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Abstract. In this article parametric versions of Wilson’s plug and Kuperberg’s plug are discussed.

We show that there is a weak homotopy equivalence induced by the inclusion between the space of
non–singular vector fields tangent to a foliation and its subspace comprised of those without closed

orbits, as long as the leaves of the foliation have dimension at least 3. We contrast this with the
case of foliations by surfaces in 3–manifolds.

1. Introduction

The Seifert Conjecture [12] stated that all non–singular vector fields in S3 have at least one closed orbit.
A construction by Wilson, [13], shows that any non–singular vector field in a 3–dimensional manifold
can be homotoped through non–singular vector fields to a vector field with only finitely many closed
orbits with the same degree of differentiability. The same construction also proves that, for manifolds
of dimension at least 4, any non–singular vector field can be homotoped through non–singular vector
fields to one without closed orbits.

After a result of Schweitzer [10] proving that the Seifert Conjecture does not hold under C1 regularity,
Krystyna Kuperberg settled Seifert’s Conjecture in the negative [6], by showing that any smooth non–
singular vector field in a 3–dimensional manifold can be smoothly homotoped to a vector field with
no closed orbits.

These results can be restated as follows. Given a manifold M , denote by Xns(M) the space of smooth
non–singular vector fields on M and by Xno(M) the space of smooth non–singular vector fields with
no closed orbits, both of them endowed with the C∞–topology. Then Wilson’s and Kuperberg’s
constructions show that the inclusion

ιn : Xno(M) −→ Xns(M)

induces a surjection in π0 as long as dim(M) ≥ 3.

Both Wilson’s and Kuperberg’s constructions are based around the notion of a plug. A plug is a local
model for modifying a vector field in a flowbox. Wilson’s plug traps a non–empty open subset of
orbits and, in dimension greater than 3, creates no new closed ones. Kuperberg’s plug in dimension
3 creates no new closed orbits, and a later result by Matsumoto, [7], shows that the set of orbits that
are trapped in Kuperberg’s plug contains a non–empty open subset.

Let (Mn+m,Fn), n ≥ 3, be a closed smooth (n + m)-dimensional manifold endowed with a smooth
foliation of codimension m. Denote by Xns(M,F) and Xno(M,F) the subsets of, respectively, Xns(M)
and Xno(M) consisting of vector fields tangent to F . The main result of this note is the following:

Theorem 1. The inclusion:

ιn : Xno(M,F) −→ Xns(M,F)

is a weak homotopy equivalence. That is, the induced maps in homotopy

πk(ιn) : πk(Xno(M,F)) −→ πk(Xns(M,F))

are isomorphisms.
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In particular, in the case where F is comprised of a single leaf, the whole of M , this recovers and
improves the results of Wilson and Kuperberg, that dealt only with π0. Also, it shows that the foliated
Seifert conjecture – every vector field tangent to a foliation has a closed orbit – does not hold for
foliations of dimension n ≥ 3.

Remark 1. For the result not to be trivial, the space Xns(M,F) should be non–empty. This reduces
to a purely algebraic topology question. For instance, in the classical case (foliation consisting of a
single leaf) the necessary and sufficient condition for non–triviality is χ(M) = 0. Another example:
if you assume that the manifold is 4-dimensional and oriented and the foliation is 3–dimensional and
oriented, in which case χ(M) = 0, the necessary and sufficient condition for non–triviality is M being
almost–complex.

For contrast, the case where the leaves are two dimensional is discussed in the last section. It will be
shown that there is an ample class of foliations for which all foliated vector fields must have a closed
orbit.

As in the classical case, it may be possible to find classes of vector fields tangent to the foliation always
possessing a periodic orbit. As an example, there is a foliated version of the Weinstein conjecture for
Reeb vector fields that has been proven and disproven in several instances. See [9] for more details.

2. Setup and applications

In this article, discs are assumed to be of radius 1, unless otherwise noted. For the rest of the section
Mn+l will denote a smooth compact manifold, possibly with boundary and corners. Endow M with
a smooth n-dimensional foliation FnM and a smooth non–singular vector field X, tangent to FM.
Homotopies of vector fields will be of particular interest and, unless stated otherwise, they will always
be through smooth non–singular vector fields tangent to FM.

By a foliated flowbox, or simply a flowbox, it is meant an embedding

φ : [−2, 2]× Dn−1 × Dl →M
with image U ⊂ M, a smooth submanifold with corners. In the domain of φ there are coordinates
(z;x2, . . . , xn; y1, . . . , yl). We require for φ to satisfy φ∗FM = ker(dy1) ∩ · · · ∩ ker(dyl) and φ∗X =
∂z. U+, U− and Uv denote the components of ∂U in which X is outgoing, ingoing, and tangent,

respectively. If V ⊂ U is another foliated flowbox such that V + ⊂ U+, V − ⊂ U− and V v ⊂
◦
U then

the pair (U, V ) will be called nice. The following proposition is key in the construction, and the proof
is standard, as in [13, Theorem A].

Proposition 1. Let M, FM and X be as above. Fix A ⊂M an open neighbourhood of ∂M. Then
there is a finite number of pairs (Ui, Vi) satisfying:

• each (Ui, Vi) is a nice pair of foliated flowboxes,
• any orbit of X is either fully contained in A or it intersects one of the Vi,
• the Ui are disjoint from ∂M and disjoint from one another.

The idea now is homotoping X within the flowboxes in order to “open up” all closed orbits without
introducing new ones. Let Nn−1 be a manifold with boundary, possibly with corners, and denote
N = [−2, 2]×N ×Dl, with coordinates (z; p; y1, . . . , yl). Assume that there is an embedding ψ : N→
[−2, 2]× Dn−1 × Dl such that:

• ψ is the identity in the y coordinates,
• ψ preserves the vertical direction, i.e. ψ∗∂z = δ∂z with δ a positive function.

If N is endowed with a vector field XN that agrees with ∂z close to ∂N and that has no ∂yi components
for all i, we say that the pair (N, XN ) is a parametric plug.

Denote by N+, N−, and Nv the different components of ∂N, as in the case of flowboxes. A trajectory
of XN intersecting N− is said to be entering the plug and a trajectory intersecting N+ is said to be
exiting the plug. Since these plugs are meant to be embedded in foliated flowboxes in order to replace
X by XN , there are a number of properties that a parametric plug must satisfy:
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i. XN must be homotopic to ∂z, relative to the boundary, and through non–vanishing vector
fields with no ∂yi components, i = 1, . . . , l,

ii. if a trajectory ofXN enters and exits the plug, then it must do so at opposite points (−2, x0, y0)
and (2, x0, y0).

A trajectory entering the plug and remanining there for infinite time is called trapped. The first
property ensures that if the plug is used within a foliated flowbox, then the homotopy obtained is
indeed through non–vanishing vector fields tangent to FM. The second property ensures that no new
closed orbits are created by connecting two previously different orbits.

Proposition 2. Following with the notation of Proposition 1, suppose that there is a parametric plug
N that additionally satisfies that:

iii. XN has no closed orbits within N,
iv. the set of trajectories of XN trapped by N contains a non–empty open set.

Then there is a homotopy of X, relative to ∂M and through non–singular vector fields tangent to
FM, to a vector field X ′ whose closed orbits are contained in A.

Proof. Consider the open set of trapped trajectories given by Property (iv.). Denote by T−N ⊂ N− its

intersection with the lower boundary of N and by T+
N ⊂ N+ its intersection with the upper boundary.

Consider a finite cover by nice pairs (Ui, Vi) as in Proposition 1. Since T−N and T+
N have non–empty

interior, there are embeddings ψi : N → Ui satisfying ψ∗iX = δ∂z, with δ a positive function,
V −i ⊂ ψi(T

−
N ), and V +

i ⊂ ψi(T
+
N ).

Within each ψi(N), we homotope X = (ψi)∗(δ∂z) to (ψi)∗∂z and then to (ψi)∗XN as in Property (i.).
This yields a new vector field X ′. Let γ′ be some trajectory of X ′. If it is not fully contained in A, it
shares some segment with a trajectory γ of X that was not fully contained in A. Follow this segment
forward or backward in time as part of γ and γ′. If they differ at some point it is because γ entered
a plug. If it escaped the plug, it did so at opposing points of the plug, by Property (ii.), and hence
it will agree with γ′ on the other side. If it does not escape the plug, the orbit becomes trapped and
hence cannot be closed. Since every orbit of X intersected some Vi, the latter must happen eventually,
and hence γ′ has at least one end trapped. Since no new closed trajectories have been introduced in
the plugs, by Property (iii.), the claim follows. �

As soon as the existence of such a plug N is proven for n ≥ 3, Theorem 1 is an easy corollary.

Proof of Theorem 1 (assuming the existence of a suitable plug). Using the homotopy exact sequence
for inclusions, the theorem is equivalent to showing that

πj(Xns(M,F),Xno(M,F)) = 0 for all j ∈ Z.

Let Xt, t ∈ Dj , be a j–parametric family of non–vanishing vector fields tangent to F , defining
an element in πj(Xns(M,F),Xno(M,F)). What has to be proven now is that this family can be
homotoped, leaving those Xt, t ∈ Sj−1, fixed, to a family fully contained in Xno(M,F).

Consider the manifoldM = M ×Dj with the foliation FM =
∐
t0∈Dj F ×{t0} of codimension m+ j.

Then Xt can be regarded as a vector field X in M tangent to FM. Since Xt is an element in the
relative homotopy group πj(Xns(M,F),Xno(M,F)), we can assume that X has no closed orbits in a
neighborhood A of ∂M = M ×Sj−1. Then an application of Proposition 2 readily implies that X can
be homotoped, relative to ∂M and through non–vanishing vector fields tangent to FM, to a vector
field X ′ with no closed orbits.

Equivalently, the family Xt of vector fields can be homotoped, relative to the boundary of Dj , to a
family X ′t fully contained in Xno(M,F), thus proving the claim. �
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3. Construction of the parametric plugs

In this section we describe the parametric versions of Wilson’s plug (which is needed for Theorem
1 if n ≥ 4) and Kuperberg’s plug (for the case n = 3). Note that Kuperberg’s plug could be used
also for the higher dimensional case, but Wilson’s is easier to describe and paves the way to explain
Kuperberg’s.

3.1. The Wilson Plug in dimensions 4 and higher. Consider the manifold with boundary and
corners Wn,l = [−2, 2] × T2 × [−2, 2] × Dn−4 × Dl, with coordinates (z; s, t; r;x5, . . . , xn; y1, . . . , yl),
s, t ∈ [0, π), embedded in Rn+l, n ≥ 4 as follows:

i : Wn,l → Rn+l

i(z, s, t, r, x, y) = (z, cos(s)(6 + (3 + r) cos(t)), sin(s)(6 + (3 + r) cos(t)), (3 + r) sin(t), x, y).

Construct a vector field XW in Wn,l as follows:

XW = f(z, r, x, y)(∂s + b∂t) + g(z, r, x, y)∂z,

with b some irrational number and f , g smooth functions satisfying the following constraints:

(1) g is symmetric and f is antisymmetric in the z coordinate,

(2) g(z, r, x, y) = 1, f(z, r, x, y) = 0 close to the boundary of Wn,l,
(3) g(z, r, x, y) ≥ 0 everywhere and g(z, r, x, y) = 0 only in {|z| = 1, |r| ≤ 1, |x| ≤ 1/2, |y| ≤ 1/2},
(4) f(z, r, x, y) = 1 in {z ∈ [−3/2,−1/2], |r| ≤ 1, |x| ≤ 1/2, |y| ≤ 1/2}.

This is the usual construction for Wilson’s plug, but we have explicitely split the additional coordinates
into (xi)i=5,...,n and (yj)j=1,...,l, so that the y coordinates denote the parameter space. Write Wn,l

y0
for the n–dimensional plug one obtains for y = y0 fixed.

Proposition 3. (Wilson [13]) Wilson’s plug satisfies all 4 properties required for Proposition 2 to
hold.

Proof. Property (i.) follows by interpolating linearly between g and the constant function 1 and then
between f and the constant function 0. The symmetry of g and the antisymmetry of f imply Property
(ii.). The only possible closed orbits within Wn,l would lie in the zero set of g, and by construction
the flow in the zero set consists of invariant tori in which the vector field has irrational slope, so
Property (iii.) follows. Finally, the orbits touching {z = ±2, |r| ≤ 1, |x| ≤ 1/2, |y| ≤ 1/2} are trapped,
proving Property (iv.). �

3.2. The Wilson plug in dimension 3. It is clear from the construction above that Wilson’s
method cannot be used in dimension 3. However, a 3–dimensional version can be constructed. This
object will be used later on when defining Kuperberg’s plug. The treatment here follows very closely
the one in [3], where everything is described in more detail.

Consider the manifold W = [−2, 2]×S1×[1, 3], with coordinates (z, θ, r), embedded in R3 cylindrically
in the obvious fashion. Define a vector field XS in W as follows:

XW = f(z, r)∂θ + g(z, r)∂z,

with the functions f and g satisfying:

• f is antisymmetric and g is symmetric in the z coordinate,
• f is 0 and g is 1 near the boundary of W,
• g(z, r) ≥ 0 and g(z, r) = 0 only in B = {|z| = 1, r = 2},
• f(z, r) ≥ 0 in {|z| > 0} and f(z, r) = 1 in {1/4 ≤ z ≤ 7/4, 5/4 ≤ r ≤ 11/4}.

This version of Wilson’s plug satisfies Properties (i.) and (ii.), as is easily verified. Further, it contains
a pair of closed orbits, namely, {|z| = 1, r = 2} and a closed set of orbits that get trapped, those
touching {z = ±2, r = 2}. Observe that the flow of XW is tangent to the cylinders with r = r0 fixed.
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3.3. The Kuperberg Plug. The plug W described above is the basis for Kuperberg’s plug. See [6]
for the original article and [3] for a very detailed account of the construction.

The key objects are as follows. We have shown that the two closed orbits γi, i = 1, 2, of W, lie in the
cylinder [−2, 2]×S1×{2}. We are going to construct two cylinders Di, each one of them intersecting
the orbit γi in a segment. The Di will be reinserted into the plug in order to destroy the γi while
introducing no new periodic orbits.

Construct two disjoint convex discs Li ⊂ S1 × [1, 3], i = 1, 2. Li has a piecewise smooth boundary
comprised of two closed connected intervals: α′i, whose ends are attached to S1 × {3} and whose
interior lies in S1 × (1, 3), and αi ⊂ S1 × {3}. We additionally assume that each Li intersects the
curve S1 × {2} in a segment. We define Di = [−2, 2]× Li.

Let Di, i = 1, 2, be two flowboxes for XW , disjoint from one another and from the Di, satisfying:

• Di contains an interval {((−1)i, θ, 2), θ−i ≤ θ ≤ θ
+
i } of the closed orbit γi,

• each Di is diffeomorphic, as a manifold with boundary and corners, to Di by a map σi : Di →
Di satisfying σ∗iXW = ∂z. Denote L±i = σi({±2} × Li), i = 1, 2.

• there is a closed connected arc β′i ⊂ S1×{1} such that [−2, 2]×β′i is the region of the boundary
of Di lying in the vertical boundary of W. We require for σi to map {z}×α′i to {z}× β′i, for
all z ∈ [−2, 2].

These properties imply that the identification σi can be realised by an immersion with self–intersections
of W into R3. Further, the flow XW in Di can be replaced by (σi)∗XW . See Figure 1 for a picture of
all these elements.

For some θi, i = 1, 2, we require for the vertical interval [−2, 2]× {θi} × {2} ⊂ Di to be the preimage
of γi ∩ Di under σi. Then we further require for the following property to hold:

• Radius inequality: “for all (z, θ, r) ∈ Di, with image σi(z, θ, r) = (z′, θ′, r′) ∈ Di, it holds that
r′ < r except for the points (z, θi, 2), z ∈ [−2, 2], where it is actually an equality.”

The quotient manifold constructed by identifying in W the solid cylinders Di and Di using σi will
be denoted K, see the left hand side of Figure 1. The quotient vector field obtained out of XW by
replacing it with (σi)∗XW in Di will be denoted XK .

Figure 1. On the left hand side, the Kuperberg manifold seen as a quotient of
the Wilson cylinder. Di is identified with Di, i = 1, 2. On the right hand side, a
horizontal slice of the Wilson cylinder. These figures originally appear in [1] and [3].

The following theorem of Matsumoto shows that Property (iv.) of plugs is satisfied by Kuperberg’s
plug.
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Theorem 2. ([7]) There is δ > 0 such that every orbit entering the Kuperberg plug at {±2} × S1 ×
(2− δ, 2) is trapped inside.

The following Lemma will be useful in the next subsection. The right hand side of Figure 1 depicts
the different intervals in the construction.

Lemma 1. There is a homotopy in W of non–singular vector fields Xt
W , t ∈ [0, 2], with X0

W = XW

and X2
W = ∂z, such that:

• Xt
W agrees with ∂z in Di for t ∈ [1, 2],

• Xt
W agrees with XW in Di for t ∈ [0, 1],

• Xt
W defines a plug with no closed nor trapped orbits for t > 0.

Proof. Let f and g be the defining functions for XW = f(z, r)∂θ + g(z, r)∂z. Fix disjoint open
subintervals of the circle Ii, Ii ⊂ S1, i = 1, 2, such that Di ⊂ [−2, 2] × Ii × [1, 3] and Di ⊂ [−2, 2] ×
Ii × [1, 3]. Fix slightly larger intervals I ′i, I ′i, still disjoint, such that Ii ⊂ I ′i and Ii ⊂ I ′i. Construct
bump functions

α, β : S1 → [0, 1]

α(p) = 1, p ∈ Ii; α(p) = 0, p /∈ I ′i; i = 1, 2,

β(p) = 1, p ∈ Ii; β(p) = 0, p /∈ I ′i; i = 1, 2.

Let φ : [0, 2] → [0, 1] be a smooth function that is increasing in [0, 1] and satisfies φ(0) = 0 and
φ(t) = 1 for t ∈ [1, 2]. Similarly, let ψ : [0, 2]→ [0, 1] be a smooth function that is increasing in [1, 2]
and satisfies ψ(t) = 0 for t ∈ [0, 1] and ψ(2) = 1. Now define:

ft(z, θ, r) = f(z, r)(1− φ(t)α(θ)− ψ(t)(1− α(θ)))

gt(z, θ, r) = g(z, r) + (1− g(z, r))(φ(t)α(θ) + ψ(t)(1− α(θ)))

Xt
W = ft∂θ + gt∂z.

It is immediate that Xt
W is non–singular and that the first two claims hold. For the last one, observe

that gt > Ct > 0 in Ii for t > 0, with Ct some positive constant. �

See Fig. 2 for a pictorial representation of this construction.

3.3.1. The parametric Kuperberg plug. The radius inequality is the key to showing that the Kuperberg
plug traps a non–empty open set of orbits and that it contains no closed orbits. Similarly, consider
the following property:

• The strict radius inequality holds for a diffeomorphism φi : Di → Di if r′ < r for every
(z, θ, r) ∈ Di with φi(z, θ, r) = (z′, θ′, r′).

In the process of interpolating to a trivial plug, we will need for the intermediate plugs to satisfy this
strict radius inequality, since it will guarantee that all orbits enter and exit the plug.

A family of diffeomorphisms

σti : Di → Di, t ∈ [0, 2], i = 1, 2; satisfying

σ0
i = σi; (σti)

∗XW = ∂z

and satisfying the strict radius inequality for t > 0 can be constructed easily. The diffeomorphisms σi
can be precomposed with diffeomorphisms of Di that preserve the z component, that restrict to the
identity in [−2, 2]× (∂Li) and that, away from there, take points to points with smaller radius. This
produces diffeomorphisms σti that are C∞–close to σi. The quotients of W induced by the gluings
σti are all diffeomorphic to the Kuperberg manifold K and it is possible to fix a smooth t–parametric
family of identifications with K, which we henceforth assume.

Recall the explicit homotopy Xt
W constructed in Lemma 1. We define a family of vector fields in W

as follows:

• Y tW = Xt
W in (W \ (D1 ∪D2 ∪ D1 ∪ D2)),

• Y tW = Xt
W in Di for t ∈ [0, 1],
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Figure 2. The flow of Xt
W at {r = 2} in a neighbourhood of Di. Image a) corre-

sponds to t = 0, b) to t = 1/2, c) to t = 1, and d) to t = 2. The thickened dotted
lines correspond to the orbit(s) that is(are) tangent to the curves {|z| = 1} outside
of I ′i.

• Y tW = (σti)∗X
t
W in Di for t ∈ [0, 1],

• Y tW = Xt
W in Di for t ∈ [1, 2],

• Y tW = (σti)
∗Xt

W in Di for t ∈ [1, 2].

Note that this vector field does not define a plug in W, since it is not vertical close to the boundary
in Di for t ∈ [1, 2]. However, it does descend to the quotient K and automatically induces a family of
plugs (K, Xt

K), t ∈ [0, 2] interpolating from XK = X0
K to ∂z = X2

K .

Lemma 2. (K, Xt
K) has no closed orbits. Further, for t > 0, all orbits enter and exit the plug at

opposing points.

Proof. Since X0
K is Kuperberg’s plug, it has no closed orbits. Let us set up some notation for the

case t > 0. There are smooth bijective projections

τ : W \ (D1 ∪ D2)→ K,

τ ′ : W \ (D1 ∪D2)→ K.

The discontinuous radius function ρ : K → [1, 3] at a point p is defined to be the radius of τ−1(p).
Similarly, r(p) will be the radius of the preimage by τ ′. Compactness of Di and the strict radius
inequality, imply that there is a lower bound

(1) ρ− r ≥ ε > 0

in the points where they disagree.

Fix a point p ∈ K. Let Φs(p) be the flow of Xt
K at time s valued at p. Recall that L±i = σi({±2}×Li),

for i = 1, 2, are the boundaries of the self–insertion that are transverse to the flow. We can denote

Ei(s0) = {Φs(p) ∩ τ ′(L−i ); s ∈ (0, s0)}

Si(s0) = {Φs(p) ∩ τ ′(L+
i ); s ∈ (0, s0]}
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the sets of points where the forward orbit of p enters and exits, respectively, the self–insertion of the
plug. We shall call the points in Ei = ∪s≥0Ei(s) entry points and those in Si = ∪s≥0Si(s) exit points.
Define the level function associated to p as follows:

νp(s) = (#E1(s) + #E2(s))− (#S1(s) + #S2(s)), s ≥ 0.

Consider the collection of points E1 ∪E2 ∪S1 ∪S2 and regard it as an ordered list L = {xj = Φsj (p)}
in terms of increasing sj , so the points appear in L as the forward orbit intersects the sets L±i .

Let xj and xj+1 be two consecutive points in L. If they both are entry points, then νp(sj+1) =
νp(sj) + 1. If they both are exit points, then νp(sj+1) = νp(sj)− 1. Otherwise νp(sj) = νp(sj+1).

Obtaining Wilson orbits. Consider two points xj and xk, k > j, with xj an entry point. Take the
list {xi}i∈{j,...,k} ⊂ L of points lying in–between. Recall xi = Φsi(p). If νp(sj) = νp(sk) ≤ νp(si),

i ∈ {j + 1, . . . , k− 1}, then we claim that (τ ′)−1xj , (τ
′)−1xk ∈W lie in the same orbit of Xt

W , which
we henceforth call a Wilson orbit. We proceed by induction on the size of {j, . . . , k}.

In the base case k = j + 1, xk must be an exit point. Having no other entry or exit points between
τ−1xj and τ−1xk, they are joined by a Wilson orbit and hence are opposite to each other in the bottom
and top boundaries of W. This implies that (τ ′)−1xj and (τ ′)−1xk are connected by a Wilson orbit.

For the induction step, find the first l ∈ {j + 1, . . . , k} satisfying νp(sl) = νp(sj). This implies that xl
must be an exit point and all points in-between satisfy νp(si) > νp(sj) = νp(sl), i ∈ {j+ 1, . . . , l− 1}.
If l < k, the induction hypothesis applies and (τ ′)−1xj and (τ ′)−1xl are connected by a Wilson orbit.
Additionally, xl+1 must be an entry point and ν(sl+1) = ν(sl), so there is a Wilson orbit connecting
(τ ′)−1xl and (τ ′)−1xl+1. Iterating this process and concatenating the paths proves the induction step
in this case.

Assume otherwise that l = k. Then we have that νp(si) > νp(sj) = νp(sk), i ∈ {j + 1, . . . , k − 1},
which in particular means that xk is an exit point. It is also clear that xj+1 must be an entry point
and xk−1 an exit point. This means that the induction hypothesis applies to the shorter list of points
in-between xj+1 and xk−1.

We have then that (τ ′)−1xj+1 and (τ ′)−1xk−1 are joined by a Wilson orbit. Recall that τ−1xj and
(τ ′)−1xj+1 are joined by a Wilson orbit. The same is true for (τ ′)−1xk−1 and τ−1xk. Concatenating
all these segments yields a Wilson orbit between τ−1xj and τ−1xk, which implies that they lie in
opposing points in the lower and upper boundaries of W. In particular, (τ ′)−1xj and (τ ′)−1xk are
connected by a Wilson segment and the claim follows.

Concluding the argument. Let xj be an entry point and let xk, k > j. Assume νp(si) > νp(sj) =
νp(sk), i ∈ {j + 1, . . . , k − 1}. Then ρ(xj) = ρ(xk) and r(xj) = r(xk) and we can say that xk is the
exit point corresponding to the entry point xj . Equation 1 implies that the radius increases by ε at
every entry point and this observation shows that at an exit point the radius goes back to the value
it had at the corresponding entry point.

We conclude that, since ρ cannot be arbitrarily large, the elements in the list N = {νp(sj)} have
an upper bound. If L is infinite, then there is a minimum number k that gets repeated infinitely
many times in N . In particular, we can choose xj and xj+l with νp(sj) = νp(sj+l) = k, all points
in–between with νp ≥ k, and l arbitrarily large.

This means that we can find Wilson segments that intersect L±i arbitrarily many times, which is a
contradiction with the fact that Xt

W has no trapped orbits for t > 0. Therefore, L must be finite and
every orbit eventually escapes the plug. A similar analysis for negative time shows that it must enter
the plug too. The level analysis above shows that it must do so at opposing points. �

Construct a smooth non–decreasing function η : [0, 1]→ [0, 2], satisfying:

• η is identically 0 in [0, 1/2],
• η > 0 in (1/2, 1],
• η is identically 2 close to 1.
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Define a family of functions ηs = (1 − s)η + 2s, s ∈ [0, 1]. Let Dl be the disk with coordinates
(y1, . . . , yl). A 1–parametric family of foliated vector fields X sK in K× Dl can be defined by

(X sK)|{y=y0} = X
ηs(|y0|)
K .

Proposition 4. (K,X 0
K) satisfies all 4 properties required for Proposition 2 to hold.

Proof. X sK is the necessary homotopy between X 0
K and X 1

K = ∂z. That this homotopy is through
non–vanishing foliated vector fields follows from the fact that the Xt

K were non–vanishing. Property
(i.) holds.

A theorem of Matsumoto [7] states that Kuperberg’s plug traps a non–empty open set of orbits TK.
Since (X 0

K){y=y0} agrees with the vector field in Kuperberg’s plug for y0 ∈ Dl1/2, it is immediate that

(K,X 0
K) traps the open set TK × Dl1/2. Property (iv.) follows.

For |y0| > 1/2 it holds that η(|y0|) > 0. Hence, applying Lemma 2 to the flow (X 0
K)|{y=y0} = X

η(|y0|)
K

shows that X 0
K has no closed orbits in |y0| > 1/2 and all orbits there go through the plug entering

and exiting at opposing points. For |y0| ≤ 1/2, (K, (X 0
K)|{y=y0}) is the Kuperberg plug. This proves

Properties (ii.) and (iii.). �

4. Foliations with leaves of dimension 2

In this section M3 will denote a connected orientable compact smooth 3-manifold, possibly with
boundary. It will be endowed with a 2-dimensional foliation F2, which is assumed to be orientable
and tangent to the boundary of M . Further, let X be a non–singular vector field tangent to F .

Lemma 3. Let (T2,FT ) be a smooth foliation by lines in the torus. If FT has no Reeb components,
then it is equivalent, up to conjugation by a homeomorphism of T2, to the foliation induced by the
suspension of a diffeomorphism of the circle. If FT has no closed orbits then the diffeomorphism of
the circle is an irrational rotation.

This is a well known fact. A proof can be found in [2]. The following proposition establishes the
existence of at least two periodic orbits for any vector field tangent to the standard Reeb component.
The corollary after the proposition is an immediate consequence of Novikov’s compact leaf theorem.

Proposition 5. Let (M3,F2) be a standard Reeb component. Let X be a non–singular vector field
tangent to F . Then X induces a Reeb component on its boundary torus. In particular, X has at least
2 closed orbits.

Proof. Denote by X the oriented foliation by lines induced by X on the boundary torus T of the Reeb
component. Assume that X has a Reeb component in T . Since this foliation is orientable, the Reeb
component cannot have as boundary a single leaf S1, so the vector field X must have at least 2 closed
orbits. Let us now assume that X does not have a Reeb component.

Parametrise M = D2 × S1 explicitely with coordinates (r, θ, t), |r| ≤ 1. Consider the one sided
neighbourhood φ : (0, 1] × T2 → M , φ(r, θ, t) → ( 1+r

2 , θ, t) of the boundary torus T . Any curve
representing the homology class m ∈ H1(T ;Z) that vanishes by inclusion into M is called a meridian.

Using Lemma 3 in the T2 coordinates yields a new (maybe topological) embedding ψ : (0, 1]×T2 →M
such that ψ∗X is a suspension of a diffeomorphism of the circle in the torus {1} × T2.

Suppose that ψ∗X corresponds to the irrational rotation, then any curve with rational slope makes a
constant angle with ψ∗X . Note that, in particular, the homology class (ψ|{1}×T2)∗m of the meridian
under this new parametrisation can be represented by some smooth curve γ with rational slope.
Accordingly, ψ∗X and the tangent vector

.
γ define, at each point in the image of γ, a positively

oriented basis.

Suppose instead that ψ∗X corresponds to a suspension of a diffeomorphism of S1 with fixed points.
The meridian class (ψ|{1}×T2)∗m can be represented by a smooth curve γ : S1 → {1} ×T2. Denoting
this class by (a, b), where the first component stands for the suspension direction, the curve γ can
be set to agree with a compact leaf of X for almost a turns and then to turn b times transversely.
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Accordingly, the foliation ψ∗X and the tangent vector
.
γ are, at each point in the image of γ, either

colinear or define a positively oriented basis.

Summarizing, if the foliation ψ∗X does not have a Reeb component, it admits a smooth curve γ :
S1 → {1}×T2 representing the meridian class (ψ|{1}×T2)∗m, such that ψ∗X and

.
γ are either colinear

or define a positively oriented basis at every point. The degree of ψ∗X restricted to the image of γ
is therefore 0. Since the degree is invariant by homeomorphism, we conclude that X has degree 0 on
the image of the curve ψ ◦ γ.

Now every leaf inside the Reeb component has a family of circles that asymptotically approach the
image of ψ ◦ γ. The previous discussion implies that X restricted to any given R2 leaf in the Reeb
component is a non–singular vector field that restricted to some circle has degree 1 (with respect
to the standard basis of R2). Using the Poincaré-Hopf index theorem we get a contradiction, thus
implying that X has a Reeb component in the boundary torus T , as we desired to prove. �

Corollary 1. Any non–singular vector field tangent to a codimension one foliation of S3 has at least
2 closed orbits.

Proposition 5 can be proved in more generality. Following [5] and [11] we introduce the following
definition.

Definition 1. A foliation (M,F) is called a generalised Reeb component if M is connected, ∂M is
a union of leaves of F , no pair of points on ∂M can be joined by a curve transverse to the foliation,
and all the leaves in F| ◦

M
are proper and without holonomy.

In particular, this means that ∂M is a union of tori. The following lemma, which is a straightforward
consequence of [4, Corollary 2] and [8, Theorem 1], states that the behaviour near the boundary
components is just like the one found in a standard Reeb component:

Lemma 4. Let (M,F) be a generalised Reeb component and let T ⊂ ∂M be one of the boundary
components. Then the one sided holonomy along T is an infinite cyclic group. In particular, there is
a basis (α, β) for H1(T ) such that the holonomy along α is contracting and the holonomy along β is
the identity.

We shall see in Theorem 3 below that in most generalised Reeb components X must carry closed
orbits. First we characterise the exceptions. Consider the annulus S1 × [0, 1] and denote by FR the
1-dimensional Reeb foliation on the annulus. We will abuse notation and still denote by FR its lift as
a codimension one foliation to T2 × [0, 1].

Lemma 5. Let (M3,F2) be a generalised Reeb component. Suppose one of the leaves F is a cylinder.
Then (M,F) is homeomorphic to (T2 × [0, 1],FR).

Proof. By [4] it follows that (
◦
M,F| ◦

M
) is a fibration over S1 whose leaves are diffeomorphic to cylinders.

Since M is orientable, the fibration π :
◦
M → S1 is trivial.

Let φi : (0, 1] × T2 → M , i = 1, 2, be one–sided charts of the 2 boundary components φi({1} × T2),
with coordinates (r, s, θ). By Lemma 4, it can be assumed that the holonomy is the identity in the
s–direction and contracting in the θ–direction. Then these local models can be assumed to agree with
that of the standard Reeb component.

Since the leaves are proper, there are numbers r1, r2, such that the tori Si = {r = ri} ⊂ Image(φi)
intersected with each leaf bound a compact cylinder. Then the φi can be reparametrised in the θ–
direction so that π ◦ φ−1

i (ri, s, θ) = ±θ. The sign depends on whether the coorientation of F agrees

with the direction in which the holonomy is contracting. Denote by B ⊂
◦
M the manifold bounded

by the tori Si. Since π : B → S1 is a submersion that is a fibration over each Si, the Ehresmann
fibration theorem implies that B is a trivial S1 × (−1, 1) bundle over S1.

The boundary torus Si is endowed with two trivialisations, one coming from B and the other from
φi. They might disagree by a number of Dehn twists in the s–direction. Denote their composition
by τ : T2 → T2. Since the foliation structure in the chart φi is invariant under the action of τ on
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the (s, θ) coordinates, ψi = φi ◦ τ−1 is a new chart structure that makes the two trivialisations of Si
agree. Therefore, the trivialisation from B glues with the charts ψi to yield T2 × [0, 1] as a manifold.
Further, if π ◦ ψ−1

1 (r1, s, θ) = π ◦ ψ−1
2 (r2, s, θ), then F is isomorphic to FR. Otherwise, that is if the

orientations of the boundary components are reversed, (M3,F2) has a transverse path connecting
two points of the boundary and is not a generalised Reeb component. �

Now the main result is immediate:

Theorem 3. Let (M3,F2) be a generalised Reeb component. If M is not homeomorphic to T2× [0, 1],
then any vector field X tangent to F has at least 2 closed orbits.

Proof. Since M is not homeomorphic to T2× [0, 1], none of the non–compact leaves of F are cylinders.
In particular, they must have non–zero euler characteristic. Assume that X, when restricted to all
boundary components of M , induces no Reeb component. Applying Lemma 4 and proceeding as in
Proposition 5 shows that, given some non–compact leaf F , there is a finite collection of closed curves
γi ⊂ F satisfying:

• F \ {γi} is comprised of a compact component G that is a deformation retract of F and a
collection of non–compact half–cylinders,
• X is either tangent or defines a positively oriented basis at each point of γi (endowed with

appropriate orientations).

These properties again yield a contradiction using the Poincaré–Hopf index theorem. �
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