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Abstract
We consider two preorder-enriched categories of ordered partial combinatory algebras: OPCA, where
the arrows are functional (i.e., projective) morphisms, and OPCA†, where the arrows are applicative
morphisms. We show that OPCA has small products and finite biproducts, and that OPCA† has finite
coproducts, all in a suitable 2-categorical sense. On the other hand, OPCA† lacks all nontrivial binary prod-
ucts. We deduce from this that the pushout, over Set, of two nontrivial realizability toposes is never a
realizability topos. In contrast, we show that nontrivial subtoposes of realizability toposes are closed under
pushouts over Set.
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1. Introduction
Intuitionistic mathematics, or more precisely, the BHK interpretation of intuitionistic mathemat-
ics, employs a notion of function or construction. For example, a proof of A→ B is a construction
that transforms proofs of A into proofs of B. This notion of construction can be taken to be funda-
mental, but one can also give an interpretation of this notion which is more accessible to classical
mathematics. Themost prominent example of the latter approach is Kleene’s realizability interpre-
tation of (first-order) intuitionistic arithmetic, where the notion of construction is interpreted as
recursive function application. Hyland later constructed the Effective Topos (Hyland 1982), which
is a topos, hence a model for higher-order intuitionistic logic, whose internal logic is governed by
recursive function application. In particular, the first-order theory of the natural numbers object
in the Effective Topos coincides with Kleene realizability.

Similar toposes can be constructed on the basis of other models of computation (Hyland et al.
1980), giving rise to a class of toposes called realizability toposes. These realizability toposes are
(almost) never Grothendieck toposes, and thus provide a whole new class of models of con-
structive mathematics. The relevant notion of a “model of computation” here is that of a partial
combinatory algebra (PCA). The standard example of a PCA is given by the natural numbers
equipped with ordinary Turing computability. This PCA is called Kleene’s first model, and its
associated realizability topos is the Effective Topos. One may also define PCA structures (i.e.,
notions of computability) on the Baire space (Kleene’s second model) and on the powerset of N
(Scott’s graph model); see Example 2.7 below.

Morphisms between PCAs, which are called applicative morphisms, were introduced by
Longley, thus making PCAs into the objects of a category (Longley 1994). This paper is concerned
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with two categories of ordered partial combinatory algebras (OPCAs). These OPCAs were first
introduced in Hofstra and VanOosten (2003) in order to give a criterion when an applicative mor-
phism gives rise to a geometric morphism between the corresponding realizability toposes. First,
we study the category OPCA, introduced in Hofstra and Van Oosten (2003), where the arrows are
functional morphisms. Second, we consider the category OPCA†, which arises as the Kleisli cate-
gory for a monad on OPCA and whose arrows are called applicative morphisms. Restricting the
latter category to discrete, i.e., unordered OPCAs yields the category of PCAs first introduced by
Longley. Not much is known about the structure of these various categories of (ordered) PCAs.
Indeed, the comprehensive monograph on the subject by van Oosten states: “It should be stressed
that the category [of PCAs] is not very well understood at the moment of writing” (Van Oosten
2008, p. 28). That moment was more than a decade ago, and since then, progress has been made
(see, e.g., Faber and Van Oosten 2014). However, there is one construction available in this cate-
gory that, to my knowledge, has thus far escaped attention or at least publication in the literature.
It turns out that the category of PCAs has finite coproducts. Their construction, in the slightly
more general setting of ordered PCAs, is the first main result of the paper.

The second main result of the paper concerns realizability toposes. Given the class of realiz-
ability toposes, one can inquire into its closure properties under various constructions on toposes.
In this respect, realizability toposes seem to be far less well behaved than Grothendieck toposes.
For example, realizability toposes are not closed under slicing (see Zoethout 2020 for an inves-
tigation on this matter). Another standard construction in topos theory is the pushout of a pair
of geometric inclusions (Johnstone 1977, Proposition 4.26). Each realizability topos contains Set
as a subtopos. This leads to the following question: if we take the pushout, over Set, of two real-
izability toposes, then what kind of topos do we obtain? More specifically, do we obtain another
realizability topos? The second main result of the paper is that such a pushout is (barring trivial
cases) never itself a realizability topos. On the other hand, we also offer a positive result, namely
that (nontrivial) subtoposes of realizability toposes are closed under pushouts over Set.

Another version of the construction of coproducts of PCAs already appeared in the paper
Zoethout (2020), which discusses yet another category of PCAs. The differences between the PCAs
studied there and the OPCAs studied here are:

(i) the PCAs in Zoethout (2020) are unordered, whereas the objects of OPCA and OPCA† are
ordered PCAs.

(ii) Zoethout (2020) discusses PCAs internal to “base categories” other than Set, whereas in this
paper, we will work exclusively over Set.

Coproducts in Longley’s category of PCAs may be obtained as a special case of both Zoethout
(2020) (by restricting to the base category Set) as well as the current paper (by restricting to the
unordered case). One reason for presenting the construction here for the special case of Set is
to enable one to understand the construction of coproducts of OPCAs without having to work
through the PCAs over generalized base categories from Zoethout (2020). Another reason is that,
as we shall see below, coproducts of OPCAs interact in an interesting way with products of OPCAs.
In Zoethout (2020), the situation with products is quite different and requires the variation in base
categories offered there; see also Remark 6.4 below.

The categories OPCA and OPCA† are enriched over preorders, so they carry a (simple) 2-
categorical structure. Moreover, in the final section, we will briefly consider the 2-category of
regular categories, and the 2-category of toposes, so some remarks on 2-categorical terminol-
ogy are in order. In general, we will append the prefix “pseudo-” to a term to indicate that
we define this term in a “fully weak” 2-categorical sense. For pseudo(co)limits, this entails two
things. First, it means that (co)cones only need to commute up to isomorphism. For example,

if A0
f0−→A2

f1←−A1 is a cospan in a preorder-enriched category, then a cone for this cospan
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216 J. Zoethout

consists of three arrows pi : X→Ai such that f0p0 � p2 � f1p1. Second, the universal property of
a pseudo(co)limit is expressed by an equivalence of categories, rather than an isomorphism. For
example, if C is a category enriched over preorders, then a pseudoproduct of A0 and A1 is an
object A0 ×A1 equipped with projections A0

π0←−A0 ×A1
π1−→A1 such that the map

(π0 ◦ −, π1 ◦ −) : C (B,A0 ×A1)→C (B,A0)×C (B,A1)

is an equivalence of preorders for each object B. For the pseudoproducts considered below, it
will turn out that the map above is actually an isomorphism of preorders. We will express this by
saying that they are 2-products; note that we do not use the adjective “strict” here. We will use the
adjective “strict” at another occasion, however: a strict pseudoinitial object will be a pseudoinitial
object 0 with the additional property that every arrow A→ 0 is an equivalence. Similarly, we will
use the term “strict pseudoterminal object” for the dual notion. Another important use of the
prefix “pseudo-” concerns monos and epis. An arrow f of a preorder-enriched category is called a
pseudomono if postcomposition with f reflects the order. For epis, a similar definition applies.

The paper is structured as follows. First of all, in Section 2, we define the category OPCA and
state some of its elementary properties. In Section 3, we show thatOPCA has small pseudoproducts
(which are in fact 2-products) and finite pseudocoproducts, which also yield finite pseudobiprod-
ucts. Next, in Section 4, we construct the category OPCA† from OPCA. Section 5 shows that the
finite pseudocoproducts inOPCA also yield finite pseudocoproducts inOPCA†. On the other hand,
nontrivial binary pseudoproducts (i.e., where both factors are not the pseudoterminal object)
never exist in OPCA†. Finally, in Section 6, we deduce from this that the pushout, over Set, of
two nontrivial realizability toposes is never itself a realizability topos. In contrast, we show that
nontrivial subtoposes of realizability toposes are closed under pushouts over Set.

2. Ordered PCAs
In this section, we introduce ordered partial combinatory algebras and morphisms between them.
Since we will not state any new results here, we will describe the important constructions, but omit
most proofs.

A partial combinatory algebra is a nonempty set A equipped with a partial binary application
map (a, b) �→ ab. We think of the elements of A simultaneously as inputs and as (codes of) algo-
rithms that act on these inputs. The element ab stands for the output, if any, when the algorithm
(with code) a is applied to b. Of course, in order to capture the intuition that the application map
is computation, this map will need to satisfy certain axioms, to be specified below.

A useful generalization of partial combinatory algebras was introduced in Hofstra and Van
Oosten (2003). Here, a partial combinatory algebra A is also equipped with a partial order ≤. We
can think of the statement a′ ≤ a as expressing that a′ gives more information than a, or that a′
is a specialization of a. Of course, this order will need to be compatible with the application map.
Let us make this explicit.

Definition 2.1. An ordered partial applicative structure (OPAS) is a poset A= (A,≤ ) equipped
with a partial binary map A×A⇀A, (a, b) �→ ab satisfying the following axiom:

(0) if a′ ≤ a, b′ ≤ b and ab is defined, then a′b′ is also defined, and a′b′ ≤ ab.

In other words, if a′ and b′ contain at least as much information as a and b, and ab is already
defined, then a′b′ must also be defined and give at least as much information as ab.

Before we proceed to define ordered partial combinatory algebras, some remarks on notation
are in order. First of all, the application map will not be associative, meaning that expressions
involving application need to be bracketed properly. In order to prevent illegible expressions, we
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adopt the convention that application associates to the left, writing abc as an abbreviation for
(ab)c. Moreover, we will sometimes write a · b instead of ab if this is necessary to avoid confusion.

Since the application map is partial, we also introduce some notation dealing with partiality. If
e is a possibly undefined expression, then we write e↓ to indicate that e is in fact defined. We take
this to imply that all subexpressions of e are defined as well. If e and e′ are two possibly undefined
expressions, then we write e′ 
 e for the statement: if e↓, then e′↓ and e′ ≤ e. On the other hand,
e′ ≤ e always expresses the stronger statement that e′ and e are defined and satisfy e′ ≤ e. Observe
that axiom (0) can also be written as: if a′ ≤ a and b′ ≤ b, then a′b′ 
 ab. Moreover, we write e� e′
if both e′ 
 e and e
 e′. In other words, e� e′ expresses the Kleene equality of e and e′, meaning
that e↓ iff e′↓, and in this case, e and e′ denote the same value. On the other hand, e= e′ will
always mean that e and e′ are defined and equal to each other.

Definition 2.2. An OPAS A is an ordered partial combinatory algebra (OPCA) if there exist k, s ∈
A satisfying:

(1) kab≤ a;
(2) sab↓;
(3) sabc
 ac(bc).

OPCAs satisfy an abstract version of the Smn Theorem for Turing computability on the natural
numbers. In order to make this precise, we need the following definition.

Definition 2.3. Let A be an OPCA. The set of terms over A is defined recursively as follows:

(i) We assume given a countably infinite set of distinct variables, and these are all terms.
(ii) For every a ∈A, we assume that we have a constant symbol for a, and this is a term. The

constant symbol for a is simply denoted by a.
(iii) If t0 and t1 are terms, then so is (t0t1).

Weomit brackets whenever possible, again subject to the convention that application associates
to the left. Moreover, we may write t0 · t1 if needed to avoid confusion.

Clearly, every closed term t can be assigned a (possibly undefined) interpretation in A, which
will also be denoted by t. If t(�x) is a term in n free variables, then this term defines an obvious
partial function An ⇀A, which sends a tuple �a ∈An to (the interpretation of) t(�a), if defined. The
key fact about OPCAs is the all such functions are computable using an algorithm present in A.

Proposition 2.4 (Combinatory completeness). Let A be an OPCA. There exists a map that assigns,
to each term t(�x, y) in n+ 1 variables, an element λ∗�xy.t of A, satisfying:

• (λ∗�xy.t)�a↓;
• (λ∗�xy.t)�ab
 t(�a, b),

for all �a ∈An, b ∈A.
The proof is an easy adaptation of the proof of Theorem 1.1.3 in Van Oosten (2008) and is

omitted. It is worth mentioning that the map t(�x, y) �→ λ∗�xy.t can be constructed explicitly and
only requires a choice for k and s as in Definition 2.2.

The elements k and s are usually called combinators. Using k, s and Proposition 2.4, we can
construct additional useful combinators. For our purposes, the combinators i= skk, k= ki, p=
λ∗xyz.zxy, p0 = λ∗x.xk and p1 = λ∗x.xk will be relevant. These satisfy:

ia≤ a, kab≤ b, p0(pab)≤ a and p1(pab)≤ b.
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218 J. Zoethout

The combinators k and k also serve as booleans, meaning that there exists a case combinator C ∈A
satisfying Ckab≤ a and Ckab≤ b. Observe that we may simply take C= i.

Remark 2.5. Even though k and s are not part of the structure of an OPCA, we will assume that,
for each OPCA we discuss, we have made an explicit choice for k and s. Observe that this also
yields a choice for the other combinators constructed above. If one has a lot of OPCAs, then this
may require the Axiom of Choice; this situation will occur in the proof of Proposition 3.5.

Example 2.6. The prototypical example is the (discretely ordered) OPCA K1, known as Kleene’s
first model. Its underlying set is the set of natural numbers, and mn is the result, if any, when the
m-th partial recursive function is applied to n.

Example 2.7. (i) Another discretely ordered OPCA is Scott’s graph model, whose underlying set
is the powerset of the natural numbers. In order to define the application map, fix a bijection
e(−) betweenN and the set of finite subsets ofN, and a bijection 〈·, ·〉 : N2→N. For A, B⊆N,
we define the application AB as

{m ∈N | ∃n ∈N(en ⊆ B and 〈n,m〉 ∈A)}.
One can show that this yields a total OPCA, where “computable” means “continuous w.r.t.
the Scott topology”. For details, we refer to Van Oosten (2008).

(ii) The set of all functionsN→Nmay also be equipped with a (again discretely ordered) OPCA
structure, yieldingKleene’s secondmodelK2. Again, we refer to VanOosten (2008) for details.

Example 2.8. Any poset with binary meets is an OPCA, where application is given by meet; for
k and s, any choice of elements will work. These are examples of pseudotrivial OPCAs (Hofstra
and Van Oosten 2003, Definition 2.3), i.e., OPCAs where any two elements have a common lower
bound. This notion will not play a large role in this paper; we will need it only in Example 3.7
below.

We now proceed to define maps between OPCAs.

Definition 2.9. Let A and B be OPCAs. A morphism of OPCAs is a function f : A→ B satisfying
the following requirements:

• there exists a t ∈ B such that t · f (a) · f (a′)
 f (aa′);
• there exists a u ∈ B such that u · f (a′)≤ f (a) whenever a′ ≤ a.

We say that t tracks f and that f preserves the order up to u.

Definition 2.10. Let A and B be OPCAs and consider two functions f , f ′ : A→ B. We say that
f ≤ f ′ if there exists an s ∈ B such that s · f (a)≤ f ′(a) for all a ∈A. Such an s ∈ B is said to realize
the inequality f ≤ f ′. Moreover, we write f � f ′ if both f ≤ f ′ and f ′ ≤ f .

Proposition 2.11. OPCAs, morphisms of OPCAs and inequalities between them form a preorder-
enriched category OPCA.

We will be especially interested in morphisms with the following property, introduced in
Hofstra and Van Oosten (2003).

Definition 2.12. Let f : A→ B be a morphism of OPCAs. We say that f is computationally dense
(c.d.) if there exists an n ∈ B satisfying:

∀s ∈ B∃r ∈A(n · f (r)≤ s). (cd)
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The definition presented above is not the orginal definition from Hofstra and Van Oosten
(2003), but a simplification due to Johnstone (2013). In the latter paper, computational density
is also called “quasi-surjectivity”. Indeed, Definition 2.12 informally says that, up to a realizer,
every element of B is in the image of f . We warn the reader, however, that computationally dense
morphisms are not necessarily (pseudo)epis in the category OPCA.

In Section 5, we will also need the following notion.

Definition 2.13. A morphism of OPCAs f : A→ B is called discrete if, for any subset X⊆A, we
have: if f (X)= {f (a) | a ∈ X} has a lower bound in B, then X has a lower bound in A.

We list some elementary properties of computational density and discreteness, which we leave
to the reader to prove.

Proposition 2.14. Let A
f−→ B

g−→ C be morphisms of OPCAs.

(i) If f and g are c.d., then gf is c.d. as well.
(ii) If gf is c.d., then g is c.d. as well.
(iii) If gf is discrete, then f is discrete as well.
(iv) Computational density and discreteness are downward closed. That is, if f is c.d. (resp. discrete)

and f ′ ≤ f is a morphism of OPCAs, then f ′ is also c.d. (resp. discrete).

In particular, left adjoints are c.d., and right adjoints are discrete.

The following proposition provides the original definition of computational density from
Hofstra and Van Oosten (2003), which we will need later on.

Proposition 2.15. (Johnstone 2013, Lemma 2.3). A morphism of OPCAs f : A→ B is c.d. if and
only if there exists an m ∈ B satisfying:

∀s ∈ B∃r ∈A∀a ∈A (m · f (ra)
 s · f (a)). (cdm)
In fact, any m ∈ B satisfying (cdm) also satisfies (cd).

Proof. First of all, suppose that m ∈ B satisfies (cdm). If s ∈ B, then we know that ks is defined,
so by (cdm), there exists an r ∈A such that m · f (ra)
 ks · f (a)≤ s for all a ∈A. In particular, we
havem · f (ri)≤ s, som satisfies (cd).

Conversely, suppose that n ∈ B satisfies (cd). Let t ∈ B we a tracker of f and let f preserve the
order up to u ∈ B. We define

m= λ∗x.n(u(t · f (p0) · x))(u(t · f (p1) · x)).
Now let s ∈ B, and find an r ∈A such that n · f (r)≤ s. Now we compute

m · f (pra)
 n(u(t · f (p0) · f (pra)))(u(t · f (p1) · f (pra)))

 n(u · f (p0(pra)))(u · f (p1(pra)))

 n · f (r) · f (a)

 s · f (a),

as desired.

3. Products and Coproducts in OPCA
In this section, we investigate the existence of pseudo(co)products in OPCA and their interaction
with c.d. morphisms. We start with generalizing a result by Longley (1994, Proposition 2.1.7) to
the ordered setting.
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220 J. Zoethout

Proposition 3.1. The category OPCA has a pseudozero object.

Proof. The required pseudozero object is the OPCA 1= {∗}, where ∗∗= ∗. For every OPCA A,
there is only one function ! : A→ 1, and this is clearly a morphism of OPCAs, so 1 is in fact a
2-terminal object. Conversely, every element c ∈A yields a morphism of OPCAs ¡ : 1→A with
¡( ∗ )= c. Clearly, these are all isomorphic, so 1 is also a pseudoinitial object.

The existence of a pseudozero object means that we also have zero morphisms.

Definition 3.2. A morphism of OPCAs A→ B is called a zero morphism if it factors, up to
isomorphism, through 1.

The following lemma provides two alternative characterizations of zero morphisms. We leave
the proof to the reader.

Lemma 3.3. For a morphism of OPCAs f : A→ B, the following are equivalent:

(i) f is a zero morphism;
(ii) f (A)= {f (a) | a ∈A} has a lower bound;
(iii) f is a top element of OPCA(A, B).

It follows from (iii) that OPCA is even enriched over preorders with a top element. Before we
continue, we characterize the OPCA 1 up to equivalence in a number of ways.

Lemma 3.4. Let A be an OPCA. The following are equivalent:

(i) A is equivalent to 1;
(ii) A has a least element;
(iii) idA is a zero morphism;
(iv) ¡ : 1→A is c.d.

An OPCA A satisfying the equivalent conditions of Lemma 3.4 will be called trivial.
If A is an OPCA, then ! ◦ ¡ is isomorphic to the identity id1. On the other hand, ¡◦! is, by

definition, a zero morphism, so we also have idA ≤ ¡◦!. This means that ! � ¡.
In Hofstra and Van Oosten (2003) (Remark (2) on p. 450), it is observed that OPCA has binary

products. This construction generalizes to products of arbitrary (small) size, given choice on the
index set.

Proposition 3.5. The category OPCA has small pseudoproducts.

Proof. Suppose we have an I-indexed sequence of OPCAs (Ai)i∈I . We equip the product A=∏
i∈I Ai with an OPAS structure by defining the order and application coordinatewise. That is, if

a= (ai)i∈I and b= (bi)i∈I are elements of A, then we set

• a≤ b iff ai ≤ bi for all i ∈ I;
• ab↓ iff aibi↓ for all i ∈ I, and in this case, ab= (aibi)i∈I .

Observe that A is nonempty by AC, and axiom (0) clearly holds for A, since it holds coordinate-
wise. For all i ∈ I, we may (using AC) pick suitable combinators ki and si for Ai. Then it is not
hard to check that k= (ki)i∈I and s= (si)i∈I are suitable combinators for A, so A is an OPCA.

It is easy to show that the projections πi : A→Ai are morphisms of OPCAs and to verify that
this makes A even into the 2-product of the Ai. We leave this to the reader.

If fi : Ai→ B are morphisms of OPCAs, then we denote their amalgamation by 〈fi〉i∈I . The pro-
jections πi are clearly c.d., so if an amalgamation 〈fi〉i∈I is c.d., then so are all the fi. The converse
only holds for finite products.
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Proposition 3.6. If (Ai)i∈I is a finite sequence of OPCAs and the morphisms fi : B→Ai are c.d.,
then 〈fi〉i∈I : B→∏

i∈I Ai is also c.d.

Proof. It suffices to treat the nullary and the binary case. The nullary case states that ! : B→ 1 is
always c.d., which follows from the adjunction ! � ¡.

For the binary case, suppose we have c.d. morphisms f0 : B→A0 and f1 : B→A1. Let ti ∈Ai
track fi, let fi preserve the order up to ui ∈Ai, and let the computational density of fi be witnessed
by ni ∈Ai. We define n′i = λ∗x.ni(ui(ti · fi(pi) · x)) ∈Ai. We claim that n= (n′0, n′1) ∈A0 ×A1
witnesses the computational density of f = 〈f0, f1〉 : B→A0 ×A1.

In order to prove this, let s= (s0, s1) ∈A0 ×A1. Then we know that there exist ri ∈ B such that
ni · fi(ri)≤ si. Now define r= pr0r1 ∈ B. Then

n′i · fi(r)
 ni(ui(ti · fi(pi) · fi(r)))
 ni(ui · fi(pir))
 ni · f (ri)≤ si,

so n · f (r)≤ s, as desired.

Example 3.7. Let A be an OPCA that is not pseudotrivial. Then in particular, k and k do not have
a common lower bound, for if u were a lower bound of k and k, then uab would be a lower bound
of a and b, for arbitrary a, b ∈A. Let I be a set such that 2|I| > |A|. Then a morphism f : A→AI is
never c.d., where AI denotes the I-fold product of A. Indeed, suppose for the sake of contradiction
that f is c.d., witnessed by n ∈AI . Then every element of AI is bounded from below by an element
of X= {n · f (r) | r ∈A, n · f (r)↓}. This set X has cardinality at most |A|. However, the subset {a ∈
AI | ∀i ∈ I (ai ∈ {k, k})} of AI , which has cardinality 2|I| > |A| ≥ |X|, has the property that every
two distinct elements do not have a common lower bound in AI : contradiction.

In particular, the diagonal δ : A→AI is not c.d., which means that Proposition 3.6 does not
hold for infinite I.

Just as the 2-terminal object 1 is also pseudoinitial, finite 2-products in OPCA also serve as
pseudocoproducts.

Theorem 3.8. The category OPCA has finite pseudocoproducts.

Proof. It suffices to treat the binary case. Let A0 and A1 be OPCAs. Then there is a morphism of
OPCAs κ0 : A0→A0 ×A1 given by κ0(a)= (a, i). Similarly, we have κ1 : A1→A0 ×A1 given by
κ1(a)= (i, a). We claim that this is a pseudocoproduct diagram. This means that we should show
that the map

(− ◦κ0,− ◦ κ1) : OPCA(A0 ×A1, B)→OPCA(A0, B)×OPCA(A1, B).

is an equivalence of preorders, for each OPCA C. If suffices to prove that this map is essentially
surjective and full; it is automatically faithful.

For essential surjectivity, suppose that we havemorphisms of OPCAs f0 : A0→ B and f1 : A1→
B. Let ti ∈ B track fi, and let fi preserve the order up to ui ∈ B. We define f = [f0, f1] : A0 ×A1→ B
by f (a0, a1)= p · f0(a0) · f1(a1). Then f is tracked by

λ∗xy.p(t0(p0x)(p0y))(t1(p1x)(p1y)) ∈ B,
as a straightforward calculation will show. Similarly, one can show that f preserves the order up
to λ∗x.p(u0(p0x))(u1(p1x)) ∈ B, so f is a morphism of OPCAs. We have f (κ0(a))= pai, so p0 ∈ B
realizes f κ0 ≤ f0 and λ∗x.pxi realizes f0 ≤ f κ0. Similarly, one shows that f κ1 � f1.

For fullness, suppose we have morphisms g, g′ : A0 ×A1→ B such that gκ0 ≤ g′κ0 and gκ1 ≤
g′κ1. Let si ∈ B realize gκi ≤ g′κi, let t, t′ ∈ B track g resp. g′, and suppose that g and g′ preserve the
order up to u, u′ ∈ B, respectively. We claim that g ≤ g′ is realized by

s= λ∗x.u′(t′(t′ · g′(k, k) · (s0(u(t · g(i, ki) · x))))(s1(u(t · g(ki, i) · x)))) ∈ B.
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Let (a0, a1) ∈A0 ×A1. Then we have:
s0(u(t · g(i, ki) · g(a0, a1)))
 s0(u · g(ia0, kia1))


 s0 · g(a0, i)
� s0 · g(κ0(a0))
≤ g′(κ0(a0))
= g′(a0, i),

and similarly, s1(u(t · g(ki, i) · g(a0, a1)))≤ g′(i, a1). This yields:

s · g(a0, a1)
 u′(t′(t′ · g′(k, k) · g′(a0, i)) · g′(i, a1))

 u′(t′ · g′(ka0, ki) · g′(i, a1))

 u′ · g(ka0i, kia1)
≤ g′(a0, a1),

as desired.

Corollary 3.9. The category OPCA has finite pseudobiproducts

Proof. The only thing left to check is that A0
κ0−→A0 ×A1

π0−→A0 is isomorphic to idA0 , and that
A0

κ0−→A0 ×A1
π1−→A1 is a zero morphism. Both are immediate.

Moreover, Proposition 2.14(ii) immediately yields the following relation between coproducts
and computational density.

Corollary 3.10. If f0 : A0→ B and f1 : A1→ B are morphisms of OPCAs and f0 is c.d., then
[f0, f1] : A0 ×A1→ B is also c.d.

In analogy with ordinary coproducts, we say that finite pseudocoproducts are disjoint if, for
every pseudocoproduct diagram A0→A0 �A1←A1, the coprojections are pseudomonos, and

0 A1

A0 A0 �A1

is a pseudopullback, where 0 denotes the pseudoinitial object.

Proposition 3.11. The finite pseudocoproducts in OPCA are disjoint.

Proof. Since πiκi � idAi , it is immediate that the κi are pseudomonos. In order to establish the
required pseudopullback, we need to show the following: if we have morphisms f0 : B→A0
and f1 : B→A1 such that κ0f0 � κ1f1, then f0 and f1 are both zero morphisms. Let s= (s0, s1) ∈
A0 ×A1 realize κ0f0 ≤ κ1f1. Then for all b ∈ B, we have (s0 · f0(b), s1i)� s · κ0(f0(b))≤ κ1(f1(b))=
(i, f1(b)). In particular, we have s1i≤ f1(b) for all b ∈ B, so f1 is a zero morphism. The proof that f0
is a zero morphism proceeds analogously.

The “dual” result to Proposition 3.11 also holds; this will be useful in Section 5.

Proposition 3.12. If A0 and A1 are OPCAs, then πi : A0 ×A1→Ai is a pseudoepi and

A0 ×A1 A1

A0 1

is a pseudopushout diagram.
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Proof. Since πiκi � idAi , we know that πi is indeed pseudoepi.
For the pseudopushout, we need to show the following: if f0 : A0→ B and f1 : A1→ B are mor-

phisms such that f0π0 � f1π1, then f0 and g0 are both zero morphisms. If s ∈ B realizes f0π0 ≤ f1π1,
then we have s · f0(a0)≤ f1(a1) for all a0 ∈A0 and a1 ∈A1. In particular, we have s · f0(i)≤ f1(a1)
for all a1 ∈A1, so f1 is a zero morphism. The proof that f0 is a zero morphism again proceeds
analogously.

We close this section by investigating coproducts in a category related to OPCA.

Definition 3.13. The preorder-enriched category OPCAadj is defined as follows.

• Its objects are OPCAs.
• An arrow f : A→ B is a pair of morphisms f ∗ : B→A and f∗ : A→ B with f ∗ � f∗.
• If f , g : A→ B, then we say that f ≤ g if f ∗ ≤ g∗; equivalently, if g∗ ≤ f∗.

Proposition 3.14. The category OPCAadj has finite pseudocoproducts. Moreover, the pseudoinitial
object is strict, and pseudocoproducts are disjoint.

Proof. We have already seen that there are essentially unique morphisms ! : A→ 1 and ¡ : 1→A
satisfying ! � ¡, yielding the (essentially) unique arrow 1→A in OPCAadj. Moreover, if we have an
arrow A→ 1 in OPCAadj, then also ¡� !, so ! and ¡ form an equivalence between A and 1, meaning
that 1 is indeed strict.

Now consider two OPCAs A and B. We have the product diagram A πA←−A× B πB−→ B and the
coproduct diagram A κA−→A× B κB←− B. We have already remarked that πAκA � idA. Moreover,
it is easily computed that κAπA ≥ idA×B, which means that πA � κA is an arrow A→A× B of
OPCAadj. Similarly, we have the arrow πB � κB : B→A× B. In order to show that this yields a
pseudocoproduct diagram in OPCAadj, we need to show the following: if f : A→ C and g : B→
C are arrows of OPCAadj, then h∗ = 〈f ∗, g∗〉 is left adjoint to h∗ = [f∗, g∗]. First of all, we may
easily compute that h∗(h∗(c))= p · f∗(f ∗(c)) · g∗(g∗(c)). So, if r, s ∈ C realize idC ≤ f∗f ∗ and idC ≤
g∗g∗, respectively, then λ∗x.p(rx)(sx) realizes idC ≤ h∗h∗. The other inequality can be obtained
completely from universal properties. We have:

πAh∗h∗κA � f ∗f∗ ≤ idA � πAκA and πAh∗h∗κB � f ∗g∗ ≤ πAκB,

so from the universal property of the coproduct A× B, it follows that πAh∗h∗ ≤ πA. Similarly,
we obtain πBh∗h∗ ≤ πB, and the universal property of the product A× B yields h∗h∗ ≤ idA×B, as
desired.

For disjointness, we first note that πA � κA is a pseudomono because πAκA � idA. Now suppose
we have arrows f : C→A and g : C→ B of OPCAadj such that κAf∗ � κBg∗. Then we know from
Proposition 3.11 that f∗ and g∗ are both zero morphisms. From idC ≥ f ∗f∗, it follows that idC
is also a zero morphism, i.e., C is trivial. Now it is immediate that 1 is the pseudopullback of
A→A× B← B in OPCAadj.

For an OPCA A, the codiagonal ε : A×A→A can be defined as ε(a, a′)= paa′.
Proposition 3.14 tells us in particular that ε is right adjoint to the diagonal δ : A→A×A.
Together with the fact that ! : A→ 1 has a right adjoint ¡, we deduce that every OPCA is a cartesian
object in the preorder-enriched categoryOPCA (compare with the internal finite meets of BCOs in
Hofstra (2006), p. 246). Moreover, if f , g : A→ B are morphisms of OPCAa, then the composition

A B× B B
〈f ,g〉 εB

is readily seen to be the meet of f and g in OPCA(A, B). From this, it is easy to deduce that OPCA
is even enriched over preorders with finite meets.
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Remark 3.15. We have seen that OPCA is enriched over preorders, preorders with a top element,
and preorders with finite meets. For pseudo(co)limits in OPCA, it does not matter which of these
enrichments we consider. The reason for this is that all these enrichments equip the homsets with
the same structure (namely, a preorder), and differ only in which properties they ascribe to this
structure.

4. Applicative Morphisms
In this section, we introduce the category of ordered PCAs and applicative morphisms between
them. Applicative morphisms (between unordered PCAs) were the morphisms originally consid-
ered in Longley (1994). Applicative morphisms are no longer functions between the underlying
sets, but total relations. In Hofstra and Van Oosten (2003), it is shown how to reconstruct the
notion of applicative morphism by introducing a certain pseudomonad on OPCA. This is also the
treatment we follow here.

Definition 4.1. Let A be an OPCA.

(i) We define a new OPCA TA as follows:
– TA is the set of all nonempty downsets of A, i.e.,

TA= {∅ �= α⊆A | if a ∈ α and a′ ≤ a, then a′ ∈ α}.
– TA is ordered by inclusion.
– For α, β ∈ TA, we say that αβ↓ iff ab↓ for all a ∈ α and b ∈ β; and in this case,

αβ =↓{ab | a ∈ α, b ∈ β}.
(ii) For a morphism of OPCAs f : A→ B, we define Tf : TA→ TB by Tf (α)=↓ f (α)=↓{f (a) |

a ∈ α}.
(iii) We define δA : A→ TA and

⋃
A : TTA→ TA by δA(a)=↓{a} and ⋃

A (A )=⋃
A .

Observe that for the combinators in TA, we may simply take ↓{k} and ↓{s}.
Proposition 4.2. The triple (T, δ,

⋃
) is a KZ-pseudomonad on OPCA.

Recall that, in the preorder-enriched setting, a KZ-pseudomonad is a pseudomonad (T, η,μ)
for which ηT ≤ Tη. For a KZ-pseudomonad, algebra structures on an object X are left ad-
joint to the unit ηX : X→ TX. Consequently, algebras are really objects with a property, rather
than objects with structure. A well-known example of a KZ-(pseudo)monad is the downset
monad on the category of posets, whose algebras are suplattices. The proof of Proposition 4.2
is very similar to case of the nonempty downset monad on the category of posets, but one
has to insert some realizers at appropriate positions. We leave this to the reader. For a de-
scription of the pseudoalgebras for (T, δ,

⋃
), we refer to Hofstra and Van Oosten (2003),

Theorem 4.2.

Definition 4.3. The preorder-enriched category OPCA† is defined as the Kleisli category for the
pseudomonad T. An arrow of OPCA† will be called an applicative morphism and will be denoted
by f : A� B.

Let us consider for a moment what this means. The objects of OPCA† are still OPCAs. An
applicative morphism f : A� B is a morphism of OPCAs f : A→ TB. This means that f does not
assign an element of B to a ∈A, but rather a (nonempty and downward closed) set of elements.
For this reason, we use the multimap sign � for applicative morphisms. The identity on A is
δA, and the composition of f : A� B and g : B� C is

⋃
C ◦Tg ◦ f , i.e., gf (c)=

⋃
b∈f (a) g(b). The

requirements for an applicative morphism can be reformulated completely in terms of elements
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of B (rather than TB). It is convenient to use the following notation: if a ∈A and α ∈ TA, then we
write

a · α := ↓{a} · α =↓{aa′ | a′ ∈ α}.
Now, a function f : A→ TB is an applicative morphism iff the following hold:

• There exists an r ∈ B such that r · f (a) · f (a′)⊆ f (aa′) whenever aa′↓; such an r will also be
called a tracker of f (even though the tracker is really ↓{r} ∈ TB).

• There exists a u ∈ B such that u · f (a′)⊆ f (a) whenever a′ ≤ a. We will say that f preserves
the order up to u

Similarly, if f , f ′ : A� B, then we have that f ≤ f ′ iff there exists an s ∈ B such that s · f (a)⊆ f ′(a)
for all a ∈A; and such an s will be called a realizer of f ≤ f ′.

It turns out for applicative morphisms, one can get rid of the realizer u above.

Lemma 4.4. Every applicative morphism is isomorphic to an order-preserving applicative mor-
phism.

Proof. Given f : A� B, define f ′ : A� B by f ′(a)=⋃
a′≤a f (a′). Clearly, i ∈ B realizes f ≤ f ′, and

if f preserves the order up to u ∈ B, then u realizes f ′ ≤ f . So we have f � f ′, which also implies
that f ′ is, in fact, an applicative morphism. Clearly, f ′ preserves the order on the nose.

If f : A� B is an applicative morphism, then there exists an essentially unique T-algebra
morphism f̃ : TA→ TB such that the following diagram commutes:

A TB

TA

f

δA f̃

Explicitly, we have f̃ �⋃
B ◦Tf . It is well known from the general theory of (pseudo)monads

that this yields an equivalence between OPCA† and the full subcategory of T-Alg on the free
T-algebras. Moreover, it is easy to show that δA is c.d., so Proposition 2.14 implies that f is c.d.
iff f̃ is c.d. This means we have an unambiguous notion of computational density for applicative
morphisms. Explicitly, there should be an n ∈ B such that

∀s ∈ B∃r ∈A(n · f (r)⊆↓{s}).
The results from Proposition 2.14 automatically hold for OPCA† as well. For example, suppose
that f : A� B and g : B� C are c.d. Then f̃ and g̃ are c.d., so by Proposition 2.14(i), g̃f � g̃ f̃ is
c.d., hence gf is c.d.

Moreover, there exists a pseudofunctor OPCA→OPCA† sending a morphism f : A→ B to
δBf : A� B. This is not a 2-functor, since it does not preserve composition in the nose. Because
δB is always a pseudomono, this pseudofunctor is fully faithful on 2-cells. Furthermore, one easily
shows that this pseudofunctor preserves and reflects computational density.

Definition 4.5. An applicative morphism f : A� B is called projective if f belongs to the essential
image of OPCA→OPCA†. Equivalently, if f̃ belongs to the essential image of T.

In other words, f is projective iff there exists a morphism of OPCAs f0 : A→ B such that
f � δBf0, and in this case, we have f̃ � Tf0. In fact, it suffices that there be a function f0 : A→ B
such that f � δBf0; such an f0 will the automatically be a morphism of OPCAs, given that f is an
applicativemorphism. At various occasions in the remainder of the paper, we will viewmorphisms
of OPCAs as projective applicative morphisms.
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The following result was obtained in Faber and Van Oosten (2014) (Corollary 1.15). For the ‘if ’
direction of the theorem (which is the difficult part), this paper uses an analysis of the correspond-
ing realizability toposes (to be defined in Section 6 below). Here we offer a more direct proof of
this direction, using ideas from Faber and Van Oosten (2014).

Theorem 4.6. An applicative morphism has a right adjoint in OPCA† if and only if it is both
projective and c.d.

Proof. First, suppose that f : A� B has a right adjoint g : B�A. We already know from
Proposition 2.14 that this implies that f is c.d. For projectivity, suppose that r ∈A realizes idA ≤ gf
and s ∈ B realizes fg ≤ idB. Then for all a ∈A, we have that ra↓ and ra ∈ gf (a)=⋃

b∈f (a) g(b). By
the Axiom of Choice, there exists a function f0 : A→ B such that f0(a) ∈ f (a) and ra ∈ g(f0(a)) for
all a ∈A. We claim that f � δBf0. First of all, we have that ↓{f0(a)} ⊆ f (a), so the identity com-
binator i realizes δBf0 ≤ f . The converse inequality is realized by s′ := λ∗x.s(tr′x) ∈ B, where r′ is
an element from f (r) and t ∈ B tracks f . Indeed, if b ∈ f (a), then tr′b ∈ f (ra)⊆⋃

a′∈g(f0(a)) f (a
′)=

fg(f0(a)). So we see that s′b
 s(tr′b), which is defined and an element of idB (f0(a))=↓{f0(a)}, as
desired.

For the converse, let f : A→ B be a c.d. morphism of OPCAs; we need to show that f ′ =
δBf : A� B has a right adjoint g : B�A. Let m ∈ B satisfy (cdm) from Proposition 2.15 for f .
We define g : B�A by:

g(b)=↓{a ∈A |m · f (a)≤ b}.
First, let us show that g is indeed an applicative morphism. Because m also satisfies (cd) from
Definition 2.12 for f , we know that g(b) is nonempty for every b ∈ B. Moreover, g clearly preserves
the order on the nose. In order to construct a tracker, let

s= λ∗x.m(u(t · f (p0) · x))(m(u(t · f (p1) · x))) ∈ B,
where t tracks f and f preserves the order up to u. Find r ∈A such that m · f (ra)
 s · f (a), and
define q= λ∗xy.r(pxy) ∈A. We claim that q tracks g. We need to show that, if bb′↓, then

q · g(b) · g(b′)=↓{qaa′ |m · f (a)≤ b andm · f (a′)≤ b}
is a subset of g(bb′). So suppose thatm · f (a)≤ b andm · f (a′)≤ b. Then qaa′ 
 r(paa′) and:

m · f (r(paa′))
 s · f (paa′)

m(u(t · f (p0) · f (paa′)))(m(u(t · f (p1) · f (paa′))))

m(u · f (p0(paa′)))(m(u · f (p1(paa′))))

m · f (a)(m · f (a′))

 bb′,

so qaa′ ∈ g(bb′), as desired.
In order to establish the adjunction f ′ � g, we first note that

gf ′(a)=
⋃

b≤f (a)
g(b)=↓{a′ ∈A |m · f (a′)≤ f (a)}.

According to (cdm), there exists an r ∈A such that m · f (ra)
 i · f (a)≤ f (a) for all a ∈A. This
immediately implies that ra ∈ gf ′(a) for all a ∈A, so r realizes idA ≤ gf ′. Conversely, we have

f ′(g(b))=
⋃

a∈g(b)
↓{f (a)} = ↓{f (a) |m · f (a)≤ b},

so it is immediate thatm ∈ B realizes f ′g ≤ idB.
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We observe that, as an immediate corollary of the ‘only if ’ direction, any two OPCAs
that are equivalent in OPCA† are already equivalent in OPCA. This means that we can speak
unambiguously about the equivalence of OPCAs.

5. Products and Coproducts in PCA
In this section, we investigate to what extent the results from Section 3 carry over to the category
OPCA†. For pseudocoproducts, this is quite easy.

Corollary 5.1. The pseudofunctor OPCA→OPCA† preserves finite pseudocoproducts. In particu-
lar, OPCA† has all finite pseudocoproducts.

Proof. For every OPCA A, we have OPCA†(1,A)�OPCA(1, TA), which we know to be equivalent
to the one-element preorder. Similarly, if A0, A1, and B are OPCAs, then

OPCA†(A0 ×A1, B)�OPCA(A0 ×A1, TB)
�OPCA(A0, TB)×OPCA(A1, TB)
�OPCA†(A0, B)×OPCA†(A1, B),

finishing the proof.

Explicitly, if f0 : A0 � B and f1 : A1 � B are applicative morphisms, then their amalgamation
[f0, f1] : A0 ×A1 � B is given by

[f0, f1](a0, a1)=↓{pb0b1 | b0 ∈ f0(a0) and b1 ∈ f1(a1)}.
By Proposition 2.14(ii) (or rather, its counterpart for OPCA†), we immediately have the following
corollary.

Corollary 5.2. If f0 : A0 � B and f1 : A1 � B are applicative morphisms and f0 is c.d., then
[f0, f1] : A0 ×A1 � B is also c.d.

Since T1� 1, we have that 1 is not only pseudoinitial in OPCA† but also pseudoterminal.
Therefore, we also define zero morphisms in OPCA†, by saying that f : A� B is a zero morphism
iff it factors (in OPCA†) through 1. This is in fact equivalent to f : A→ TB being a zero morphism
in OPCA, which is equivalent to

⋂
a∈A f (a) �= ∅. The proof of the following proposition is now

completely analogous to the proof Proposition 3.11 and is therefore omitted.

Proposition 5.3. Pseudocoproducts in OPCA† are disjoint.

If we want to show that A0 ×A1 is also the pseudoproduct of A0 and A1 in OPCA†, then we
should show that T(A0 ×A1)� TA0 × TA1. However, it turns out that this is not true in general
and thatOPCA† does not have finite pseudoproducts. On the other hand,A0 ×A1 is still a product
of A0 and A1 in OPCA† in a weak sense. Explicitly, if f0 : B�A0 and f1 : B�A1, then there exists
a maximal mediating arrow f : B�A0 ×A1. Using the theory developed in Section 3, we can tie
things together quite nicely.

Because T is a pseudofunctor, we have arrows Tπ0 � Tκ0 : TA0→ T(A0 ×A1) and Tπ1 �
Tκ1 : TA1→ T(A0 ×A1) of OPCAadj. By Proposition 3.14, there exists a mediating arrow h∗ �
h∗ : TA0 × TA1→ T(A0 ×A1). Explicitly, we have h∗(α0, α1)= α0 × α1 for αi ∈ TAi, whereas

h∗(α)= (Tπ0(α), Tπ1(α))
= ({a0 ∈A0 | ∃a1 ∈A1 ((a0, a1) ∈ α)}, {a1 ∈A1 | ∃a0 ∈A0 ((a0, a1) ∈ α)})

for α ∈ T(A0 ×A1). One easily computes that h∗h∗ is in fact isomorphic to idTA0×TA1 . (This also
follows from the fact that Tπi ◦ Tκi � idTAi , whereas Tπj ◦ Tκi is a zero morphism for i �= j.) Now
we see that
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OPCA†(B,A0)×OPCA†(B,A1)�OPCA(B, TA0)×OPCA(B, TA1)
�OPCA(B, TA0 × TA1)
�OPCA(B, T(A0 ×A1))
�OPCA†(B,A0 ×A1),

where

OPCA(B, TA0 × TA1) OPCA(B, T(A0 × TA1))
h∗◦−
⊥

h∗◦−

is an adjunction whose counit is an isomorphism. In particular, if f0 : B�A0 and f1 : B�A1 are
applicative morphisms, then

B TA0 × TA1 T(A0 ×A1)
〈f0,f1〉 h∗

is the maximal mediating applicative morphism B�A0 ×A1. Conversely, g : B�A0 ×A1 is
such a maximal mediating morphism iff g : B→ T(A0 ×A1) factors through h∗; or equivalently,
h∗h∗g � g. Observe that this includes all projective g : B�A0 ×A1. Indeed if g � δA0×A1 ◦ g0 with
g0 : B→A0 ×A1, then we also have g � δA0×A1 ◦ g0 � h∗ ◦ (δA0 × δA1 ) ◦ g0.

The above shows that pseudoproducts exist in in OPCA† in a weak sense. Now let us turn to
the existence of actual pseudoproducts in OPCA†. Obviously, if A0 (resp. A1) is trivial, then the
pseudoproduct of A0 and A1 exists in OPCA†, and it is equivalent to A1 (resp. A0). Using the
morphism h∗ above, we can show that this is the only situation in which A0 and A1 have a product
in OPCA†.

Theorem 5.4. If A0 and A1 are OPCAs that have a pseudoproduct in OPCA†, then at least one of
A0 and A1 is trivial.

Proof. The proof is divided into two parts.

(1) First, we show that h∗ : T(A0 ×A1)→ TA0 × TA1 has a left adjoint and is there-
fore discrete. Here × stands for the product in OPCA, and h∗ is the amalgamation
〈Tπ0, Tπ1〉 : T(A0 ×A1)→ TA0 × TA1 defined above.

(2) Second, we show that h∗ cannot be discrete if A0 and A1 are both nontrivial.

For the first part, denote the pseudoproduct projections TA0 × TA1→ TAi by ρi, then h∗ is the
essentially unique morphism such that

T(A0 ×A1) TA0 × TA1

TAi

h∗

Tπi ρi

commutes up to isomorphism, for i= 0, 1.
Suppose that C is a pseudoproduct of A0 and A1 in OPCA†, with projections σi : C�Ai. Then

σ0 and σ1 induce a maximal mediating arrow f : C�A0 ×A1. On the other hand, π0 and π1,
seen as projective applicative morphisms, induce a unique mediating map g : A0 ×A1 � C. So
for i= 0, 1 we get a diagram in OPCA†:

A0 ×A1 C

Ai

�g

πi

� f

�

σi
(1)
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where the triangles commute up to isomorphism. Since C is a pseudoproduct, we have gf �
idC. Moreover, we have πifg � σig � πi � πi ◦ idA0×A1 for i= 0, 1, and since idA0×A1 is certainly
projective, this yields fg ≤ idA0×A1 . We can conclude that f � g.

For every OPCA B, we have natural equivalences

OPCA(B, TC)�OPCA†(B, C)
�OPCA†(B,A0)×OPCA†(B,A1)
�OPCA(B, TA0)×OPCA†(B, TA1),

so TA0
σ̃0←− TC σ̃1−→ TA1 is a product diagram in OPCA. This means there exists an equivalence

ι : TC→ TA0 × TA1 such that the diagram

TC TA0 × TAi

TAi

ι

σ̃i ρi

commutes up to isomorphism for i= 0, 1. Taking the image of the diagram (1) under the
equivalence between OPCA† and free T-algebras, we get the diagram

T(A0 ×A1) TC TA0 × TA1

TAi
Tπi

g̃
ι

σ̃i

f̃

ρi

in OPCA for i= 0, 1, where all triangles commute up to isomorpism. In particular, ρiιg̃ � σ̃ig̃ �
Tπi, so ιg̃ must be isomorphic to h∗. Since f � g, we also have f̃ � g̃, hence also f̃ ι−1 � ιg̃ � h∗. We
conclude that h∗ has a left adjoint, so by Proposition 2.14, h∗ is discrete.

For the second part, suppose thatA0 andA1 are both nontrivial and that h∗ is discrete. Consider
the set

X⊆ {α ∈ T(A0 ×A1) | h∗(α)= (A0,A1)}.
We claim that

⋂
X is empty. Let (a0, a1) ∈A0 ×A1 be arbitrary and consider the downset

α= {(b0, b1) ∈A0 ×A1 | a0 � b0 or a1 � b1}
of A0 ×A1. Since a0 is, by assumption, not the least element of A0, there exists a b0 ∈A0 such that
a0 � b0. This implies that {b0} ×A1 ⊆ α, so α is nonempty and satisfies Tπ1(α)=A1. Similarly,
we show that Tπ0(α)=A0, so α ∈ X. On the other hand, we clearly do not have (a0, a1) ∈ α, so
(a0, a1) �∈⋂

X. Since this holds for all (a0, a1) ∈A0 ×A1, we can conclude that
⋂

X=∅.
But h∗(X)= {(A0,A1)} obviously has a lower bound in TA0 × TA1, so since h∗ is discrete, X

should have a lower bound in T(A0 ×A1). However, this is impossible given that
⋂

X is empty,
so we have reached a contradiction.

We close this section by investigating, in analogy with OPCAadj, the category OPCA†adj.

Definition 5.5. The preorder-enriched category OPCA†adj is defined as follows.

• Its objects are OPCAs.
• An arrow f : A→ B is a pair of applicative morphisms f ∗ : B�A and f∗ : A� B with f ∗ � f∗.
• If f , g : A→ B, then we say that f ≤ g if f ∗ ≤ g∗; equivalently, if g∗ ≤ f∗.
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From Theorem 4.6, we know that OPCA†adj is actually equivalent to OPCAopcd , where OPCAcd
denotes the wide subcategory of OPCA on the c.d. morphisms, and ( · )op indicates a reversal of
the 1-cells. The following result is now immediate.

Corollary 5.6. The category OPCA†adj has finite pseudocoproducts. Moreover, the pseudoinitial
object is strict, and pseudocoproducts are disjoint.

Proof. It suffices to prove the dual statements in OPCAcd. By Proposition 3.6, OPCAcd has finite
pseudoproducts. Moreover, by Lemma 3.4, the terminal object is strict in OPCAcd. The final
statement is Proposition 3.12.

6. The Realizability Topos
In this final section, we briefly investigate what we can say about coproducts of the realizability
toposes associated to OPCAs; in particular, to which extent realizability toposes are closed under
coproducts. First, let us give the appropriate definitions.

Definition 6.1. Let A be an OPCA.

(i) An assembly over A is a pair X= (|X|, EX), where |X| is a set, and EX is a function |X|→ TA.
(ii) A morphism of assemblies X→ Y is a function f : X→ Y for which there exists an r ∈A

(called a tracker of f ) such that r · EX(x)⊆ EY (f (x)) for all x ∈ |X|.
Assemblies and morphisms between them form a quasitopos Asm(A). Moreover, there is an

obvious forgetful funtor �A : Asm(A)→ Set sending X to |X|, and there is a functor ∇A : Set→
Asm(A), sending a set Y to the assembly (Y , y �→A). These functors are both regular, and they
satisfy �A �∇A with �A∇A ∼= idSet.

The ex/reg completion of Asm(A) turns out to be a topos, which is called the realizability topos
of A and denoted by RT(A). Since there is an inclusion Asm(A) ↪→ RT(A), we can also view ∇A
as a functor Set→ RT(A). Moreover, since �A is regular and Set is exact, �A may be lifted to a
functor RT(A)→ Set, which we denote by �̂A. This yields an adjunction

Set RT(A)
∇A
�̂A

where �̂A∇A ∼= idSet and �̂A preserves finite limits. This means that Set is a subtopos of RT(A),
and in fact, this is precisely the inclusion of double negation sheaves. The ¬¬-separated objects
are precisely those objects that are isomorphic to an assembly.

The following result was first obtained by Longley for the unordered case (Longley 1994,
Theorem 2.3.4) and generalized to OPCAs in Hofstra and Van Oosten (2003). We denote
by REG the 2-category of regular categories, regular functors, and natural transformations.
Moreover, REG/Set will denote the pseudoslice of REG over Set, i.e., its objects are regular
functors with codomain Set, its 1-cells are triangles that commute up to specified isomor-
phism, and its 2-cells are natural transformations that are compatible with these specified
isomorphisms.

Theorem 6.2. The assignment A �→ (�A : Asm(A)→ Set) may be extended to a local equivalence
OPCA†→ REG/Set.

Remark 6.3. Theorem 6.2 tells us applicative morphisms A� B, or equivalently, arrows A→ TB
of OPCA, correspond to regular functors Asm(A)→ Asm(B) that commute with �. The category
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OPCA can be used to capture two other classes of functors between categories of assemblies, the
first being smaller and the second being larger.

(i) Arrows A→ B of OPCA correspond to regular functors Asm(A)→ Asm(B) that com-
mute with � and preserve projective objects. This also explains the terminology in
Definition 4.5.

(ii) Arrows TA→ TB correspond to left exact functors Asm(A)→ Asm(B) that commute with �

(Faber and Van Oosten 2014, Theorem 2.2).

Let A0 and A1 be OPCAs. The pseudocoproduct of RT(A0) and RT(A1), in the 2-category
of toposes and geometric morphisms, is the product category RT(A0)× RT(A1). In this topos,
the logic may be computed componentwise, which implies that its subtopos of double negation
sheaves is equivalent to Set2, rather than Set. This immediately tells us that RT(A0)× RT(A1) is
never equivalent to a realizability topos.

Remark 6.4. It should be mentioned, however, that (A0,A1) is an OPCA internal to the topos
Set2, and that constructing RT(A0,A1) over the base Set2 rather than Set does yield RT(A0)×
RT(A1). Moreover, the pair (A0,A1), viewed as an OPCA internal to Set2, is the product of A0 and
A1 in an appropriate category of OPCAs with variable base categories. See also the treatment (for
the unordered case) in Zoethout (2020).

If we want to keep working over the base Set, on the other hand, then it makes more sense to
take the pseudocoproduct over Set. That is, we consider the pseudopushout square

Set RT(A0)

RT(A1) E

which always exists according to Proposition 4.26 from Johnstone (1977). This proposition also
tells us that the inverse image part of this diagram:

E RT(A0)

RT(A1) Set

�̂A0

�̂A1

is a pseudopullback of categories. Because all displayed functors are regular, this is also a pseudop-
ullback in REG, as is not difficult to show. This means that the inverse image part E → Set is the
pseudoproduct of �̂A0 and �̂A1 in REG/Set.

We finish the paper by determining when E above is itself a realizability topos. If A0 is triv-
ial, then the inclusion Set→ RT(A0) is an equivalence, so in that case, we will have E � RT(A1).
Similarly, if A1 is trivial, then E will be equivalent to the realizability topos over A0. It turns out
that these are the only cases in which E is a realizability topos.

Proposition 6.5. Let A0 and A1 be OPCAs such that the pseudocoproduct of RT(A0) and RT(A1)
over Set is again a realizability topos. Then at least one of A0 and A1 is trivial.

Proof. Suppose that the E constructed above is equivalent to RT(C) for some OPCA C. By
Corollary 1.4 from Johnstone (2013), there exists (up to isomorphism) at most one geometric
morphism Set→ RT(C). In particular, Set ↪→ E � RT(C) is isomorphic to the inclusion of double
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negation sheaves. This means that the inverse image part RT(C)→ Set is isomorphic to �̂C, so we
have a pseudopullback

RT(C) RT(A0)

RT(A1) Set

p1

p0

�̂C
�̂A0

�̂A1

of categories, where pi denotes the inverse image of RT(Ai) ↪→ E � RT(C). By Johnstone (2013),
Lemma 2.4, such an inverse image functor always commutes with the constant object functors,
i.e., we have pi∇C �∇Ai for i= 0, 1.

An object X of RT(C) is isomorphic to an assembly if and only if X→∇C�̂CX is a monomor-
phism. By the pseudopullback diagram above, this is the case iff and piX→ pi∇C�̂CX is mono
for i= 0, 1. Since pi∇C�̂CX∼=∇Ai �̂AipiX, this is equivalent to saying that piX is isomorphic an
assembly, for i= 0, 1. So we also have a pseudopullback

Asm(C) Asm(A0)

Asm(A1) Set

�C �A0

�A1

of categories. But again, all the displayed functors are regular, so this is also a pseudopullback in
REG, meaning that �C is a pseudoproduct of �A0 and �A1 in REG/Set.

This, together with Theorem 6.2, implies that for any OPCA B, we have natural equivalences:

OPCA†(B, C)� (REG/Set)(�B, �C)
� (REG/Set)(�B, �A0 )× (REG/Set)(�B, �A1 )
�OPCA†(B,A0)×OPCA†(B,A1),

so C is a pseudoproduct of A0 and A1 in OPCA†. Applying Theorem 5.4 finishes the proof.

Even though the pushout E constructed above is not a realizability topos, we can ask how far
it is from being a realizability topos. The adjunctions πi � κi between Ai and A0 ×A1 give rise
to geometric inclusions RT(Ai) ↪→ RT(A0 ×A1). The pushout diagram above then also yields a
geometric inclusion E ↪→ RT(A0 ×A1), so E is a subtopos of a realizability topos. We can wonder
fromwhich local operator on RT(A0 ×A1) this subtopos E arises. Local operators on a realizability
topos RT(B) arise from functions J : DB→DB where DB stands for the set of all downsets of
B (including ∅), and J should satisfy certain requirements analogous to the axioms for a local
operator. For details, we refer to Lee and Van Oosten (2013). In this particular case, the subtopos
E arises from J : D(A0 ×A1)→D(A0 ×A1) defined by

J(α)= {a0 ∈A0 | ∃a1 ∈A1 ((a0, a1) ∈ α)} × {a1 ∈A1 | ∃a0 ∈A0 ((a0, a1) ∈ α)},
i.e., J(α) is the smallest ‘rectangular’ subset of A0 ×A1 containing α. We can also describe this
map by saying that J(α)= h∗(h∗(α)) for α ∈ T(A0 ×A1) (with h∗ � h∗ as in the previous section),
and J(∅)=∅.

This discussion suggests a natural class of toposes that includes realizability toposes and is
closed under pushouts over Set, namely the class of nontrivial subtoposes of realizability toposes.
A standard fact on subtoposes of realizability toposes is that ¬¬ is the largest topology on
RT(A) below the maximal topology �. Accordingly, Set is the smallest nontrivial subtopos of
any realizability topos RT(A). So, if Ii is a nontrivial subtopos of RT(Ai), then we have inclusions:

Set Ii RT(Ai).
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This means that we can take the pushout ofI0 andI1 over Set and that this pushout is a subtopos
of E . Since E itself is a subtopos of RT(A0 ×A1), we get the following result.

Corollary 6.6. The class of nontrivial subtoposes of realizability toposes is closed under pushouts
over Set.

7. Conclusion
In this paper, we have studied two categories of ordered partial combinatory algebras. The first
category OPCA, where the arrows are functional morphisms, has both small 2-products and finite
pseudocoproducts. The second category OPCA†, where the arrows are applicative morphisms,
does have finite pseudocoproducts, but it lacks all nontrivial binary pseudoproducts. In this re-
gard, OPCA has a better categorical structure than OPCA†. However, it also seems that OPCA†
is more important for the study of functors between categories of assemblies and realizability
toposes. For example, Johnstone (2013) shows, continuing work by Longley, Hofstra and Van
Oosten, that in the unordered case, every geometric morphism RT(A)→ RT(B) arises from a
computationally dense applicative morphism B→A. As we have seen in this paper, pushouts
of realizability toposes over Set require pesudoproducts in OPCA† (rather than OPCA), which are
not available. In order to take coproducts of realizability toposes, one must be prepared to con-
sider a wider class of toposes than realizability toposes. One can allow the base category to vary,
as in Zoethout (2020). If we want to keep working over Set, however, then we must be prepared
to consider subtoposes of realizability toposes as well.
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