completeness-purity
trade-off, we applied a KiDS magnitude limit of rauto < 20 and
employed three star-galaxy separation criteria based on KiDS
photometry. This resulted in a highly pure sample of galax-
ies that matches the properties of GAMA very well, with only
∼1% of the KiDS-Bright galaxies not represented with respect

to GAMA. The dataset probes the large-scale structure at a mean
redshift of 〈z〉 ' 0.23 and reaches up to z . 0.5, although with
decreasing completeness at these high redshifts due to its flux-
limited character.

The very good match between the two samples allowed us
to take full advantage of supervised machine learning regres-
sion and derive statistically accurate and precise photometric
redshifts for the entire KiDS-Bright catalog. To do so, we used
artificial neural networks implemented in the ANNz2 package
(Sadeh et al. 2016). The resulting photo-zs have a small scatter
of σz ∼ 0.018(1 + z) and a mean bias |〈δz〉| < 10−3. The photo-z
performance does not depend on the r-band magnitude nor on
the photo-z for 0.05 < zphot < 0.5. The photo-z error distribution
is close to Gaussian, but a generalized Lorentzian captures the
slightly broader wings better.

We exploited the nine-band coverage and the high-quality
photo-zs to derive robust absolute magnitudes, rest-frame col-
ors, and stellar masses using the LePhare SED-fitting tool
(Arnouts et al. 1999). We employed these derivations to split
the sample into red and blue galaxies based on the rest-frame
u−g color and absolute r-band magnitude. The red galaxies have
better photo-zs than the full sample, with σz ∼ 0.015(1 + z)
at the mean redshift 〈z〉 ∼ 0.27. Nonetheless, the photo-zs for
the blue galaxies are also excellent with |〈δz〉| ∼ 10−3 and
σz ∼ 0.019(1+z). This exquisite performance is achieved thanks
to the very complete coverage of the GAMA training set, which
is free of any color preselections.

A comparison of the stellar masses with independent esti-
mates from GAMA (Taylor et al. 2011; Wright et al. 2016)
shows excellent agreement, with ∆log M? ≡ log MKiDS

∗ −

log MGAMA
∗ = −0.09 ± 0.18 dex (median and SMAD). Our use

of photometric redshifts accounts for 9% of this scatter, demon-
strating the sample’s potential for scientific exploitation. As a
scientific verification of the KiDS-Bright dataset, we measured
the galaxy-galaxy lensing signal for galaxies with stellar masses
in the range 10.5 ≤ log M?/M� ≤ 11 and compared these
directly to a similar selection using GAMA only. The lensing
signals agree over two decades in angular separation, while the
uncertainties are a factor of ∼2.4 smaller for the sample of KiDS-
Bright lenses.

Motivated by this agreement, we measured the lensing sig-
nal around the blue and red galaxies in five stellar mass bins,
ranging from log

(
M?/h−2 M�

)
= 9.5 to 11.6, and we detected

significant signals in all cases. The measurements were fitted
with a model that includes both central and satellite galaxies
(e.g., Dvornik et al. 2018). Their relative contributions as a func-
tion of stellar mass are described using a conditional stellar
mass function. The resulting parameters, however, are biased,
because the KiDS-Bright magnitude limit leads to incomplete-
ness at low stellar masses, with the red sample being affected
the most. Fortunately, a comparison to a simulated catalog of
galaxies from MICEv2 suggests that the SHMR is not affected
significantly.

We used this model to constrain the SHMR for blue and
red galaxies separately. We find that blue and red galaxies with
observed stellar masses of M? < 5 × 1010 h−2 M� occupy dark
matter halos that are about a factor two more massive than
those of blue galaxies with similar stellar masses. For stel-
lar masses of M? & 1011 h−2 M�, the model predicts however
that the dark matter halos of red galaxies are much more mas-
sive than those of blue galaxies with the same stellar mass.
This result is in good qualitative agreement with similar find-
ings by Mandelbaum et al. (2016). A more detailed comparison,
however, is beyond the scope of this paper because it would

A82, page 14 of 19



M. Bilicki et al.: KiDS-Bright galaxy sample

also require a careful comparison of the stellar masses, whilst
accounting for differences in the sample selection.

Our results demonstrate the value of combining highly com-
plete spectroscopy with high-quality imaging data. In the com-
ing decade, further advances will be made on both fronts. Large
spectroscopic surveys will probe both larger volumes and fainter
galaxies than current wide-angle redshift catalogs, to the ben-
efit of the already existing imaging surveys. In the case of
KiDS, further improvements will be possible thanks to new
overlapping complete redshift samples deeper than GAMA,
such as the ongoing Deep Extragalactic VIsible Legacy Sur-
vey (DEVILS, Davies et al. 2018) that aims at a very complete
selection with a flux limit of Y < 21.2 in fields that partly
overlap with KiDS imaging. On a longer timescale, the 4-m
Multi-Object Spectroscopic Telescope (4MOST, de Jong et al.
2019) should deliver denser redshift coverage than GAMA over
the full KiDS area, in particular from its Wide-Area VISTA
Extragalactic (WAVES, Driver et al. 2019) and Cosmology Red-
shift Surveys (Richard et al. 2019).

Such larger and deeper spectroscopic data will be ide-
ally suited to exploit Stage-IV imaging surveys, such as
the Rubin Observatory’s Legacy Survey of Space and Time
(LSST Science Collaboration 2009) and Euclid (Laureijs et al.
2011). Those will cover areas more than 10× larger at a greater
depth than the Stage-III surveys such as KiDS. The resulting
increase in the statistical power will, however, require much
better handling of systematics, starting from those in the selec-
tion of lenses for GGL and 3× 2 pt analyses. Our study demon-
strates that one possible approach toward this goal is to extract
a well-characterized, flux-limited galaxy catalog, provided that
a matched spectroscopic subsample is available to calibrate this
selection and to estimate robust photometric redshifts. Such sam-
ples can be enhanced with deeper, yet less complete, photomet-
ric selections of luminous red galaxies (e.g., Rozo et al. 2016;
Vakili et al. 2020) and adaptive magnitude cuts as a function of
photo-z (Porredon et al. 2021) to probe a larger range of lens red-
shifts and luminosities.
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Appendix A: Dependence of photometric redshift
quality on survey systematics

Here we present how the photo-zs of the KiDS-Bright sample
described in Sect. 3 vary as a function of survey-related effects.
In Figure A.1 we show the photo-z bias and scatter (SMAD)
evaluated for a range of the following parameters:

– PSF FWHM (full width at half maximum) in the
r-band, in units of arcseconds, calculated using the
PSF_Strehl_ratio column in the catalog;

– PSF ellipticity in the r-band, obtained from the PSFe1 and
PSFe2 columns;

– Star density (projected), determined from the pixelated
number density map of bright stars in the second Gaia data
release (Gaia Collaboration 2018);

– Background residual counts in the centroid posi-
tions of the objects in the THELI-processed r-band
detection images, provided as BACKGROUND in the
catalog;

– Detection threshold above background in units of counts,
provided as THRESHOLD;

– E(B-V), Galactic dust extinction in the r-band,
derived from the Schlegel et al. (1998) maps with the
Schlafly & Finkbeiner (2011) corrections, provided as
EXTINCTION_r in the catalog; and

– MagLim, limiting magnitudes in the 9 KV bands, evaluated
at object position.

For more details on these quantities, please see Vakili et al.
(2020).

Fig. A.1. Photometric redshift quality (bias and scatter) as a function of KiDS-internal and external observational properties.
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Appendix B: Halo model

We modeled the halo occupation statistics using the con-
ditional stellar mass function (CSMF, as also presented by
Yang et al. 2008; Cacciato et al. 2013; van Uitert et al. 2016),
and we employed them to calculate the H functions used
in the halo model (Cacciato et al. 2013; van Uitert et al. 2016;
Dvornik et al. 2018). The CSMF, Φ(M?|Mh), specifies the aver-
age number of galaxies of stellar mass M? that reside in a halo
of mass Mh. In this formalism, the halo occupation statistics of
central galaxies are defined via the following function:

Φ(M?|Mh) = Φc(M?|Mh) + Φs(M?|Mh). (B.1)

In particular, the CSMF of central galaxies was modeled as a
log-normal,

Φc(M?|Mh) =
1

√
2π ln(10)σcM?

exp
[
−

log(M?/M∗c )2

2σ2
c

]
, (B.2)

and the satellite term as a modified Schechter function,

Φs(M?|Mh) =
φ∗s
M∗s

(
M?

M∗s

)αs

exp

− (
M?

M∗s

)2 , (B.3)

where σc is the scatter between stellar mass and halo mass and
αs governs the power law behavior of satellite galaxies. We note
that M∗c , σc, φ∗s , αs, and M∗s are, in principle, all functions of halo
mass Mh. We assume that σc and αs are independent of the halo
mass Mh. Halo masses are drawn from the halo mass function
for which we assume the Tinker et al. (2010) fitting function.
Inspired by Yang et al. (2008), we parameterize M∗c , M∗s , and φ∗s
as:

M∗c (Mh) = M0
(Mh/M1)γ1

[1 + (Mh/M1)]γ1−γ2
, (B.4)

M∗s (Mh) = 0.56 M∗c (Mh), (B.5)

and

log[φ∗s (Mh)] = b0 + b1(log m13), (B.6)

where m13 = Mh/(1013M�). The factor of 0.56 is also inspired
by Yang et al. (2008) and further tests by van Uitert et al. (2016)
have shown that using this assumption does not significantly
affect the results.

From the CSMF, it is straightforward to compute the halo
occupation numbers. The average number of galaxies with stel-
lar masses in the range from M?,1 ≤ M? ≤ M?,2 is thus given by
the following:

〈Nx|Mh〉 =

∫ M?,2

M?,1

Φx(M?|Mh) dM?, (B.7)

where x stands for either central or satellite. For the two compo-
nents, we can then write

Hx(k,Mh) =
〈Nx|Mh〉

nx
ũx(k|Mh), (B.8)

where ũx(k|Mh) are the normalized Fourier transforms of the
radial distribution of the central or satellite galaxies. For cen-
trals, we assume that ũx(k|Mh) = 1 and for satellites ũx(k|Mh) =

ũh(k|Mh) (the satellite distribution follows the dark matter). The
average number density nx follows from

nx =

∫ ∞

0
〈Nx|Mh〉 n(Mh) dMh, (B.9)

where n(Mh) is the halo mass function. For the dark matter we
have the following:

Hm(k,Mh) =
Mh

ρm
ũh(k|Mh), (B.10)

where ρm is the mean density of the Universe and ũh(k|Mh) is the
normalized Fourier transform of the NFW profile (Navarro et al.
1997). Using these ingredients, one can construct the follow-
ing 1-halo and 2-halo power spectra (see also Equations 5–7 in
van Uitert et al. 2016):

P1h
xy(k) =

∫ ∞

0
Hx(k,Mh)Hy(k,Mh) n(Mh) dMh (B.11)

and

P2h
xy(k) = Plin(k)

∫ ∞

0
dMh,1Hx(k,Mh,1) bh(Mh,1) n(Mh,1)∫ ∞

0
dMh,2Hy(k,Mh,2) bh(Mh,2) n(Mh,2), (B.12)

where bh(Mh) is the halo bias from Tinker et al. (2010) and
Plin(k) is the linear matter power spectrum. The full GGL power
spectrum is thus written as Pgm(k) = P1h

cm(k) + P1h
sm(k) + P2h

cm(k) +

P2h
sm(k), from which the ∆Σgm can be calculated using the fol-

lowing Fourier and Abel transforms (see also Equations 1–4 of
van Uitert et al. 2016):

ξgm(r) =
1

2π2

∫ ∞

0
Pgm(k)

sin kr
kr

k2 dk, (B.13)

Σgm(rp) = 2ρm

∫ ∞

rp

ξgm(r)
r dr√
r2 − r2

p

, (B.14)

where rp is the projected separation. We also define Σxy(< rp) as
its average inside rp:

Σgm(< rp) =
2
r2

p

∫ rp

0
Σgm(R′)R′ dR′, (B.15)

which we used to define the excess surface density (ESD)

∆Σgm(rp) = Σgm(<rp) − Σgm(rp). (B.16)

For completeness, we included the contribution of the stellar
mass of galaxies to the lensing signal as a point mass, so that
∆Σ

pm
gm(rp) = M?,med/πr2

p.

Appendix C: Details of released data

Here we provide a description of the columns for the KiDS-1000
bright galaxy sample data release available at http://kids.
strw.leidenuniv.nl/DR4/brightsample.php. It is sepa-
rated into the photometric redshift catalog and the LePHARE
derivations. The catalogs can be cross-matched by ID between
each other and with the KiDS Data Release 4 main dataset avail-
able from http://kids.strw.leidenuniv.nl/DR4/index.
php.

We provide a list of columns contained in the photometric
redshift catalog below:
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– ID: source identifier from the KiDS DR4 catalog.
– RAJ2000: right ascension (J2000).
– DECJ2000: declination (J2000).
– MAG_AUTO_calib: zero-point calibrated and extinction-

corrected Kron-like elliptical aperture magnitude in the
r band; MAG_AUTO_calib = MAG_AUTO + DMAG −
EXTINCTION_R.

– MAGERR_AUTO: RMS error for MAG_AUTO.
– zphot_ANNz2: photometric redshift derived with ANNz2.
– MASK: 9-band mask information.
– masked: binary flag, set to 0 for unmasked and to 1 for

masked objects. Use masked == 0 for the default selection.
We also provide a list of columns contained in the stellar mass
catalog below:

– ID: source identifier from the KiDS DR4 catalog.
– RAJ2000: right ascension (J2000).
– DECJ2000: declination (J2000).
– K_COR_x: the K-correction for the x-band.
– MAG_ABS_x: the absolute magnitude in the x-band.
– MABS_FILTx: the filter that is used for reference when com-

puting the MABS.
– CONTEXT: a bit flag that shows which photometric bands

were used in the fitting process. That is to say, if 9-
band information was employed, the bit flag is as fol-
lows: 111111111=1+2+4+8+16+32+64+128+256=511. If
a Z-band is missing, then the bit flag is as follows:
111101111=1+2+4+8+0+32+64+128+256=495.

– REDSHIFT: the redshift values used for the stellar mass com-
putation, in this case photo-zs derived with ANNz2.

– MASS_MED: the median of the galaxy template stellar mass
PDF measured by LePHARE. It is important to note the
galaxies with MASS_MED == -99 were best-fit by a non-
galaxy template, but the MASS_BEST value still shows the
best fitting galaxy template mass for them, nonetheless.

– MASS_INF: the lower-limit on the stellar mass from the
galaxy mass PDF (68% confidence level).

– MASS_SUP: the upper-limit on the stellar mass from the
galaxy mass PDF (68% confidence level).

– MASS_BEST: the best-fit stellar mass estimated by
LePHARE. This column should be used as the stellar
mass, but it is necessary to make sure to apply the fluxscale
correction (see below).

– SFR_INF: the lower-limit on the star formation rate from the
galaxy SFR PDF (68% confidence level).

– SFR_SUP: the lower-limit on the star formation rate from the
galaxy SFR PDF (68% confidence level).

– SFR_BEST: best-fit star formation rate (SFR) estimated by
LePHARE.

Note 1. All the "MASS" quantities stand for log10(M?/M�).
Note 2. Fluxscale correction: Because the GAaP photometry
only measures the galaxy magnitude within a specific aperture
size, the stellar mass should be corrected using a “fluxscale”
parameter, which is the ratio of AUTO and GAaP fluxes:

log10(fluxscale) = (MAG_GAAP_r − MAG_AUTO)/2.5. (C.1)

The "total" stellar mass in then

M_TOT = M_BEST + log10(fluxscale). (C.2)

Similarly, also absolute magnitudes need corrections if total
measurements are required:

MAG_ABS_X,total = MAG_ABS_X − 2.5 log10(fluxscale).
(C.3)

All the LePhare quantities were computed assuming h =
0.7, and the estimated stellar masses are assumed to have a
dependence on h dominated by the h−2 scaling of luminosi-
ties. Therefore, if another Hubble constant value is used, the
logarithmic stellar mass in Eq. (C.2) needs to be corrected by
−2 log10(h/0.7), while the absolute magnitudes in Eq. (C.3)
need to have 5 log10(h/0.7) added.
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