
Biases in parameter estimation from overlapping gravitational-wave signals
in the third-generation detector era

Anuradha Samajdar ,1,2,3 Justin Janquart ,1,2 Chris Van Den Broeck,1,2 and Tim Dietrich4,5
1Nikhef, Science Park 105, 1098 XG Amsterdam, Netherlands

2Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University,
Princetonplein 1, 3584 CC Utrecht, Netherlands

3Department of Physics, University of Milano–Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
4Institut für Physik und Astronomie, Universität Potsdam, Haus 28,

Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
5Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1,

Potsdam 14476, Germany

(Received 15 February 2021; accepted 5 July 2021; published 3 August 2021)

In the past few years, the detection of gravitational waves from compact binary coalescences with
the Advanced LIGO and Advanced Virgo detectors has become routine. Future observatories will
detect even larger numbers of gravitational-wave signals, which will also spend a longer time in the
detectors’ sensitive band. This will eventually lead to overlapping signals, especially in the case of
Einstein Telescope (ET) and Cosmic Explorer (CE). Using realistic distributions for the merger rate
as a function of redshift as well as for component masses in binary neutron star and binary black hole
coalescences, we map out how often signal overlaps of various types will occur in an ET-CE network
over the course of a year. We find that a binary neutron star signal will typically have tens of
overlapping binary black hole and binary neutron star signals. Moreover, it will happen up to tens of
thousands of times per year that two signals will have their end times within seconds of each other. In
order to understand to what extent this would lead to measurement biases with current parameter
estimation methodology, we perform injection studies with overlapping signals from binary black
hole and/or binary neutron star coalescences. Varying the signal-to-noise ratios, the durations of
overlap, and the kinds of overlapping signals, we find that in most scenarios the intrinsic parameters
can be recovered with negligible bias. However, we find large offsets for a short binary black hole or
a quieter binary neutron star signal overlapping with a long and louder binary neutron star event
when the merger times are sufficiently close. Although based on a limited number of simulations, our
studies may be an indicator of where improvements are required to ensure reliable estimation of
source parameters for all detected compact binary signals as we go from second-generation to third-
generation detectors.

DOI: 10.1103/PhysRevD.104.044003

I. INTRODUCTION

The direct observation of gravitational waves (GWs) [1]
has had a tremendous impact in fundamental physics [2–5],
astrophysics [6–15], and cosmology [16–18] and, starting
from the observation of the binary neutron star (BNS)
signal GW170817 [9], has opened a new era in multi-
messenger astronomy with GWs [19–22]. The third observ-
ing run (O3) of Advanced LIGO [23] and Advanced Virgo
[24] ended in March 2020, and together these interferom-
eters have found more than 50 GW candidates [25], with 39
candidates observed during the first half of O3 [8]. The
detector sensitivities will be improved further, and the
frequency with which signals are observed is expected to
keep increasing in coming years. In particular, in the
transition to the envisaged third-generation (3G) era, with

Einstein Telescope (ET) [26,27] and Cosmic Explorer (CE)
[28–30], the detection rate will go up steeply, and signals
will also spend much longer times in the detectors’ sensitive
band [31]. As first pointed out in Ref. [32] and studied
further in this paper, the probability of overlapping signals
will then become significant.
In view of this, it will be important to assess towhat extent

the science goals of 3G detectors (see, e.g., [31,33–42]) may
be affected by signals overlapping with each other. Apart
from science with signals from compact binary coalescences
(CBCs), this includes searches for primordial backgrounds,
since the subtraction of “foreground” CBC sources [30,43–
47] will rely on our ability to characterize them individually.
As shown in Refs. [48,49], even using current data analysis
techniques, the detection rates of individual CBC sources
would likely not be significantly impacted by the occurrence
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of overlapping signals. However, a study of the effect on
parameter estimation had not yet been performed.1

Earlier works [52–54] have studied parameter estimation
for single sources in the 3G era. Herewe take the first step in
assessing possible biases in the recovery of parameters
characterizing a GW signal when signals from different
sources are simultaneously present in the detectors’sensitive
band. Before doing this, we map out how often signal
overlaps of various types will occur in a network of two CEs
and one ET over the course of a year, assuming realistic
distributions for merger rate as a function of redshift and for
component masses in binary neutron star and binary black
hole (BBH) coalescences. We find that a typical BNS signal
will be overlapped by tens of BBH signals. Moreover, BBH
or BNS signals whose mergers occur within seconds from
each other will be quite common. Since these are the cases
for which we can expect the largest parameter estimation
biases to occur, we focus on them in setting up simulations
whereby signals are added to synthetic data from the ET-CE
network and analyzed using current state-of-the-art param-
eter estimation techniques. We explore various scenarios of
signals from different kinds of sources overlapping: two
BBH signals, two BNS signals, and a BBH signal with a
BNS. For our simulations, we choose signal parameters
consistent with what has been observed as being represen-
tative of each kind of source: parameter values similar to the
ones of GW170817 [55] to represent a BNS, similar to the
ones of GW150914 [56] to represent a high-mass BBH, and
similar to the ones of GW151226 [57] for a lower-mass
BBH. We find that, in most cases, the intrinsic parameters
can be recovered with negligible bias. However, if the
merger times of the two signals are sufficiently close,
considerable biases can occur when a short BBH signal
or a quieter BNS signal overlaps with a louder BNS signal.
Though our study should be considered exploratory, it
already points to where improvements over current param-
eter estimation pipelines will be needed the most.
This paper is structured as follows. In Sec. II, we obtain

detection rate estimates for signals in the 3G era, fromwhich
we calculate overlap rates. In Sec. III, we lay out the settings
and methods we use for parameter estimation. Parameter
estimation results for various scenarios are shown in Sec. IV.
A summary and conclusions are presented in Sec. V, where
we also give recommendations for future improvements of
parameter estimation techniques.

II. OVERLAP RATE ESTIMATES

A. Methodology

Before looking at the impact of overlapping signals on
parameter estimation for the individual ones, we want to

address the question of how frequently such overlaps will
occur, depending on the type. Previous characterizations of
the overlap probabilities for 3G detectors were based on the
duty cycle, which is defined as the ratio of the typical
duration of a particular type of event (BNS or BBH) to the
average time interval between two successive events of that
type, assuming some fixed canonical values of the compo-
nent masses for each type [32]. However, here we also want
to allow for overlaps of mixed types and for a range of
component masses (and, hence, signal durations) within a
given type, so as to arrive at a detailed assessment of overlap
rates. Therefore, what we will do is to assume particular
merger rates as a function of the redshift for BBH and BNS,
as well as component mass distributions, and on the basis of
these create simulated “catalogs” of signals in the detectors.
This will allow us to make quantitative statements regarding
BNS signals overlapping with other BNS signals and with
BBHs, and the same for overlaps of BBH with BBH events,
in a much more detailed and realistic fashion.2

We start by estimating the number of individual BBH
and BNS coalescences that happen in a given volume, up to
a maximum redshift which is chosen to be zmax ¼ 30 for
BBH events and zmax ¼ 6 for BNS events [31,32,48,59]. For
this,weneed the intrinsicmerger rate density for the events as
a function of the redshift. We will assume that the compact
binaries originate from stellar populations and adopt the
merger rate estimates of Belczynski et al. [60] with Oguri’s
analytical fit [61],3 whose general expression is

RGWðzÞ ¼
a1ea2z

ea3z þ a4
Gpc−3 yr−1: ð1Þ

The coefficients ai, i ¼ 1;…; 4, depend on the star pop-
ulations that are considered; see Fig. 1. For our purposes, we
consider the combinationof population I and II stars forBNS,
and populations I, II, and III for BBH, as the contribution of
the latter type of stars is important only at redshifts of ≳4.
However, these relations are rescaled to match the local
merger rate estimates obtained observationally by LIGO and
Virgo so far; see [62]. In this work, we focus on the lowest,
the median, and the highest local rate for each type of event.
For BNS, the lowest, median, and highest local rates are,
respectively, 80, 320, and 810 Gpc−3 yr−1, which are
obtained by changing the value of a1 to 2480, 9920, and

1Around the time of publication, Ref. [50] performed param-
eter estimation studies on overlapping systems and Ref. [51]
suggested ways to correct biases from presence of overlapping
signals.

2Since neutron star–black hole (NS-BH) rates are less certain
(see, e.g., [13,58]), we will not consider them here, but we expect
general conclusions regarding parameter estimation to largely
carry over when signal durations are similar.

3Strictly speaking, this merger rate distribution refers to BBH
mergers. However, when computing the merger rate density (see,
e.g., [48,59,60]), one assumes a time delay distribution [e.g.,
PðtdÞ ∝ 1=td], with a minimum time delay that is higher for BBH
than for BNS. Using the distribution of Ref. [60] for both BNS
and BBH (with some overall rescaling) then implies that we will
underestimate the BNS merger rate density [59] and, hence, the
frequency of overlaps involving BNS signals.
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25110, respectively. On the other hand, for the BBH events,
we apply a multiplicative constant to the sum of the
population I and II and the population III rates, equal to
0.0709, 0.112, and 0.178 for the lowest, median, and highest
local rates, which are 15.1, 23.8, and 37.9 Gpc−3 yr−1,
respectively.
An intrinsic merger rate density RGWðzÞ is then con-

verted to an observed merger rate density as a function of
the redshift by multiplying by the differential comoving
volume [32]:

Robs
GWðzÞ ¼ RGWðzÞ

dVc

dz
ðzÞ: ð2Þ

Note that the factor (1þ z) needed to convert from time at
the source to time at the observer is already included in
RGWðzÞ. To obtain dVc=dz, we assume the Planck13
cosmological model [63] of Astropy [64,65].
As a next step, we simulate the population of systems by

constructing a “catalog” and determine which events are
actually detected. For the BBH population, we assume that
the masses follow the “power law+peak” distribution
presented in Ref. [62] for the primary component mass
and the corresponding power law distribution for the mass
ratio, through which we sample the secondary mass [62].
For BNS events, we distribute component masses uni-
formly, where for the primary mass m1 ∈ ½1; 2.5� M⊙ and
for the secondary mass m2 ∈ ½1 M⊙; m1�. Events are
distributed over comoving distance D according to
RGWðzÞ, converting between D and z using the above-
mentioned cosmology and cutting off at the maximum
redshifts zmax stated above. Sky positions and unit normals
to the orbital plane are taken to be uniform on the sphere.
Before continuing, we stress that, although for the

purposes of this paper we expect both our merger rate

and mass distributions to be sufficiently indicative of the
true distributions, in both cases they should be treated as
approximate and subject to future updates (indeed, 3G
detectors have the potential to measure them with far
greater accuracy [38]).
In this work, we assume a network of two CEs located at

the LIGO Hanford and Livingston sites and one ET located
at the Virgo site. For each event, we calculate the optimal
signal-to-noise ratios (SNRs) in the three observatories,
which are added in quadrature to obtain a network SNR. In
computing SNRs, we consider only the inspiral part of
binary coalescence, so that in the stationary phase approxi-
mation [66] and for a single interferometer [67]

SNR ¼ 1

2

ffiffiffi
5

6

r
1

π2=3
c

Dð1þ zÞ1=6
�
GM
c3

�
5=6

× gðθ;ϕ;ψ ; ιÞ
ffiffiffiffiffiffiffiffiffiffiffi
IðMÞ

p
: ð3Þ

Here M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass in
the source frame. The geometric factor is given by

gðθ;ϕ;ψ ; ιÞ ¼ ðF2þðθ;ϕ;ψÞð1þ cosðιÞ2Þ2
þ 4F2

×ðθ;ϕ;ψÞ cosðιÞ2Þ1=2; ð4Þ

where Fþ;× are the beam pattern functions in terms of sky
position ðθ;ϕÞ and polarization angle ψ , while ι is the
inclination angle. We take Einstein Telescope to consist of
three detectors with 60° opening angle, arranged in a
triangle with sides of 10 km [68], and add the correspond-
ing SNRs in quadrature; for Cosmic Explorer, we assume a
single L-shaped detector of 40 km arm length [28,29].
Finally,

IðMÞ ¼
Z

fhigh

flow

f−7=3

ShðfÞ
df: ð5Þ

Here flow is a low-frequency cutoff that depends on the
observatory; we set flow ¼ 5 Hz for both ET and CE,
though lower values may be achieved in the case of ET
[69,70]. For fhigh, we use the frequency of the innermost
stable circular orbit:

fhighðm1; m2; zÞ ¼
1

1þ z
1

6π
ffiffiffi
6

p c3

GM
; ð6Þ

where M ¼ m1 þm2 is the total mass. We take the noise
power spectral density (PSD) ShðfÞ to be ET-D in the case
of Einstein Telescope [26,27]; for the projected PSD of
Cosmic Explorer, see [28,29].4

FIG. 1. The BBH merger rate density according to Oguri’s fit
[61] for population I, II, and III stars, as well as the total rate,
when all the star populations are accounted for.

4For a discussion of issues related to computing PSDs in the
presence of overlapping signals, and possible solutions, see
Secs. III and V.
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The network SNR, denoted SNRnet, is defined as

SNR2
net ¼

X3
i¼1

SNR2
i ; ð7Þ

where the sum is over the two CE and the one (triangular)
ET observatories. We consider an event as detectable if the
network SNR is above 13.85 (¼ ffiffiffi

3
p

× 8), without impos-
ing SNR thresholds in individual observatories. For the
BNS and BBH mass ranges considered here, this means
that detection rates will mainly be driven by the CEs, but
we note that ET will have an advantage at higher
masses [71].
Finally, signals will be present in a detector for a duration

given by

τ ¼ 2.18

�
1.21 M⊙

ð1þ zÞM
�

5=3

×

��
100 Hz
flow

�
8=3

−
�
100 Hz
fhigh

�
8=3

�
s: ð8Þ

Simulated catalogs of events happening over the course
of a year are constructed as follows. The year is split into a
grid in which each cell corresponds to one second, and
merger times are drawn from a uniform distribution over
these cells. For a given type of event (BNS or BBH), one
associates to each merger time a mass pair, redshift, sky
position, and orientation of the orbital plane drawn from the
corresponding distributions, as well as a signal duration
computed from Eq. (8). Doing this for the three choices of
local merger rate, and in each case putting together the
BNSs and BBHs, catalogs of events are obtained. Finally,
within each catalog, it is assessed which events will be
detectable with the ET-CE network according to the criteria
spelled out above, leading to an overview of what we may
expect to be contained in one year’s worth of data. In
particular, we can check how often and in what way events
tend to overlap, depending on their types.

B. Overlap estimates

The three different local merger rates give the following
typical numbers of events happening over one year, prior to
imposing detectability thresholds: ∼59000, 93000, and
148000 BBH events and 286000, 1145000, and 2900000
BNS events for the low, median, and high local rate,
respectively. The network of two CEs and one ET will
detect 93% of BBHs and 35% of BNSs. The number of
detected signals is shown in Table I for the three local rates,
along with median and 90% spreads on SNRs, and a
breakdown of detections according to their loudness. In
Fig. 2, we also show the normalized SNR distributions for
BNS and BBH, compared with the 1=SNR4 distribution
one would have in a Euclidean universe with sources
distributed uniformly in volume [72]. As expected,

FIG. 2. Normalized distributions of SNRs for BNSs (orange
histogram) and BBHs (blue histogram) and for illustrative
purposes the 1=SNR4 distribution one would have in a Euclidean
universe with sources placed uniformly in volume (red solid
curve for BNSs; red dashed, non-normalized curve for BBHs).
BBHs can be seen out to redshifts where cosmological effects are
important, causing the 1=SNR4 curve to deviate from the true
distribution at low SNR.

TABLE I. The number of events detected by a network of two CEs and one ET in a particular realization of one year of data, the
median network SNRs and their 90% spreads, and the detection numbers and percentages (in parentheses) for different choices of
minimum network SNR.

No. of
detections SNRnet

No. with
SNRnet > 250

No. with
SNRnet > 100

No. with
SNRnet > 50

No. with
SNRnet > 20

BBH
Low rate 53756 81.1þ94.2

−57.3 3069 (5%) 20605 (35%) 40063 (68%) 52239 (89%)
Median rate 85725 81.3þ93.9

−57.5 4972 (5%) 33148 (39%) 63958 (75%) 83333 (97%)
High rate 137225 81.5þ94.2

−57.4 7860 (6%) 53419 (39%) 102766 (75%) 133460 (97%)
BNS
Low rate 98898 19.2þ22.1

−4.9 17 (0.017%) 298 (0.30%) 2712 (2.7%) 44350 (48%)
Median rate 396793 19.1þ22.0

−4.8 73 (0.018%) 1257 (0.32%) 10659 (2.7%) 177296 (45%)
High rate 1004525 19.1þ22.1

−4.8 196 (0.020%) 3255 (0.32%) 27135 (2.7%) 448610 (45%)
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BBHs do not follow the latter distribution at low SNR,
because they can be seen out to redshifts where cosmo-
logical effects have a crucial impact, but BNS events are
fairly consistent with it.
Within our simulated catalogs of events, we can look at

the numbers of detected signals that overlap depending on
the types. We focus on two quantities: (i) the number of
seconds in a year where at least two detected signals have
their merger and (ii) the typical number of mergers that
happen during the time a given signal is in a detector’s
sensitivity band.
The numbers of seconds in a year that have at least two

mergers taking place is given in Table II; clearly, this will
happen frequently over the course of a year. Indeed, we find
that even more than two mergers can occur within the same
second. The proportion of detected signals merging
together with at least one other goes up with increasing
local merger rate, potentially reaching thousands per year.
In addition to the scenario where different compact

binary mergers happen in the same second, we investigate
the typical number of mergers that will happen over the
entire duration of a BNS event while it is in the band,
depending on their type; see Table III and Fig. 3. Because
BNS events are in the detector band for a long time (several
hours for flow ¼ 5 Hz), quite a number of such overlaps
will indeed occur. If one does the same for BBHs, one finds
that either zero or one BBH or BNS merger (at 90% con-
fidence) will happen in its duration; this is due to BBH
events being shorter (the median duration being ∼45 s).
Before moving on to parameter estimation issues, let us

briefly look at other future GWobservatories that are being
planned or considered. Constructing simulated catalogs of
detectable sources in the same way as above and focusing
on the high local merger rate, we find that, over the course
of a year, Advanced LIGO+ [73] will typically have no

events merging within the same second and only a few
occurrences of a BBH merging in the duration of a BNS
(assuming flow ¼ 15 Hz). For Voyager [74], we find Oð1Þ
instances of two events merging within the same second,
and BNS signals will typically have at most one other
signal’s merger in their duration (for flow ¼ 10 Hz). These
numbers refer to signals detectable with a single interfer-
ometer (with SNR threshold 8) rather than with a network
of them, but it will be clear that overlapping signals are
going to become an important consideration mainly in the
3G era.

III. PARAMETER ESTIMATION SETUP

Having established that third-generation detectors will
see a considerable number of overlapping signals whose
mergers occur very close in time, we want to find out what
this will imply for parameter estimation. To this end, we
simulate BBH and BNS signals in a network consisting of
one ETand two CE observatories as in the previous section,
assuming stationary, Gaussian noise following the PSDs
used above.
Since we expect parameter estimation biases to be more

pronounced when SNRs of overlapping signals are similar

TABLE II. The number of seconds in a year with at least two
mergers occurring, depending on their types.

Rate BBHmergers>1 BNSmergers>1 Anymergers>1

Low rate 48 155 374
Median rate 127 2412 3663
High rate 303 15581 20149

FIG. 3. Fraction of detected BNS mergers with a given number
of compact binary mergers (blue curve), BBH mergers (red
curve), and BNS mergers (green curve) taking place while the
BNS signal is in the band.

TABLE III. Typical numbers of compact binary mergers
happening during the time a BNS signal is in the band.

Rate
Number of

BBH mergers
Number of

BNS mergers
Number

of any type

Low rate 8þ10
−5 16þ16

−8 25þ23
−12

Median rate 13þ14
−7 62þ58

−27 76þ77
−33

High rate 21þ21
−11 157þ144

−66 178þ164
−75

TABLE IV. Number of pairs of binary coalescence events with
both SNRs between 15 and 30 and such that their mergers occur
within 2 s or less from each other.

Run BBH-BBH BBH-BNS BNS-BNS

Low rate 5 57 416
Median rate 11 304 6752
High rate 15 1594 41306
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to each other, and on the low side, we focus on network
SNRs roughly between 15 and 30. We consider over-
lapping events whose merger times either coincide (as a
proxy for merger within the same second) or are separated
by 2 s, again because these are the types of scenarios where
biases will likely be the largest. The number of overlaps
from the previous section that satisfy these criteria is given
in Table IV, for different local merger rates; we see that they
will be fairly common.
In our parameter estimation studies, for definiteness we

take the BBH events to have masses similar to those of
either GW150914 [75,76] (a higher-mass, shorter-duration
signal) or GW151226 [57,76] (a lower-mass, longer-dura-
tion event), while for BNSs we take the masses to be similar
to those of GW170817 [7,55]. Overlapping signals are
given different injected sky locations. All analyses are done
with three different noise realizations. For each example of
overlapping signals, parameter estimation is also done on
the individual signals, for the same noise realizations, in
order to assess what biases occur. Figure 4 provides an
overview of the various overlap scenarios that will be
considered in the rest of this paper, in terms of masses
and SNRs.
To reduce computational cost, we focus on nonspinning

sources. A BBH signal is then characterized by parameters
θ⃗ ¼ fm1; m2; α; δ; ι;ψ ; DL; tc;φcg, where m1 and m2 are
the component masses, ðα; δÞ specifies the sky position in
terms of right ascension and declination, ι and ψ are,
respectively, the inclination and polarization angles which
specify the orientation of the orbital plane with respect to
the line of sight, DL is the luminosity distance, and tc and
φc are, respectively, the time and phase at coalescence.
BNS signals have two additional parameters ðΛ1;Λ2Þ,
corresponding to the (dimensionless) tidal deformabilities
[77–81].
In this work, we focus specifically on potential biases in

intrinsic parameters. For BBHs, results will be shown for
the total mass M ¼ m1 þm2 and mass ratio q ¼ m2=m1

(with the convention m2 ≤ m1). For BNSs, we show chirp
mass M instead of total mass, since that parameter is
usually the best-determined one for long signals. As the
individual tidal deformabilities tend to be poorly measur-
able for the SNRs considered here, we will be showing
results for a parameter Λ̃ defined as [82]

Λ̃ ¼ 16

13

X
i¼1;2

Λi
m4

i

M4

�
12 − 11

mi

M

�
; ð9Þ

since this is how tidal deformabilities enter the waveform
phase to leading (5PN) order [77].
In the Bayesian framework, all information about

the parameters of interest is encoded in the posterior
probability density function (PDF), given by Bayes’ theo-
rem [83]:

pðθ⃗jHs; dÞ ¼
pðdjθ⃗;HsÞpðθ⃗jHsÞ

pðdjHsÞ
; ð10Þ

where θ⃗ is the set of parameter values and Hs is the
hypothesis that a GW signal depending on the parameters θ⃗
is present in the data d. For parameter estimation purposes,

FIG. 4. Individual waveforms and the overlap scenarios con-
sidered in our simulations. All signals are injected in three
different simulated noise realizations for a third-generation
detector network. Signals are either overlapped using the same
end time (blue waveforms) or 2 s earlier than the “primary”
signal’s end time (orange waveforms). Top three panels: BNS
signals (top) with an SNR of 30, 20, or 15 being overlapped with
either a high-mass BBH signal (middle; GW150914-like) or a
low-mass BBH signal (bottom; GW151226-like). Middle panels:
overlapping waveforms in the case of two BBH signals. The
higher-mass BBH signal (bottom; GW150914-like) is overlapped
with the lower-mass BBH signal (top; GW151226-like). Bottom
panels: overlapping waveforms in the case of two BNS signals.
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the factor pðdjHsÞ, called the evidence for the hypothesis
Hs, is effectively set by the requirement that PDFs are
normalized. Assuming the noise to be Gaussian, the like-
lihood pðdjθ⃗;HsÞ of obtaining data dðtÞ given the presence
of a signal hðtÞ is determined by the proportionality

pðdjθ⃗;HsÞ ∝ exp

�
−
1

2
ðd − hðθ⃗Þjd − hðθ⃗ÞÞ

�
; ð11Þ

where the noise-weighted inner product ð·j·Þ is defined as

ðajbÞ ¼ 4Re
Z

fhigh

flow

ã�ðfÞb̃ðfÞ
ShðfÞ

df: ð12Þ

Here, a tilde refers to the Fourier transform, and ShðfÞ is the
PSD, as in the previous section. Because of computational
limitations, in our parameter estimation studies we use a
lower-frequency cutoff of flow ¼ 23 Hz. Since both ETand
CE will be sensitive down to lower frequencies than that,
we expect that our choice will lead to conservative
estimates of parameter estimation biases, as the same signal
will, in reality, accumulate more SNR when it is visible in
the detector already from a lower frequency.
Our choices for the prior probability density pðθ⃗jHsÞ in

Eq. (10) are similar to what has been used for the analyses of
real data when BBH or BNS signals were present with
masses similar to the ones specified in Fig. 4. In all cases, we
sample uniformly in componentmasses. For theGW150914-
like signals, we do this in the range m1; m2 ∈ ½10; 80� M⊙.
For analyzing the GW151226-like signals, the component
mass range is m1; m2 ∈ ½3; 54.4� M⊙, and, in addition, we
restrict chirpmass toM ∈ ½5; 20� M⊙ andmass ratioq to the
range [0.05, 1]. For BNSs, we sample component masses in
the rangem1; m2 ∈ ½1; 2� M⊙, restrictingM ∈ ½0.7; 2� M⊙,
while tidal deformabilities are sampled uniformly in the
range Λ1;Λ2 ∈ ½0; 5000�. When we show PDFs for the
derived quantity Λ̃, they will have been reweighted with
the prior probability distribution of this parameter induced by
the flat priors on componentmasses andΛ1 andΛ2, such as to
effectively have a uniform prior on Λ̃.
To sample the likelihood function in Eq. (11), we use the

LALInference library [84] and, specifically, the lalinferen-
ce_mcmc algorithm. The waveforms we use for the BNS
and BBH signals are IMRPhenomD_NRTidalv2 [85–87]
and IMRPhenomD [88,89] respectively, both computed
with the waveform library LALSimulation. To inject the
signals and add noise to them, we use standard tools
available within the LALSimulation package. All these
codes are openly accessible in LALSuite [90].
For our parameter estimation studies, signals are added

to stationary, Gaussian noise following the projected ET
and CE PSDs [26–29]. These are also the PSDs used in
calculating the likelihood in Eq. (11). We note that, in
reality, the PSD would be estimated from the data them-
selves, which is currently done either by characterizing the

noise in a segment of data adjacent to the one being
analyzed [84] or through an algorithm such as BayesWave
which simultaneously characterizes signal, Gaussian noise,
and possible instrumental glitches [91–93]. However, the
first method implicitly assumes the absence of signals in the
“off-source” data segment, while at present the second one
assumes the presence of a single signal in the “on-source”
segment which is consistent with a particular sky location
and orientation of the source. Hence, in a situation where
multiple signals are present in almost any stretch of data,
the PSD estimation is itself problematic. For now, we
ignore this issue, but possible solutions will be discussed
in Sec. V.
Before performing parameter estimation, we verify the

detectability of the individual signals in the overlap
scenarios in Fig. 4 using the PyCBC software package
[94]. We inject overlapping signals in noise generated from
the PSD and check that the individual signals show up as
triggers with masses that are consistent between detectors,
at a network SNR above a threshold of 8. This turns out to
be true for all the cases considered, except for two BBH
signals merging at the same time. In the latter case, we still
have triggers in individual detectors but with masses
differing by up to ∼5 M⊙. Using the SNRs in single
detectors as detection statistics, detection is still achieved.
For all scenarios, the end times of individual signals tend to
be identified with a precision of a few milliseconds [95];
when subsequently performing parameter estimation, we
use a prior range for end time that is centered on the true
end time, leaving an interval of 0.1 s on either side.
All simulations are done with three different noise

realizations. In the next section, results are shown for
one of those; for the other two noise realizations, see the
Appendix.
As usual, the one-dimensional PDF pðλjHs; dÞ for a

particular parameter λ is obtained from the joint PDF
pðθ⃗jHs; dÞ by integrating out all other parameters. In
assessing the effect on parameter estimation of signals that
overlap in various ways, we will frequently be comparing
one-dimensional PDFs for the same parameter in different
situations. A convenient way of quantifying the difference
between two distributions p1ðλÞ and p2ðλÞ is by means of
the Kolmogorov-Smirnov (KS) statistic [96,97]. Let P1ðλÞ
and P2ðλÞ be the associated cumulative distributions; then
the KS statistic is just the largest distance between these
two:

KS ¼ supλ jP1ðλÞ − P2ðλÞj: ð13Þ

By construction, this yields a number between 0 and 1; if
the KS statistic is close to zero, then the distributions p1ðλÞ
and p2ðλÞ will be considered close to each other. To
establish a benchmark, one can look at differences in
PDFs obtained through different sampling methods, e.g.,
LALInference versus BILBY, with typical KS statistics of a
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few percent [98] for the kinds of SNRs considered in the
present paper. Hence, for our purposes we will take large
biases in parameter estimation to mean KS values signifi-
cantly higher than that, for the same noise realization.
Finally, we note that in 3G detectors larger SNRs will be
seen than those considered here, but exploring how biases
scale with SNR would require a much larger study than our
computational resources permit.

IV. RESULTS

A. Overlap of a BNS signal with a BBH signal

First, we look at the results of parameter estimation for
the overlap of a BNS signal with a BBH, either ending at

the same time or with the BBH signal ending 2 s earlier
than the BNS. This is the scenario shown in the top panels
in Fig. 4. We perform parameter estimation first on the BNS
and then on the BBH, with priors as specified in the
previous section.

1. BNS recovery

Figure 5 shows posterior probability distributions for
intrinsic parameters characterizing the BNS signal, for
three different SNRs of the BNS, and the different overlap
scenarios. The PDFs tend to widen with decreasing SNR, as
expected. We see that estimation of the mass parameters is
essentially unaffected, regardless of the type of overlapping
BBH signal (GW150914-like or GW151226-like) or of its
merger time (identical to that of the BNS or 2 s earlier). For
a given SNR of the BNS, the PDFs for the tidal parameter Λ̃
differ slightly more between the overlap scenarios.
However, we note that most of the information on tides
enters the signal at high frequencies, where the detectors
are less sensitive; and in fact, as shown in the Appendix
(Fig. 9), differences in the underlying noise realization tend
to have a larger effect on the measurement of Λ̃ than
overlapping signals.
We conclude that an overlapping BBH signal does not

have much impact on the estimation of the BNS param-
eters, even if the BBH merger time is arbitrarily close to
that of the BNS. This is corroborated by the KS statistics in
Table V, which compare PDFs for the various overlap
scenarios with the corresponding PDFs in the absence of
overlapping signals. It is reasonable to assume that placing
a BBH signal even earlier in the BNS would also have had
little impact.

2. BBH recovery

Figure 6 shows parameter estimation on the BBHs when
the SNR of the BNS signal is varied from 30, to 20, to 15.
Table VI has the corresponding KS statistics comparing
with PDFs obtained in the absence of overlap. Again,
results are shown for a particular noise realization; see
Fig. 10 in the Appendix for two other noise realizations. We
see that when the BBH signal has a time of coalescence 2 s
earlier than the BNS (tc-2 in the figure) the signal is well

FIG. 5. Posterior PDFs showing estimation of intrinsic param-
eters when the BNS signal has SNR ¼ 30 (top row), SNR ¼ 20
(middle row), and SNR ¼ 15 (bottom row). Results are shown for
the cases when the GW150914-like signal ends at the same time
as the BNS signal (GW150914-tc), when it ends 2 s earlier
(GW150914-tc-2), when the GW151226-like signal ends at the
same time as the BNS (GW151226-tc), when it ends 2 s earlier
(GW151226-tc-2), and finally when the injected signal is only the
BNS (BNS). The true values of the parameters are indicated by
vertical black lines.

TABLE V. Values of the KS statistic comparing PDFs for BNS parameters (columns) in the BNSþ BBH overlap scenarios (rows)
with the corresponding PDFs when there is no overlapping BBH signal. The small numbers indicate the absence of significant bias. The
numbers shown here correspond to the PDFs in Fig. 5.

BNS (SNR ¼ 30) BNS (SNR ¼ 20) BNS (SNR ¼ 15)

BBH overlapped M q Λ̃ M q Λ̃ M q Λ̃

GW150914-tc 0.0112 0.00915 0.0277 0.0162 0.0204 0.0275 0.0297 0.0323 0.00947
GW150914-tc-2 0.0320 0.0389 0.0168 0.0235 0.0273 0.0331 0.0704 0.0840 0.0218
GW151226-tc 0.00754 0.00748 0.0113 0.0123 0.0139 0.0173 0.0403 0.0516 0.0305
GW151226-tc-2 0.0187 0.0220 0.0309 0.0227 0.0233 0.0259 0.0521 0.0513 0.0159
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recovered. However, when the BBH signal and the BNS
signal end at the same instant of time, the BBH recovery
deteriorates, and, in the case of the GW150914-like signal,
the sampling process, in fact, fails to find the signal. For the
GW151226-like signal, while the estimates are offset from
their true values, there is some measurability of the signal
when the times of coalescence of the BBH and BNS are the
same. The different outcomes between the GW150914-like
and GW151226-like injection are likely due to the short
duration of the GW150914-like signal, effectively leading
to a distortion of the entire signal when the merger happens
at the same instant as the BNS merger. By contrast, the
much longer inspiral of the GW151226-like signal implies
many more wave cycles for the parameter estimation
algorithm to latch onto. Finally, as the SNR over the
underlying BNS signal is varied (keeping the SNR of the
BBH signal the same), the PDFs for the BBH show
essentially no change. Placing a BBH signal only 2 s

before the BNS merger causes the BBH to be recovered
without appreciable biases, so it is reasonable to assume
that placing a BBH signal still earlier in the BNS inspiral
would also have little effect on its recovery.

B. Overlap of two BBH signals

The scenario being analyzed here is the one in the middle
panels in Fig. 4. Figure 7 shows the posterior PDFs on total
mass M and mass ratio q when two BBH signals of
different masses are being overlapped, compared with
parameter estimation on the same signals in situations
where there is no overlap (BBH). The corresponding KS
statistic values are given in Table VII. We find the results to
be consistent within statistical fluctuations. Here, too, the
signals are overlapped once with the same coalescence
times (tc) and once with one of the signals, GW150914,
ending 2 s earlier (tc-2). The SNRs of the two signals,
GW150914-like, and GW151226-like, are 30 and 15,
respectively. As can be seen in the figure, the two BBH
signals’ parameters can be extracted without any biases

FIG. 6. Posterior PDFs for the total mass and mass ratio, for the
GW150914-like signal (top panel) and the GW151226-like
signal (bottom panel) when they are, respectively, being over-
lapped with a BNS signal of SNR ¼ 30 (solid lines), SNR ¼ 20
(dashed lines), and SNR ¼ 15 (dotted lines). The overlaps are
being done when the BBH and the BNS end at the same time (tc)
and when the BBH ends 2 s before the BNS (tc-2). Finally,
posterior PDFs for the two BBH signals by themselves are shown
as green, dash-dotted lines (BBH). The injected parameter values
are indicated by black vertical lines.

TABLE VI. Values of the KS statistic comparing PDFs for BBH parameters (columns) in the BNSþ BBH overlap scenarios (rows)
with the corresponding PDFs when there is no overlapping BNS signal. In the case of a GW150914-like signal merging at the same time
as a BNS, the sampler fails to find the signal, but other scenarios are not so problematic. For GW151226, the slightly higher values for
the tc-2 case compared to the tc case are likely due to the signals being placed in a slightly different part of the noise stream (2 s earlier)
from the BBH-only cases that are used for comparison. The numbers shown here correspond to the PDFs in Fig. 6.

GW150914-tc GW150914-tc-2 GW151226-tc GW151226-tc-2

BNS overlapped M q M q M q M q

BNS (SNR ¼ 15) � � � � � � 0.0504 0.0807 0.00933 0.0117 0.0687 0.0657
BNS (SNR ¼ 20) � � � � � � 0.0427 0.0698 0.0107 0.0106 0.0727 0.0700
BNS (SNR ¼ 30) � � � � � � 0.0379 0.0673 0.0187 0.183 0.0819 0.0793

FIG. 7. Posterior PDFs for total mass and mass ratio when a
GW150914-like signal and a GW151226-like signal are being
overlapped at the same trigger times (tc) and when the trigger
time of the GW150914-like BBH ends 2 s earlier (tc-2),
compared with parameter estimation in the absence of overlap
(BBH). The top panel shows the recovery of the GW150914-like
signal and the bottom one that of the GW151226-like signal.
Black vertical lines indicate the true values of the parameters.
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even when they end simultaneously. Again, see the
Appendix for other noise realizations, with the same
conclusion.

C. Overlap of two BNS signals

Finally, we analyze the simulations in the bottom panels in
Fig. 4. Figure 8 shows the recovery of BNS parameters for
each BNS signal when two BNS signals are being over-
lapped, again with either the same coalescence times and
when one of the BNSs (henceforth BNS2) ends 2 s earlier
than the other BNS signal (henceforth BNS1). For KS
statistic values comparing PDFs with the corresponding
nonoverlapping cases, see Table VIII. BNS1 and BNS2,
respectively, have SNRs of 30 and 20 and component
masses ðm1; m2Þ ¼ ð1.68; 1.13Þ M⊙ and ðm1; m2Þ ¼
ð1.38; 1.37Þ M⊙. These particular choices cause both signals
to have very similar chirp masses. Given these masses, their
tidal deformabilities, Λ̃ ¼ 303 for BNS1 and Λ̃ ¼ 292 for
BNS2, follow the equation of state APR4; these were the
simulated signals used for investigating systematics in the
measurements on GW170817 in Ref. [55].
In Fig. 8, the top panel shows the posterior PDFs on

chirp mass, mass ratio, and tidal deformability for BNS1
when BNS2 ends at the same time (tc) and when BNS2
ends 2 s earlier (tc-2), together with the case where only
BNS1 is present in the data (BNS). The bottom panels show
the same but for the recovery of BNS2. When the two
signals end at the same time, the parameters characterizing
BNS1 are being recovered, which likely happens because
of the higher SNR of BNS1. As the tidal deformabilities of

the two sources are so close, the PDFs for Λ̃ look similar in
all cases. However, also looking at the mass parameters,
parameter estimation is rather robust when the signals end
2 s apart.

V. CONCLUSIONS

Given regular improvements in the sensitivity of gravi-
tational-wave detectors and especially the planned con-
struction of the next generation of interferometers, it will
become increasingly likely that individually detectable
gravitational-wave signals will end up overlapping in the
data. In this paper, we (i) assessed how often different types
of overlap will happen in ET and CE and (ii) tried to
quantify the impact this would have on parameter estima-
tion with current data analysis techniques.
To address the question of the nature and frequency of

different overlap scenarios, for each of three possible local
merger rates, we constructed a catalog of signals in ET and
CE, enabling a more in-depth study of overlaps than in
previous works. We showed that there will be a significant

TABLE VII. Values of the KS statistic comparing PDFs for
BBH parameters in the BBHþ BBH overlap scenarios with the
corresponding PDFs without an overlapping signal. The slightly
higher values for the tc-2 cases are likely due to the signals being
in a slightly different part of the noise stream (2 s earlier) from the
BBH-only cases used for comparison. However, in all cases there
is no significant bias. The numbers shown here correspond to the
PDFs in Fig. 7.

GW150914-tc GW150914-tc-2 GW151226-tc GW151226-tc-2

M q M q M q M q

0.0195 0.0109 0.162 0.103 0.0446 0.0478 0.0844 0.127
FIG. 8. Posterior PDFs showing recovery on chirp mass, mass
ratio, and tidal deformability Λ̃ when two BNSs, referred to as
BNS1 and BNS2, are being overlapped at the same time of
coalescence (tc) and when BNS2 ends 2 s earlier than BNS1 (tc-
2). These are compared with results in the absence of overlap
(BNS). The top panel is for the recovery of BNS1 and the bottom
one for the recovery of BNS2. The solid black vertical lines
indicate the injected values of the source being recovered each
time. We note that, when the times of coalescence of the two
BNSs are the same, the parameter estimates recovered are those
of BNS1, whose injected values are also shown in the bottom
panel as dashed vertical black lines.

TABLE VIII. Values of the KS statistic comparing PDFs for BNS parameters in the BNSþ BNS overlap
scenarios with the corresponding PDFs without an overlapping signal; see also Fig. 8. We see that the numbers are
higher for both BNSs when they end at the same time; in fact, the measured parameters for BNS2 are those of BNS1.
However, when the BNSs merge 2 s apart, the values are much lower, showing that the biases largely disappear. The
numbers shown here correspond to the PDFs in Fig. 8.

BNS1 (tc) BNS1 (tc-2) BNS2 (tc) BNS2 (tc-2)

M q Λ̃ M q Λ̃ M q Λ̃ M q Λ̃

0.269 0.270 0.202 0.0309 0.0216 0.0129 1.0 0.955 0.0762 0.384 0.0951 0.368
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number of signals for which the merger happens within the
same second, varying from tens to thousands depending on
the local merger rate. Additionally, the substantial increase
in the duration of BNS events due to the improved low-
frequency sensitivity of third-generation observatories will
lead to the occurrence of up to tens of other signals
overlapping with a given BNS.
Motivated by these results, we performed the first

detailed Bayesian analysis study on possible biases that
may arise in future as detection rates become higher and
overlapping signals start to occur. We focused on over-
lapping signals for which the end times were close to each
other, so that, in particular, there is overlap at times where
both signal amplitudes are high; it is this type of situation
where we expect parameter estimation biases to be the most
pronounced. Specifically, merger times were taken to be
either the same (as a proxy for being arbitrarily close to
each other) or separated by 2 s. As a first proof-of-principle
study, we have focused on a selected number of binary
sources, and a generic statement about systematic errors
from source overlap can be made only if a much larger
number of sources are simulated for each overlap scenario.
Our preliminary conclusions (based on a limited number of
investigations) are as follows.

(i) When BBH signals are overlapping with a BNS
signal of similar SNR, parameter estimation on the
BNS is hardly affected, even with the merger time of
the BBH arbitrarily close to that of the BNS.
Presumably, this is due to the much larger number
of BNS wave cycles in the band compared to
the BBH.

(ii) However, in the same scenario, parameter estimation
on the BBH lead to large offsets for underlying
binary neutron star signals of SNRs lying between
15 and 30 and in three different noise realizations if
the BBH is high mass, so that its signal is short. That
said, the problem largely disappears when the BNS
and BBH merger times are separated by 2 s or when
the BBH is low mass.

(iii) When two BBHs with sufficiently dissimilar masses
overlap with close-by merger times, parameter
estimation on either of the signals will not be much
affected.

(iv) When two BNS signals overlap with close-by merger
times, parameter estimation will recover the louder
signal reasonablywell.With a 2 s separationofmerger
times, good-quality parameter estimation can already
be done on the two signals separately.

These results suggest that current parameter estimation
techniques will, in several types of situations of interest,
already perform reasonably well in the 3G era when applied
to overlapping signals, even when the individual signals
have similar SNRs and even when the SNRs are on the low
side given the projected distribution for these observatories.
Nevertheless, a number of questions remain. What happens

when SNRs are gradually increased? Related to this is the
choice of lower cutoff frequency; to what extent will
parameter estimation improve as one goes to flow ¼
5 Hz or even lower, so that signals have a much larger
number of wave cycles in the detector’s sensitive band?
Though not the focus here, at higher SNRs, the use of
currently available waveform approximants to analyze
BNS signals in 3G detectors would lead to biases in the
estimation of Λ̃ even in the absence of overlap [99], also
motivating further research in waveform modeling. Spins
were not included in our study, but it would be of interest to
see their effect: Large precessing spins will complicate
parameter estimation in the case of BBHs, while, for BNSs,
having access to the spin-induced quadrupole moment can
aid in determining tidal deformabilities [100]. Finally, what
happens when overlaps involve (much) more than two
signals, e.g., a long BNS signal overlapping with a large
number of BBH signals? These questions are left for
future work.
In order to make optimal scientific use of the capabilities

of 3G detectors, it will be appropriate to develop Bayesian
parameter estimation techniques for which the likelihood
function assumes multiple signals to be present in a given
stretch of data, e.g., replacing Eq. (11) by

pðdjfθ⃗ig;HsÞ∝ exp

�
−
1

2

�
d−

XN
i¼1
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����d−
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i¼1

hðθ⃗iÞ
��

;

ð14Þ

with N the number of signals found by a detection pipeline
and θ⃗i, i ¼ 1;…; N, the associated parameters.
Additionally, one could let N itself be a parameter to be
sampled over, thus allowing for an a priori unknown
number of signals in the given stretch of data.
Another problem that will need to be addressed at the

same time is that of measuring the PSD, which enters
expressions for the likelihood through the inner product in,
e.g., Eq. (14) above. Currently, PSD estimation is per-
formed either by (i) computing the PSD from a stretch of
data adjacent to the one being analyzed [84] or (ii) by
simultaneously characterizing signal, Gaussian noise, and
instrumental glitches [91–93]. However, the first method
implicitly assumes the absence of signals in the “off-
source” data segment. On the other hand, at least in the
case of the triangular ET, the data from the three detectors
can be added together to form a null stream [68], which by
construction removes all signals present; if correlations
between detectors can be neglected, then this enables the
estimation of an average PSD over detectors [48]. However,
this technique does not extend to, e.g., an ET-CE network
even when only one signal is present in the data, unless the
sky position is known. Regarding the second method, at
present, it models a signal as a feature in the data that has
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coherent power in multiple detectors in a way that is
consistent with one specific sky location and orientation of
the source (neither of which needs to be known a priori),
but it may be feasible to extend this framework to a
situation where one can expect there to be multiple relevant
sky locations and source orientations corresponding to
multiple signals.
In all this, it may be possible to borrow from techniques

developed in the context of somewhat related problems in
GW data analysis, such as the characterization of the large
number of (in this case, near-monochromatic) signals from
galactic white dwarf binaries in the space-based Laser
Interferometer Space Antenna [101–107], BNSs in Big
Bang Observer [43], or supermassive black hole binaries in
pulsar timing searches [108].
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APPENDIX: PARAMETER ESTIMATION FOR
DIFFERENT NOISE REALIZATIONS

We have performed all our simulations in three different
noise realizations. To avoid plots getting too busy, in
Sec. IV, we showed results for only one of these; here,
we also give them for the other two noise realizations.
In the case of a BNS overlapping with a BBH, the

measurements on the BNS are shown in Fig. 9 and those on
the BBH in Fig. 10. The corresponding KS values are given
in Tables IX and X, respectively. For measurements on the
mass parameters of the BNS, we find that the results are
consistent between noise realizations. For the tidal param-
eter Λ̃, the PDFs differ somewhat more; compare the right
columns in the two panels in Fig. 9. This is likely because
most of the information on tides enters the signal at higher
frequencies, where the variance of the noise is larger;
hence, the measurement of Λ̃ will be more affected by the
noise realization than the mass measurements, especially
when SNRs are not high. Indeed, though not shown here
explicitly, KS statistics for Λ̃ between different noise
realizations, but for the same overlap situation, tend to
be significantly larger than within the same noise realiza-
tion but for different overlaps. For parameter estimation on
the BBH, there are differences in the PDFs for the masses

FIG. 9. Posterior PDFs for BNS parameters when a BNS and BBH signal are being overlapped; the same as Fig. 5 when injections are
done in two other noise realizations (left and right panels).
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TABLE IX. Values of the KS statistic comparing PDFs for BNS parameters (columns) in the BNSþ BBH overlap scenarios (rows)
with the corresponding PDFs when there is no overlapping BBH signal, when injections are done in two other noise realizations. The
numbers shown correspond to the PDFs in Fig. 9, noise realization 2 corresponding to the left panel and noise realization 3 to the right
panel.

BBH overlapped BNS (SNR ¼ 30) BNS (SNR ¼ 20) BNS (SNR ¼ 15)

Noise realization 2 M q Λ̃ M q Λ̃ M q Λ̃

GW150914-tc 0.0267 0.0248 0.0224 0.0106 0.0141 0.0169 0.0146 0.0211 0.0290
GW150914-tc-2 0.0287 0.0282 0.0338 0.00601 0.0108 0.0486 0.0263 0.0308 0.0137
GW151226-tc 0.0125 0.0141 0.0421 0.0376 0.0471 0.0723 0.0155 0.0152 0.0333
GW151226-tc-2 0.0337 0.0346 0.0815 0.0244 0.0258 0.0179 0.0113 0.0108 0.00923

Noise realization 3 M q Λ̃ M q Λ̃ M q Λ̃
GW150914-tc 0.0140 0.0143 0.0251 0.0236 0.0298 0.0481 0.0114 0.0255 0.0378
GW150914-tc-2 0.0296 0.0396 0.0255 0.0272 0.0218 0.0125 0.0186 0.0125 0.0299
GW151226-tc 0.0135 0.0161 0.0347 0.0215 0.0312 0.0412 0.00750 0.00868 0.0239
GW151226-tc-2 0.0142 0.0140 0.0334 0.0109 0.00833 0.0310 0.0223 0.0292 0.0169

TABLE X. Values of the KS statistic comparing PDFs for BBH parameters (columns) in the BNSþ BBH overlap scenarios (rows)
with the corresponding PDFs when there is no overlapping BNS signal, when injections are done in two other noise realizations. As
before, when the GW150914-like signal ends at the same time as a BNS, it is not found by the sampling algorithm, but other scenarios
are less problematic. The numbers shown correspond to the PDFs in Fig. 10, noise realization 2 corresponding to the left panel and noise
realization 3 to the right panel.

BNS overlapped GW150914-tc GW150914-tc-2 GW151226-tc GW151226-tc-2

Noise realization 2 M q M q M q M q

BNS (SNR ¼ 15) � � � � � � 0.0134 0.011 0.00832 0.00890 0.411 0.398
BNS (SNR ¼ 20) � � � � � � 0.0104 0.0109 0.0169 0.0172 0.390 0.377
BNS (SNR ¼ 30) � � � � � � 0.0100 0.0113 0.0140 0.0146 0.367 0.357

Noise realization 3 M q M q M q M q
BNS (SNR ¼ 15) � � � � � � 0.0168 0.0100 0.0140 0.0142 0.318 0.131
BNS (SNR ¼ 20) � � � � � � 0.0189 0.0131 0.0132 0.0137 0.322 0.315
BNS (SNR ¼ 30) � � � � � � 0.0287 0.295 0.0136 0.0130 0.334 0.327

FIG. 10. Posterior PDFs for BBH parameters when a BNS and BBH signal are being overlapped; the same as Fig. 6 when injections
are done in two other noise realizations.

BIASES IN PARAMETER ESTIMATION FROM OVERLAPPING … PHYS. REV. D 104, 044003 (2021)

044003-13



FIG. 11. Posterior PDFs for BBH parameters when two BBH signals are being overlapped; the same as Fig. 7 when injections are done
in two other noise realizations.

TABLE XI. Values of the KS statistic comparing PDFs for BBH parameters in the BBHþ BBH overlap scenarios
with the corresponding PDFs for the BBH-only case, when injections are done in two other noise realizations. The
numbers shown correspond to the PDFs in Fig. 11, the upper row corresponding to the left panel and the lower row
to the right panel.

GW150914-tc GW150914-tc-2 GW151226-tc GW151226-tc-2

M q M q M q M q

0.0195 0.00854 0.163 0.0395 0.0299 0.0309 0.0417 0.0746
M q M q M q M q
0.0291 0.0110 0.188 0.0625 0.0477 0.0497 0.0225 0.0440

FIG. 12. Posterior PDFs when two BNS signals are being overlapped; the same as Fig. 8 when injections are done in two other noise
realizations.

TABLE XII. Values of the KS statistic comparing PDFs for BNS parameters in the BNSþ BNS overlap scenarios with the
corresponding PDFs for the BNS-only case, when injections are done in two other noise realizations. The numbers shown correspond to
the PDFs in Fig. 12, the upper row corresponding to the left panel and the lower row to the right panel.

BNS1 (tc) BNS1 (tc-2) BNS2 (tc) BNS2 (tc-2)

M q Λ̃ M q Λ̃ M q Λ̃ M q Λ̃

0.316 0.282 0.0743 0.0385 0.0339 0.0325 1.0 0.936 0.382 0.0271 0.0858 0.248
M q Λ̃ M q Λ̃ M q Λ̃ M q Λ̃
0.278 0.257 0.123 0.0475 0.0381 0.0630 1.0 0.902 0.341 0.226 0.101 0.128
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when the BBH merger time coincides with that of the BNS,
but not so much if it occurs 2 s earlier.
In the case of two overlapping BBH signals, parameter

estimation results are shown in Fig. 11 and KS statistics in
Table XI. The results are quite robust under a change of
noise realization.

Finally, the case of two overlapping BNSs with different
noise realizations is shown in Fig. 12 and KS statistics in
Table XII. As in the case of a BNS overlapping with a
BBH, the PDFs for the masses are not much affected by
differences in noise, but the ones for Λ̃ are more
susceptible.
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