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Abstract. In [CPPP] it was shown that Engel structures satisfy an existence h–principle, and the

question of whether a full h–principle holds was left open. In this note we address the classification
problem, up to Engel deformation, of Cartan and Lorentz prolongations. We show that it reduces

to their formal data as soon as the turning number is large enough.

Somewhat separately, we study the homotopy type of the space of Cartan prolongations, describ-
ing completely its connected components in the overtwisted case.

1. Introduction. What can you find in this paper?

A 2–plane field in a 4–manifold is called an Engel structure if it is everywhere maximally non–
integrable. These structures conform the one exceptional family in Cartan’s list of topologically
stable distributions: unlike the other structures in the list – line fields, contact structures, and even-
contact structures – Engel structures are a phenomenon particular to a single dimension, dimension
4. For a long time, except for a few constructions arising from contact and lorentzian geometry, not
much was known about their existence and classification.

An Engel structure induces in its ambient manifold a complete flag satisfying some compatibility
conditions; this we call a formal Engel structure. Under orientability assumptions, this yields a
parallelization. A first breakthrough came with Vogel’s thesis [Vo], in which he was able to show that
any parallelizable manifold admits an Engel structure. Then, in [CPPP] it was shown that the natural
inclusion Engel → FEngel of the space of Engel structures into the space of formal Engel structures
is a surjection in homotopy groups. Whether an h–principle relative to the parameter holds remains
an open question.

This note aims to provide some insight into the classification problem by particularising to the case of
Cartan and Lorentz prolongations: the classical examples of Engel structures arising on S1–bundles
as projectivisations of contact and lorentzian manifolds, respectively.

In Section 3 we describe the homotopy type of the space of Cartan prolongations Cartan. Denote by
Cartan(ξ) the prolongations lifting the contact structure ξ; denote by Cartan([ξ]) those prolongations
lifting contact structures isotopic to ξ. We are able to compute the homotopy groups of Cartan([ξ]);
this is particularly simple when ξ is overtwisted (see Theorem 1). Klukas and Sahamie had already
described the connected components of Cartan(ξ) in [KS].

Having understood homotopies through Cartan prolongations, which is a more restrictive case of
independent interest, in Section 4 we turn to homotopies through Engel structures. Prolongations
have a well defined invariant called the turning number. Theorem 3 shows that, as soon as the
turning number is large enough, the classification question reduces to the classification as formal
Engel structures. The main ingredient is the work of Little [Li] and Saldanha [Sal].
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2. Preliminaries

Henceforth all manifolds and distributions considered will be smooth. Unless explicitely stated oth-
erwise, manifolds will be closed. To simplify the discussion, both manifolds and distributions will
be orientable and often oriented. Our arguments would carry through taking suitable double or
quadruple covers in the non–orientable case. The spaces of maps considered are endowed with the
C∞–topology.

Given two distributions η and ν over the manifold M , we write:

[η, ν] = ∪p∈M{[u, v]p ∈ TpM | u ∈ Γ(η), v ∈ Γ(ν)} ⊂ TM
for their Lie bracket, which is not necessarily a distribution. Note that η ⊂ [η, η].

2.1. Definitions.

Definition 1. Let N be a 3–dimensional manifold. A 2–dimensional distribution ξ ⊂ TN is said to
be a contact structure if it is everywhere non–integrable. That is, [ξ, ξ] = TN .

Definition 2. Let M be a 4–dimensional manifold. A 3–dimensional distribution E ⊂ TM is said to
be an even–contact structure if it is everywhere non–integrable, i.e. if [E , E ] = TM .

Definition 3. Let M a 4–dimensional manifold. A 2–dimensional distribution D ⊂ TM is said to be
an Engel structure if it is everywhere maximally non–integrable, i.e. if E = [D,D] is an even–contact
structure.

Before we discuss what the state of the art is regarding Engel structures, let us recall some standard
results:

Proposition 1. Let M be a 4–dimensional manifold. Let E ⊂ TM be an even–contact structure.

• There is a uniquely defined line field W ⊂ E given by the equation [W, E ] ⊂ E. W is called
the kernel of the even contact structure.

• Given some Engel structure D ⊂ TM satisfying E = [D,D], it holds that W ⊂ D.
• Let N ⊂ M be a (possibly open) 3–dimensional submanifold of M that is transverse to W.

Then, ξ = TN∩E is a contact structure in N . Additionally, given D as above, X = TN∩D ⊂ ξ
is a distinguished legendrian line field.

• There is a canonical isomorphism given by Lie bracket:

(1) det(E/W) = TM/E .
Additionally, given D as above, there is a second isomorphism:

(2) det(D) = E/D.

Equation (1) shows that orientability of TM is equivalent to orientability ofW. If E arises from some
Engel structure D, E is canonically oriented by Equation (2). Hence, choosing orientations for D and
M yields a parallelisation of M up to homotopy. We are interested precisely in this case.

2.2. Formal Engel structures. Proposition 1 motivates the following definition:

Definition 4. Let M be a 4–manifold. A complete flag W ⊂ D ⊂ E ⊂ TM endowed with bundle
isomorphisms as in Equations (1) and (2) is said to be a formal Engel structure.

The following was the main result in [CPPP]:

Proposition 2. Let M be a smooth 4–manifold. The inclusion

i : Engel(M))→ FEngel(M)

of the space of Engel structures into the space of formal Engel structures is surjective in all homotopy
groups.

The proposition completely solves the existence problem for Engel structures. This note intends to
shed some light on their classification.
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2.3. Curves in the 2–sphere and the Engel local model. Consider a (possibly open) 3–manifold
N . We focus our attention now on Engel structures on the product manifold N×[0, 1] with coordinates
(p, t). We are interested in those 2–distributions D of the form 〈∂t〉⊕X, with X a vector field tangent
to the slices N × {t}. We write X ′ = [∂t, X] and X ′′ = [∂,X ′].

Given some point p ∈ N , one can use the flow of ∂t to define a trivialisation that identifies S(T(p,t)N×
{t}) with S2 in a t–independent fashion. Along each curve {p} × [0, 1], the vector fields X,X ′, X ′′

can be regarded as curves Xp, X
′
p, X

′′
p : [0, 1]→ S2. Given a curve in S2, we say that one of its points

is an inflection point if the normal curvature of the curve is vanishing at the point. If the curvature
is everywhere positive, the curve is said to be convex ; if it is everywhere negative, it is said to be
concave.

Proposition 3 ([CPPP]). The 2–distribution D = 〈∂t〉 ⊕X in N × [0, 1] is not integrable at a point
(p, t) if and only if Xp is immersed at time t.

D is Engel at (p, t) if and only if, additionally, at least one of the following two conditions holds:

(1) the curve Xp has no inflection point at time t,
(2) 〈Xq(t), X

′
q(t)〉 = [D,D] ∩ T (N × {t}) is a contact structure in Op(p)× {t}.

The first condition does not depend on the framing chosen for TN , since convexity is preserved by
transformations in PGL(2). We will normally choose framings that make the second condition easy
to check.

Remark 1. We can also understand formal Engel structures in this setting. Indeed, suppose we have
a oriented flag W ⊂ D ⊂ E with W = 〈∂t〉 in D3 × [0, 1]. Then, it can be regarded as a D3–family
of formal immersions of [0, 1] into S2. Proposition 3 shows that they are immersions if and only if
E = [D,D]. If they are additionally convex or concave, the plane field D is Engel.

2.4. Prolongations. The canonical examples of Engel structures can be understood within the
framework of Proposition 3:

Example 1. Let (N, ξ) be a contact 3–manifold. The total space of the S1–bundle π : S(ξ) → N
carries an Engel structure given by the universal family construction, called the (oriented) Cartan
prolongation. Recall that points in S(ξ) are pairs (p, L) with p ∈ N and L an oriented line in ξp. The
Engel structure is simply D(p,L) = d(p,L)π

−1(L).

In particular, given a disc D3 ⊂ N , one can select a framing {Y, Z} for ξ. Then, in D3 × S1, with
coordinates (p, L = [cos(t)Y +sin(t)Z]), t ∈ [0, 2π), the definition above yields the following structure:

D(p,L) = 〈∂t, cos(t)Y + sin(t)Z〉
which satisfies the second condition from Proposition 3. Note that W = 〈∂t〉.

Example 2. Let (N, g) be a lorentzian manifold of signature (2, 1). We denote by C ⊂ TN the
subset given at each point p ∈ N by the light–like cone Cp. To C one can associate the S1–bundle
π : S(C) → N given by quotienting using the (R \ {0})–action of rescaling. It can be endowed with
a canonical Engel structure D(p, L) = d(p,L)π

−1(L), where L is a line in Cp. D is called the Lorentz
prolongation.

Find a disc D3 ⊂ N and choose a orthonormal framing {V, Y, Z} with Y and Z space–like, and V
time–like. Then, the construction we just described can be written down as:

D(p,L) = 〈∂t, V + cos(t)Y + sin(t)Z〉, t ∈ [0, 2π).

It satisfies the first condition from Proposition 3. Unlike the previous example,W is always transverse
to 〈∂t〉.

Up to homotopy, there is a well defined plane associated to each lorentzian metric: any plane that is
space–like for the metric. We will be interested in considering lorentzian metrics whose planes are in
the same homotopy class as some given contact structure.
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3. The space of Cartan prolongations

For the rest of the article fix a closed, orientable 3–manifold N . Denote by C-Strs the space of oriented
contact structures on it. It naturally decomposes into several components C-Strs(c) corresponding to
contact structures having a particular Euler class c ∈ H2(N,Z). We can further denote C-Strs(ξ) for
the connected component containing the contact structure ξ ∈ C-Strs.

Each oriented S1–bundle over N is given by its Euler class c; denote its total space by N(c). Sug-
gestively, denote Cartan(c) for the space of all oriented Engel structures on N(c) having the fibre
direction as their kernel. Write π : N(c)→ N for the projection. Any Engel structure D ∈ Cartan(c)
defines a contact structure ξ = dπ(E) on N , since W = ker(dπ). Orient the line field W using the
orientation of the fibre. Then, ξ inherits an orientation from E/W. Hence, there is a projection:

Cartan(c)→ C-Strs .

It is immediate that the Euler class of ξ must be of the form kc, with k > 0. This integer is called
the turning number and is computed as follows. Take any S1–fibre of N(c). Find some S1–invariant,
positively oriented framing of E/W. Compute the degree of D/W with respect to this framing. The
resulting number k does not depend on the choices involved and is necessarily positive.

Denote by Cartan(c, k) ⊂ Cartan(c) the space of Cartan prolongations having turning number k. Write
Cartan(c, k, ξ) ⊂ Cartan(c, k) for the subspace of those that additionally project down to ξ ∈ C-Strs.
Observe that a path of Cartan prolongations projects down to a path of contact structures; write
Cartan(c, k, [ξ]) for the subspace of those prolongations that lift contact structures homotopic to ξ.

Denote by Cover(c, k) the space of k–fold covers from N(c) to N(kc); i.e. positively oriented fibrewise
submersions with k sheets lifting the identity on N . Once we fix a bundle isomorphism between the
sphere bundle of ξ and N(kc), we can construct the following homeomorphism:

f : Cartan(c, k, ξ)→ Cover(c, k)

f(D)(p, L) = (p, [dπp(D(p, L))]),

where [dπp(D(p, L))] denotes the oriented line in ξp determined by projecting down D(p, L). Note
that f(D) pulls back the canonical Cartan prolongation in N(kc) ∼= S(ξ) to D.

All the contact structures in a neighbourhood of ξ can be identified with ξ itself using a projection
along a complementary line field. This implies that the corresponding sphere bundles can consistently
be identified with N(kc). This readily implies that

Cartan(c, k)→ C-Strs(kc) and Cartan(c, k, [ξ])→ C-Strs(ξ)

are locally trivial fibrations with fibre Cover(c, k).

Our aim in this section is to understand the homotopy type of the spaces Cartan(c, k, [ξ]) using the
fibration structure we have just presented. Before we provide a precise statement, we need some
additional setup.

3.1. Prolongations over a fixed contact structure. First we will describe the homotopy groups
of the space Cartan(c, k, ξ) ∼= Cover(c, k), the fibre. The π0 case was already described in [KS].

Observe that, by fixing some element τ ∈ Cover(c, k), one readily obtains an inclusion Cover(kc, 1) ⊂
Cover(c, k) by making τ act by pullback. Since Cover(kc, 1) is a group that contains the gauge trans-
formations G(kc) of N(kc) as an abelian subgroup, we can regard G(kc) as a subspace of Cover(c, k)
as well.

Lemma 1. For any τ ∈ Cover(c, k), the inclusions

G(kc)→ Cover(kc, 1)→ Cover(c, k)

are weak homotopy equivalences.
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Proof. Let φ : (Dj , ∂Dj , 1)→ (Cover(c, k),G(kc), τ) be a continuous function representing an element
in πj(Cover(c, k),G(kc), τ). It is sufficient to show that it retracts to G(kc).

Restricted to an i–simplex ∆i of N , the bundles N(c) and N(kc) are trivial. There, φ can be thought
as a (∆i×Dj) –family of positively oriented submersions of S1 onto itself with k–sheets. The SO(2)–
bundle structure on N(c) can be taken to be the one induced from N(kc) by using τ , and hence τ
can be assumed to be the map zk on each fibre; the elements of G(kc) ⊂ Cover(c, k) are those of the
form φ ◦ zk with φ a (∆i × Dj)–family of rotations.

Assume that a suitable homotopy has already been found in the (i−1)th skeleton of N . The (∆i×Dj)–
family of submersions of S1 onto itself can be lifted to define a family in Diff+(S1) such that its
boundary lies in S1, the rotations. Recalling that S1 → Diff+(S1) is a weak homotopy equivalence
concludes the inductive step. �

Lemma 2. The homotopy groups of G(kc), and hence of Cover(c, k), are given by:

π0 = H1(N,Z), π1 = Z, πj = 0, for j > 1.

Proof. Recall that S1 is the classifying space for the discrete group Z. Then:

π0(G(N)) = π0(Maps(N, S1)) = H1(N,Z).

In general, it is a result of Thom [Th] that πj(Maps(N,K(G,n))) = Hn−j(N,G). �

Remark 2. Lemma 2 can be proved using obstruction theory as in Lemma 1. This is useful to
provide a geometrical interpretation of the result. Let us outline the argument, which is similar to
the one presented in [KS]. We need to fix a basepoint τ ∈ Cover(c, k).

An explicit identification between π0(Cover(c, k)) and H1(N,Z) can be given as follows. Take an
element ν ∈ Cover(c, k). Over each loop γ ⊂ N , the bundles N(c) and N(kc) trivialise. Given
any section s ∈ Γ(N(c)|γ), one can compute the degree of ν(s) with respect to τ(s). This gives a
homomorphism H1(N,Z) → Z and thus an element in H1(N,Z). This element only depends on the
connected component of ν; we call it the horizontal distance between τ and ν.

Similarly, let νt ∈ Cover(c, k), t ∈ S1, be a loop with ν1 = τ . Take a point p ∈ N and lift it to a point
P ∈ N(c). We say that the degree of t→ νt(P ), t ∈ S1, as a loop in the fibre of N(kc) over p, is the
looping number. This identifies π1(Cover(c, k)) with Z.

Let ξ be a contact structure with Euler class kc. Recall that our objective is to understand the
homotopy type of Cartan(c, k, [ξ]). From these lemmas and the homotopy long exact sequence for the
fibration, it easily follows that:

πj(Cartan(c, k, [ξ])) = πj(C-Strs(ξ)), for j > 2.

However, the cases of π0, π1, and π2 are more subtle. The key is understanding the connecting
morphism

πj(C-Strs(ξ))→ πj−1(Cover(c, k)) j = 1, 2,

which is not zero in general.

3.2. Formal Cartan prolongations. We will now introduce two spaces of geometrical structures
whose homotopy groups are easy to compute. We will be able to regard Cartan(c, k, [ξ]) as a subspace
within them. This will allow us to state and prove our main theorem about the spaces Cartan(c, k, [ξ]).

3.2.1. Prolongations of plane fields. Denote by Planes the space of oriented plane fields in N . Write
Planes(c) for those of Euler class c ∈ H2(N,Z) and Planes(ξ) for the connected component containing
the plane field ξ ∈ Planes. By fixing a parallelisation of N , Planes can be readily identified with
Maps(N, S2).

We write FCartan(c) for the space of oriented 2–distributions in N(c) that contain the fibre direction,
are everywhere non–integrable (but not necessarily maximally), and whose induced 3–distribution
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obtained by Lie bracket is preserved by flows along the fibre. The elements in FCartan(c) are called
formal Cartan prolongations.

Let D ∈ FCartan(c). Then, by definition, ξ = dπ(E = [D,D]) is a plane field in N ; ξ being contact
amounts to D being an element in Cartan(c). The orientation of E/W orients ξ, just like in the case of
Cartan prolongations. The turning number k can also be defined; we write FCartan(c, k) ⊂ FCartan(c)
for the subspace of those formal Cartan prolongations with turning number k: they necessarily project
down to plane fields of Euler class kc. Similarly, write FCartan(c, k, [ξ]) for those lifting plane fields
homotopic to ξ.

There are locally trivial fibrations:

Cover(c, k) −→ FCartan(c, k) −→ Planes(kc),
Cover(c, k) −→ FCartan(c, k, [ξ]) −→ Planes(ξ),

where Cover(c, k) is defined as before.

3.2.2. Prolongations of rank 2 bundles. There is a natural inclusion of the space of oriented plane
fields into the space of oriented rank 2 bundles:

Maps(N, S2) ∼= Planes→ Bundles ∼=Maps(N,Gr(2,∞)),

where Gr(2,∞) is the infinite Grassmanian of oriented 2–planes, which is the Eilenberg–Maclane
space K(2,Z). We write Bundles(c) for the subspace of bundles having Euler class c ∈ H2(N,Z). Let
V(2,∞) be the Stiefel manifold of ordered pairs of orthonormal vectors in R∞; recall that there is a
tautological fibration

S1 → V(2,∞)→ Gr(2,∞).

We will now explain what a prolongation is in this setting. We define FCartan∞(c) to be the space
of maps of N(c) into V(2,∞) which are lifts of maps N → Gr(2,∞) and are fibrewise submersions
respecting the orientation. This space has several components FCartan∞(c, k) distinguished by the
Euler class kc of the underlying 2–plane bundle, k > 0.

Let ξ be a oriented plane field of Euler class kc. The following diagram commutes:

Cover(c, k) Cartan(c, k, [ξ]) C-Strs(ξ)

Cover(c, k) FCartan(c, k, [ξ]) Planes(ξ)

Cover(c, k) FCartan∞(c, k) Bundles(kc)

∼=

∼=

where each row is a fibration.

3.3. Statement of the theorem. Let ξ be a contact structure of Euler class kc. According to the
commutative diagram above, the connecting morphism

πj(C-Strs(ξ))→ πj−1(Cover(c, k))

factors through πj(Bundles(kc)). This motivates us to consider the subgroup:

πtrivial
j (C-Strs(ξ)) = ker(πj(C-Strs(ξ))→ πj(Bundles(kc))).

We can now state the main result of the section.

Theorem 1. Let ξ be an overtwisted contact structure of Euler class kc. Then:

π0(Cartan(c, k, [ξ])) = π0(C-Strs(ξ))×H1(N,Z2)

π1(Cartan(c, k, [ξ])) = πtrivial
1 (C-Strs(ξ))× Z2

π2(Cartan(c, k, [ξ])) = πtrivial
2 (C-Strs(ξ))

πj(Cartan(c, k, [ξ])) = πj(C-Strs(ξ)) if j > 2.
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The term H1(N,Z2) is the mod 2 reduction of the horizontal distance. Similarly, the term Z2 is the
parity of the looping number.

The proof relies on understanding the inclusion πj(C-Strs(ξ)) → πj(Bundles(kc)). For an arbitrary
contact structure ξ this is very difficult. However, if ξ is assumed to be overtwisted the problem
simplifies considerably. This flexibility is provided by the well–known result of Eliashberg regarding
the classification of overtwisted contact structures:

Lemma 3 ([El]). Let ξ be an overtwisted contact structure. The inclusion

C-Strs(ξ)→ Planes(ξ)
is surjective in all homotopy groups, where ξ is assumed to be the basepoint. Additionally, this map
is a bijection at the level of connected components.

The inclusion is a weak homotopy equivalence if one additionally fixes the overtwisted disc, but we
will not need this fact.

3.4. Proof of the theorem.

3.4.1. The connecting morphism for bundles. The next two lemmas show that the connecting mor-
phism is a bijection in the case of bundles.

Lemma 4. The connecting morphism πj(Bundles(kc))→ πj−1(Cover(c, k)) is injective.

Proof. Equivalently, we will show that the morphism πj(FCartan
∞(c, k)) → πj(Bundles(kc)) is zero.

Take any element in πj(FCartan
∞(c, k)), and find a representative K ⊂ FCartan∞(c, k). The class

[K] maps to [ξ], where ξ is the j–sphere of 2–plane bundles underlying K. From the definition of
formal Cartan prolongation (for bundles), we have that the circle bundle of ξ is k–covered by the
trivial family of circle bundles based on N(c). We deduce (for instance, using functoriality of the
Euler class) that ξ must be trivial as a family as well, so [ξ] = 0. �

Similarly:

Lemma 5. The connecting morphism πj(Bundles(kc))→ πj−1(Cover(c, k)) is surjective.

Proof. Take ξ to be the basepoint in Bundles(kc) and fix a lift τ ∈ FCartan∞(c, k). Take a class
G ∈ πj−1(Cover(c, k)), which we can think of as a homotopy class in the gauge transformations of ξ,
by Lemma 1.

Lemma 2 implies that G is given by a cohomology class g ∈ H2−j(N,Z). Similarly, ξ is given, up
to bundle isomorphism, by its Euler class e ∈ H2(N,Z). Recall that the Künneth formula yields an
isomorphism

H2−j(N,Z)⊕H2(N,Z)
(α,β)−→ H2(N × Sj ,Z).

Consider the unique, up to homotopy, j–sphere K of bundles based on ξ and having α(g) + β(e) as
its Euler class when regarded as a plane bundle over N ×Sj . We claim that the connecting morphism
maps [K] to G.

Take j = 1. Write P : N × S1 → N . Write Q : N × [0, 1] → N × S1 for the obvious quotient
map. There is a unique, up to homotopy, isomorphism between Q∗K and Q∗P ∗ξ extending the
identification (Q∗K)|N×{0} = ξ. The identification of (Q∗K)|N×{0} with (Q∗K)|N×{1} yields a gauge
transformation φ of ξ.

We claim that φ is a representative of G. Recall that the Euler class of a 2–plane bundle over the
torus can be computed as follows: find a section over the complement of the meridian γ and compare
the degrees of the two resulting sections over γ. Let now γ be some embedded loop in N , and let T
be the corresponding torus on N × S1. By construction, K|T has Euler class α(g)|T , which implies
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that φ|γ is described by g|γ . Since gauge transformations are characterised by their action over loops,
the claim follows.

The case j = 2 is similar. In that case, we have to study what happens over a single point x ∈ N and
the corresponding sphere {x} × S2. �

3.4.2. Non–trivial families of plane fields. The following proposition shows that there are many fam-
ilies of plane fields which are non–trivial as families of vector bundles.

Proposition 4. Let dj = 2vj ∈ H2(N×Sj ,Z), j = 1, 2. Fix ξ ∈ Planes with Euler class dj |N . Then,
there is a sphere Kj in Planes based at ξ whose Euler class as a 2–plane bundle over N × Sj is dj.

Proof. Assume j = 1. Take a CW–decomposition of N with only one top cell. Take the CW–
decomposition of S1 with a single 1–cell and x the unique 0–simplex. Denote by T the product
CW–decomposition in N × S1. Write T ∗ ⊂ T for the collection of cells not contained in N × {x}.
Deform ξ to be constant (as a map into the Grassmannian) over the 1–skeleton of N . We define
(K1)|N×{x} = ξ and we aim to extend it to T ∗.

Over the 1–cells, K1 can be defined to be constant, like ξ. Over a 2–cell ∆2, we define it to be a
map into S2 of degree φ1(∆2), where [φ1] = v1. This provides the desired Euler class. Over the
3–skeleton of T ∗, the obstruction for extending is given by dφ1 by construction, which evaluates zero
over the cells of T ∗. This leaves the single 4–cell ∆4 to fill. The obstruction is the degree of the map
K1 : ∂∆4 → S2. We can trace back our steps and modify K1 over some 3–cell to make sure this
degree is zero.

Assume j = 2. Then, the isomorphism:

H2(S2,Z)⊕H2(N,Z)
(α,β)−→ H2(N × S2,Z),

indicates that we can simply compute the Euler class of any plane bundle by evaluating separately
on N × {x} or {p} × S2. Take the manifold N × D2: over it, we have (the pullback of) the bundle
TN which is trivisalised as the trivial R3–bundle; as a 2–distribution inside, we define K2, which is
D2–invariant and equal to ξ on every N × {x}. We aim two glue two copies of N × D2 so that the
glued copies of K2 have the desired Euler class when restricted to each {p} × S2.

Consider the loop S1 → SO(2) realising the Euler class α−1(d2) ∈ H2(S2,Z) through the clutching
construction and denote by φ : S1 → SO(3) its inclusion into SO(3). Observe that, since d2 = 2v2, φ
is contractible in SO(3). We can define then another map Φ : N × S1 → SO(3) so that:

• Φ|{p}×S1 = φ, up to a SO(3)–transformation that only depends on p,
• Φ fixes (not pointwise) the plane ξ.

What we are essentially saying is that φ was a family of rotations of the XY –plane that was lifted
to R3, and Φ is a p–dependent family of rotations that looks the same but, instead, the plane that
Φ|{p}×S1 rotates is ξp. Since φ was contractible, so is Φ, so the resulting R3–bundle is trivial. However,

in each {p}×S2 the restriction of ξ has been twisted to have Euler class α−1(d2), proving the claim. �

3.4.3. The proof of the theorem. Let ξ be an overtwisted contact structure and fix τ ∈ Cartan(c, k, ξ) a
basepoint in the fibre over ξ. The existence of τ identifies the connected components of Cartan(c, k, ξ) ∼=
Cover(c, k) with H1(N,Z), as in Lemma 2.

Let us study the connecting morphism

π1(C-Strs(ξ))→ π0(Cover(c, k)).

Using Lemma 4 we deduce that its kernel is the space πtrivial
1 (C-Strs(ξ)). Let us compute its image.

Let g ∈ Cover(c, k) and denote by ν the corresponding prolongation in Cartan(c, k, ξ). By Lemma 5
there is a loop of vector bundles, all of them of Euler class kc, producing the class of g through the
connecting morphism π1(Bundles(kc))→ π0(Cover(c, k)). By Proposition 4, this loop can be realised
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by a loop of plane fields based on ξ if and only if [g] ∈ H1(N,Z) is even. Then, Lemma 3 allows us
to turn this into a loop of contact structures ξt, t ∈ S1 based on ξ1 = ξ.

The case π2(C-Strs(ξ))→ π1(Cover(c, k)) is analogous. �

4. The classification up to Engel homotopy

The previous section dealt with Cartan prolongations. We will now allow homotopies through more
general Engel structures (that are, however, still tangent to the fibre direction, so they can be regarded
as generalised prolongations).

4.1. A warm–up exercise. Let us start by working out a particular case which is of interest and
that follows easily using the language of Section 3.

Theorem 2. Let K a topological space. Let φ0, φ1 : K → Cartan(c) be two continuous maps and let
φs : K → FCartan(c), s ∈ [0, 1], be a homotopy between them. Then φs can be C∞–approximated,
relative to its ends, by a homotopy with image in Engel(N(c)).

Figure 1. Sξi, i = 0, 1, is the circle bundle of the contact structure ξi. Using a
transverse vector field νi, we push Sξi to the cone Fi of a lorentzian metric. F0 and
F1 can be connected by a family Fs, s ∈ [0, 1], of cones. This produces a homotopy
of the corresponding prolongations.

Proof. For a proof by picture, refer to Figure 1. Consider the maps φs. There is a corresponding
family K × [0, 1] of maps

fx,s : N(c)→ STN
fx,s(p, L) = dp,Lπ([φs(x)])

which are simply the tautological maps associated to each formal Cartan prolongation. Write ξx,s for
the oriented contact plane associated to φs(x).
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Write νx,s for a family of unit vectors inN such that νx,s is orthogonal to ξx,s for each (x, s) ∈ K×[0, 1].
Define a function h : [0, 1]→ R vanishing to all orders on 0 and 1 and otherwise satisfying h(s) > 0,
s ∈ (0, 1). Consider the following deformation of f :

Fx,s =
fx,s + h(s)νx,s
|fx,s + h(s)νx,s|

.

The tautological distributions associated to Fx,s provide a family ψs : K → Engel(N(c)), s ∈ [0, 1];
the Engel structures ψs are Lorentz prolongations if and only if s ∈ (0, 1). Making h(s) approach
zero, ψs becomes arbitrarily close to φs. �

In particular, the theorem indicates that Engel structures do not seem to recall global contact topol-
ogy information. This is consistent with the fact that there are Engel cobordisms between contact
structures homotopic only as plane fields (see [CPPP]).

Remark 3. Theorem 2 shows that we can think of Lorentz prolongations as convex push–offs of
formal Cartan prolongations. In particular, each Lorentz prolongation has a well defined turning
number.

4.2. Statement of the main theorem. Our main result refers to both Cartan and Lorentz prolon-
gations. It reads:

Theorem 3. Let K be a CW–complex. Let φ0, φ1 : K → Engel(N(c)) be two continuous maps with
image either in the oriented Cartan prolongations or in the Lorentz prolongations. Suppose that both
of them have turning number greater or equal to 6. Then, they are Engel homotopic if and only if
they are formally homotopic.

If c = 0, the bound on the turning numbers can be improved and the proof is actually simpler:

Proposition 5. Let K be a CW–complex. Let φ0, φ1 : K → Engel(N(0)) be two continuous maps
with image either in the oriented Cartan prolongations or in the Lorentz prolongations. Suppose that
both of them have turning number greater or equal to 2. Then, they are Engel homotopic if and only
if they are formally homotopic.

The main ingredient in the proof is the interplay between Engel structures and families of curves in
S2, as discussed in Subsection 2.3. We will introduce the technical results we need first.

4.3. Curves in S2. A curve γ : S1 → S2 having no inflection points has an associated Frenet map
Γγ : S1 → O(3) given at p by the matrix (γ(p),

.
γ(p)/| .γ(p)|, n(p)), with n : S1 → S2 satisfying

〈..γ(p), n(p)〉 > 0. We say that γ is convex if this matrix lives in SO(3). We can still define the Frenet
map of an immersed curve by requiring n(p) to be the unique vector making it lie in SO(3). Let I
be the space of immersions of S1 into S2. Its formal counterpart FI, the space of formal immersions,
can be identified with Maps(S1,SO(3)). Denote by L ⊂ I the subspace of convex curves.

4.3.1. A result of Little/Saldanha. Let L be some compact CW–complex, and let n be a positive
integer. Fix maps f : L→ I, t : L→ S1. We construct a new map f [t#n] : L→ I using the following
procedure: for each p ∈ L the curve f(p) can be cut at the point f(p)(t(p)) and be modified by adding
n small convex loops. This can be done continuously on p. It can also be done over different points
as long as we have functions t0, . . . , tm : L→ S1 with disjoint image; we then write f [t0#n0,...,tm#nm]

for the resulting family. Note that this family is certainly not unique; by taking the loops small, it
can be assumed to be C0–close to f .

The following lemma summarises the facts we need about this operation:

Lemma 6 (Little,Saldanha). Let L be a compact CW–complex. Let f : L→ I. Let t, t0, . . . , tm : L→
S1 be homotopic functions with disjoint image. Let n, n0, . . . , nm be positive integers. The following
statements hold:

a. If f is convex, so is f [t0#n0,...,tm#nm].
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b. Sliding the cutting points provides a homotopy between f [t#n0+...nm] and f [t0#n0,...,tm#nm]

through immersions. If f is convex, they are homotopic as convex curves.
c. There is a homotopy between f and f [t#2] as immersions. This homotopy takes place in a

small neighbourhood of the point t.
d. Assume that f is convex. Then f [t#1] and f [t#3] are homotopic as convex curves. This

homotopy takes place in a small neighbourhood of the point t.
e. The homotopies between f [t#1] and f [t#3] produced by Statements (c.) and (d.) are homotopic

to one another through immersions, relative to the ends.
f. If f is fixed and the collection {t0, . . . , tm} is sufficiently dense in S1, the curve f [t0#1,...,tm#1]

can be chosen to be convex.

These statements can be found in [Sal][Section 6], but the techniques involved appeared already in
[Li]. In Figure 2 a explicit homotopy between a convex curve having winding 2 in an affine chart and
another one having winding 4, is shown. This homotopy can be adapted to prove Lemma 6.

Figure 2. The curves γi, i = 0, 1, 2, are maximal circles. The curve α2 is convex
and, in the frontal hemisphere, has winding number 2. By pushing the upper strand
down, it can be taken to the second figure. It is comprised of three segments that
are convex pushoffs of the γi whose corners have been rounded to preserve convexity.
The third figure is obtained from the second by following the γi for a longer time.
Pushing everything to the opposite hemisphere yields a curve α4 with winding 4.

4.4. Proof of the main theorem. The proof can be broken down in several steps. We fix an
orientation of N .

4.4.1. Step I. Passing to Lorentz prolongations. Let i be either 0 or 1. Assume first that φi is a family
of Cartan prolongations. Then, φi(x), x ∈ K, defines an oriented contact plane ξx,i and a tautological
map fx,i : N(c) → STN . We can take νx,i to be the unique vector field such that (ξx,i, νx,i) is
positively oriented. Then (fx,i + νx,i)/|fx,i + νx,i| defines a family ψi of Lorentz prolongations. This
family is Engel homotopic to φi. Furthermore, the choice of νx,i (as opposed to its negative), implies
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that when we follow the fibres of N(c) positively, the curves that describe ψi(x) are convex (i.e. having
positive curvature), as opposed to concave.

Assume otherwise that φi is a family of Lorentz prolongations. If the curves describing it are convex,
we are done. Otherwise, consider the tautological map fx,i : N(c) → STN associated to φi. There
are a plane field ξx,i and a vector field νx,i transverse to it so that φi is precisely given by (fx,i +
νx,i)/|fx,i + νx,i|. We can then find homotopies ξx,i,s and νx,i,s, s ∈ [0, 1], so that:

• ξx,i,0 = ξx,i and νx,i,0 = νx,i,
• νx,i,s is transverse to ξx,i,s,
• ξx,i,1 is an overtwisted contact structure.

Set φi,s to be the Lorentz prolongation obtained by pushing the formal Cartan prolongation of ξx,i,s
with νx,i,s. This provides a homotopy of φi through Lorentz prolongations. Now, φi,1 is clearly Engel
homotopic to the Cartan prolongation of ξx,i,1 and we can apply the previous discussion. Effectively,
we pass through Cartan prolongations to go from concave curves to convex. Let us henceforth assume
that we are dealing with Lorentz prolongations ψi : K → Engel(N(c)), i ∈ {0, 1}, described by convex
curves.

4.4.2. Step II. Obtaining a non–integrable homotopy. Fix a parallelisation of N , and lift it to a par-
allelisation of N(c). This provides an almost–quaternionic structure in TN(c). Let ψs : K →
FEngel(N(c)), s ∈ [0, 1], be the formal homotopy between ψ0 and ψ1. We can use the almost–
quaternionic structure to assume that each ψs (as a plane field) contains the fibre direction. By
possibly modifying ψs, the fibre direction can be taken to be transverse to the line field of the formal
flag (this is the case for ψ0 and ψ1).

Suppose c = 0. Reasoning as in Subsection 2.3 shows that ψs can be regarded as a map N ×K → FI.
By applying the Hirsch–Smale theorem, relative to s = 0, 1, we can assume that ψs maps into I. If
c is not zero, we can still do this over any 3–ball in N . Since the Hirsch–Smale theorem is a full (in
particular, relative in the parameter) h–principle, we can apply it sequentially using a covering of N .
Hence, we can assume that the ψs are non–integrable, but not necessarily maximally.

4.4.3. Step III. The vanishing Euler class case. We will prove Proposition 5 first, since the proof is
simple but showcases how all the ingredients are used.

Consider the family ψs, s ∈ [0, 1]. The arguments above show that in the c = 0 case we can simply
regard it as a family Ψ : K ×N × [0, 1]→ I. Using Lemma 6 (f.) we can find an even integer m and
a collection of points t0, . . . , tm ∈ S1 such that the family Ψ[t0#1,...,tm#1] has image in L after a small
homotopy. However, the families Ψ[t0#1,...,tm#1]|K×N×{0,1} and Ψ|K×N×{0,1} do not agree.

If the turning number is at least two, the family Ψ|K×N×{0,1} is already of the form Φ[t#1], where
Φ : K ×N ×{0, 1} → L can be understood as a family of Lorentz prolongations with turning number
c−1. An application of Lemma 6 (b.) and (d.) shows that Ψ[t0#1,...,tm#1]|K×N×{0,1} and Ψ|K×N×{0,1}
are homotopic as families of convex curves, proving the claim. �

The main point is that c = 0 allows us to assume that N(c) has a non–vanishing section (whose role
is played by the point t). In the general case we will have to deal with this fact.

4.4.4. Step IV. Construction of a covering. Consider the families ψ0 and ψ1. By assumption, they
are comprised of Lorentz prolongations with turning numbers k0, k1 ≥ 6. Regard N(c) as a principal
S1–bundle. The contractibility of the pair (Diff(S1),S1) implies that, after a homotopy, we can assume
for ψi to be invariant under the action of Zki (acting by rotations on the fibre); this follows as in
Lemma 1. Let k = min(k0, k1) ≥ 6.

Given some section s : U → N(c) over an open set U ⊂ N , denote by Is the submanifold of N(c) that,
on each fibre, is given by moving from s to e2πi/ks positively. We want to find a covering {Uj}j=0,...,J

of N and sections sj : Uj → N(c) such that the Isj are all disjoint.
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Let γ be a knot in N representing the Poincaré dual of c 6= 0 ∈ H2(N,Z) and let ν(γ) be a tubular
neighbourhood. Let s1 be a section of N(c) over ν(γ). Let s0 be a (transverse to zero) section of the
disc bundle associated to N(c) whose zeroes are γ; regard it as a section of N(c) away from γ.

Let (α; r, θ) be the coordinates in the solid torus S1 × D2; fix a diffeomorphism ν(γ) ∼= S1 × D2. The
section s1 yields an identification of N(c)|ν(γ) with the trivial principal S1–bundle over S1 × D2. It

can be chosen so that s1 is the constant section 1 ∈ S1, and s0(α; r, θ) = θ ∈ S1 for r ∈ Op({1}).

Fix δ > 0 small. Let U0 be the union of the complement of ν(γ) and {r > 1−2δ}. Let U1 be S1×D2
1−3δ.

Triangulate ∂D2
1−5δ/2 and use this to produce a covering {Uj}j=2,...,J of Op({1−4δ < r < 1−δ}) with

no triple intersections. Set Uj = S1×Uj . Since the regions Uj can be assumed to be arbitrarily thin, the
section s0 is almost constant over each one of them. Due to our assumption on the turning numbers,
Is0 and Is1 together cover at most a third of any fiber. We deduce that for each Uj corresponding
to a vertex, we can choose sj to be constant and satisfying the claim. Having fixed those, each Uj
corresponding to an edge intersects U0, U1, and two of the vertex regions; we deduce that there is
some constant sj such that Isj avoids the corresponding Isj′ .

4.4.5. Step V. Concluding the proof. Assume that the family ψs is equal to ψ0 in [0, 3ρ] and equal to
ψ1 in [1− 3ρ, 1], for ρ > 0 small. We will modify ψs over each Uj , inductively on j. The constructions
that follow depend on a large integer C; it will be fixed at the end of the proof to ensure that our
claims hold.

Write ψ′s for the family of structures obtained in the step j − 1. Over Op(Uj), regard it as a family

of curves Ψj : Op(Uj)×K × [0, 1]→ I. Replace Ψj by Ψ
[sj#2C]
j in Uj ×K × [0, 1] and use the region

(Op(Uj) \ Uj)×K × [0, 1] to interpolate back to Ψj . We apply Lemma 6 (d.) in [0, ρ]∪ [1− ρ, 1], (c.)
in [2ρ, 3ρ]∪ [1− 3ρ, 1− 2ρ], and (e.) in [ρ, 2ρ]∪ [1− 2ρ, 1− ρ]. We do this for all j and we write ψ′s for
the resulting family. Lemma 6 (d.) states that ψ′i and ψi, i = 0, 1, are Engel homotopic. However, ψ′i
has 2C loops added at the points sj over Uj . Note that the curves describing ψ′i have length bounded
above independently of C, since the homotopies that add loops in the interpolation region can be
done sequentially.

We have to further modify ψ′s, again inductively on j. Shrink slightly the Uj so that they remain a
covering and restrict Isj to Op(Uj). Write ψ′′s for the family of structures obtained in the step j − 1,
and let Ψj : Op(Uj)×K× [0, 1]→ I be the corresponding family of curves over Op(Uj). Denote by I ′sj
the subset of N(c) obtained from Isj by enlarging it maximally (on each fibre) while keeping it disjoint
from Isj′ , j

′ > j, and from itself. Isj can be enlarged fibrewise, remaining a submanifold, to cover

arbitrarily much of I ′sj ; redefine it as such. Thanks to the argument in the previous paragraph, Ψj is

of the form F [sj#2C]. Use Lemma 6 (b.) to replace Ψj by F [sj,1#1,...,sj,2C#1] in Uj , and interpolate
back to Ψj in Op(Uj) \ Uj . The sections sj,i are distributed in Isj so that they become dense as C
goes to infinity.

We write ψ′′s for the resulting family after iterating over all the Uj . Now, since the Uj cover N , each
curve describing ψ′′s is obtained from an immersed curve by adding loops at a collection of points that
becomes dense with C; further, the length of this immersed curve is controlled. Lemma 6 (f.) then
implies that, for C large, the curves are convex and hence the homotopy is through Engel structures.
This concludes the proof. �
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