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Abstract: Dense atomic vapors have strong non-linear optical properties for near-resonant
light. As a result, an initially Gaussian beam profile is strongly distorted due to propagation
through such a dense vapor, leading to various distinct beam profiles. In our experiment, we
track the detuning from resonance at which these beam profiles occur as a function of intensity.
We establish a detuning curve as a function of intensity for each shape at two different cell
temperatures. After proper scaling, the detuning curves all collapse onto one universal detuning
curve, which suggests that the shapes are manifestations of the same underlying phenomenon.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Since the invention of the laser it was clear that the high intensities offered by this light source
could give rise to nonlinear optical effects. Beam profiles of laser beams are heavily affected
by these non-linearities. Pioneers like Bloembergen and Townes already saw evidence of
self-focusing [1,2] and more recently, the propagation of light in nonlinear optical media has
been seen to give rise to optical solitons, that maintain their spatial profile and/or (in the case
of pulsed lasers) their temporal shape [3–9]. From a theoretical point of view, the physics of
the propagation of laser beams through nonlinear optical media strongly resembles the physics
of interacting Bose-Einstein condensates; both can be accurately described using the nonlinear
Schrödinger equation [10–12]. This similarity has been exploited to demonstrate superfluid-like
behaviour in optical propagation [13–17]. Dense alkali vapors are an extremely versatile platform
to carry out such experiment, because strength and sign of the nonlinearity can be chosen by
adjusting the detuning (with respect to the resonance frequency). They have recently regained
interest for their ability to affect the statistics and beam shape of near-resonant laser light. Below
the transition frequency, i.e. at negative detuning with respect to the atomic resonance, defocusing
causes intriguing effects in beam statistics: a disorganised speckle pattern regains coherence
gradually due to the defocusing nonlinearity [18] and the beam profile evolution in the cell is
found to be analogous to the time-evolution of a 2D-Bose gas [19–21].

Above the transition frequency, i.e. at positive detuning with respect to the atomic resonance,
beams with extraordinary shapes have been observed emerging from a dense alkali vapor. Already
in the 70s and 80s, alkali vapors were shown to have a self-focusing effect on blue-detuned laser
beams [3,22]. More recently, Gaussian beams of nearly resonant light, were found to exhibit
exotic beam profiles after propagation through a hot dense rubidium vapor [23]. Near-resonant
laser beams focused strongly in the non-linear medium have been used to produce Bessel-Gauss
modes, which have self-reconstructing properties upon hitting an obstacle [24]. Under slightly
different conditions cross-phase modulation produces size-variable Dark-Hollow Beams (DHB):
optical modes with a bright ring around a dark centre [25], which can be turned into a self-healing
Bessel beam by focusing.

In this work, we report on transmission experiments performed with high laser intensity and
at high atomic densities. Various characteristic shapes are observed emerging from the dense
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rubidium vapor cell, examples of which are shown in Fig. 1. These shapes appear at a different
detuning for each beam intensity and temperature, are very robust, easily reproducible and highly
similar for different detuning-intensity-temperature combinations. We track the detuning at which
the characteristic shapes appear over a range of intensities and find that the detuning curves of
the characteristic shapes collapse onto one universal dimensionless detuning curve.

Fig. 1. The basic concept of the experiment: the incoming laser beam profile changes shape
after propagation through a dense rubidium vapor. The bottom row shows typical shapes
emerging from the dense rubidium vapor.

2. Setup

Initial experiments were carried out using the setup described in [26]. For follow-up experiments,
an adapted version shown in Fig. 2 was used. The most important difference between the setups is
that in [26] an extended cavity diode laser was used, with analog control of the optical frequency
and a mode-hop free range of only a few GHz, whereas the setup presented here uses a distributed
feedback (DFB) laser diode. The DFB laser is computer controlled and has a large mode-hop
free range, allowing us to readily perform optical frequency scans of several tens of GHz. Light
from the DFB diode is amplified in a fiber coupler semiconductor optical amplifier (SOA) and a
tapered amplifier. The resulting light is spatially filtered to produce an approximately Gaussian
beam with a waist w0 = 850 µm and attenuated to the desired power. The optical frequency is
measured using a wavemeter (HighFinesse WS6-600), with an absolute accuracy of 600 MHz
and a wavelength deviation sensitivity of 20 MHz. The Gaussian beam is sent through a 10 cm
long heated rubidium cell with a natural isotope ratio. The resulting profile of the beam that exits
the cell is recorded using two cameras. One records a near-field image of the beam at the exit
window of the heated cell containing a dense rubidium vapor, the other records a far-field beam
profile. The near-field image is measured in a 4f configuration in the following way. Output light
is deflected by a 92%:8% pellicle beam splitter and collected by a 2" lens positioned at a focal
length distance, d = f = 100 mm. A second f = 100 mm lens forms the image on the camera. At
high beam powers, attenuators are placed in front of the cameras.
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Fig. 2. The setup to record the beam profile of output beam after propagation through a
dense rubidium vapor. From the diode laser light source, the light is first amplified by a
fiber coupled semiconductor optical amplifier (SOA). Part of the amplified light is fiber
coupled to a wavemeter (HighFinesse WS-6 wavemeter). The majority of the light is used to
seed a tapered amplifier (Toptica BoosTA). The light is subsequently spatially filtered and
attenuated to the desired power. The rubidium cell is in an oven, consisting of a heat shield
with isolation and heating wires. The temperature of the cell (denoted Ttc) is measured
with a thermocouple. The profile of the outgoing beam is measured using a Point Grey
Chameleon camera. Additionally, the exit window of the cell is also imaged by a 4-f imaging
system.

3. Results

To get an initial sense of the kind of shapes emerging from the cell at different conditions, the
beam profiles (as measured on the far-field camera using the setup of Fig. 2) are displayed on a
grid of intensity and detuning in Fig. 3. The detuning is defined with respect to the line strength
weighted average of the transition frequencies of the 87Rb F = 1 → F′ = 0, 1, 2 transitions. The
beam profiles are measured at equidistant steps in detuning and for different incident powers. For
clarity, we only present a subset of the data; the full set contains images for 15 incident beam
powers and 361 detunings, all of which are available in Dataset 1 [27]. In the resulting array of
pictures, two remarkable features catch the eye: self-focusing and ring formation.

Far above the resonance and for lower incident power (i.e. the bottom right image in the
figure), the beam profile is roughly Gaussian. When the resonance is approached from above
(going from right to left in the figure) or when the incident power is increased (going from the
bottom to the top in the figure), the width of the profile first becomes smaller and smaller, but the
profile still resembles a Gaussian. This effect is clearly visible in the bottom two rows, where the
beam diameter shrinks to roughly half the original size. The shrinking of the beam diameter is
attributed to the self-focusing of the beam in the dense rubidium vapor. [3,22]

The second eye-catching feature is the appearance of a ring shaped profile for sufficiently high
power and low detuning. Interestingly, these positions seem to follow a curve with a specific
relation between detuning and intensity, as we have illustrated by highlighting a particular beam
shape in the figure.

Lastly, we note that for the smallest detunings (the left-most column in Fig. 3 and profile 1
in Fig. 1) the profiles are clearly not rotationally symmetric. We verified that the appearance
of these non-rotationally symmetric shapes does not depend on the incident polarization. We
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Fig. 3. Emerging beam profiles as a function of incident power and detuning with respect
to the (line strength weighted) average transition frequency of the 87Rb F = 1 → F′ =

0, 1, 2 transitions (384.23458 THz). The cell temperature during these measurements was
Ttc = 166◦C. The power range corresponds to a peak s0 of the Gaussian beam of 1.3 · 103 to
2.6 · 104.

therefore attribute it to the fact that the incident beam is not perfectly Gaussian and not completely
rotationally symmetric, which we verified by performing experiments with a beam rotator.

To uncover the relation we track the detuning of this shape (and others) over the whole power
range. Specifically, we track the detuning at which the characteristic shapes of Fig. 1 occur as
a function of saturation parameter s0 = I/Is, with Is the saturation intensity. For each s0, we
manually vary the detuning to find the profile that is most similar to the characteristic shape.
Similarity to the reference image is quantified using the structural similarity index (SSIM) of
two images [28]. By definition, the SSIM index ranges from −1 to 1, where 1 indicates perfect
similarity between identical images, 0 indicates all structural similarity between the images is lost
and negative values indicate the image structure is inverted. We have chosen to optimise the SSIM
value rather than to minimise the mean squared error, because SSIM deals better with noise, local
disturbances and offsets [29,30]. Because we want to track shapes that are qualitatively similar,
the images are allowed to undergo affine transformations, such as displacement, scaling, shearing
and rotation, while determining the optimum SSIM value. In practice, only the scaling turns
out to be relevant. This procedure is further explained and illustrated in Sec. S1 of Supplement
1. We carry out this experiment at two different cell temperatures (Ttc = 166◦C and 184◦C)
corresponding to different vapor densities (ρ = 0.8 × 1019 m−3 and 2.6 × 1019 m−3, respectively,
as established in [26]).

The characteristic shapes from Fig. 1, numbered from 1 to 5, are used as reference signal
for the shape tracking. The optimum in SSIM between the reference image and the image at
a different input power Pin is determined while varying the laser frequency, which results in a
detuning curve δi(s0) for each shape i. The resulting detuning curves δi(s0) are shown in Fig. 4,
where the bare peak s0 is determined by Ipeak/Is, where Ipeak = 2Pin/(πw2

0). The SSIM values we
find for optimum similarity range from 1 at the reference image to a minimum of 0.7, which still
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indicates a high level of similarity. Importantly, as illustrated in Fig. S1 of Supplement 1, the
SSIM value has a clear maximum in detuning at each s0, making the method well suited for the
tracking of specific shapes. In all the experiments, the optimal scaling is typically a few percent,
as shown in Figs. S2 and S4 of Supplement 1.

Fig. 4. Tracking of characteristic beam profiles. (a) Detuning curve δi for the five
characteristic beam profiles as function of s0 on a linear scale for Ttc = 184◦C and (b) on a
logarithmic scale for Ttc = 166◦C and Ttc = 184◦C.

All detuning curves δi in Fig. 4(a) depend on s0 in a similar fashion: starting from a small,
non-zero value, a very sharp initial increase is steadily converted to a gentle increase until it
levels out at s0 ≳ 8 · 103 to a final value δi,fin between 3 and 7 GHz. In Fig. 4(b), we show data
for two different cell temperatures, but now on a logarithmic scale. The curves show similar
behaviour for both temperatures, but with a different amplitude. We also see that all curves tend
to the same small value of ∼ 800 MHz for small saturation parameters. An exception to this is
curve δ1 for Ttc = 166◦C, which looks significantly noisier than the other curves. We attribute
this to the fact that for the lower cell temperature, this beam shape could only be found for very
small detunings, which led to a difficult and therefore perhaps inaccurate measurement. We
included the data nonetheless, for completeness.

4. Universal detuning curve

The similarity between all the detuning curves δi(s0) suggests there is a universal relation between
δ and s0, of which the individual δi’s are special cases. To unveil this universal behaviour, the
curves are collapsed onto the same line by the following procedure. An offset of δoffset is applied
to all δi’s, which are subsequently divided by their final value for high s0 (corrected for δoffset),
yielding a normalised dimensionless detuning of

δ̄i(s0) =
δi(s0) − δoffset
δi,fin − δoffset

, (1)

where δi,fin is determined by the average of the last three data points in the curves for δi(s0).
For all δi’s this gives similar δ̄i curves, for which we can make the collapse complete by

determining the correct offset. Only the curve δ1(166◦C) is itself too erratic to produce a
reasonable δ̄1 curve. It is therefore discarded in the analysis to determine the universal detuning
curve. The optimum of offset δoffset = 778 MHz is determined by minimising the sum of standard
deviations of δ̄i’s per s0. This is further explained in Sec. S2 of Supplement 1.

Figure 5 shows this collapse procedure to be very effective for all δ̄i, except for δ̄1 (166◦C).
With this universal detuning curve, a full detuning curve of any characteristic beam shape can be
recovered from just its final detuning δi,fin, using the inverse of Eq. (1). For s0 ≲ 8 · 103, the
universal detuning curve can be captured in a fit function δ̄(s0) = a+b · s0

c, with a = −0.1±0.03,
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b = 0.05 ± 0.01 and c = 0.35 ± 0.02. The universal curve for the dimensionless detuning thus

Fig. 5. The collapse of the detuning curves on the universal dimensionless detuning curve
δ̄, which is given by Eq. (1). The black dashed line is the fit for δ̄ = a + b s0

c, with
a = −0.1 ± 0.03, b = 0.05 ± 0.01 and c = 0.35 ± 0.02.

Fig. 6. Emerging beam profiles for various incident powers and detunings. The top row is
the same as that of Fig. 3, but the remaining images in each column are selected based on
Eq. 1, which predicts the detuning at which similar looking profiles should emerge for a
given incident saturation intensity.
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appears to be proportional to 3
√s0 for s0<104. This is curious, as one perhaps would rather expect

a relationship to power broadening, which goes as
√

1 + s0.
Figure 6 allows us to visually verify that similar beam shapes are indeed produced at detunings

predicted by the above fit of δ̄(s0). In this figure, the images in the top row are images obtained at
a given power and a given detuning, identical to the top row of Fig. 3. In each subsequent row
(corresponding to a lower incident laser power), images corresponding to a detuning predicted
by the universal detuning curve are shown. Please note that for the left-most column, the
universal detuning curve cannot be used as it corresponds to a detuning smaller than δoffset. As
demonstrated by the highlighting, the images in each column now indeed show a great similarity,
for detunings ≳ 3.5 GHz. For detunings ≲ 3.5 GHz, the similarity within the columns is clearly
reduced, indicating that the universal detuning curve is more accurate for larger detunings. The
fact that the universal detuning curve is most accurate for larger detunings, gives hope that a
theoretical description in terms of a single Lorentzian line could suffice [18] as opposed to a
more elaborate model [26].

5. Conclusion

In our experiments we observe stable, robust optical profiles, spontaneously formed from an
almost Gaussian input profile by non-linear effects in dense rubidium vapors at a high saturation
parameter. The specific shape of the profiles and especially the fact that some profiles break
rotational symmetry, might have its origins in the fact that the incident beam profile deviates
from a perfect Gaussian beam. Curiously, the profiles occur at very specific combinations of
the saturation parameter and detuning, which we captured in detuning curves δi(s0) for each
shape i for a given temperature. All the detuning curves collapse onto a universal dimensionless
detuning curve, which indicates that the shapes are manifestations of the same phenomenon.
We currently lack a theoretical explanation for this universal behaviour, which holds for more
than two orders of magnitude in saturation parameter. The tantalising simplicity of the universal
detuning curve, suggests that there should be an elegant theoretical explanation for its form.
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