
THE FOLIATED WEINSTEIN CONJECTURE
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Abstract. A foliation is said to admit a foliated contact structure if there is a codimension 1

distribution in the tangent space of the foliation such that the restriction to any leaf is contact. We
prove a version of the Weinstein conjecture for Reeb vector fields in the presence of an overtwisted

leaf. The result is shown to be sharp.

1. Introduction

The Weinstein conjecture [Wei] states that the Reeb vector field associated to a contact form α
in a closed (2n+ 1)–manifold M always carries a closed periodic orbit. Hofer proved in [Ho] that the
Weinstein conjecture holds for any 3-dimensional contact manifold (M3, α) overtwisted or satisfying
π2(M) 6= 0. Then, it was proven in every 3–manifold by Taubes [Tau] by localising the Seiberg-Witten
equations along Reeb orbits.

The main theorem of this note – definitions of the relevant objects will be given in the next section –
reads as follows:

Theorem 1. Let (M3+m,F3, ξ2) be a contact foliation in a closed manifold M . Let α be a defining
1–form for an extension of ξ and let R be its Reeb vector field. Let L3 ↪→M be a leaf.

i. If (L, ξ|L) is an overtwisted contact manifold, R possesses a closed orbit in the closure of L.
ii. If π2(L) 6= 0, R possesses a closed orbit in the closure of L.

The case where the leaf L is closed corresponds to the Weinstein conjecture. This result constrasts,
just as in the non–foliated case, with the behaviour of smooth flows: it was proven in [PPP15] that any
never vanishing vector field tangent to a foliation (M3+m,F3) can be homotoped, using parametric
plugs, to a tangent vector field without periodic orbits. This note shows that there is hope in defining
a meaningful foliated contact dynamics, as announced in [CPP15].

The proof of Theorem 1, based on Hofer’s methods, occupies the last section of the note. Before that,
several examples showing the sharpness of Theorem 1 are discussed. Some of them are unexpected
and show that care is needed to state a Weinstein–type conjecture in full generality in the foliated
case:

• Overtwistedness is a necessary condition: In Subsection 3.2, several examples of foliations
with tight leaves are presented. Proposition 23 constructs a contact foliation in the 4–torus
T4 that has all leaves tight and that has no Reeb orbits. Naturally, in this example all leaves
are open. This shows that the foliated Weinstein conjecture does not necessarily hold as
soon as we drop the assumption on overtwistedness. Then Proposition 20 presents a more
sophisticated example of a contact foliation in S3 × S1.

• Jumps to a nearby leaf are necessary: In Subsection 3.3 we construct a foliation in S2×S1×S1

that has two compact leaves S2× S1×{0, π} on which all others accumulate. We then endow
it with a foliated contact structure that makes all leaves overtwisted but that has closed Reeb
orbits only in the compact ones. Theorem 1 is therefore sharp in the sense that an overtwisted
leaf might not possess a Reeb orbit itself.
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• Being a leaf is necessary: In Subsection 3.1 we construct Reeb flows with no closed orbits in
every open contact manifold.
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2. Basic concepts and definitions

All objects considered henceforth will be C∞ smooth. Foliations and distributions will be oriented
and cooriented. Often, arguments where orientability assumptions are dropped would go through by
taking double or quadruple covers appropriately.

2.1. Contact structures.

Definition 2. Let W be a 2n + 1 dimensional manifold. A distribution ξ2n ⊂ TW is said to be a
contact distribution if it is maximally non–integrable. A 1–form α ∈ Ω1(W ) satisfying ker(α) = ξ
is called a contact form. ξ being maximally non–integrable amounts to α satisfying α ∧ dαn 6= 0.

We say that the pair (W, ξ) is a contact manifold.

A map φ : (W1, ξ1)→ (W2, ξ2) satisfying φ∗ξ2 = ξ1 is a contact map. If φ is additionally a diffeomor-
phism we will say that φ is a contactomorphism.

Example 3. Consider R2n+1 with coordinates (x1, y1, · · · , xn, yn, z). The 2n–distribution ξst = ker(dz−∑
i=1..n xidyi) is called the standard tight contact structure.

Example 4. Consider R3 with cylindrical coordinates (r, θ, z). The 2–distribution ξot = ker(cos(θ)dz+
r sin(r)dθ) is called the standard overtwisted contact structure. The disc ∆ = {z = 0, r ≤ π} is
called the overtwisted disc.

It was shown by Bennequin in [Be] that the structures (R3, ξst) and (R3, ξot), although homotopic as
plane fields, are distinct as contact structures.

2.1.1. Overtwisted contact structures in dimension 3.

Definition 5. Let (W 3, ξ2) be a contact manifold. (W, ξ) is said to be an overtwisted contact
manifold if there is an embedded 2–disc D ⊂W and a contactomorphism φ : ν(∆)→ ν(D) between a
neighbourhood ν(∆) of the overtwisted disc ∆ ⊂ R3 and a neighbourhood ν(D) ⊂W of D.

The relevance of this notion stems from the following theorem stating that overtwisted contact man-
ifolds are completely classified by their underlying algebraic topology.

Theorem 6. (Eliashberg [El89]) Let W 3 be a 3–manifold. Any plane field η ⊂ TW is homotopic to
an overtwisted contact structure.

Further, any two overtwisted contact structures ξ1, ξ2 ⊂ TW homotopic as plane fields are homotopic
through overtwisted contact structures. In particular, if W is closed, they are contactomorphic.
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Theorem 6 says that 2–plane fields and contact structures in 3–manifolds present a 1 to 1 correspon-
dence at the level of connected components. Eliashberg’s result is stronger than what we have stated.
Indeed, there is a weak homotopy equivalence if one restricts to the class of plane fields that have a
fixed overtwisted disc.

Overtwisted contact structures in R3 were completely classified by Eliashberg in [El93]. In particular,
the following proposition will be used in Subsection 3.3.

Proposition 7. (Eliashberg [El93]) Let ξ be a contact structure in R3 that is overtwisted in the
complement of every compact subset. Then ξ is isotopic to ξot.

Contact structures with the property that they remain overtwisted after removing any compact subset
are called overtwisted at infinity.

2.1.2. Overtwisted contact structures in higher dimensions. Overtwisted contact structures have been
defined in full generality – for every dimension – in [BEM]. In [CMP] it has been shown that the
overtwisted disc in higher dimensions can be understood as an stabilisation of the overtwisted disc in
dimension 3.

The following lemma will be useful in Subsection 3.1. Its proof is based on the uniqueness, up to
isotopy, of overtwisted at infinity contact structures, as first proven in [El93].

Lemma 8. ([BEM, Corollary 1.4]) Let (M2n+1, ξM ) be a connected overtwisted contact manifold and
let (N2n+1, ξN ) be an open contact manifold of the same dimension. Let f : N → M be a smooth
embedding covered by a contact bundle homomorphism Φ : TN → TM – that is, Φ|ξM (p) maps into

ξN (f(p)) and preserves the conformal symplectic structure1– and assume that df and Φ are homotopic
as injective bundle homomorphisms TN → TM .

Then f is isotopic to a contact embedding f̃ : (N, ξN )→ (M, ξM ).

2.1.3. Convex surfaces. Let (W 3, ξ2) be a contact manifold. Let Σ2 ⊂ W be an immersed surface.
The intersection ξ ∩ TΣ yields a singular foliation by lines on Σ, which is called the characteristic
foliation. In the generic case, it can be assumed that the singularities – the points where ξp = TpΣ
– are isolated non–degenerate points, that can then be classified into elliptic and hyperbolic.

Example 9. By our characterisation of overtwistedness, any overtwisted manifold (W, ξ) contains a
disc Σ with a single singular point, which is elliptic, and whose boundary is legendrian. All other
leaves spiral around the legendrian boundary in one end and converge to the elliptic point in the
other. Such a disk appears as a C∞–small perturbation of the overtwisted disk ∆.

Example 10. Consider the unit sphere S2 in (R3, ξst). Its singular foliation has two critical points
located in the poles, which are elliptic. All other leaves are diffeomorphic to R and they connect the
poles.

Theorem 11 (Eliashberg, Giroux, Fuchs). Let Σ = S2 and let (W, ξ) be tight. Then, the characteristic
foliation of Σ is conjugate to the one of the unit sphere in R3 tight.

2.2. Contact foliations. The contents of this section appear in more detail in [CPP15].

Definition 12. A contact foliation is a triple (M2n+1+m,F2n+1, ξ2n) where M is a manifold of
dimension 2n+ 1 +m, F is a foliation of codimension m, and ξ ⊂ TF is a distribution of dimension
2n that is contact on each leaf of F .

Often we will say that ξ is a foliated contact structure on the foliation (M,F).

Contact foliations do exist in abundance as the following result shows:

Theorem 13. ( [CPP15] ) Let (M3+m,F3) be a foliation such that the structure group of TF reduces
to U(1)⊕ 1. Then F admits a foliated contact structure with all leaves overtwisted.

1The formal data associated to the contact structure. The bundle ξ = ker(α) has a symplectic structure (ξ, dα) that
is uniquely defined up to conformal factor as we rescale α.
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This result is the foliated counterpart of Eliashberg’s result [El89].

We say that a distribution Θ2n+m satisfying ξ = Θ∩TF is an extension of ξ, and a regular equation
α can be considered for Θ = ker(α). Assuming co–orientation of TF , extensions always exist. It
follows that dα is a symplectic form on ξ, but not necessarily on Θ.

Definition 14. Let (M,F , ξ) be a contact foliation. Let Θ be an extension of ξ with regular equation
α. The Reeb vector field R associated to α is the unique vector field satisfying R ∈ Γ(TF),
(iRdα)|TF = 0, and α(R) = 1.

Of course this is nothing but the leafwise Reeb vector field induced by the restriction of α to each leaf
of F .

2.2.1. The space of foliated contact elements. The following concept will be relevant in the subsequent
construction.

Definition 15. A strong symplectic foliation is a triple (Mm+2n,F2n, ω) where M is a smooth
manifold, F a foliation, and ω ∈ Ω2(M) a closed 2–form that is symplectic on the leaves of F .

Let (Mn+m,Fn) be a smooth foliation. The cotangent space to the foliation π : T ∗F → M is an
n–dimensional bundle over M that carries a natural foliation F∗ =

∐
L∈F π

−1(L). Additionally, it is
endowed with a canonical 1–form:

λ(p,w)(v) = w ◦ d(p,w)π(v), at a point (p, w), p ∈M , w ∈ T ∗pF .

If L ⊂ M is a leaf of F this is nothing but the Liouville 1–form on T ∗L. Therefore, since dλ is a
leafwise symplectic form that is globally exact, (T ∗F ,F∗, dλ) is a strong symplectic foliation.

Fix a leafwise metric g in M . Then there is a bundle isomorphism # : T ∗F → TF . This defines a
metric in T ∗F by setting g∗(w1, w2) = g(#w1,#w2). The presence of g∗ allows one to consider the
unit cotangent bundle S(T ∗F) as a submanifold of T ∗F transverse to F∗.

The intersection of S(T ∗F) with a leaf L is by construction the sphere bundle S(T ∗L), which endowed
with the form λ corresponds to the contact manifold which is called the space of oriented contact
elements. Therefore (S(T ∗F),F∗ ∩ S(T ∗F), ker(λ)) is a contact foliation. We call it the space of
foliated oriented contact elements.

Lemma 16. The Reeb flow in (S(T ∗F),F∗ ∩ S(T ∗F), λ) coincides with the leafwise cogeodesic flow
of g.

This lemma can be proved just as in the case of contact manifolds (see [Ge, Theorem 1.5.2]). This
construction will be used in Subsection 3.2.

2.2.2. The symplectisation of a contact foliation.

Definition 17. Let (M2n+1+m,F2n+1, ξ2n) be a contact foliation. Let Θ2n+m ⊂ TM be an extension
of ξ, and let α be a defining 1–form for Θ, ker(α) = Θ.

We say that

(R×M,FR =
∐
L∈F

R× L, ω = d(etα)), with t the coordinate in R,

is the symplectisation of (M,F , ξ).

The symplectisation is another instance of a strong symplectic foliation. Restricted to every individual
leaf this is the standard symplectisation of the contact structure on the leaf.

We are abusing notation and we are writing α for π∗α, where π : R×M →M is the projection onto
the second factor. We will also write ξ for the restriction of (dπ)−1ξ to the level T ({t} ×M) and R
for the lift of the Reeb vector field R to {t} ×M .

Let us also introduce the projection πξ : T (R×M)→ ξ along the ∂t and R directions.
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3. Several examples

3.1. (Non–complete) Reeb vector fields with no closed orbits. It is first reasonable to wonder
about the Weinstein conjecture for open manifolds in general. In this direction, not much is known.
In [vdBPV, vdBPRV, SZ] it is shown that the Weinstein conjecture holds for non–compact energy
surfaces in cotangent bundles as long as one imposes certain topology conditions on the hypersurface
and certain growth conditions on the hamiltonian, which is assumed to be of mechanical type.

Proposition 18. Let (N2n+1, ξ) be an open contact manifold. Then there is a contact form α,
ker(α) = ξ, whose (possibly non–complete) associated Reeb flow has no periodic orbits.

Proof. Fix some small ball U ⊂ N . Modify ξ within U to introduce an overtwisted disc ∆ in the sense
of [BEM]. By applying the relative h–principle for overtwisted contact structures, there is ξot in N
that agrees with ξ outside of U and that has ∆ as an overtwisted disc. This new contact structure is
homotopic to the original one as almost contact structures.

Let {Ni}i∈N be an exhaustion of N by compact sets, Ni ⊂ Ni+1. Fix a non–degenerate contact form
αot for the overtwisted structure ξot. Its closed Reeb orbits are isolated and countable; moreover, we
may assume that no closed orbit is fully contained in ∆. We index them as follows: each compact
set Ni is intersected by finitely many closed orbits and hence we write {γij}j∈Ii for the collection of
closed Reeb orbits intersecting Ni but not Ni−1.

Construct a path β : [0,∞) → N , avoiding ∆, that is proper and such that N \ β([0,∞)) is diffeo-
morphic to N by a map isotopic to the identity. Then, for each i, and each j ∈ Ii, we can construct
paths βij : [0, 1] → Ni such that the βij are all pairwise disjoint, they intersect Image(β) only at

βij(0) ∈ Image(β), they satisfy βij(1) ∈ γij ∩Ni, and they avoid ∆.

Since the images of β and the βij avoid ∆, we can fix a closed contractible neighbourhood V of ∆
disjoint from them as well. Construct a path βot : [0, 1] → N with βot(0) ∈ ∂V , βot(1) ∈ Image(β)
and otherwise avoiding V and all other paths.

Consider the tree T = β ∪ {∪i∈N,j∈Iiβij} ∪ βot. Denote by ν(T ) a small closed neighbourhood that
deformation retracts onto T . We can assume that N is diffeomophic to N ′ = N \ (ν(T ) ∪ V ) by a
diffeomorphism f : N → N ′ that is isotopic to the identity.

The embedding f : (N, ξ)→ (N ′ ∪V, ξot) has image N ′ and is covered by a contact bundle homomor-
phism. This follows because f is isotopic to the identity in N and ξ and ξot are homotopic. Now an
application of Lemma 8 implies that there is an isocontact embedding f̃ : (N, ξ)→ (N ′ ∪ V, ξot). The

form αot has no periodic orbits in N ′ ∪ V by construction and hence the pullback form α = f̃∗αot
does not either. �

Remark 19. A natural open question is whether it is true that every open contact manifold can be
endowed with a contact form inducing a complete Reeb flow with no closed orbits.

3.2. The Weinstein conjecture does not hold for contact foliations with all leaves tight.
We shall construct first a contact foliation with all leaves tight and with periodic orbits lying in the
only compact leaf.

Proposition 20. Let (S3,FReeb) be the Reeb foliation on the 3–sphere and let g be the round metric
in S3. Consider the contact foliation (S3 × S1, λcan) on the unit cotangent bundle of FReeb. Its only
closed Reeb orbits lie in the compact torus leaf.

The proposition is an easy consequence of the following Lemma.

Lemma 21. Consider the Riemannian manifold (R2, g), where g is of the form dr⊗dr+f(r)dθ⊗dθ,
with f(r) an increasing function satisfying f(r) = r2 close to the origin. (R2, g) has no closed
geodesics.
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Proof. Applying the Koszul formula yields the following equations for the Christoffel symbols:

g(∇∂r∂θ, ∂θ) = f ′/2 = Γθrθg(∂θ, ∂θ) = Γθrθf,

g(∇∂θ∂r, ∂θ) = f ′/2 = Γθθrg(∂θ, ∂θ) = Γθθrf,

g(∇∂θ∂θ, ∂r) = −f ′/2 = Γrθθg(∂r, ∂r) = Γrθθ.

And hence the geodesic equations read:
..
r = f ′

.

θ
2
,

..

θ = − log(f)′
.

θ
.
r.

If at any point
.

θ = 0, then
.

θ = 0 for all times and
.
r is a constant. This situation corresponds to radial

lines.

All other geodesics have always
.

θ 6= 0 and hence
..
r > 0. In particular, as soon as a geodesic has

.
r ≥ 0

at some point, it will have
.
r > 0 for all the points in the forward orbit and hence it will not close up.

For a geodesic to close up we deduce then that it must have
.
r < 0 for all times, but then it cannot

close up either. �

Proof of Proposition 20. Consider S3 lying in C2, with coordinates (z1, z2) = (r1, θ1, r2, θ2). The Reeb
foliation can be assumed to have the Clifford torus |z1|2 = |z2|2 = 1/2 as its torus leaf. One of the
solid tori, denote it by T , corresponds to {|z1|2 ≤ 1/2, |z2|2 = 1− |z1|2} and the other one is given by
the symmetric equation. Let us multiple cover the solid torus T with the map φ : R×D2

1/
√

2
→ T given

by φ(s, r, θ) = (r, θ,
√

1− r2, s). For all purposes we can work in R × D2
1/
√

2
, which is the universal

cover of the solid torus, and hence we shall do so.

The restriction of the flat metric of C2

g =
∑
i=1,2

dri ⊗ dri + r2
i dθi ⊗ dθi

to S3 is precisely the round metric. In the parametrisation of T given above it reads as:

φ∗g =
1

1− r2
dr ⊗ dr + r2dθ ⊗ dθ + (1− r2)ds⊗ ds.

Which in particular readily shows that the metric induced in the Clifford torus is flat.

Consider the embeddings
ψc : R2 → R× D2

1/
√

2

ψc(ρ, θ) = (f1(ρ) + c, f2(ρ), θ),

with f1 : R+ → R+ a smooth increasing function that agrees with ρ2 near the origin and with the
identity away from it, and f2 : R+ → R+ also smooth and increasing, agreeing with the identity near
the origin, and converging to 1/

√
2 as ρ → ∞. As c is allowed to vary, these embeddings realise the

non–compact leaves of the Reeb foliation in T . The pullback metric on each one of them is of the
form

ψ∗cφ
∗g =

[
(f ′2)2

1− f2
2

+ (1− f2
2 )(f ′1)2

]
dρ⊗ dρ+ f2

2 dθ ⊗ dθ = h1(ρ)dρ⊗ dρ+ h2(ρ)dθ ⊗ dθ,

that is, h2(ρ) is increasing and converges to 1/2 as ρ → ∞ and h1(ρ) is bounded from above and
behaves as O(1) near the origin.

Now we claim that reparametrising R2 suitably yields a metric like the one in Lemma 21; this would
immediately allow us to conclude the proof. Consider the vector field X =

√
h1(ρ)∂ρ: it is a radial

vector field that is of unit length for the metric ψ∗cφ
∗g; as such, it is only defined over R2 \ {0}.

However, it still allows us to define a diffeomorphism Φ of R2 to itself: the point (ρ, θ) is taken to the
time ρ flow of X, starting at the origin with angle θ. By construction, it must hold:

Φ∗ψ∗cφ
∗g = dρ⊗ dρ+ h(ρ)dθ ⊗ dθ,

with h(ρ) increasing and converging to 1/2 as ρ→∞ (since h2 satisfied those properties and we have
essentially just reparametrised the radius function). �
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Remark 22. Taking the universal cover of a leaf yields the standard tight R3, so all leaves are tight.

One can actually construct a contact foliation with no periodic orbits of the Reeb flow.

Proposition 23. Consider the manifold T3, endowed with the Euclidean metric g, and the foliation F
by planes given by two rationally independent slopes. The space of foliated cooriented contact elements
S(T ∗F) has no closed Reeb orbits.

Proof. Let L be any leaf of F . L is diffeomorphic to R2×S1 and its universal cover of is the standard
tight R3. Hence it is a tight contact manifold. Since the restriction of g to L is Euclidean, there are
no closed geodesics on L and hence no closed Reeb orbits in its sphere cotangent bundle. �

3.3. A sharp example. Overtwisted leaves with no closed orbits.

Proposition 24. There is a contact foliation on S2 × S1 × S1 having all leaves overtwisted and such
that the only closed Reeb orbits appear in the two compact leaves.

We shall dedicate the rest of this subsection to the proof of Proposition 24. We structure it in three
parts.

3.3.1. R3 overtwisted at infinity with no closed orbits. Consider the following 1–form in R3 in cylin-
drical coordinates:

α = cos(r)dz + (r sin(r) + f(z)φ(r))dθ

If f(z)φ(r) = 0 identically, this is the standard form αot for the contact structure ξot that is overtwisted
at infinity. We well henceforth assume that f(z)φ(r) is C1–small, and therefore α will be a contact
form as well. In particular, by Proposition 7, the contact structure it defines is contactomorphic to
ξot. Let us compute:

dα = − sin(r)dr ∧ dz + [sin(r) + r cos(r) + φ′(r)f(z)]dr ∧ dθ + f ′(z)φ(r)dz ∧ dθ
whose kernel, away from the origin, is spanned by:

X = −f ′(z)φ(r)∂r + [sin(r) + r cos(r) + φ′(r)f(z)]∂z + sin(r)∂θ.

It is easy to check that α(X) > 0 far from the origin, and hence the Reeb vector field is a positive
multiple of X.

Assume that φ(r) is a monotone function that is identically 0 close to 0 and identically 1 in [δ,∞),
for δ > 0 small. Assume further that f is strictly decreasing, and sufficiently small to guarantee
|φ′(r)f(z)| << | sin(r) + r cos(r)| for r ∈ [0, δ], this is indeed possible because φ′(r) can be taken to
behave as O(r). Then, the Reeb v.f. is ∂z in r = 0 and has a positive vertical component for r ∈ [0, δ].
Away from this neighbourhood of the vertical axis, the Reeb flow has a positive radial component, so
we conclude that it has no closed orbits.

3.3.2. S2 × R overtwisted at infinity with no closed orbits. Choose coordinates (z, θ), z ∈ [0, 2π], for

S2 using the map (z, θ) → (
√
π2 − |z − π|2 cos(θ),

√
π2 − |z − π|2 sin(θ), z); that is, we consider the

sphere of radius π centered at (0, 0, π) ∈ R3. The z–coordinate is not smooth at the poles, just like
the radius is not smooth at the origin of R2. Take now coordinates (z, θ; s) in S2 × R, and construct
the following 1–form:

λ0 = cos(z)ds+ z(z − 2π) sin(z)dθ.

It is easy to see that it is a contact form that defines two families of overtwisted discs sharing a
common boundary: {z ∈ [0, π], s = s0} and {z ∈ [π, 2π], s = s0}. It is therefore overtwisted at
infinity.

The form λ0 defines two cylinders foliated by closed Reeb orbits: {z = π/2} and {z = 3π/2}.
Therefore, proceeding like in the previous example, we will add a small perturbation that gets rid of
them. Consider the form:

λ = cos(z)ds+ [z(z − 2π) sin(z) + f(s)φ(z)]dθ.
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Here we require for φ(z) to be constant close to the points 0, π/2, π, 3π/2 and 2π, to satisfy:

φ(0) = φ(π) = φ(2π) = 0, φ(π/2) = φ(3π/2) = 1

and to be monotone in the subintervals inbetween. We assume that f is strictly monotone and C1

small. Computing:

dλ = − sin(z)dr∧ds+[(z−2π) sin(z)+z sin(z)+z(z−2π) cos(z)+f(s)φ′(z)]dz∧dθ+f ′(s)φ(z)ds∧dθ

so the Reeb v.f. is a multiple of:

X = −f ′(s)φ(z)∂z + [(z − 2π) sin(z) + z sin(z) + z(z − 2π) cos(z) + f(s)φ′(z)]∂s + sin(z)∂θ,

away from z = 0, π, 2π. Near z = 0, π, 2π, the Reeb v.f. is very close to ±∂s. Away from those points,
it has a non–zero z–component. It follows that it cannot have closed orbits.

3.3.3. Constructing the foliation. Consider S2 × S1 × S1 with coordinates (z, θ; s, t), t ∈ [0, 2]. It can
be endowed with the following 1–form:

λ̃ = cos(z)ds+ [z(z − 2π) sin(z) + F (t)φ(z)]dθ,

with F strictly increasing in (0, 1), strictly decreasing in (1, 2), C1–small and having vanishing deriva-
tives to all orders in {0, 1}. φ is the bump function defined in the previous subsection.

Let Φ : S1 → S1 be a diffeomorphism of the circle that fixes {0, 1} and no other points, is strictly
increasing in (0, 1) as a map (0, 1)→ (0, 1), and is strictly decreasing in (1, 2) as a map (1, 2)→ (1, 2).
Φ defines a foliation FΦ on S2 × S1 × S1 called the suspension of Φ.

FΦ can be constructed as follows. Find a family of functions Φs : S1 → S1, s ∈ [0, 1], satisfying:
(1)

Φ0 = Id, Φ1 = Φ,

the map s→ Φs(t) is strictly increasing in (0, 1) and strictly decreasing in (1, 2) for all s ∈ [0, 1],
∂

∂s

∣∣∣∣
s=1

Φs(t) =
∂

∂s

∣∣∣∣
s=0

Φs(Φ1(t)) for all t.

Then the curves γt(s) = (s,Φs(t)), induce a foliation in [0, 1]× S1 which glues to yield a foliation by
curves in the 2–torus. FΦ is the lift of such a foliation.

The leaves of the foliation in the 2–torus are obtained by concatenating the segments γt. γ0 and
γ1 yield closed curves γ̃0 and γ̃1. All other curves are diffeomorphic to R, and we denote them by
γ̃t(s) = (s, ht(s)), t ∈ (0, 1)∪ (1, 2). By our assumption on Φs, the functions ht are strictly increasing
if t ∈ (0, 1) and strictly decreasing if t ∈ (1, 2). Observe that the non–compact leaves accumulate onto
the two compact ones.

The contact structure in the compact leaves S2 × γ̃t, t = 0, 1, is given by

cos(z)ds+ z(z − 2π) sin(z)dθ.

In particular, they both have infinitely many closed orbits.

The contact structure in the non compact leaves S2 × γ̃t, t ∈ (0, 1) ∪ (1, 2), reads

cos(z)ds+ [z(z − 2π) sin(z) + F (ht(s))φ(z)]dθ

Since F ◦ ht is non–zero, strictly monotone and C1–small, it is of the form described in the previous
section. It follows that they have no periodic orbits. �

Remark 25. In this example all leaves involved are overtwisted. Further, the non–compact leaves are
overtwisted at infinity. It would be interesting to construct an example of a contact foliation where
the non–compact leaves are overtwisted, the leaves in their closure are tight and the only periodic
orbits appear in the tight leaves.
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4. J–holomorphic curves in the symplectisation of a contact foliation

In this section we generalise the standard setup for moduli spaces of pseudoholomorphic curves to the
foliated setting. The main result is Theorem 36, which deals with the removal of singularities. The
proof is standard and closely follows that of [Ho], and indeed the only essential difference lies in the
fact that, although the leaves might be open, they live inside a compact ambient manifold, so the
Arzelá–Ascoli theorem can still be applied when carrying out the bubbling analysis.

4.1. Setup. Consider the contact foliation (Mm+2n+1,F2n+1, ξ2n), with extension Θ2n+m given by
a 1–form α, and write (R×M,FR, ω) for its symplectisation.

4.1.1. The space of almost complex structures. The symplectic bundle (ξ, dα) can be endowed with
a complex structure compatible with dα, which we denote by Jξ. The space of such choices is non–
empty and contractible. Jξ induces a unique R–invariant leafwise complex structure, J ∈ End(TFR),
J2 = −Id, as follows:

J |ξ = Jξ

J(∂t) = R

Observe that J is compatible with ω, and hence they define a metric, which turns each leaf of the
symplectisation into a manifold which is not complete. Instead, we shall consider the better behaved
R–invariant leafwise riemannian metric g in R×F given by:

g = dt⊗ dt+ α⊗ α+ dα(Jξ ◦ πξ, πξ).

4.1.2. J–holomorphic curves. Let (S, i) be a Riemann surface, possibly with boundary. A map satis-
fying

(2)


F : (S, i)→ (R×M,J)

dF (TS) ⊂ TFR

J ◦ dF = dF ◦ i

is called a parametrised foliated J–holomorphic curve. The second condition implies that F (S)
is contained in a leaf R × L of FR. Indeed, J is an almost complex structure in the open manifold
R× L, and F , regarded as a map into R× L, is a J–holomorphic curve in the standard sense.

By our choice of J , there is an R–action on the space of foliated J–holomorphic curves given by
translation on the R term of R×M .

4.1.3. Foliated J–holomorphic planes and cylinders. A solution of Equation (2)

F = (a, u) : (C, i)→ (R×M,J)

is called a foliated J–holomorphic plane. If we write MFJ for the space of such maps, it is clear
that the space of complex automorphisms of C acts on it by its action on the domain.

MFJ is non–empty. Every Reeb orbit γ : R → M has an associated foliated J–holomorphic plane
given by

F (s, t) = (s, γ(t)) where z = s+ it are the standard complex coordinates in C.

We call these the trivial solutions.

Similarly, a solution of Equation 2

F = (a, u) : (−∞,∞)× S1 → R×M
is called a foliated J–holomorphic cylinder. We let (s, t) be the coordinates in the cylinder and
its complex structure to be given by i(∂s) = ∂t. A closed Reeb orbit γ : S1 → M , gives a trivial
cylinder F (s, t) = (s, γ(t)).

Recall that the cylinder (−∞,∞) × S1 is biholomorphic to C \ {0} by the exponential map, and for
convenience we will often consider both domains interchangeably. In particular, given some foliated
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J–holomorphic plane, we could define a foliated J–holomorphic cylinder by introducing a pucture in
the domain. Therefore, we say that a foliated J–holomorphic map

F = (a, u) : C \ {0} → R×M
can be extended over zero (or ∞) if there is a foliated J–holomorphic map with domain C (resp.

the puctured Riemann sphere Ĉ \ {0}) that agrees with F in C \ {0}.

4.1.4. Energy. After introducing the trivial foliated J–holomorphic curves, we would like to introduce
an energy constraint that singles out more interesting solutions of Equation 2. This leads us to the
following definitions.

Definition 26. Consider the space of functions

Γ = {φ ∈ C∞(R, [0, 1])| φ′ ≥ 0}
Let F : S → R×M be a foliated J–holomorphic curve.

Its energy is defined by:

E(F ) = sup
φ∈Γ

∫
S

F ∗d(φα).(3)

Its horizontal energy is defined by:

Eh(F ) =

∫
S

F ∗dα.(4)

Trivial solutions correspond to the following general phenomenon.

Lemma 27. Let F = (a, u) : (S, i) → (R ×M,J) be a foliated J–holomorphic curve. Eh(F ) = 0 if
and only if Image(F ) ⊂ R× γ, where γ is a Reeb orbit.

Proof. Given a ball U ⊂ S find complex coordinates (s, t). Then:∫
U

F ∗dα =

∫
U

dα(us, ut)ds ∧ dt =

∫
U

dα(us, Jus)ds ∧ dt =∫
U

dα(πξus, πξ ◦ Jus)ds ∧ dt =

∫
U

|πξus|2ds ∧ dt

and since

Eh(F ) =

∫
S

F ∗dα =

∫
S

u∗dα

the claim follows. �

The following lemma states that cylinders with finite energy that cannot be extended to planes have
to be necessarily trivial and hence imply the existence of a Reeb orbit.

Lemma 28. Let F be a foliated J–holomorphic map

F = (a, u) : Ĉ \ {0,∞} → R×M
satisfying E(F ) <∞ and Eh(F ) = 0. If F cannot be extended over its punctures, then t→ u(e2πit),
t ∈ [0, 1], is a parametrised closed Reeb orbit.

Proof. By Lemma 27, we know that there is some Reeb orbit γ (not necessarily closed) such that
Image(F ) ⊂ R × γ. We can identify the universal cover of R × γ with C with its standard complex
structure. If we let Ω ⊂ C be some region of the complex plane, we can regard it as a J–holomorphic
curve using the inclusion i : Ω→ C→ R× γ; its energy is just given by:

E(i) = sup
φ∈Γ

∫
Ω

φ′(s)ds ∧ dt = sup
φ∈Γ

∫
∂Ω

φ(s)dt

where ds ∧ dt is the standard area form in C.
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We claim that γ is a closed orbit and that F is a non contractible map into R×γ. Assuming otherwise,
regard F as a holomorphic map f : Ĉ \ {0,∞} → C ⊂ Ĉ. As such, its punctures are either removable
or essential singularities. They cannot be removable singularities with values in C by assumption.

If f has a removable singularity that is a pole, a neighbourhood of the puncture branch covers a
neighbourhood of∞ in the Riemann sphere. In particular, there is a band [a, b]×R ⊂ Image(f) ⊂ C,
with a < b large enough. Since the energy of the band is infinite, the energy of F must be too, which
is a contradiction.

If f has an essential singularity, then Picard’s great theorem states that every point in C, except
possibly one, is contained in Image(f). Again, this contradicts the assumption that E(F ) was finite.

We deduce that γ is a closed orbit and that F is a non–contractible map into the cylinder R × γ.
The exponential is a biholomorphism between the cylinder and Ĉ \ {0,∞}, so now we regard F as a

holomorphic map h : Ĉ \ {0,∞} → Ĉ \ {0,∞}.

Suppose one of the punctures was an essential singularity for h. Since h has no zeroes or poles,
Picard’s theorem states that all other points in the Riemann sphere have infinitely many preimages
by h. This contradicts E(F ) <∞.

Therefore, h can be extended over its punctures to be zero or∞. h is then a meromorphic function on
the Riemann sphere, and hence it is nothing but the quotient of two polynomials. By our assumption
that there are no other zeroes or poles this implies that h(z) = azk, for some k ∈ Z \ {0}, a ∈ C. This
shows that t→ u(e2πit) parametrises the k–fold cover of γ. �

Exactly the same analysis yields the following lemma.

Lemma 29. Let F be a foliated J–holomorphic map

F = (a, u) : C→ R×M
satisfying Eh(F ) = 0. Then either F is the constant map or E(F ) =∞.

Proof. Let γ be the Reeb orbit such that Image(F ) ⊂ R× γ. By taking the universal cover of R× γ,
regard F as a map C → C, as in Lemma 28. Now study the extension problem of F to ∞. If it
corresponds to a removable singularity with values in C, then F is the constant map. Otherwise, if it
is either a pole or a non–removable singularity, it has infinite energy. �

4.1.5. Riemannian and symplectic area. In the case of compact symplectic manifolds, there is an
interplay between the symplectic area of a J–holomorphic curve and its riemannian area for the
metric given by the symplectic form and the compatible almost complex structure.

In our case, g is not of that form. Rather, it is R–invariant, while ω is not: R–translations of the same
J–holomorphic curve have different symplectic energy and indeed there are no universal constants
relating the ω–area and the g–area.

However, E and Eh are invariant under the R-action. Given F , a foliated J–holomorphic curve, let
areag(F ) be its riemannian area in terms of g, and let areaωφ(F ) be its symplectic area in terms of
ωφ = d(φα).

Lemma 30. Let F = (a, u) : (S, i) → (R ×M,J) be a parametrised foliated J–holomorphic curve.
Then, if a is bounded below and above:

areag(F ) < Careaωφ(F ) < C ′
∫
∂S

α,

for some constants C,C ′ depending only on the upper and lower bounds of a.

Proof. Consider a0 and a1 satisfying a0 < a < a1. Let φ(t) = t−a0
3(a1−a0) + 1/3 in [a0, a1] and belonging

to Γ. Then ωφ is a symplectic form in [a0, a1] ×M and J is ωφ–compatible. Since 0 < D < φ, φ′ <
D′ <∞, there are universal constants relating the metrics g and gφ = ωφ(−, J−) in [a0, a1]×M .
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Since J is ωφ–compatible, F being J–holomorphic implies that areagφ(F ) = areaωφ(F ), and the first
inequality follows. The second inequality follows by applying Stokes. �

An immediate consequence of Lemma 30 is that there cannot be closed foliated J–holomorphic curves
in R×M .

4.2. Bubbling. As we shall see in Section 5, the way in which we will prove the existence of a periodic
orbit of the Reeb vector field will be by constructing a 1–dimensional moduli of pseudoholomorphic
discs that necessarily will be open in one of its ends. The following lemma shows that the reason for
it to be open must be that the gradient is not uniformly bounded for all discs in the moduli.

Proposition 31. Fix L a leaf of F . Let W ⊂ R× L be a totally real compact submanifold, possibly
with boundary.

Let (S, i) be a compact Riemann surface with boundary. Consider the sequence of foliated J–holomorphic
maps

Fk : (S, ∂S)→ (R× L,W ), k ∈ N.

Suppose that there is a uniform bound ||dFk|| < C < ∞. Then there is a subsequence Fki , ki → ∞,
convergent in the C∞–topology to a foliated J–holomorphic map

F∞ : (S, ∂S)→ (R× L,W )

Proof. Observe that since we have a uniform gradient bound and Fk(∂S) ⊂W , for all k, it necessarily
follows that the images of all the Fk lie in a compact subset of R × L. Then, one can proceed as in
the standard case to prove C∞ bounds from C1 bounds and then apply the Arzelá-Ascoli theorem to
complete the proof. �

Remark 32. The same statement holds for surfaces without boundary as long as one imposes for the
images of all the Fk to lie in a compact set of the leaf.

Proposition 31 suggests that we should study sequences of maps

Fk : (S, ∂S)→ (R× L,W ), k ∈ N
in which ||dFk|| is not uniformly bounded. We have to consider two separate cases.

4.2.1. Plane bubbling.

Proposition 33. Consider a sequence of foliated J–holomorphic curves

Fk : (S, ∂S)→ (R× L,W ), k ∈ N
and a corresponding sequence of points qk in S having Mk = ||dqkFk|| → ∞ and converging to a point
q ∈ S.

Suppose that there is an uniform bound E(Fk) < C <∞. If dist(qk, ∂S)Mk →∞, there is a foliated
J–holomorphic plane

F∞ : C→ R× L′

with E(F∞) < C, where L′ is a leaf in the closure of L.

Proof. After possibly modifying the qk slightly, there are charts

φk : D2(Rk)→ S

φk(z) = qk +
z

Mk

with Rk < dist(qk, ∂S)Mk, Rk → ∞, Rk/Mk → 0, and ||d(Fk ◦ φk)|| < 2 – this last condition is
achieved by the so called Hofer-Viterbo lemma, see [Ho, Lemma 26] and [Ho, p. 536. Equation 49].

The maps Fk ◦φk have C1 bounds by construction, but they have no C0 bounds. By our construction
of J , the vertical translation of a J–holomorphic map is still J–holomorphic and hence we can compose
with a vertical translation τk guaranteeing that τk ◦ Fk ◦ φk takes the point 0 to the level {0} × L.



THE FOLIATED WEINSTEIN CONJECTURE 13

Then, for every compact subset Ω ⊂ C, the maps τk ◦ Fk ◦ φk : Ω → R ×M are equicontinuous and
bounded – note that this is where we use that L lies inside the compact manifold M .

Recall that having uniform C1 bounds implies that we have uniform C∞ bounds. Hence, an appli-
cation of the Arzelá–Ascoli theorem shows that a subsequence converges in C∞loc to a map F∞ : C→
R ×M that must be foliated and J–holomorphic, but not necessarily lying in R × L, but maybe in
some new leaf R× L′.

Note that the energy of the map τk ◦ Fk ◦ φk is bounded above by that of Fk. Since we have uniform
bounds for the energy of the Fk, we have uniform energy bounds for the maps τk ◦Fk ◦ φk and hence
for their limit F∞. Note that F∞ is necessarily non constant, since ||d0F∞|| = 1 by construction. In
particular, it has non–zero energy. �

Remark 34. We say that the map F∞ as given in the proof is called a plane bubble. If the map F∞
could be extended over the pucture to a map with domain the Riemann sphere S2, this would yield
a contradiction with Lemma 30.

4.2.2. Disc bubbling.

Proposition 35. Consider a sequence of foliated J–holomorphic curves

Fk : (S, ∂S)→ (R× L,W ), k ∈ N

and a corresponding sequence of points qk in S having Mk = ||dqkFk|| → ∞ converging to a point
q ∈ S.

Suppose that there is an uniform bound E(Fk) < C < ∞. If dist(qk, ∂S)Mk is uniformly bounded
from above, there is a foliated J–holomorphic disc

F∞ : (D2, ∂D2)→ (R× L,W )

with E(F∞) < C.

Proof. Recall that W is compact. An application of the standard rescaling argument yields a finite
energy J–holomorphic map F∞ of the upper half plane H+ into R ×M . Since the rescaling is done
close to ∂S and Fk(∂S) ⊂ W , we deduce that F∞ maps the boundary of H+ to W ⊂ R × L; from
this, it follows that the image of H+ lies in R × L. Now one can apply the removal of singularities
theorem from [MN, Proposition A.1] to conclude. �

4.3. Removal of singularities. The aim of this subsection is to prove the following result, which is
one of the key ingredients for proving Theorem 1.

Theorem 36 (Removal of singularities). Let F = (a, u) : D2 \ {0} → R × L ⊂ R × M be a J–
holomorphic curve with 0 < E(F ) <∞, L a leaf of F .

Then, either F extends to a J–holomorphic map over D2 or for every sequence of radii rk → 0 the
curves γrk(s) = u(erk+is) converge in C∞ –possibly after taking a subsequence– to a parametrised
closed Reeb orbit lying in the closure of L.

Proof of Theorem 36. Let us state the problem in terms of cylinders. Identify D2\{0} with [0,∞)×S1

by using the biholomorphism − log(z), and regard F as a foliated J–holomorphic map [0,∞)× S1 →
R×M . Then, the following maps are foliated J–holomorphic:

Fk = (ak, uk) : [−Rk/2,∞)× S1 → R×M

Fk(s, t) = (a(s+Rk, t)− a(Rk, 0), u(s+Rk, t))

and by assumption they have a uniform bound E(Fk) < C < ∞ and limk→∞Eh(Fk) = 0. Here
Rk = − log(rk)→∞.

Suppose that the gradient was not uniformly bounded for the family Fk. We can then find a sequence
of points qk ∈ [0,∞) × S1 escaping to infinity and satisfying |dqkF | → ∞. Then we are under the
assumptions of Proposition 33, and this yields a plane bubble G : C→ R×M with Eh(G) = 0, which
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must lie on top of a Reeb orbit by Lemma 27. By our bubbling analysis, it cannot be constant, since
its gradient at the origin is 1, which is a contradiction with it having E(G) <∞, by Lemma 29.

We conclude that the family Fk has uniform C1 bounds and hence uniform C∞ bounds. By con-
struction ak(0, 0) ∈ {0} × M , which means that we have uniform C0 bounds on every compact
subset of (−∞,∞) × S1 –here is where we use the compactness of M . The Arzelá-Ascoli theo-
rem implies that –after possibly taking a subsequence– the maps Fk converge in C∞loc to a map
F∞ : (−∞,∞)× S1 → R×M with E(F∞) <∞ and Eh(F∞) = 0, which might of course have image
in R times a different leaf L′.

Observe that

lim
r→0

∫
γr

α =

∫
γ1

α−
∫
D2\{0}

dα.

If this limit is zero, then the argument above shows that the γr, r → 0, tend to the constant map
in the C∞ sense, and hence F extends to a map over D2. Assuming otherwise, it is clear that F∞
cannot be the constant map and hence Lemma 28 implies the conclusion. �

5. Existence of contractible periodic orbits in the closure of an overtwisted leaf

After setting up the study of foliated J–holomorphic curves in the previous section and dealing with
its compactness issues, we use this machinery to conclude the proof of Theorem 1. The setting of
the theorem is as follows: (Mm+3,F3, ξ2) is a contact foliation with Θ2+m an extension given by a
1–form α. We write (R×M,FR, ω) for its symplectisation. L3 is a leaf of F .

5.1. The Bishop family. The following results have a local nature and hence do not depend on
whether L is compact or not. Their proofs can be found in [Ho].

5.1.1. The Bishop family at an elliptic point. If (L, ξ) is an overtwisted manifold, let Σ be an over-
twisted disc for ξ. Otherwise, if π2(L) 6= 0, let Σ be some sphere realising a non–zero class in π2.
Assume, after a small perturbation, that the characteristic foliations are as described in Subsection
2.1.3 in Exercises 9 and 10 and Theorem 11. Denote by ΓΣ the set of singular points of the charac-
teristic foliation of Σ.

Let p ∈ ΓΣ, a elliptic point. The maps satisfying:

(5)


F = (u, a) : (D2, ∂D2)→ (R× L, {0} × Σ)

dF ◦ i = J ◦ dF,
wind(F, p) = ±1,

ind(F ) = 4,

will be called the Bishop family. wind(F, p) refers to the winding number of F (∂D2) around the
elliptic point p.

The condition ind(F ) = 4 is implied by the other assumptions. It means that the linearised Cauchy–
Riemann operator at F has index 4, and hence, if there is transversality, the solutions of Equation 5
close to F form a smooth 4–dimensional manifold. Since the Mobius transformations of the disc have
real dimension 3, this implies that the image of F is part of a 1–dimensional family of distinct discs.

The Bishop family is not empty under some integrability assumptions.

Proposition 37. ([Bi], [Ho, Section 4.2]) For a suitable choice of Jξ, J is integrable close to p. Then
there is a smooth family of maps Fs, s ∈ [0, ε), with F0(z) = p and Fs, s > 0, disjoint embeddings
satisfying Equation 5.

Additionally, there is a small neighbourhood U of p such that any other disc satisfying Equation 5 and
interesecting U is a reparametrisation of one of the Fs.
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5.1.2. Continuation of the Bishop family. The following statement shows that transversality always
holds for the linearised Cauchy–Riemann operator for maps belonging to the Bishop family.

Proposition 38. ([Ho, Theorem 17]) Let F satisfy Equation 5. Then there is a smooth family of
disjoint embeddings Fs, s ∈ (−ε, ε), satisfying Equation 5, such that F0 = F . Additionally, any two
such families are related by a reparametrisation of the parameter space and a smooth family of Mobius
transformations.

5.1.3. Properties of the Bishop family. Convexity of {0}×L inside of R×L and an application of the
maximum principle yield the following lemma. It will be useful to show that there is no disc bubbling.

Lemma 39. ([Ho, Lemma 19]) Let F : (D2, ∂D2)→ (R×L, {0}×Σ) be a J–holomorphic map. Then
F (∂D2) is transverse to the characteristic foliation of Σ and F (D2) is transverse to {0} × L.

In order to apply Theorem 36 we must have energy bounds, which are provided by the following
result.

Proposition 40. ([Ho, Lemmas 33 and 35] There are uniform energy bounds 0 < C1 < E(F ), Eh(F ) <
C2 <∞ for every F satisfying Equation 5 and having

dist(Image(F ),ΓΣ) > ε > 0.

Proof. By Stokes’ theorem:

E(F ) = sup
φ∈Γ

∫
D2

F ∗d(φα) = sup
φ∈Γ

∫
∂D2

F ∗φα =

sup
φ∈Γ

φ(0)

∫
∂D2

F ∗α =

∫
F (∂D2)

α.

F (∂D2) winds around the critical point exactly once and hence bounds a disc within Σ. The area
of such a disc is always bounded above by a universal constant and is bounded below under the
assumption that they have radius at least ε. The claim follows.

A similar estimate holds for Eh. �

5.2. Proof of Theorem 1. Now we tie all the results we have discussed so far.

Lemma 41. Let L be a leaf of F and assume that (L, ξ) is an overtwisted contact manifold. Then
there is a finite energy plane contained in R× L′ ∈ FR, with L′ lying in the closure of L.

Proof. Denote by M the set of solutions of Equation 5, which is non–empty by Proposition 37 and
open by Proposition 38. Recall that Σ is the overtwisted disk and define a non–negative constant

C = inf{dist(u(∂D2), ∂Σ)|u ∈M}.

By construction there is a sequence of maps uk ∈ M such that limk→∞ dist(uk(∂D2), ∂Σ) = C.
Suppose that the gradient of the sequence is unbounded. Then Propositions 33 and 35 show that
either a plane or a disc bubble appears. In the case of a disc bubble, Lemma 39 states that its boundary
must wind around the elliptic point once. Lemma 39 also implies that, for every k, uk(∂D2) intersects
each leaf of the characteristic foliation exactly once. These two facts show that (after possibly taking
a subsequence), the circles uk(∂D2) converge to the boundary circle of the disc bubble, which is then
a solution of Equation 5 whose distance to the boundary is exactly C. Proposition 38 shows that it
must be part of a 1–parametric family of unparametrized discs, contradicting the fact that C was the
infimum of the distances. We conclude that necessarily a plane bubble must appear instead.

Otherwise, if the gradient is uniformly bounded for the sequence, Proposition 31 shows that the uk
converge to a new J–holomorphic map u∞. If C = 0, u∞(∂D2) is not transverse to ∂Σ, which is a
contradiction with Lemma 39. If otherwise C > 0, then Proposition 38 shows that u∞ is part of a
1–parametric family of unparametrized discs, contradicting the fact that C was the infimum of the
distances. �
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Lemma 42. Let L be a leaf of F and assume that π2(L) 6= 0. Then there is a finite energy plane
contained in R× L′ ∈ FR, with L′ lying in the closure of L.

Proof. Let us denote by p− and p+ the two elliptic points of the convex 2–sphere Σ realising a non
trivial element of π2(L). Denote by M the set of solutions of Equation 5. There are two connected
components M−,M+ ⊂ M, distinguished by the fact that they contain the Bishop families arising
from the points p− and p+, respectively.

We now prove that actually M− =M+. Define a constant

C = inf{dist(u(∂D2), p+)|u ∈M−}.
Reasoning as in Lemma 41 shows that, unless the gradient explodes and hence a plane bubble appears,
we must necessarily have C = 0. By Proposition 37, the only curves in a neighbourhood of p+ are
those in M+, and hence M− =M+. The evaluation map

ev :M− × D2 ≈ [0, 1]× D2 → L
ev(F = (a, u), z) = u(z)

satisfies ev(∂(M− × D2)) = Σ, which contradicts the fact that Σ was non–trivial in π2(L).

Therefore, the gradient must explode and the claim follows. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let (L, ξ) be overtwisted. Lemma 41 yields a finite energy plane F : C→ R×L′,
with L′ a leaf of F contained in the closure of L. By Lemma 30 this plane cannot be completed to
a sphere. Now an application of Theorem 36 shows that there is a closed Reeb orbit in some leaf L′′
lying in the closure of L′. Since L′′ is in the closure of L the claim follows.

Same argument goes through by applying Lemma 42 if π2(L) 6= 0. �

Remark 43. As we have seen, Lemmas 41 and 42 yield a finite energy plane in a leaf that might not
be the one containing the overtwisted disc or the convex 2–sphere. Then, an application of Theorem
36 shows that the plane is asymptotic to a trivial cylinder that might live yet in another leaf.

Our example in Subsection 3.3 shows that at least one of these two phenomena must take place. Is it
possible for a “double jump” to actually happen?

Remark 44. Let (M2n+1+m,F2n+1, ξ) be a contact foliation. Let L be a leaf of F and let (F , ξ) be
overtwisted in the sense of [BEM]. More generally, assume that (F , ξ) contains a plastikstufe [Nie].
It is immediate that the Bishop family arising from the plastikstufe can be employed to show that
there must be a Reeb orbit, so Theorem 1 also holds true for overtwisted manifolds in all dimensions.
Similarly, Theorem 1 also holds for manifolds containing a Lob, as defined in [NR], generalising the
case π2(L) 6= 0.

6. The non–degenerate case

In this section we show that under non–degeneracy assumptions none of the jumps between leaves
can happen.

Definition 45. Let (M3+m,F3, ξ) be a contact foliation and let α be the defining 1–form for some
extension Θ of ξ. The form α is called non–degenerate if the set of closed orbits of its Reeb vector
field in any leaf of F is discrete.

More precisely we claim that the space of orbits in any given leaf, understood as a topological subspace
of the space of loops of that leaf equipped with the C1–topology, consists of isolated elements.

The reader might wonder why we do not define non–degenerate contact forms to be those having
leafwise non–degenerate Reeb orbits. The reason is that, for a generic choice of α, the Reeb orbits
that appear behave in the same way as the Reeb orbits appearing in an m–dimensional family of
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(non–foliated) contact forms. In particular, as soon as m > 0, degenerate Reeb orbits do appear.
However, it is still generic for the orbits to be leafwise isolated.

The statement we want to show is the following. It is a stronger version of the Removal of Singularities
(Theorem 36) in the non–degenerate case.

Theorem 46. Let (M,F , ξ) be a contact foliation and let α be the defining 1–form for some extension
Θ of ξ. Assume α is non–degenerate.

Let F = (a, u) : D2 \ {0} → R× L ⊂ R×M be a J–holomorphic curve with 0 < E(F ) <∞, L a leaf
of F .

Then, either F extends to a J–holomorphic map over D2 or the curves γr(s) = u(er+is) converge in
C∞ to a closed Reeb orbit γ lying in L.

Proof. We proceed by contradiction. Assume that γ, the limit of some γri , ri → ∞, is contained in
some leaf L′ 6= L.

Denote T =
∫
γ
α, the period of γ. By our assumption on α, we can find a closed foliation chart

U ⊂M diffeomorphic to D2× S1× [−1, 1] around γ such that the plaque in U containing γ intersects
no other orbits of period approximately T . Write h : U → [−1, 1] for the height function of the chart:
we can assume that h−1(0) is the plaque containing γ.

Since the curves γri converge in C∞ to γ, their images are contained in U for large enough i. Assume,
by possibly restricting to a subsequence, that each Image(γri) lies in a different plaque of F ∩ U .
Then, for each i, there is a smallest radius ri < Ri < ri+1 such that Image(γRi) intersects ∂U .

Consider the maps

Fi : [ri −Ri, ri+1 −Ri]× S1 → R×M
Fi(t, s) = (a(et+Ri+is)− a(eRi), u(et+Ri+is))

By construction, Fi(0, 0) ∈ {0} ×M , Fi(0, s) ∩ {0} × (∂U) 6= ∅, and limi→∞ h ◦ Fi = 0

By carrying out the bubbling analysis, we can assume that the Fi have bounded gradient. In particular,
ri+1− ri must be uniformly bounded from below by a non–zero constant. The Arcelá–Ascoli theorem
states that the Fi converge in C∞loc –maybe after taking a subsequence– to a map F∞ with Eh(F∞) = 0
and therefore lying on top of some Reeb orbit.

By the properties of the Fi, F∞ must have image contained in R×L′ and intersecting R×(h−1(0)∩∂U).
In particular, Image(F∞) is not contained in R×γ. If limi→∞Ri−ri <∞, the curves s→ Fi(ri−Ri, s)
would converge to γ, which is a contradiction. Similarly we deduce that limi→∞ ri+1 −Ri =∞.

Since it has finite energy, F∞ : (−∞,∞)× S1 → R×L′ must yield a periodic orbit of the Reeb flow.
It must be a closed orbit different from γ, having period T and intersecting the plaque containing γ,
which is a contradiction. Since the only additional assumption we made was that γ was contained in
L′ 6= L, we deduce that γ must lie in L itself. Arguing as above, it is clear that the limit γ does not
depend on the chosen sequence ri. �

Remark 47. Theorem 46 immediately implies that a finite energy plane is asymptotic to a trivial
cylinder lying in the same leaf.

Similarly, it shows that the Bishop family always yields a plane bubble in the original leaf L: outside
of a finite set of points, the Bishop family converges to foliated J–holomorphic curve with boundary
in the overtwisted disc and possibly many punctures that are asymptotic at −∞ to a number of Reeb
orbits necessarily lying in L. In particular, under the non–degeneracy assumption, an overtwisted leaf
(or a leaf with π2(L) 6= 0) contains a closed Reeb orbit.

Do note, however, that this does not prove the Weinstein conjecture for non–degenerate overtwisted
open manifolds arising as leaves of compact contact foliations. Indeed, the space of non–degenerate
contact forms of L as an abstract manifold is, a priori, larger than the space of non–degenerate contact
forms of L as a leaf.
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