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Abstract. The carbon cycle of tropical terrestrial vegeta-
tion plays a vital role in the storage and exchange of atmo-
spheric CO,. But large uncertainties surround the impacts
of land-use change emissions, climate warming, the fre-
quency of droughts, and CO» fertilization. This culminates
in poorly quantified carbon stocks and carbon fluxes even for
the major ecosystems of Africa (savannas and tropical ever-
green forests). Contributors to this uncertainty are the spar-
sity of (micro-)meteorological observations across Africa’s
vast land area, a lack of sufficient ground-based observation
networks and validation data for CO,, and incomplete repre-
sentation of important processes in numerical models. In this
study, we therefore turn to two remotely sensed vegetation
products that have been shown to correlate highly with gross
primary production (GPP): sun-induced fluorescence (SIF)
and near-infrared reflectance of vegetation (NIRv). The for-
mer is available from an updated product that we recently
published (Sun-Induced Fluorescence of Terrestrial Ecosys-
tems Retrieval — SIFTER v2), which specifically improves
retrievals in tropical environments.

A comparison against flux tower observations of daytime-
partitioned net ecosystem exchange from six major biomes
in Africa shows that SIF and NIRv reproduce the seasonal
patterns of GPP well, resulting in correlation coefficients
of > 0.9 (N = 12 months, four sites) over savannas in the
Northern and Southern hemispheres. These coefficients are
slightly higher than for the widely used Max Planck Insti-
tute for Biogeochemistry (MPI-BGC) GPP products and en-
hanced vegetation index (EVI). Similarly to SIF signals in
the neighboring Amazon, peak productivity occurs in the wet
season coinciding with peak soil moisture and is followed by
an initial decline during the early dry season, which reverses
when light availability peaks. This suggests similar leaf dy-
namics are at play. Spatially, SIF and NIRv show a strong lin-
ear relation (R > 0.9; N > 250 pixels) with multi-year MPI-
BGC GPP even within single biomes. Both MPI-BGC GPP
and the EVI show saturation relative to peak NIRv and SIF
signals during high-productivity months, which suggests that
GPP in the most productive regions of Africa might be larger
than suggested.
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1 Introduction

Gross primary production (GPP) is the carbon dioxide (CO»)
flux between the terrestrial biosphere and the atmosphere by
terrestrial plants via plant photosynthesis, and it is the largest
CO; flux on the planet (Beer et al., 2010). In determining
African net ecosystem exchange (NEE), GPP was more im-
portant than total ecosystem respiration (TER) (Ciais et al.,
2011; Ardo, 2015). It dominates the interannual variability
in the terrestrial ecosystem carbon uptake, and as a conse-
quence of fertilization, it is likely to continue its substan-
tial increase and play an important role in carbon—climate
coupling (Vermote et al., 1997; Friedlingstein et al., 2019).
Therefore, quantification of the spatiotemporal variations in
GPP is important to assess biogeochemical cycling in the
terrestrial biosphere, ecosystem functioning, carbon budgets,
and food production in the context of global climate change.
Accurate quantification of GPP is still a challenge at scales
beyond that of a single ecosystem level, due to the lack of
a reliable GPP signal that can be observed worldwide. Es-
pecially in the highly productive tropical regions, the lack of
both large-scale GPP signals and local measurements leads to
a lack of understanding of how environmental changes drive
carbon exchange. As a result, we can only crudely describe
the carbon balance of these regions in the current and future
climate.

For example, it is still unclear whether African biomes are
a net sink or source of atmospheric CO;, and there is gener-
ally low confidence in the simulated climate change response
of the region in Earth system models (Williams et al., 2007;
Ciais et al., 2009). Africa has a significant and growing role
in the global carbon budget, and it is likely that a sizable frac-
tion of the observed interannual variability in the global car-
bon cycle (Cox et al., 2013; Ballantyne et al., 2018) can be at-
tributed to the African continent (Williams et al., 2007). De-
spite its global and regional importance, Africa has few envi-
ronmental observation networks (Fisher et al., 2013), leaving
so-called global atmospheric CO; inversions (Peters-Lidard
et al., 2007; Peylin et al., 2013; Gaubert et al., 2019) poorly
constrained. This leaves Africa as the most uncertain and
error-prone continent for carbon flux estimates.

Recently, Palmer et al. (2019) suggested that tropical
Africa is an unexpectedly large net source of CO; to the
atmosphere, reaching nearly 1.5PgCyr~! during the 2015-
2016 El Nifio event. According to two separate satellite
products that retrieve column-integrated CO, (XCO3) from
observed radiances, the northern part of Africa contributes
most to this carbon source (Mengistu and Mengistu Tsidu,
2020). Hotspots of emissions in the Congo basin and west-
ern Ethiopia, tentatively associated with land-use changes
over lands with high soil carbon densities, are partly respon-
sible for this source. An important next step is to verify these
finding independently using ground-based measurements of
CO; fluxes (GPP, TER, and NEE) and CO; mole fractions, as
XCO; retrievals are still in a development phase, and previ-
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ous versions of these products have displayed various biases
despite enormous efforts and great diligence from retrieval
experts (O’Dell et al., 2018).

Arguably the most reliable measurements of NEE come
from the eddy-covariance technique (Baldocchi et al., 2001).
However, there are still uncertainties in the partitioning of
the measured net ecosystem exchange flux into GPP and res-
piration (Reichstein et al., 2005; Lasslop et al., 2012). Fur-
thermore, the eddy-covariance methods only provide mea-
surements over a restricted area covered by their observation
footprints with sizes and shapes that vary with tower height,
canopy physical characteristics, and wind velocity and by
the limited and biased spatial distribution of towers across
the globe (Schimel et al., 2015). In Africa there are rela-
tively few eddy-covariance measurement sites, and the data
from these towers often suffer from gaps in their observa-
tional records. On the other hand, terrestrial and ecosystem
models can simulate GPP over varied spatial and temporal
scales all over the globe, but the reliability of such calcula-
tions heavily depends on both the input data and the model
formulation, which often are not specific for African (or trop-
ical) biomes. For example, Fisher et al. (2013) estimated av-
erage GPP of the African tropical forest to range from 1.4
to 4.0kgCm~2 yr~!, indicating large variability among nine
global dynamic vegetation models.

The seasonal dynamics of GPP over tropical ecosystems
have been discussed widely due to contrasting observations
from remote-sensing and eddy-covariance platforms over the
South American Amazon basin (see Restrepo-Coupe et al.,
2013, and references therein). In addition to photosynthetic
active radiation (PAR) and vapor pressure deficit (VPD),
there is a clear contribution of soil moisture stress in the
changing photosynthetic capacity of leaves as a function of
age in broadleaf vegetation (Xiao et al., 2006; Huete et al.,
2006) to shaping the GPP seasonal cycle. In seasonally wet
forests, GPP typically peaks in the wet season when VPD is
low and soil moisture high and declines in the early dry sea-
son only to increase again well before the rainfall minimum,
as freshly grown leaves take advantage of the maximum in
PAR (Lopes et al., 2016). Areas with low vegetation (shrubs,
grasses, sparse trees) instead show a decline in GPP through-
out the dry season, as soil moisture and high VPD limit pro-
ductivity of the vegetation. These patterns were confirmed
in three separate studies using remote-sensing observations
of sun-induced fluorescence from GOSAT (Lee et al., 2013),
GOME-2A (Koren et al., 2018), and TROPOMI (Doughty
et al., 2019) over the Amazon.

Similarly to SIF, the near-infrared of vegetation (NIRv),
which is the product of the normalized vegetation index
(NDVI) and total-scene near-infrared reflectance (NIRT),
was found to provide a good proxy for GPP (Badgley et al.,
2017; Badgley, 2019; Turner et al., 2020; Baldocchi et al.,
2020). Therefore, we use the Sun-Induced Fluorescence
of Terrestrial Ecosystems Retrieval (SIFTER; van Schaik
et al., 2020) data from the GOME-2A instrument and NIRv
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from the Moderate Resolution Imaging Spectroradiometer
(MODIS) to assess the usefulness of these signals to cap-
ture the seasonality and magnitudes of GPP derived from six
eddy-covariance flux towers from Africa in the overlap years
between the years 2007-2014. We also test the robustness of
SIF and NIRv to track the seasonality of GPP for the major
biomes in comparison to the widely used machine-learning
approach of Max Planck Institute for Biogeochemistry (MPI-
BGC) GPP, as well as to other vegetation remote-sensing in-
dices like the NDVI (Kong et al., 2016) and enhanced vege-
tation index (EVI; Arvor et al., 2011). Further, we assess the
relationship between the satellite observations and (model-
generated) soil moisture (SM) and incoming shortwave ra-
diation (SWR) in the region. Finally, we derived a plant-
functional specific linear relation between eddy-covariance
GPP and SIF/NIRv, to quantify integrated GPP from re-
motely sensed signals.

2 Data and methods
2.1 Study area

The relationships between NIRv, SIF, and GPP were studied
for the major biomes over Africa. The dominant biomes of
the region are broadleaf evergreen forest (BLEF), C3 grasses
(C3), shrubs (Sh), and C4 grasses (C4) (Fig. le). Northern
and southern parts of Africa operated in anti-phase in their
summer insolation, precipitation, and other environmental
stresses. Therefore, we subdivided the shrubs and C4 grasses
into a Northern Hemisphere (NH) part and Southern Hemi-
sphere (SH) part. However, we did not split up the BLEF,
which is at the tropical rain belt and shows weak symmetry
between the north and south of the Equator, or the C3, due
to its smaller coverage over the northern part of Africa. The
vegetation type distribution is based on the terrestrial bio-
sphere model SiBCASA (Schaefer et al., 2008; van Schaik
et al., 2018).

The seasonal movement of the Inter-Tropical Convergence
Zone (ITCZ) drives the climate of Africa in response to
changes in the location of maximum solar heating in the re-
gion. The ITCZ seasonally migrates north and south of the
Equator as the latitude of maximum solar insolation varies,
causing equatorial Africa to be characterized by double-
rainfall-maximum rainy seasons (Singarayer et al., 2017).
However, in East Africa, local topography leads to spatially
variable temperatures and a complex distribution of rainfall
(Gebrechorkos et al., 2019). The seasonal dynamics of veg-
etation are strongly controlled by these climatic conditions
(Stephenson, 1990) through the key processes of photosyn-
thesis, respiration, and transpiration. Primarily, the length of
the dry season has often been emphasized as a major factor
controlling the vegetation structure and patterns in the tropics
(Ngomanda et al., 2009; Vincens et al., 2007). November—
April are the wettest months, whereas June—September are
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the driest months for the regions with C3 and Sh-SH biomes
(Fig. 1d). On the other hand, July—September are the wettest
months, while December to March are the driest months Sh-
NH and C4-NH regions. For BLEF regions the precipitation
is higher than 100 mm per month throughout the year.

2.2 Gridded datasets

In this study we use Level-3 GOME-2 Sun-Induced Fluo-
rescence of Terrestrial Ecosystems Retrieval SIF (v2.0) with
737 nm monthly data at a spatial resolution of 0.5° x 0.5°
covering the period from 2007 to 2016. For a fair compara-
bility of the SIF with vegetation indices we normalized SIF
by the cosine of the solar zenith angle. We used the Royal
Netherlands Meteorological Institute (KNMI)—Wageningen
University & Research (WUR) SIF retrieval, which is partic-
ularly suited for tropical conditions (van Schaik et al., 2020;
Koren et al., 2018). The retrieval code uses a much larger
dataset to construct the reference atmospheric spectra used
to distinguish the small SIF signals from the complex struc-
ture of transmittance and reflectance from other atmospheric
constituents such as water vapor (van Schaik et al., 2020).

The NIRv represents the fraction of reflected near-infrared
reflectance (NIR) of light that originates from vegetation.
NIRv was first described as a proxy for photosynthesis by
Badgley et al. (2017). Recent studies have suggested using
NIRv and computed NIRv-based SIF for a more robust GPP
estimation under wide land cover with a varied canopy struc-
ture and soil brightness (Badgley et al., 2017; Badgley, 2019;
Zeng et al., 2019). In this study we used NIRv at a spa-
tial resolution of 0.5° x 0.5° and a monthly temporal res-
olution for the years 2007-2016. We also used NIRv at a
higher resolution (0.05° x 0.05°, daily) in comparison with
flux tower GPP. NIRv data used here were calculated using
surface reflectance data from MODIS collection MCD43C4
v006 (Schaaf and Wang, 2015) from 2007 to 2016 as

NIRV = ppir X <M _ 0.08) ’ (1)
Pnir + Pred

where pnir and preq are reflectances acquired in the near-
infrared (841-876 nm) and red (620-670 nm) portions of the
electromagnetic spectrum, respectively (Huete et al., 2002).
A constant 0.08 is subtracted to reduce the effects of the bare
soil (Baldocchi et al., 2001; Huang et al., 2019).

Monthly global ecosystem estimation of terrestrial GPP
was made available by the Max Planck Institute’s Biogeo-
chemical Integration Group (Jung et al., 2011). This GPP
estimation is constructed using a machine-learning method
to upscale information from flux towers up to a 0.5° x 0.5°
grid, aided by gridded meteorological and remote-sensing
co-variables, and hereafter we refer to this product as MPI-
BGC GPP. This product is available at a monthly temporal
resolution (downloaded from https://www.bgc-jena.mpg.de/
geodb/projects/Data.php, last access: 5 January 2020) cover-
ing the period from 2007 to 2011.
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Figure 1. Annual mean SIF (a) and NIRv (b) averaged over the years 2007-2016 at 0.5° x 0.5° resolution. (¢) Climatology of gross primary
production (Beer et al., 2010) at 0.5° x 0.5° resolution. (d) Monthly average precipitation computed from the GPCC product covering the
period from 1951 to 2000 for the major biomes of Africa. The red line indicates a reference of 100 mm per month. (e) Vegetation types from
the terrestrial biosphere model SIBCASA. The white color refers to non-vegetated regions. The rectangular window with a five-pointed star

at the center shows the distribution of flux towers in Africa.

The enhanced vegetation index (EVI) and the normalized
difference vegetation index (NDVI) are the two most widely
used vegetation indices for monitoring vegetation conditions
and have significant relationships with GPP (Xiao et al.,
2005). The monthly EVI and NDVI from the MODIS collec-
tion of MOD13C2 at a spatial resolution of 0.05°x0.05° in
the years 2007-2015 were used in the study. Compared with
the NDVI, the EVI is less sensitive to soil background vari-
ations and remains sensitive over dense vegetation (Huete
et al., 2002). For that reason we focus on comparison with
the EVI rather than with the NDVI. Moreover, MODIS does
not provide NIRv in the MOD13C2 dataset, so we calcu-
lated it using the BRDF-corrected surface reflectances from
MCD43C4, following the steps outlined in Badgley et al.
(2017).

Monthly precipitation data from the Global Precipitation
Climatology Centre (GPCC) at a 0.5° x 0.5° spatial resolu-
tion were employed to show the dry and wet months of the
region for each major biome. The GPCC Full Data Monthly
Product Version 2018 covers the period from 1891 to 2016;
this new extended product version using the new GPCC cli-
matology as analysis background was generated in May 2018
and can be accessed from https://www.dwd.de/ (last access:
15 January 2020). In addition we used monthly tempera-
ture data from European Centre for Medium-Range Weather
Forecasts (ECMWF) atmospheric reanalysis ERA-Interim
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(with a 0.5° x 0.5° grid). Furthermore, we used monthly soil
moisture (SM) and incoming downward shortwave radia-
tion (SWR) from the Global Land Data Assimilation System
Version 2.1 (GLDAS2.1) of the National Aeronautics and
Space Administration (NASA) Goddard Space Flight Center
(GSFC) at a spatial resolution of 0.25° x 0.25° covering the
period from years 2007-2016 (Peters-Lidard et al., 2007).

2.3 Flux tower data

Standardized eddy-covariance flux data are available un-
der the fair-use data policy of the FLUXNET2015 dataset.
The data processing of the FLUXNET2015 dataset en-
sures inter-comparison and quality assurance and control
across sites (Vuichard and Papale, 2015). A collection of
eddy-covariance flux data from six regions in Africa were
used in this study to assess the correlation between SIF,
NIRv, and GPP at an ecosystem level, specifically, avail-
able monthly GPP products from the daytime partitioning of
fluxes (GPP_DT_VUT_REF) from Tier-2 FLUXNET2015
synthesis https://fluxnet.org/ (last access: 15 January 2020).
These variables were screened using quality flags so that only
samples that are either measured (flag=0) or good quality
(flag = 1) were retained. An overview of the selected towers
is given in Table 1. In addition to these six African flux tow-
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ers we used data from the Brazilian BR-Sal flux tower for a
better representation of GPP in broadleaf evergreen forests.

2.4 Analysis method

To compare the gridded datasets (SIF, NIRv, MPI-GPP) with
the GPP measurements from flux towers, we extracted data
from a 4° x 4° window surrounding each flux tower. The
flux towers have a footprint of about 1km?, and it is hard
to compare them to areas that are 200 km?, centering around
the towers, which include many vegetation types. However,
we use the vegetation mask to exclude grid cells with differ-
ent vegetation from the tower’s vegetation; this will account
for the land heterogeneity of the regions. The variation in
climate condition was addressed by splitting up the shrubs
and Cy4 grasses over the Northern and Southern hemispheres.
We used good quality data as recommended by each data
source, and we further processed these datasets to match the
spatiotemporal grids. For the reason that only a small frac-
tion of emitted SIF signal can be sensed from space, which
also depends on the direction of observation, the empirical
relationship between SIF and GPP is complicated (Porcar-
Castell et al., 2014; Zeng et al., 2019). Even if the mechanis-
tic link between remotely sensed vegetation reflectance and
GPP is complex (Porcar-Castell et al., 2014), Guanter et al.
(2014) and Sun et al. (2017) showed that a simple linear rela-
tionship between SIF- and tower-based GPP is a reasonably
convenient framework for presenting and evaluating argu-
ments and counterarguments for the SIF-GPP relationship.
Here, we predict GPP from this remotely sensed vegetation
reflectance using a linear regression between GPP and these
signals as

y=ax+b, 2)

where y is the GPP obtained from SIF or NIRv signals, x
is the SIF or NIRv signal, and a and b are the slope and
y intercept of the fitting line, respectively. The conversion
of SIF and NIRv to GPP is achieved by applying this fitting
to all monthly SIF and NIRv values for each vegetation type
separately.

The linear relationship between SIF and GPP in Eq. (2)
may be rationalized with the formulation based on the con-
cept of light use efficiency (LUE) (Monteith, 1972) in a sim-
ple parametric LUE-model GPP as follows:

GPP = APAR x LUE; , 3)

where APAR is the absorbed photosynthetically active radi-
ation expressed in radiance units and LUE, is the light use
efficiency of photosynthesis, which represents the efficiency
of energy conversion for gross CO; assimilation. Similarly,
SIF can be expressed as

SIF = APAR x LUEf X fesc , €]

where LUEy is the effective light use efficiency of SIF and
fesc 18 the fraction of SIF photons escaping the canopy
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(Damm et al., 2015; Dechant et al., 2020). These equations
can be combined making the dependence on light implicit:

LUE,
LUEf X fesc’

SIF has negative values due to noise in its retrieval, and a
zero value of SIF may not result in a zero value; therefore we
do not force the regression to pass through the origin, and as
result, there will be intercepts “b” as in Eq. (5). Further, the
linear relationship between NIRv and SIF can be rationalized
by the fact that both SIF and NIRv are jointly dependent on
the flux of the fractional interception of vegetation, incoming
solar radiation, and the fraction of photons that escape from
the canopy; these last two are strongly related measurable
fluxes (Zeng et al., 2019).

GPP ~ SIF x (5)

3 Results

3.1 GPP proxies and eddy-covariance-derived GPP
estimates

Spatial patterns in climatological NIRv, SIF, and MPI-BGC
GPP are very similar across large scales, with maximum
annual mean productivity in tropical broadleaf forests. Fig-
ure la—c show that productivity changes strongly at the bor-
ders of the plant-functional types (PFTs), which is interesting
because only the MPI-BGC product was actually informed
by a PFT map in its machine learning, while the satellite ob-
servations provide independent spatial views on productiv-
ity. Both products suggest additional variations within PFTs
not represented in the MPI-BGC map, as would be expected
based on the higher volume of observed data in the remote-
sensing products.

NIRv, SIF, the EVI, and MPI-BGC GPP generally cap-
ture seasonal patterns of tower GPP well, except at the
Ghana GH-Ank flux tower where from all products only
SIF yields the expected positive correlation with eddy-
covariance-derived GPP observations. Figure 2 shows the
observation-derived and simulated seasonal cycles of GPP
and the generally high (R > 0.8) seasonal correlations. SIF
shows more rapid changes in signal during the transitions
from wet-to-dry periods than other proxies. The May—June—
July period at the savanna site CG-Tch is an example and
indicates that SIF responds more rapidly to the decline in
photosynthesis in wilting grasses, which are still green and
reflective enough to affect the NDVI, EVI, and NIRv. More-
over, time series analysis for the years covering 2007-2016
around the CG-Tch tower resulted in correlations of 0.77,
0.89, and 0.88 between SIF, NIRv, and the EVI and soil mois-
ture (SM) and 0.72, 0.64, and 0.64 between SIF, NIRv, and
the EVI and precipitation, respectively (Fig. S1). The low
correlation between SIF and SM is due to SIF responding
before the soil gets too dry, whereas the correlations of the
EVI and NIRv with SM show the same pattern which sug-
gests that they respond when the vegetation loses its green

Biogeosciences, 18, 2843-2857, 2021
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Table 1. Information on flux tower sites in Africa and Brazil. The symbol “*” indicates that flux observations before 2007 were not used in
this study. The major biomes are savanna (SAV), evergreen broadleaf forest (EBF), and deciduous broadleaf forest (DBF). The distribution
of the towers over Africa is indicated in Fig. le. Note that we also included the details of one tower outside of Africa, BR-Sal, that was used

for our analysis of tropical evergreen broadleaf forests. Start and ends dates are given in the format month/year.

Site ID Site name Country Vegetation  Latitude (°) Longitude (°)  Start date  End date
CG-Tch Tchizalamou Republic of the Congo  SAV —4.289 11.656  01/2006* 12/2009
GH-Ank  Ankasa Ghana EBF 5.26854 —2.69421 01/2011 12/2014
SD-Dem  Demokeya Sudan SAV 13.2829 30.4783  01/2005* 12/2009
SN-Dhr Dahra Senegal SAV 15.40278 —15.43222 01/2010  12/2013
ZA-Kru Skukuza South Africa SAV —25.0197 31.4969  01/2000* 12/2013
ZM-Mon Mongu Zambia DBF —15.43778 23.25278  01/2000* 12/2009
BR-Sal Santarem-Km67  Brazil EBF —2.86 —54.96 01/2000* 12/2011

SN-Dhr (SAV) SD-Dem (SAV) CG-Tch (SAV)

GH-Ank (EBF) ZM-Mon (DBF) ZA-Kru (SAV)
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Figure 2. The skill of NIRv, SIF, the EVI, and MPI GPP in capturing the seasonal cycle of GPP from flux towers. The shaded area indicates
the standard deviation around the monthly means. Note that NIRv, SIF, and the EVI do not have the same unit as GPP and their values are

provided on the secondary y axis.

color. An immediate response of SIF to water stress of a sim-
ilar type has also been observed by others (Chen et al., 2019;
Tian et al., 2020).

SIF and NIRv have a higher monthly correlation with the
eddy-covariance (EC) GPP at most of the towers than the
EVI and MPI-BGC GPP (Fig. S2). Luus et al. (2017) also
found this and suggest it is because chlorophyll content seen
through the NDVI and EVI adapts slowly to stress and it can

Biogeosciences, 18, 2843-2857, 2021

take weeks for leaves to lose their green color (Hew et al.,
1969). The EVI and NDVI not only had generally much
weaker correlations but also show saturation when GPP is
high (Fig. S2). SIF and NIRv had the strongest correlations
(R > 0.90) with the EC GPP in C4 grass vegetation sites
(SD-Dem and SN-Dhr), while weak or no relationship was
found for broadleaf evergreen vegetation (GH-Ank). This
lack of relation was also found previously by Li et al. (2018)
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over rainforest regions and is further discussed in Sect. 4.
Even over evergreen forests where GPP is high throughout
the season (see Fig. 1c), NIRv and SIF track seasonality of
GPP well.

For a more detailed look, we also compare EC GPP to
daily NIRv signals, derived from high-resolution (0.05° x
0.05°) MODIS radiances instead of coarse averaged MODIS
NIRv (0.5° x 0.5°). At this daily timescale, we again find a
very strong correlation over northern Africa, while this cor-
relation decreases for the equatorial sites (Fig. 3). And again,
we see a weak correlation at GH-Ank, Ghana (Fig. 3 Gh-
Ank). The high-resolution NIRv mostly improves the com-
parison for sites with more heterogeneous vegetation cover
(GH-Ank and ZM-Mon, ZA-Kru), whereas there was no sig-
nificant improvement for less heterogeneous sites (SN-Dhr
and SD-Dem). In contrast to the low climatology correla-
tion for tropical evergreen broadleaf forest (GH-Ank, R =
—0.44), the correlation in the interannual variation in NIRv
and GPP is higher (R = 0.21) (see Table S1). These results
are illustrative of tropical ecosystems, where GPP variations
are irregular and strongly coupled to photosynthetic capacity
changes of vegetation (Restrepo-Coupe et al., 2013, 2017).

3.2 GPP proxies across the major biomes of Africa

We next extend this view from the level of individual tow-
ers to the scale of six major biomes in Africa (Fig. le) by
spatially averaging our productivity products. Also then, wet
months show higher SIF and NIRv values than dry months
for all biomes of the region. Both SIF and NIRv show a
strong linear relation with those of the MPI-BGC GPP es-
timates. Signals from both SIF and NIRv were correlated
well with MPI-BGC GPP over these biomes with a correla-
tion of R? > 0.85 for NIRv and R? > 0.77 for SIF. However,
the correlation was moderate for broadleaf evergreen forests
with a correlation of 0.38 for NIRv and 0.16 for SIF (see Ta-
ble S2). This seasonality shown in Fig. 4 agrees closely with
that seen for similar biomes in the Amazon (Girardin et al.,
2016; Koren et al., 2018) and confirms the known strong wa-
ter control over GPP in tropical vegetation (Abdi et al., 2017;
Bonal et al., 2016). Correlations with shortwave radiation are
thus strongly negative, especially over short vegetation like
shrubs and grasses. Over evergreen forests, SIF and NIRv
show a double-peaked seasonality and a decrease in produc-
tivity during the dry seasons despite high SWR and a high
leaf area index (see Fig. 4, Broadleaf evergreen), suggesting
an influence of photosynthetic capacity on GPP that has been
noted before to be not yet represented by most biosphere
models and light use efficiency models (Bhattacharya, 2018).
Clouds can strongly reduce direct solar radiation during the
wet season which increases the ratio of diffuse versus direct
solar radiation, possibly increasing productivity (Hollinger
et al., 1999).

Mostly, the EVI and MPI GPP closely agree on the
satellite-observed seasonality at these larger scales, but
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the EVI appears late in simulating the wet—dry season
(September—December) decline in signal for C3 grasses and
shrubs (see SIF-vs.-EVI hysteresis plots in Fig. S4). Similar
differences in EVI- and SIF-derived seasonal cycles of pho-
tosynthesis were described in Luus et al. (2017), for short
vegetation at high latitudes. Our response is opposite in the
sense that we see photosynthesis decline already before the
seasonal brown-down of the savanna. To further investigate
this, we therefore turn to the main drivers, water and light, of
the African seasonal cycle in GPP.

The biome-integrated productivity in Africa is seasonally
strongly controlled by soil moisture, with a weak influence
of light availability superimposed. In Fig. 5 this is recog-
nized by the positive correlation between SIF/NIRv (which
independently display the exact same patterns) and soil mois-
ture in both hemispheres. Peak productivity coincides with
peak soil moisture that occurs in September in the NH and in
March in the SH. Interestingly, the lead-up to peak productiv-
ity occurs more slowly than its subsequent decline even at the
same soil moisture levels, evident when comparing the pairs
of months (1) August and October and (2) July and Novem-
ber for the NH, or pairs (1) January and April and (2) Decem-
ber and May for the SH. Translating these points to the SWR
diagrams in panels (a) and (c), a notable difference between
the hemispheres appears: in the SH peak productivity occurs
while light availability continues to decline, creating the el-
liptical shape of the hysteresis diagram. In the NH however,
peak productivity happens at minimum light availability be-
coming larger at the same soil moisture levels past the peak
productivity.

3.3 SIF-GPP and NIRv-GPP estimation for the major
biomes

A SIF- or NIRv-based GPP estimate across each biome
compares independently quite well to MPI-BGC-estimated
GPP. Figure 6 shows the GPP estimated by applying the
SIF/NIRV-vs.-GPP relation derived at EC sites to biome-
wide satellite observations.

We chose the relation between the remotely sensed re-
flectances and the EC GPP from Senegal SN-Dhr, Congo
CG-Tch, and Sudan SD-Dem and ZA-Kru towers to esti-
mate GPP of the northern shrub, the southern shrub, and C4
grass and Cj3 grass, respectively, to represent different biomes
over northern and southern Africa (see Fig. S2 for the fitting
equations applied). Due to the weak relationship between
SIF/NIRv with Ghana GH-Ank GPP, a flux tower in tropi-
cal rainforest of Africa with broadleaf evergreen vegetation,
we used a linear relation between SIF/NIRv and EC GPP
data from the Brazilian BR-Sal flux tower which is also in
a tropical rainforest region with a broadleaf evergreen vege-
tation and shows a better relation with these signals than the
GH-Ank site (see Fig. S3). The good correspondence to MPI-
BGC GPP partly results from the EC sites being part of the
training algorithm for that product (Jiang and Ryu, 2016),
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Figure 3. Comparison of coarse NIRv at 0.5° x 0.5° (left panels) and high-resolution NIRv at 0.05° x 0.05° (right panels) with flux-tower-
measured GPP (EC GPP) for a selection of three African flux towers (GH-Ank, SD-Dem, and ZM-Mon). The temporal correlation between
NIRv and EC GPP is given in each panel.

C4 grass NH
0.2 - 260
1 1.5
0.15 240
o 0.5 220 1
L € o0—¢ 200 — —0.5
c s -~
& S
£ E R )
02l & 1 g 260 B
i Zog E 240 3 15 O
Z0151 Egel ¢ = 2
B c S 20 o , S
01 ESo4f B g z
T 3 2000 — 4 05
5 =
~ ] a
S & Broadleaf evergreen =
026 ©» 215 ,
12 200 S5
0-24 1.1 £ 1 210 2.6
0.22 100 2.5
1 205
L L ol — 200 _ 3
C3 grass
0.16 0.8 150+ _ 260 1.5
0.14 100+ T L 240
0.6 B 1
0.12 50 220
0.4
01— ¢ = o+ 200 — —0.5
E % ~
& s 2
1S £ Shrub SH =
—~ 02| & 1f g200- 260 2
j = 5 240 3 s Y
£015  Eos| c100- L 2 159
z £ 2 220 =
01 £ 3 ) — S 1og
~ =% s * 200 © — (U]
= S 2
02, = & C4 grass SH =
- (2}
1 200 260
0.15 100 240 L5
e 220 1
0.1 =
0 200 _J ,

) F ™M A M ] ) A S o N D

Figure 4. Seasonal cycles of NIRv, SIF, precipitation, shortwave radiation (SWR), the EVI, and MPI GPP at a 0.5° x 0.5° resolution over
major biomes of Africa covering the period from 2007 to 2011. The error bars provided for precipitation denote the standard deviation around
the mean.

Biogeosciences, 18, 2843-2857, 2021 https://doi.org/10.5194/bg-18-2843-2021



A. G. Mengistu et al.: GPP seasonal dynamics of Africa

2851

0.24

15

0.5

SIF 737 nm (mW/sr/m2/nm)

10.22
10.2
10.18

10.16

NIRv (-)

0.14
10.12
10.1

0.08

o

@ 0.22

=
wn

-
o
=28

o
U

SIF 737 nm (mW/sr/m2/nm)
2
2
2

o 102

e 10.16

NIRv (-)

0.14

10.12

10.1

0.08

0 I : | . I .
200 210 220 230 240 250 260 270
shortwave flux (W m™2)

250 300 350
root-zone soil moisture (kg m?)

Figure 5. Relation between SIF/NIRv with downward shortwave radiation (a, ¢) and root zone soil moisture (b, d) for major African biomes.
(a, b) Results over the vegetated regions of northern Africa (north of the Equator). (¢, d) Results for southern Africa (south of the Equator).
The numbers in the plot and the color of the markers refer to the month of the year.

- [ MPI-GPP
6 I S/F-GPP from EC-GPP - il
I \/IRv-GPP from EC-GPP N=1616

|E=ZINIRv0.05-GPP from EC-GPP | i
| N=1335

CagrassNorth ¢4 grass South

z
W

GPPPgCyr"
N " S )
T T T T
I ¢
|

N=574

Inl NIE

Shrub South C3 grass

N=283

ull

BLF Shrub North

ol

Figure 6. Comparison of aggregated MPI-BGC GPP, SIF GPP,
NIRv GPP, and GPP estimated from high-resolution NIRv
(NIRv0.05 GPP) for major biomes in Africa. N is the number of
grid boxes of size 0.5° x 0.5° used in the aggregation.

but we note that the spatiotemporal drivers in our product
(SIF/NIRv) are very different from those in MPI-BGC (PAR,
T, PFT, precipitation, etc.). Mostly, the SIF- or NIRv-based
GPP estimate shows that a reasonable first estimate of spa-
tiotemporal GPP patterns can be based on SIF and NIRv
without the need for the more complex and data-intensive
machine-learning approach. At least, it captures the large dif-
ferences between the major biomes of Africa, allowing fur-
ther study of their seasonal dynamics, drought response, and
contribution to tropical GPP.
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4 Discussion

We found the relationship between SIF/NIRv and GPP for
croplands to be the strongest, with R > 0.90 for C4 vegeta-
tion at both the Sudan (SD-Dem) and Senegal (SN-Dhr) sites
(Fig. S2). Wang et al. (2020) have also shown that SIF can
effectively track the seasonality of tower GPP better than the
NDVI and vegetation optical depth (VOD). A much weaker
relation was obtained for broadleaf evergreen vegetation such
as in Ghana (GH-Ank). This agrees with Li et al. (2018),
who also showed a weak relationship between SIF and GPP
over rainforest sites. Previous authors have suggested this
may result from the inefficiency of satellite measurements
in detecting the canopy activities of tropical forest (Tang and
Dubayah, 2017), due to limitations in their retrieval due to
atmospheric cloud contamination (Frankenberg et al., 2014;
Doughty et al., 2019) or to limitations in the EC measure-
ment technique itself (Hayek et al., 2018).

Eddy correlation measurements over rainforests are more
complicated than over flat vegetation due to the presence of
tall uneven canopies (Mercado et al., 2006) as well as sta-
ble atmospheric conditions at night (Miller et al., 2004). This
comes on top of the uncertainty incurred on the derived GPP,
which requires a partitioning of the measured net ecosys-
tem exchange during turbulent conditions (Reichstein et al.,
2005). The methodology used assumes a temperature depen-
dency of ecosystem respiration to remove its influence dur-
ing the daytime, such that GPP can be determined from the
residual of measured NEE and measurement-derived TER.
For tropical sites this 7 dependency is often assumed neg-
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ligible (Restrepo-Coupe et al., 2013). The partitioning ap-
proach is furthermore not well-tested for tropical ecosystems
because of a lack of long data records, the larger uncertainty
in determining nighttime TER (Kruijt et al., 2004), and the
often-seen nighttime storage that results in peak NEE fluxes
in the early morning (Aradjo et al., 2002). Finally, tropical
TER is likely to experience a larger control of temperature
and moisture on TER (Chambers et al., 2004).

The tower GPP from the GH-Ank site shows limited sea-
sonality (Fig. 3). GPP over evergreen tropical forest vegeta-
tion is poorly captured by all products. Where NIRv, the EVI,
and MPI-BGC GPP all show a phase-lag of nearly 4 months,
SIF manifests a double-peak structure and much too low an-
nual mean SIF relative to the other datasets. In general, SIF
and NIRv were better proxies for capturing the seasonal dy-
namics of GPP over most sites. The relationships can be im-
proved by using higher-resolution products instead of these
coarse resolutions. Here we used SIF from the GOME-2
instrument which has a larger footprint (40 x 80 km?) and
global gridding with a spatial resolution of 0.5° x 0.5° at a
monthly timescale. TROPOMI SIF is a promising alternative
for future studies of the African carbon cycle. TROPOMI
SIF has a higher spatial resolution than GOME-2 SIF and
more frequent coverage. Global TROPOMI SIF data were
first shown by Kohler et al. (2018). Their study also included
a detailed view of the North African Nile Delta. In addition,
Doughty et al. (2019) used TROPOMI to study the seasonal-
ity of the Amazon, showing the capability of this instrument
to capture seasonal dynamics of tropical ecosystems. More-
over, high-resolution (0.05° x 0.05°) SIF can be modeled us-
ing explanatory variables which are available at both fine and
coarse resolutions (Guanter et al., 2014; Zeng et al., 2019).
These results are illustrative of tropical ecosystems, where
GPP variations are irregular and strongly coupled to leaf phe-
nology of vegetation (Restrepo-Coupe et al., 2013, 2017).

Remote-sensing-data-driven models are widely used for
estimating plant photosynthesis, and they are linearly depen-
dent on the amount of solar illumination and amount of water
content in the soil and plant canopy (Ceccato et al., 2001).
Most of these models assume information on the fraction
of absorbed photosynthetically active radiation (FAPAR) and
vapor pressure deficit (VPD) are sufficient to accurately es-
timate the responses of GPP to drought. However, deficits
in soil moisture and their effects on GPP are not necessar-
ily captured by fAPAR or VPD (Stocker et al., 2019) and
result in large uncertainties in these GPP estimations. Our
analysis showed seasonality of soil moisture strongly con-
trols plant productivity with a weak intervention of available
shortwave radiation. SIF and NIRv have a correlation coef-
ficient of R ~ 0.97 with soil moisture over southern Africa
which is stronger than over northern Africa (R =~ (0.76). De-
spite this strong linear relation, during some months, we ob-
served a very small difference in SIF/NIRv while the dif-
ference in the soil moisture was large. This is partly re-
lated to the amount of solar radiation. During saturation,

Biogeosciences, 18, 2843-2857, 2021

A. G. Mengistu et al.: GPP seasonal dynamics of Africa

when the soil is very moist, the amount of shortwave radi-
ation significantly impacts productivity, whereas during the
growing season or end period of growing seasons, vegeta-
tion production has a strong proportion compared to soil
moisture. A per-pixel temporal correlation of SIF, NIRv, and
the EVI with soil moisture and precipitation over the veg-
etated regions of Africa covering the years 2007-2016 ex-
hibits a weaker correlation over the tropical rainforest region,
where the monthly average rainfall always exceeds 100 mm
per month and a broadleaf evergreen forest is the major
land cover (Fig. S5). This suggests that the seasonal patterns
of GPP may have no correspondence with precipitation/soil
moisture over this region, which generally has smaller sea-
sonality in GPP and high soil moisture levels compared to
non-broadleaf vegetation types.

GPP estimation from SIF needs a more complicated mod-
eling approach (Norton et al., 2018; Anav et al., 2015) as it
needs assimilation of SIF into a terrestrial biosphere model
to estimate the gross uptake of carbon through photosynthe-
sis. However, we applied a simple linear relation between
SIF/NIRv and EC GPP and showed reasonably well esti-
mates of GPP over different biomes (Fig. 6) (see also Table
S3 for biome-specific estimation of GPP per unit area as a re-
sponse of the major biomes of Africa). The GPP obtained in
this simple upscaling method was integrated for each biome
and was found to have good consistency with MPI-BGC
GPP. SIF GPP was found to be more consistent with MPI-
BGC GPP than the NIRv GPP. The upscaled NIRv GPP was
31 % higher compared to MPI-BGC GPP for C4 grass over
northern Africa. In contrast, it was lower by 42 % for shrub
over southern Africa. Guanter et al. (2014) found that the
MPI-BGC GPP underestimated the global crop production
by 50 %-70 % compared to SIF GPP obtained by a fitting
to flux-tower-based GPP from US and European croplands
and grasslands; however in African grassland we found SIF
GPP to be relatively lower than MIP-BGC GPP. GPP estima-
tion from high-resolution NIRv (at 0.05°) showed an overes-
timated GPP compared to MPI-BGC over most biomes.

5 Conclusions

There is substantial uncertainty in GPP estimated by terres-
trial biosphere models, especially for tropical regions, par-
ticularly in regions like Africa with very few and sparse ob-
servation networks. Thus, the use of satellite fluorescence
is highly valuable to completing our understanding of the
global and regional carbon cycle. The mean climatology of
SIF and NIRv correlates well with GPP from EC towers, con-
firming their value as a robust GPP proxy. Comparing SIF
and NIRv with flux tower measurements from six EC flux
sites in Africa, we found that SIF and NIRv can capture the
seasonality of measured GPP over most sites. The relation-
ship between SIF/NIRv and GPP was stronger (R > 0.90) in
Cy4 vegetation examined at both Sudan (SD-Dem) and Sene-
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gal (SN-Dhr) sites. SIF and NIRv were found to capture the
seasonal cycle well, while MPI-BGC GPP products and the
vegetation index show a saturation when production is high.
A weak relationship was found for broadleaf evergreen veg-
etation that was examined in Ghana (GH-Ank). The tower
GPP in the GH-Ank site hardly shows the presence of sea-
sonality in GPP. In contrast, both MPI-BGC GPP and satel-
lite fluorescence showed there is a clear seasonality in trop-
ical rainforest GPP that follows the rainfall pattern of the
region. Large uncertainties in GPP measurement from the
eddy-covariance technique in tropical forests may contribute
to the weak relation. The correlation that we find for the sea-
sonal cycle of GPP and NIRv for tropical evergreen broadleaf
forest GH-Ank is R = —0.44, whereas the agreement in the
interannual variation in NIRv and GPP is higher (R = 0.28
for NIRv extracted from a 0.05° x 0.05° grid). These results
are illustrative of tropical ecosystems, where GPP variations
are irregular and strongly coupled to leaf phenology of vege-
tation.

SIF and NIRv allow us to diagnose instantaneous produc-
tivity, whereas the signals carried by atmospheric tracers con-
tain information on longer timescales. For example, the iso-
topic composition of CO; is controlled by exchange with leaf
water inside plants, and the magnitude of this exchange is
related to GPP. In particular, A0 (also known as the 70
excess, approximately equal to §'70-0.5x §'30) is a promis-
ing tracer because it is less dependent on the water cycle than
the more traditional tracer §'30 and easier to interpret as a
tracer for GPP. The signals contained in these tracers rep-
resent larger land areas such as the African biomes that we
studied here. When sufficient observations become available,
these tracers have the potential to provide an additional, in-
dependent constraint on productivity across Africa.
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