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Pseudospectral Approximation of Hopf Bifurcation for Delay Differential
Equations∗

B. A. J. de Wolff† , F. Scarabel‡ , S. M. Verduyn Lunel§ , and O. Diekmann§

Abstract. Pseudospectral approximation reduces delay differential equations (DDE) to ordinary differential
equations (ODE). Next one can use ODE tools to perform a numerical bifurcation analysis. By
way of an example we show that this yields an efficient and reliable method to qualitatively as
well as quantitatively analyze certain DDE. To substantiate the method, we next show that the
structure of the approximating ODE is reminiscent of the structure of the generator of translation
along solutions of the DDE. Concentrating on the Hopf bifurcation, we then exploit this similarity to
reveal the connection between DDE and ODE bifurcation coefficients and to prove the convergence
of the latter to the former when the dimension approaches infinity.
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1. Introduction. Numerical bifurcation analysis [20, 24] is nowadays a powerful method
for analyzing dynamical systems that arise in applications. For ordinary differential equa-
tions (ODE) trustworthy tools, such as Auto [1] and MatCont [10], exist (here “trustworthy”
indicates that they are tested and maintained, i.e., adapted when the software or hardware
environment in which they are embedded changes). For delay differential equations (DDE)
there are trustworthy tools too, e.g., DDE-BIFTOOL [17, 18] and KNUT [2], but these can
handle only specific classes of DDE, such as equations with point delays, and it seems fair
to say that both maintenance and testing are somewhat vulnerable, because it relies on the
efforts of just a few individuals, if not just one. So if we manage to systematically approximate
infinite dimensional dynamical systems corresponding to DDE by finite dimensional systems
corresponding to ODE, we may lose some precision in the numerical bifurcation analysis, but
we would be able to handle a much larger class of equations.
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In [6] pseudospectral approximation is advocated as a promising approach to achieve ex-
actly this. The aim of the present paper is to make a next step by verifying that the generic
Hopf bifurcation in DDE is faithfully captured by Hopf bifurcations in the approximating
ODE systems. Our theoretical results concern the limit when the dimension of the approx-
imating system goes to infinity. In practice we of course at best verify that a bifurcation
diagram remains essentially unchanged when the dimension is increased by a finite amount
(for example, doubled). The theoretical results generate confidence that the bifurcation dia-
gram of the approximating ODE captures the DDE dynamics if it is robust under increase of
the dimension.

In the following we take a famous example from mathematical biology, namely the “Nichol-
son’s blowflies” equation, as a testing ground to illustrate some features of the approach.
However, we remark that the methodology presented here (pseudospectral approximation
combined with software for bifurcation analysis of ODE) can be applied in a much more gen-
eral setting: it is indeed a promising procedure to study differential equations with distributed,
state-dependent, and even infinite delays [6, 22, 19], as well as nonlinear renewal equations
[7] and first order partial differential equations [31]. The advantage of considering Nicholson’s
blowflies equation in this context is due to the fact that explicit comparisons are possible,
both with analytically computed quantities and with alternative numerical approximations,
as will become clear later on.

2. A motivating example: “Nicholson’s blowflies” equation. In the paper [21], Gurney,
Blythe, and Nisbet showed that Nicholson’s classic laboratory blowfly data are in good quan-
titative agreement with various characteristics of solutions of the DDE

N ′(t) = −µN(t) + βN(t− τ)h(N(t− τ)), t ≥ 0.(2.1)

Here N corresponds to the size of the population of adults, where newborns become adult
after a maturation delay τ . The parameter µ ≥ 0 refers to the per capita death rate and
β ≥ 0 to the maximum per capita egg production rate. The graph of the recruitment function
N 7→ Nh(N) is assumed to be humped. This form reflects scramble competition for the
experimentally controlled limited amount of protein resource: female adults need a certain
quantity of protein in order to be able to produce eggs.

So (2.1) has a very respectable background in population biology. Here we want to demon-
strate that the pseudospectral methodology enables a quick and efficient numerical bifurcation
analysis of (2.1) with relatively little effort. In addition we shall pay attention to the accu-
racy of the approximation. Equation (2.1) is rather well suited to do so, as several features
(in particular the stability boundary in a two-parameter space; see Figure 1) can be derived
analytically.

Using the pseudospectral technique, (2.1) is approximated by a system of n+ 1 ODE for
the variables y0, . . . , yn, where the first equation reads

y′0 = −µy0 + βynh(yn),(2.2)

and captures the rule for extension (2.1), with y0(t) and yn(t) approximatingN(t) andN(t−τ),
respectively. The remaining n equations are needed to describe translation along the solutionD
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Figure 1. Stability diagram of (2.1) and its pseudospectral approximation for τ = 1 and h(x) = e−x. The
horizontal black dashed line indicates the transcritical bifurcation in (2.1) and its pseudospectral approximation.
The Hopf bifurcation curves are computed analytically, for both the DDE (black solid) and the pseudospectral
approximation (colors); see the appendix. The different values of ω indicated along the Hopf bifurcation curve
specify the position of the critical root of the characteristic equation on the positive imaginary axis. The black
crosses refer to parameter values used in Figure 2.

and are in fact independent of the specific delay equation. We refer to section 4 for the details
of the pseudospectral approximation.

Under the assumption that h is decreasing and vanishing at infinity, with h(0) = 1, for
every β > µ there exists a positive equilibrium of both (2.1) and the corresponding approx-
imating system. Moreover, for both equations the stability boundary (in a two-parameter
plane) of the positive equilibrium can be computed analytically. We shall do so in Appen-
dix A.

We find that for β < µ the trivial equilibrium is asymptotically stable and the population
goes extinct. For β = µ the trivial and nontrivial equilibria exchange stability in a transcritical
bifurcation. If we then follow a one-parameter path in the (µ, β/µ)-plane that crosses the Hopf
bifurcation curve (see Figure 1) transversally, the positive equilibrium of (2.1) loses its stability
in a Hopf bifurcation. Figure 1 gives the stability diagram for (2.1) and its pseudospectral
approximation, for various values of the discretisation parameter n.

One of the main advantages of the pseudospectral approximation is that the resulting sys-
tem can be analyzed with software for the numerical bifurcation analysis of ODE. Throughout
the following sections, we will illustrate the obtained results by comparing analytical compu-
tations for (2.1) with numerical bifurcation results of the approximating ODE. In section 8 we
will explore the dynamics beyond the Hopf bifurcation curve and show that, using numerical
approximations, one can transcend a pen-and-paper analysis and investigate more complex
objects like periodic solutions and their bifurcations.

In the following sections we will study the convergence of the approximations in the limit
n → ∞. In this perspective, Figure 1 and later figures lift up our spirits by showing that,
in practice, the approximation of the stability curves and associated quantities is extremely
good already for low values of n.

3. The Hopf bifurcation theorem: A quick refresher. In this section, we recall the
Hopf bifurcation theorem for general ODE and for scalar DDE. For proofs of (equivalentD

ow
nl

oa
de

d 
10

/2
5/

21
 to

 1
31

.2
11

.1
04

.2
15

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

336 B. A. J. DE WOLFF, F. SCARABEL, S. M. VERDUYN LUNEL, AND O. DIEKMANN

formulations of) the results, as well as additional references, see [14, Chapter X, Theorems
2.1, 2.7, 3.1, and 3.9], and [25].

Consider the ODE

x′(t) = A(α)x(t) + f(x(t), α), t ≥ 0,(3.1)

with α ∈ R, A(α) : Rd → Rd linear, and f : Rd ×R→ Rd for some d ∈ N. We summarize the
relevant requirements on A and f in a hypothesis.

Hypothesis 3.1.
1. f : Rd × R→ Rd and α 7→ A(α) are Ck smooth for some k ≥ 3;
2. f(0, α) = 0 and D1f(0, α) = 0 for all α ∈ R.

Under this hypothesis, system (3.1) has an equilibrium x = 0 for all α ∈ R, but in
the results presented below only a small neighborhood of a specific value α0 matters. The
linearization of (3.1) at this equilibrium is given by

ẋ(t) = A(α)x(t).

For two vectors v, w ∈ Cd, we define

v · w =

n∑
i=1

viwi.

Note that this differs from the inner product between v and w, which is v ·w (or v ·w) in the
present notation.

Theorem 3.2 (Hopf bifurcation theorem for ODE). Consider system (3.1) and assume that
Hypothesis 3.1 is satisfied. If there exist α0 ∈ R and ω0 > 0 such that

1. iω0 is a simple eigenvalue of A(α0);
2. the branch of eigenvalues of A(α) through iω0 at α = α0 intersects the imaginary

axis transversally, i.e., the real part of the derivative of the eigenvalues along the
branch is nonzero, and if we denote by p, q ∈ Cd\{0} vectors such that A(α0)p =
iω0p, A(α0)T q = iω0q, and q · p = 1, then this condition amounts to

Re
(
q ·A′(α0)p

)
6= 0;(3.2)

3. kiω0 is not an eigenvalue of A(α0) for k = 0, 2, 3, . . .,
then a Hopf bifurcation occurs for α = α0. This means that there exist Ck−1 functions
ε 7→ α∗(ε), ε 7→ ω∗(ε) taking values in R and ε 7→ x∗(ε) ∈ Cb(R,Rd), all defined for ε
sufficiently small, such that for α = α∗(ε), x∗(ε) is a periodic solution of (3.1) with period
2π/ω∗(ε). Moreover, α∗ and ω∗ are even functions, α∗(0) = α0, ω

∗(0) = ω0, and if x is a
small periodic solution of (3.1) for α close to α0 and minimal period close to 2π/ω0, then
x(t) = x∗(ε)(t+ θ∗) and α = α∗(ε) for some ε and some θ∗ ∈ [0, 2π/ω∗(ε)).

Moreover, α∗ has the expansion α∗(ε) = α0 + a20ε
2 + o(ε2), with a20 given by

a20 = − Re c

Re (q ·A′(α0)p)D
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with

c =
1

2
q ·D3

1f(0, α0)(p, p, p) + q ·D2
1f(0, α0)

(
−A(α0)−1D2

1f(0, α0)(p, p), p
)

+
1

2
q ·D2

1f(0, α0)
(
(2iω0 −A(α0))−1D2

1f(0, α0)(p, p), p
)
.

For a proof that condition (3.2) is equivalent to a transversal crossing of the eigenvalues at
the bifurcation point, see [14, Appendix XIII, Lemma 1.15].

We refer to the coefficient a20 as the direction coefficient ; the quantity 1
ω0

Re c is usually
referred to as the first Lyapunov coefficient (as it is the sign that matters, it is tempting to also
refer to Re c as the Lyapunov coefficient; below we shall allow ourselves such sloppiness). In
the expression for the direction coefficient, the denominator captures whether the dimension
of the unstable subspace of the steady state increases or decreases as we vary the parameter
across the bifurcation point. At the bifurcation point, the steady state is not hyperbolic;
provided the Lyapunov coefficient is nonzero, it determines whether the steady state is stable
or unstable at the bifurcation point [24].

Next we consider the scalar DDE

x′(t) = L(α)xt + g(xt, α), t ≥ 0,(3.3)

with state space X = C ([−1, 0],R), α ∈ R a parameter, L(α) : X → R a bounded linear
operator, and g : X × R → R. Without loss of generality, we have taken the maximal delay
to be 1. We summarize the relevant requirements on L and g in a hypothesis.

Hypothesis 3.3.
1. g : X × R→ R and α 7→ L(α) are Ck smooth for some k ≥ 3;
2. g(0, α) = 0 and D1g(0, α) = 0 for all α ∈ R.

Under this hypothesis, system (3.3) has an equilibrium x = 0 for all α ∈ R. The lineariza-
tion of (3.3) has a solution t 7→ eλt if and only if λ is a root of the characteristic equation

∆0(λ, α) = 0 with ∆0(λ, α) := λ− L(α)ελ,(3.4)

where ελ ∈ X denotes the exponential function

ελ(θ) = eλθ, θ ∈ [−1, 0].(3.5)

The roots of the characteristic equation (3.4) correspond to the eigenvalues of the generator
of the linearized semiflow of (3.3); cf. [14, section IV.3].

DDE like (3.3) can have only a finite number of characteristic roots on the imaginary axis,
resulting in the existence of a finite dimensional center manifold. On this finite dimensional
center manifold, which is by construction invariant under the flow, the DDE reduces to an
ODE. This allows one to “lift” the Hopf bifurcation theorem from ODE to DDE. This is done
in detail in [14, Chapter X]; in this section we just state the main result.

Theorem 3.4 (Hopf bifurcation theorem for scalar DDE). Consider system (3.3) and suppose
that Hypothesis 3.3 is satisfied. If there exist α0 ∈ R and ω0 > 0 such thatD
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1. iω0 is a simple root of ∆0(λ, α0) = 0;
2. the branch of roots of ∆0(λ, α) = 0 through iω0 at α = α0 intersects the imaginary

axis transversally, i.e., the real part of the derivative of the roots along the branch is
nonzero; this condition amounts to

Re
(
D1∆0(iω0, α0)−1D2∆0(iω0, α0)

)
6= 0;

3. kiω0 is not a root of ∆0(λ, α0) = 0 for k = 0, 2, 3, . . .,
then a Hopf bifurcation occurs for α = α0. This means that there exist Ck−1-functions ε 7→
α∗(ε), ε 7→ ω∗(ε) taking values in R and ε 7→ x∗(ε) ∈ Cb (R,R), all defined for ε sufficiently
small, such that for α = α∗(ε), x∗(ε) is a periodic solution of (3.3) with period 2π/ω∗(ε).
Moreover, α∗ and ω∗ are even functions, α∗(0) = α0, ω

∗(0) = ω0, and if x is a small periodic
solution of (3.3) for α close to α0 and minimal period close to 2π/ω0, then x(t) = x∗(ε)(t+θ∗)
and α = α∗(ε) for some ε and some θ∗ ∈ [0, 2π/ω∗(ε)).

Moreover, α∗ has the expansion α∗(ε) = α0 + a20ε
2 + o(ε2), with a20 given by

a20 =
Re c0

Re (D1∆0(iω0, α0)−1D2∆0(iω0, α0))
,

where

c0 = (D1∆0(iω0, α0))−1 1

2
D3

1g(0, α0)(φ, φ, φ)

+ (D1∆0(iω0, α0))−1D2
1g(0, α0)

(
ε0∆0(0, α0)−1D2

1g(0, α0)(φ, φ), φ
)

+ (D1∆0(iω0, α0))−1 1

2
D2

1g(0, α0)
(
ε2iω0∆0(2iω0, α0)−1D2

1g(0, α0)(φ, φ), φ
)(3.6)

with φ := εiω0.

4. Pseudospectral approximation. In order to approximate the infinite dimensional dy-
namical system corresponding to the DDE (3.3) by a finite dimensional ODE, we first approx-
imate elements of the state space

X = C ([−1, 0],R)

by polynomials interpolating their values in a chosen set of mesh points.
Given n ∈ N and given a mesh −1 ≤ θn < · · · < θ0 = 0, the corresponding Lagrange

polynomials `j : [−1, 0]→ R are defined by

`j(θ) =
∏

0≤m≤n
m6=j

θ − θm
θj − θm

, −1 ≤ θ ≤ 0, j = 0, 1, . . . , n.(4.1)

The properties

n∑
j=0

`j(θ) ≡ 1 and `j(θi) = δij =

{
1 if i = j,

0 if i 6= j
(4.2)
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make the Lagrange polynomials suitable building blocks for interpolation, especially since
Lagrange interpolation can be implemented in a stable and efficient way by using barycentric
interpolation [4].

A DDE is a rule for extending a known history. It defines a dynamical system on the
state space of history functions by shifting along the extended function, i.e., by updating the
history. This involves that we distinguish the time variable t from the bookkeeping variable
θ, needed to describe the history. In particular, we approximate

x(t+ θ) ∼
n∑
j=0

`j(θ)yj(t), −1 ≤ θ ≤ 0.(4.3)

For the left-hand side of (4.3), the derivative with respect to t equals the derivative with
respect to θ. The idea of collocation is to require that this is also true for the right-hand side
of (4.3) at the mesh points θk, k = 1, . . . , n. This condition leads to the following system of
differential equations:

y′k(t) =
n∑
j=0

`′j(θk)yj(t), k = 1, . . . n.(4.4)

By defining

D : Rn → Rn, Dij = `′j(θi), i, j = 1, . . . , n,(4.5)

and taking into account that (4.2) implies that

`′0(θ) = −
n∑
j=1

`′j(θ)

we can rewrite (4.4), using the notation 1 = (1, . . . , 1)T ∈ Rn, as

y′ = Dy − y0D1,(4.6)

where y is the n-vector with components yk, k = 1, . . . , n. Note that (4.6) is universal in the
sense that it does not depend on the specific DDE under consideration.

The differential equation (4.6) approximately captures the translation aspect of the dy-
namics. The equation for y0 (corresponding to the value of xt in θ0 = 0) captures the specific
rule for extension specified by the DDE. Define P : Rn → X and P0 : R × Rn → X as,
respectively,

(Py)(θ) =

n∑
j=1

`j(θ)yj ,(4.7a)

(
P0(y0, y)

)
(θ) = y0`0(θ) + (Py)(θ),(4.7b)

where `j , j = 0, 1, . . . , n, are defined by (4.1). We add to (4.6) the differential equation

y′0 = LP0(y0, y) + g
(
P0(y0, y)

)
(4.8)D
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to mimic the specific scalar DDE

x′(t) = Lxt + g(xt)(4.9)

with L : X → R bounded linear and g : X → R.
So we approximate the infinite dimensional dynamical system corresponding to (4.9) with

the finite dimensional dynamical system generated by the ODE (4.6) and (4.8). This is
summarized in the following definition.

Definition 4.1. The pseudospectral approximation to the parameterized DDE (recall (3.3))

x′(t) = L(α)xt + g(xt, α)(4.10)

is given by the parameterized system of ODE

d

dt

(
y0

y

)
= An(α)

(
y0

y

)
+ g(P0(y0, y), α)

(
1
0

)
, t ≥ 0,(4.11)

where An(α) : R× Rn → R× Rn is given by

An(α) =

(
L(α)`0 L(α)P
−D1 D

)
.(4.12)

Here y0 ∈ R, y ∈ Rn, P is defined in (4.7a), P0 is defined in (4.7b), the matrix D is defined
in (4.5), and the dimension n is a parameter that we have suppressed in the notation and in
the terminology.

In the definition above, there is no restriction on the nodes. The theoretical results that
we shall present below are, however, based on the following assumption.

Assumption 4.2. If we consider the reduced mesh {θ1, . . . , θn} and the corresponding
Lagrange polynomials

˜̀
j(θ) =

∏
1≤m≤n
m 6=j

θ − θm
θj − θm

, −1 ≤ θ ≤ 0, j = 1, . . . , n,(4.13)

then the associated Lebesgue constant

Λ̃n := max
θ∈[−1,0]

n∑
j=1

∣∣∣˜̀j(θ)∣∣∣
satisfies limn→∞

Λ̃n
n = 0.

Assumption 4.2 is satisfied by the nodes

θ0 = 0,(4.14a)

θk =
1

2

(
cos

(
2k − 1

2n
π

)
− 1

)
, k = 1, . . . , n,(4.14b)

which are the Chebyshev zeros (4.14b) with an added node at θ = 0 [27, Chapter 1.4.6].
The numerical computations in this paper are made using the Chebyshev extremal nodes

θj =
1

2

(
cos

(
jπ

n

)
− 1

)
, 0 ≤ j ≤ n.(4.15)D
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We choose to work with the Chebyshev extremal nodes (rather than with (4.14a)–(4.14b))
since for Chebyshev extremal nodes the matrix D in (4.5) can be numerically computed in a
reliable and efficient way [34]. However, if we consider the reduced mesh {θ1, . . . , θn}, then
the corresponding Lebesgue constant Λ̃n is only known to behave like O(n) [27, Chapter 4.2].
So based on this estimate, the nodes (4.15) do not satisfy Assumption 4.2. Yet in practice
we observe the fast convergence expected from meshes of nodes satisfying Assumption 4.2;
see also [13]. So a remaining challenge is to find an analytical argument that also covers the
nodes (4.15).

We remark that if x is a steady state of (4.10), then (4.11) has a steady state y0 = x, y =
x1. Conversely, if (y0, y) is a steady state of (4.11), then (4.4) implies that

P0(y0, y)′(θ) = `′0(θ)y0 +

n∑
j=1

`′j(θ)yj

is zero at θ = θ1, . . . , θn. So P0(y0, y)′ is a polynomial of degree n−1 with n zeros, which implies
that P0(y0, y)′ ≡ 0 and P0(y0, y) is the constant function taking the value y0. Therefore y0 is a
steady state of (4.10). So, steady states of (4.10) and (4.11) are in one-to-one correspondence.

Note that in the pseudospectral approximation (4.11), the nonlinear terms only appear
in the equation for y0 and hence the range of the nonlinear perturbation is contained in a
one-dimensional subspace. The formula

y(t) = −
∫ t

−∞
y0(τ)e(t−τ)DD1 dτ

expresses y explicitly in terms of y0 when we consider y0 as given on (−∞, t]. If we substitute
this into the differential equation for y0, we obtain a DDE with infinite delay [11]. Note that
periodic y0 yields periodic (with the same period) y. The remark about steady states amounts
to: constant y0 yield y(t) = y01.

Characteristic equation. If g(0, α) = 0 and D1g(0, α) = 0, then the linearization of (4.10)
around zero, i.e.,

x′(t) = L(α)xt, t ≥ 0,(4.16)

has, as mentioned before, a nonzero solution of the form x(t) = eλt if and only if λ is a root
of the characteristic equation (3.4).

The linearization of the pseudospectral approximation (4.11) of (4.10) around zero has
a nontrivial solution of the form eλt(ζ0, ζ) if and only if λ is an eigenvalue of (4.12) with
eigenvector (ζ0, ζ), i.e., if and only if

λζ0 = L(α)(ζ0`0 + Pζ),(4.17a)

λζ = Dζ − ζ0D1(4.17b)

has a nontrivial solution (ζ0, ζ) ∈ Cn+1. We prove in Lemma 5.1 that for λ in a given compact
subset of C, D − λI is invertible for n large enough. Equation (4.17b) then implies that

ζ = ζ0(D − λI)−1D1(4.18)D
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and inserting this into (4.17a) we obtain that[
λ− L(α)

(
`0 + P (D − λI)−1D1

)]
ζ0 = 0.(4.19)

This shows that eigenvalues of An(α) as defined in (4.12) correspond to roots of the charac-
teristic equation

∆n(λ, α) = 0 with ∆n(λ, α) := λ− L(α)
(
`0 + P (D − λI)−1D1

)
.(4.20)

Here the subscript n in the definition of ∆n(λ, α) specifies the dimension of the approximation.
If λ is a root of (4.20), then a corresponding eigenvector of An(α) is given by

(p∗, p̃) = (1, (D − λI)−1D1).(4.21)

The correspondence between eigenvalues of An(α) and roots of ∆n(λ, α) = 0 is analogous
to the correspondence between eigenvalues of the generator of translation along solutions of
the linearized DDE (4.16) and the roots of the characteristic equation ∆0(λ, α) = 0.

Hopf bifurcation for the pseudospectral approximation. In order to relate Hopf bifurca-
tion for the DDE (4.10) to Hopf bifurcation for the pseudospectral approximation (4.11), we
first reformulate Theorem 3.2 for ODE of the special form (4.11).

The resolvent of An(α) : C× Cn → C× Cn defined by the complexification of (4.12) can
be computed explicitly. From (λI −An(α))−1(ζ0, ζ) = (η0, η) it follows that

ζ0 = λη0 − L(α)`0η0 − L(α)Pη,(4.22a)

ζ = λη +D1η0 −Dη.(4.22b)

Since D − λI is invertible for n large enough, we can solve for η in terms of ζ and η0 from
(4.22b). Substitution of the result in (4.22a) then yields

(λI −An(α))−1

(
ζ0

ζ

)
= ∆n(λ, α)−1

(
ζ0 + L(α)P (λI −D)−1ζ

)( 1
(D − λI)−1D1

)
(4.23)

+

(
0

(λI −D)−1ζ

)
.

If ∆n(λ, α) = 0 and D1∆n(λ, α) 6= 0, the residue of the right-hand side of (4.23) in λ
defines a projection operator

Qn

(
ζ0

ζ

)
= D1∆n(λ, α)−1

(
ζ0 + L(α)P (λI −D)−1ζ

)( 1
(D − λI)−1D1

)
(4.24)

which is of the form

Qn

(
ζ0

ζ

)
=
(
q∗ · ζ0 + q̃ · ζ

)( 1
(D − λI)−1D1

)
with (q∗, q̃) the adjoint eigenvector to the eigenvalue λ of An(α), normalized such that

(q∗, q̃) ·
(
p∗
p̃

)
= 1.D
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Since L(α)P ỹ =
∑n

j=1 L(α)`j ỹj we find that

q∗ =
1

D1∆n(λ, α)
, q̃ =

1

D1∆n(λ, α)
(λI −DT )−1

L(α)`1
...

L(α)`n

 .(4.25)

We can also compute the adjoint eigenvector from (4.12), giving the same result.
Recall the condition

Re
(
q ·A′(α0)p

)
6= 0

in Theorem 3.2. From the definition of An(α) in (4.12) we obtain

A′n(α) =

(
DαL(α)`0 DαL(α)P

0 0

)
.(4.26)

So using the definitions for the right eigenvector (p∗, p̃) in (4.21) and the left eigenvector (q∗, q̃)
in (4.25) for λ = iω, it follows that

(q∗, q̃) ·A′n(α)

(
p∗
p̃

)
= −D1∆n(iω, α)−1D2∆n(iω, α).

Finally observe from (4.11) that the nonlinearity only acts in the first component of the
equation. Therefore the formula for c in Theorem 3.2 becomes in the present setting

c = D1∆n(iω, α)−1 1

2
D3

1g(0, α)
(
P0p, P0p, P0p

)
+D1∆n(iω, α)−1D2

1g(0, α)

(
− P0

(
An(α)−1

(
1
0

))
D2

1g(0, α)
(
P0p, P0p

)
, P0p

)
+D1∆n(2iω, α)−1 1

2
D2

1g(0, α)

(
P0

(
(2iω −An(α))−1

(
1
0

))
D2

1g(0, α)
(
P0p, P0p

)
, P0p

)
with p = (1, (D − iω)−1D1). From (4.23) it follows that

(λI −An(α))−1

(
1
0

)
= ∆n(λ, α)−1

(
1

(D − λI)−1D1

)
.

We are now ready to apply Theorem 3.2 to the pseudospectral approximation (4.11).

Theorem 4.3 (Hopf bifurcation in pseudospectral ODE).
Consider system (4.11) and suppose that Hypothesis 3.3 is satisfied. If there exist αn ∈ R

and ωn > 0 such that
1. iωn is a simple root of ∆n(λ, αn) = 0;
2. the branch of roots of ∆n(λ, α) = 0 through iωn at α = αn intersects the imaginary

axis transversally, i.e., the real part of the derivative of the roots along the branch is
nonzero; this condition amounts to

Re
(
D1∆n(iωn, αn)−1D2∆n(iωn, αn)

)
6= 0;D
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3. kiωn is not a root of ∆n(λ, αn) = 0 for k = 0, 2, 3, . . .,
then a Hopf bifurcation occurs for α = αn.

Moreover, α∗ as in Theorem 3.2 has the expansion α∗(ε) = αn + a2nε
2 + o(ε2), with a2n

given by

a2n =
Re cn

Re
(
D1∆n(iωn, αn)−1D2∆n(iωn, αn)

)
with

cn = D1∆n(iωn, αn)−1 1

2
D3

1g(0, αn)
(
P0p, P0p, P0p

)
+D1∆n(iωn, αn)−1D2

1g(0, αn)

(
∆n(0, αn)−1P0

(
1
1

)
D2

1g(0, αn)
(
P0p, P0p

)
, P0p

)
+D1∆n(iωn, αn)−1 1

2
D2

1g(0, αn)

(
∆n(2iωn, αn)−1P0

(
1

(D − 2iωnI)−1D1

)
D2

1g(0, αn)
(
P0p, P0p

)
, P0p

)
(4.27)

and p = (1, (D − iωn)−1D1) the right eigenvector to An(αn) with eigenvalue iωn.

In the following sections we investigate the issue of convergence.

5. Approximation of spectral data of linear problems. Comparing the characteristic
equations (3.4) and (4.20), we see that the following variant of a result from [8, Lemma 3.2],
[9, Proposition 5.1] is relevant; we include its proof for completeness.

Lemma 5.1. Let U ⊆ C be a compact subset. Then there exist a positive integer N = N(U)
and a constant C > 0 such that for n ≥ N and λ ∈ U , D − λI is invertible and

∥∥`0 + P (D − λI)−1D1− ελ
∥∥ ≤ 1√

n

(
C

n

)n
(5.1)

with ελ defined as in (3.5).

Proof. Fix λ ∈ U and ζ0 ∈ C. We want to solve

(D − λI)ζ = ζ0D1(5.2)

for ζ ∈ Cn. If ζ satisfies (5.2), then d := `0ζ0 + Pζ is a polynomial of degree n that satisfies

d′(θk) = `′0(θk)ζ0 +

n∑
j=1

`′j(θk)ζj

= (−ζ0D1)k + (Dζ)k
= λζk

= λd(θk)D
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for k = 1, . . . , n. So d has to satisfy{
d′(θ) = λd(θ), θ = θ1, . . . , θn,

d(0) = ζ0.
(5.3)

Vice versa, if d is a polynomial of degree n, then

d(θ) =
n∑
j=0

`j(θ)ζj

with ζj = d(θj), j = 0, . . . , n. So if d additionally satisfies (5.3), then

`′0(θk)ζ0 +
n∑
j=1

`′j(θk)ζj = λζk

for k = 1, . . . , n, and ζ = (d(θ1), . . . , d(θn)) is a solution of (5.2). So finding a solution ζ ∈ Cn
of (5.2) is equivalent to finding a polynomial of degree n that satisfies (5.3).

Define the operators

Ln : X → X, Lnφ =

n∑
j=1

˜̀
j(.)φ(θj),

K : X → X, (Kφ)(θ) =

∫ θ

0
φ(s)ds

with ˜̀
j as in (4.13) for j = 1, . . . , n. If d is a polynomial of degree n satisfying (5.3), then

d′ = λLnd.(5.4)

Since d(θ) = (Kd)′(θ) + ζ0 for θ ∈ [−1, 0], (5.4) gives

d′ = λLnKd
′ + λζ0,

where ζ0 denotes the function taking the constant value ζ0 and where we have used that
Lnζ0 = ζ0. So if d is a polynomial of degree n satisfying (5.3), then d solves

d′(θ) = λ(LnKd
′)(θ) + λζ0, θ ∈ [−1, 0],(5.5a)

d(0) = ζ0.(5.5b)

Vice versa, if d is a solution of (5.5a)–(5.5b), then d′ is a polynomial of degree n − 1 and
therefore d is a polynomial of degree n. Moreover, for k = 1, . . . , n we find that

d′(θk) = λ(Kd′)(θk) + λζ0

= λ(d(θk)− ζ0) + λζ0

= λd(θk)D
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so d satisfies (5.3). We conclude that d is a polynomial of degree n satisfying (5.3) if and only
if d solves (5.5a)–(5.5b).

Define y := ελζ0; then y satisfies{
y′(θ) = λy(θ), θ ∈ [−1, 0],

y(0) = ζ0.
(5.6)

Since y(θ) = (Ky′)(θ) + ζ0, θ ∈ [−1, 0], (5.6) gives

y′ = λKy′ + λζ0,(5.7)

where ζ0 denotes the function taking the constant value ζ0. Now suppose that d satisfies
(5.5a)–(5.5b). Then en := d′ − y′ satisfies

en = λLnKen + λ (Ln − I)Ky′.(5.8)

Vice versa, if en satisfies (5.8), then d′ := en + y′ satisfies (5.5a) and hence d(θ) := (Kd′)(θ) +
ζ0, θ ∈ [−1, 0] satisfies (5.5a)–(5.5b).

For φ ∈ X, Kφ is a Lipschitz function. Since by Assumption 4.2 the Lebesgue constant

Λ̃n associated to the nodes {θ1, . . . , θn} satisfies limn→∞
Λ̃n
n = 0, it follows from standard

interpolation theory that limn→∞ LnK = K in operator norm; see, for example, [30, sections
4.1–4.2].

Since K is Volterra, (I − λK) is invertible for λ ∈ C. Therefore (I − λLnK) is invertible
for n large enough and limn→∞(I − λLnK)−1 = (I − λK)−1. From this it follows that for n
large enough, (5.8) has a unique solution en:

en = (I − λLnK)−1λ (Ln − I)Ky′.(5.9)

Thus, there is a unique function d′ = e′n + y′ satisfying (5.5a) and therefore a unique function
d(θ) := (Kd′)(θ) + ζ0, θ ∈ [−1, 0] satisfying (5.5a)–(5.5b). So there is a unique ζ ∈ Cn
satisfying (5.2).

For ζ0 = 0, this implies that the kernel of D − λI is trivial and hence the map D − λI :
Cn → Cn is invertible. So we can now also truthfully write ζ = ζ0(D − λI)−1D1.

Standard error estimates for polynomial interpolation (note that Ky′ is analytic) give that

∥∥(Ln − I)Ky′
∥∥ ≤ C1

|λ|n

n!
|ζ0|

for some C1 > 0; see, for example, [30, Theorem 1.5]. Moreover, since limn→∞(I−λLnK)−1 =
(I − λK)−1, the sequence (‖(I − λLnK)−1‖)n∈N is bounded. So (5.9) gives that

‖en‖ ≤ C2
|λ|n

n!
|ζ0|

for some C2 > 0. Together with Stirling’s formula this then yields the error estimate (5.1) for
ζ0 = 1.D
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Corollary 5.2. Let ∆0(λ, α) and ∆n(λ, α) be given by, respectively, (3.4) and (4.20). Let
U ⊆ C× R be a compact subset. Then there exists a C > 0 such that

|∆0(λ, α)−∆n(λ, α)| < 1√
n

(
C

n

)n
for n ∈ N large enough and (λ, α) ∈ U .

Next we will exploit the fact that both ∆0 and ∆n are analytic functions in λ to prove
convergence of the derivatives as well, as n tends to infinity. First we give an auxiliary lemma.

Lemma 5.3. Let h0 : C→ C and hn : C→ C, n ∈ N, be analytic functions. Assume

h0(z) = lim
n→∞

hn(z) uniformly for z in compact subsets of C.

Fix a compact subset U ⊆ C and let V ⊆ C be a compact set such that U is contained in the
interior of V . Let (ρn)n∈N = (ρn(V ))n∈N be a sequence such that

|hn(z)− h0(z)| ≤ ρn for all n ∈ N and z ∈ V.

Moreover, fix k ∈ {0, 1, 2, . . .} and denote the kth derivative of h by h(k). Then there exists a
constant Ck > 0 such that ∣∣∣h(k)

n (z)− h(k)
0 (z)

∣∣∣ ≤ Ckρn
for n ∈ N and z ∈ U .

Proof. By the Cauchy integral formula, we have that

hn(z) =
1

2πi

∫
∂V

hn(s)

(s− z)
ds, h0(z) =

1

2πi

∫
∂V

h0(s)

(s− z)
ds

for all z ∈ U . This yields that

h(k)
n (z) =

1

2πi
k!

∫
∂V

hn(s)

(s− z)k+1
ds, h

(k)
0 (z) =

1

2πi
k!

∫
∂V

h0(s)

(s− z)k+1
ds

for k ∈ {0, 1, 2, . . .} and z ∈ U . Since U, V are compact sets and U is contained in the interior
of V , we find that there exists a δ > 0 such that |z − s| > δ for all z ∈ U, s ∈ ∂V . Thus, we
see that ∣∣∣h(i)

n (z)− h(i)
0 (z)

∣∣∣ =
1

2π
k!

∣∣∣∣∫
∂V

hn(s)− h0(s)

(s− z)k+1
ds

∣∣∣∣
≤ 1

2π
k!

1

δk+1
C̃ρn

for some C̃ > 0, which proves the claim.

Corollary 5.4. Let ∆0(λ, α) and ∆n(λ, α) be given by, respectively, (3.4) and (4.20). Let
U ⊆ C× R be a compact subset. Then there exists a C > 0 such that

|D1∆0(λ, α)−D1∆n(λ, α)| < 1√
n

(
C

n

)n
for n ∈ N large enough and (λ, α) ∈ U .D
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6. Hopf bifurcation in the pseudospectral limit. In the following, we denote a generic
Hopf bifurcation by the triple (α, ω, a2), where α is the bifurcation point, iω the root of the
characteristic equation on the imaginary axis, and a2 the direction coefficient. Here we use
the word generic to indicate the three standard conditions (1. simple root of the characteristic
equation; 2. transversal crossing; 3. nonresonance) and we do not require that the direction
coefficient is nonzero. To show that the Hopf bifurcation in the pseudospectral approximation
is a faithful representation of the Hopf bifurcation in the DDE, we have to answer the following
questions.

Question 6.1. If the DDE has a generic Hopf bifurcation (α0, ω0, a20), do the pseudospectral
ODE have Hopf bifurcations (αn, ωn, a2n) with limn→∞(αn, ωn, a2n) = (α0, ω0, a20)?

Question 6.2. Vice versa, if the pseudospectral ODE have generic Hopf bifurcations (αn, ωn,
a2n) with

lim
n→∞

(αn, ωn, a2n) = (α0, ω0, a20),

does the DDE have a Hopf bifurcation (α0, ω0, a20)?

Answering these questions involves checking the following conditions:
1. At the bifurcation point, there is a simple root of the characteristic equation on the

imaginary axis.
2. This root of the characteristic equation on the imaginary axis crosses the axis trans-

versely if we vary the parameter.
3. At the bifurcation point, there are no roots of the characteristic equation in resonance

with the root on the imaginary axis.
4. Convergence of the direction coefficients.

We first answer Question 6.1. To check conditions 1 and 2, we use the following lemma,
which can be viewed as a version of the implicit function theorem with a (discrete) parameter
living in N. It is inspired by [29, Theorem A.1] where the parameter belongs to a general
metric space.

Lemma 6.3. Let h0 : Rd → Rd and hn : Rd → Rd, n ∈ N, be C1 functions with

h0(x) = lim
n→∞

hn(x) and Dh0(x) = lim
n→∞

Dhn(x)(6.1)

uniformly for x in compact subsets of Rd. Given a compact subset U ⊂ Rd, let (ρn)n∈N =
(ρn(U))n∈N be a sequence such that

‖hn(x)− h0(x)‖ ≤ ρn for all n ∈ N and x ∈ U.(6.2)

Assume that there exists x0 ∈ Rd such that h0(x0) = 0 and Dh0(x0) is invertible. Then there
exists a sequence (xn)n∈N such that for n large enough, hn(xn) = 0 and Dhn(xn) is invertible.
Moreover, there exists a constant C > 0 such that

‖xn − x0‖ ≤ Cρn, n ∈ N, with ρn = ρn(U).

Proof. Define the functions

f0(x) = x−Dh0(x0)−1h0(x), fn(x) = x−Dh0(x0)−1hn(x)D
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so that zero’s of hn, h0 correspond to fixed points of fn, f0, respectively. Note that Df0(x0) = 0
and

lim
n→∞

Dfn(x) = Df0(x) uniformly for x in compact subsets.

Therefore we can find a ρ > 0 and a 0 < q < 1 such that ‖Dfn(x)‖ < q for all n ∈ N, x ∈
B(x0, ρ). From the mean value theorem we obtain that, for all n ∈ N, fn : B(x0, ρ) → Rd
is Lipschitz with Lipschitz constant q. From the contraction mapping principle, it follows
that for all n ∈ N, fn has a unique fixed point xn in B(x0, ρ). Moreover, if we let U be a
neighborhood of x0 and (ρn)n∈N be as in (6.2), then

‖xn − x0‖ ≤ ‖fn(xn)− fn(x0)‖+ ‖fn(x0)− f0(x0)‖
< q ‖xn − x0‖+

∥∥Dh0(x0)−1
∥∥ ρn.

This yields the estimate

‖xn − x0‖ ≤
ρn

1− q
‖Dh0(x0)−1‖.

Moreover, since limn→∞Dhn(xn) = Dh0(x0) and Dh(x0) is invertible, Dhn(xn) is invertible
for n large enough.

Proposition 6.4. Consider system (3.3) and suppose that Hypothesis 3.3 is satisfied. More-
over, suppose that there exist α0 ∈ R and ω0 > 0 such that

1. iω0 is a simple root of ∆0(λ, α0) = 0;
2. the branch of roots of ∆0(λ, α) = 0 through iω0 at α = α0 intersects the imaginary

axis transversally, i.e.,

Re
(
D1∆0(iω0, α0)−1D2∆0(iω0, α0)

)
6= 0.(6.3)

Then, for n large enough, there exist αn ∈ R, ωn > 0 such that
1. iωn is a simple root of ∆n(λ, αn) = 0;
2. the branch of roots of ∆n(λ, α) = 0 through iωn at α = αn intersects the imaginary

axis transversally, i.e.,

Re
(
D1∆n(iωn, αn)−1D2∆n(iωn, αn)

)
6= 0.(6.4)

Moreover, there exists a C > 0 such that

‖(αn, ωn)− (α0, ω0)‖ ≤ 1√
n

(
C

n

)n
for n ∈ N large enough.(6.5)

Proof. Define the functions hn, h0 : R2 → R2 as

hn(ω, α) =

(
Re ∆n(iω, α)
Im ∆n(iω, α)

)
, h0(ω, α) =

(
Re ∆0(iω, α)
Im ∆0(iω, α)

)
.

Then h0(ω0, α0) = 0 and (6.1) is satisfied by Corollaries 5.2 and 5.4. In order to apply Lemma
6.3, we only have to check that Dh0(ω0, α0) is invertible.D
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For σ, ω ∈ R, write

∆0(σ + iω, α0) = f1(σ, ω) + if2(σ, ω)

with f1, f2 ∈ R. With this notation Dh0(ω0, α0) becomes

Dh0(ω0, α0) =

(
D2f1(0, ω0) ReD2∆0(iω0, α0)
D2f2(0, ω0) ImD2∆0(iω0, α0)

)
.

The Cauchy–Riemann equations read

D2f1(σ, ω) = −D1f2(σ, ω), D2f2(σ, ω) = D1f1(σ, ω)

and hence

Dh0(ω0, α0) =

(
−D1f2(0, ω0) ReD2∆0(iω0, α0)
D1f1(0, ω0) ImD2∆0(iω0, α0)

)
.(6.6)

But now note that if we compute D1∆0(iω0, α0), we may as well compute the difference
quotient by taking the limit over the real axis, so

ReD1∆0(iω0, α0) = D1f1(0, ω0), ImD1∆0(iω0, α0) = D1f2(0, ω0)

and (6.6) becomes

Dh0(ω0, α0) =

(
−ImD1∆0(iω0, α0) ReD2∆0(iω0, α0)
ReD1∆0(iω0, α0) ImD2∆0(iω0, α0)

)
.

The invertibility of the matrix Dh0(ω0, α0) is equivalent to the condition (6.3). So we can
apply Lemma 6.3 to find sequences (iωn)n∈N, (αn)n∈N with ∆n(iωn, αn) = 0 and with the
error estimate (6.5). Moreover, a similar argument as before gives that the invertibility of
Dhn(ωn, αn) is equivalent to the condition (6.4).

For (2.1), the statements of Proposition 6.4 are illustrated in Figures 2–3. In Figure 2, the
roots of the characteristic equation of the pseudospectral approximation of (2.1) are plotted

Figure 2. Pseudospectral approximation to (2.1) with τ = 1 and h(x) = e−x: roots of the characteristic
equation at the positive equilibrium for µ = 3 and different values of β as indicated at the top (corresponding
to the three black crosses in Figure 1). The eigenvalues are approximated with MatCont.D

ow
nl

oa
de

d 
10

/2
5/

21
 to

 1
31

.2
11

.1
04

.2
15

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PSEUDOSPECTRAL APPROXIMATION OF HOPF BIFURCATION 351

Figure 3. Equation (2.1) with τ = 1 and h(x) = e−x: log-log plot of the error in the detection of the
Hopf point (bullets) and in the approximation of the imaginary part of the rightmost roots of the characteristic
equation at Hopf (circles), at µ = 3. The errors are calculated by requiring a tolerance of 10−9 in MatCont
computations and by calculating the absolute value of the difference between the MatCont output and the analytic
values. Note the exponential decay until the accuracy 10−10 is reached.

for different values of the parameter β. Figure 3 shows the error in the detection of the Hopf
point and the imaginary part of the root of the characteristic equation for the pseudospectral
approximation. We see that the desired tolerance level is obtained for relatively low values of
the discretization index (n ≈ 10).

Next we look at the nonresonance condition. Suppose that ∆0(iω0, α0) = 0 but ∆0(kiω0,
α0) 6= 0 for all k = 0, 2, . . .. Corollary 5.2 gives that for fixed k, there exists an N = N(k)
such that ∆n(kiωn, αn) 6= 0 for n ≥ N(k). However, this does not imply that we can choose
this N to be uniform in k, i.e., that we can find an N such that

∆n(kiωn, αn) 6= 0 for all n ≥ N and all k = 0, 2, 3, . . . .(6.7)

So Corollary 5.2 does not exclude that for every n ∈ N large enough there exists a k(n) such
that ∆n(k(n)iωn, αn) = 0. This is clearly a nongeneric situation, but in order to address the
third condition listed below Question 6.2, we have to exclude it explicitly. See also section 8.

Concerning the convergence of the direction coefficient we find the following.

Lemma 6.5. Consider system (3.3) and suppose that the hypotheses of Theorem 3.4 are
satisfied. Let (αn, ωn) be as in Proposition 6.4. Then limn→∞ a2n = a20. Moreover, if the
nonlinearity g : X × R→ X is C4, then there exists a C > 0 such that

|a2n − a20| ≤
1√
n

(
C

n

)n
for n ∈ N large enough.

Proof. Throughout the proof, we use the symbol C to denote a generic constant whose
actual value may differ from line to line. For instance, an upper bound C1C

n, with C1 > 1, is
replaced by the upper bound Cn , with the second C slightly larger than the first C.D
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We first prove that limn→∞ cn = c0, with cn defined as in (4.27) and c0 defined as in (3.6).
Given a compact neighborhood U of iω0, Lemma 5.1 gives a constant C > 0 such that

∥∥ελ − P0(1, (D − λI)−1D1)
∥∥ ≤ 1√

n

(
C

n

)n
(6.8)

for all λ ∈ U . By Proposition 6.4, there exists a C > 0 such that ‖(iωn, αn)− (iω0, α0)‖ <
1√
n

(
C
n

)n
. Since the map λ 7→ ελ(θ) is locally Lipschitz continuous, uniformly for θ ∈ [−1, 0],

we can find a C > 0 such that

‖εiω0 − εiωn‖ ≤
1√
n

(
C

n

)n
(6.9)

holds. Using (6.8) and (6.9) we obtain the estimate∥∥εiω0 − P0(1, (D − iωnI)−1D1)
∥∥ ≤ ‖εiω0 − εiωn‖+

∥∥εiωn − P0(1, (D − iωnI)−1D1)
∥∥

≤ 1√
n

(
C

n

)n
.

(6.10)

We compare the first term of cn defined in (4.27) with the first term of c0 defined in (3.6).
Writing p = (1, (D − iωn)−1D1) and φ = εiω0 , we estimate∥∥D3

1g(0, αn)(P0p, P0p, P0p)−D3
1g(0, α0)(φ, φ, φ)

∥∥
≤
∥∥D3

1g(0, αn)(φ, φ, φ)−D3
1g(0, α0)(φ, φ, φ)

∥∥
+
∥∥D3

1g(0, αn)(φ, φ, φ)−D3
1g(0, αn)(P0p, P0p, P0p)

∥∥ .(6.11)

Since the map α 7→ D3
1g(0, α) is continuous and αn → α0 as n→∞, we obtain that∥∥D3

1g(0, αn)(φ, φ, φ)−D3
1g(0, α0)(φ, φ, φ)

∥∥→ 0

as n→∞. If g is C4, then the map α 7→ D3
1g(0, α)(φ, φ, φ) is locally Lipschitz and we obtain∥∥D3

1g(0, αn)(φ, φ, φ)−D3
1g(0, α0)(φ, φ, φ)

∥∥ ≤ C |αn − α0|

≤ 1√
n

(
C

n

)n
.

(6.12)

Since the map (u, v, w) 7→ D3
1g(0, αn)(u, v, w) is linear in every argument, we can rewrite

D3
1g(0, αn)(φ, φ, φ)−D3

1g(0, αn)(P0p, P0p, P0p)

= D3
1g(0, αn)(φ−P0p, φ, φ) +D3

1g(0, αn)(P0p, φ− P0p, φ) +D3
1g(0, αn)(P0p, P0p, φ−P0p).

Combining this with (6.10), we obtain the estimate

∥∥D3
1g(0, αn)(φ, φ, φ)−D3

1g(0, αn)(P0p, P0p, P0p)
∥∥ ≤ 1√

n

(
C

n

)n
.(6.13)D
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So from (6.11), (6.12), and (6.13) we conclude that

lim
n→∞

D3
1g(0, αn)(P0p, P0p, P0p) = D3

1g(0, α0)(φ, φ, φ),

and if g is C4, then

∥∥D3
1g(0, αn)(P0p, P0p, P0p)−D3

1g(0, α0)(φ, φ, φ)
∥∥ ≤ 1√

n

(
C

n

)n
.(6.14)

Now suppose that (xn)n∈N ⊆ C, (yn)n∈N ⊆ C\{0} are sequences with limn→∞ xn = x0,
limn→∞ yn = y0 6= 0. Then we find for their fraction

∣∣∣∣xnyn − x0

y0

∣∣∣∣ =

∣∣∣∣xny0 − x0yn
yny0

∣∣∣∣ ≤ ∣∣∣∣(xn − x0)y0

yny0

∣∣∣∣+

∣∣∣∣x0(yn − y0)

yny0

∣∣∣∣ ≤ C (|xn − x0|+ |yn − y0|) .

(6.15)

By Corollary 5.4, there exists a C > 0 such that

|D1∆n(iωn, αn)−D1∆0(iω0, α0)| ≤ 1√
n

(
C

n

)n
.

So if we apply (6.15) with xn = D3
1g(0, αn)(P0p, P0p, P0p) and yn = D1∆n(iωn, αn), we see

that∥∥D1∆n(iωn, αn)−1D3
1g(0, αn)(P0p, P0p, P0p)−D1∆0(iω0, α0)−1D3

1g(0, α0)(φ, φ, φ)
∥∥→ 0 as n→∞,

and if g is C4, then

∥∥D1∆n(iωn, αn)−1D3
1g(0, αn)(P0p, P0p, P0p)−D1∆0(iω0, α0)−1D3

1g(0, α0)(φ, φ, φ)
∥∥ ≤ 1√

n

(
C

n

)n

.

Applying similar arguments to the second and third term of cn, we find that limn→∞ cn =
c0; if g is C4, we obtain the error estimate

|cn − c0| ≤
1√
n

(
C

n

)n
.

To analyze the convergence of the direction coefficient a2n, we apply (6.15) with xn = Re cn
and yn = Re

(
D1∆n(iωn, αn)−1D2∆n(iωn, αn)

)
. We conclude that

|a2n − a20| → 0 as n→∞,

and if g is C4, then

|a2n − a20| ≤
1√
n

(
C

n

)n
,

which proves the claim.

Summarizing, we find the following answer to Question 6.1.D
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Proposition 6.6. Consider system (3.3) and suppose that the hypotheses of Theorem 3.4
are satisfied. Moreover, with αn, ωn as in Proposition 6.4, assume that

for n ∈ N large enough, ∆n(kiωn, αn) 6= 0 for k = 0, 2, 3, . . . .(6.16)

Then the hypotheses of Theorem 4.3 are satisfied and limn→∞ a2n = a20. Moreover, if the
nonlinearity g : X × R→ X is C4, then there exists a C > 0 such that

|a2n − a20| ≤
1√
n

(
C

n

)n
for n ∈ N large enough.

We now consider Question 6.2. Suppose that we have sequences (αn)n∈N, (ωn)n∈N with
limn→∞ αn = α0 ∈ R, limn→∞ ωn = ω0 6= 0. Suppose that iωn is a simple root of ∆n(λ, αn) =
0 and such that this root crosses the axis transversely if we vary α. Then ∆0(iω0, α0) = 0
but we have to make additional assumptions to make sure that this root is simple and it
crosses the axis transversely if we vary α. Similarly, if for n ∈ N large enough, it holds that
∆n(kiωn, αn) 6= 0 for k = 0, 2, 3, . . ., we have to make additional assumptions to ensure that
∆0(kiω0, α0) 6= 0 for k = 0, 2, 3 . . ..

Proposition 6.7. Consider system (3.3) and suppose that there exists an N0 ∈ N such
that for n ∈ N, n ≥ N0 the hypotheses of Theorem 4.3 are satisfied with limn→∞ αn =
α0, limn→∞ ωn = ω0 6= 0, and limn→∞ a2n = a′20. Moreover, suppose that

1. the sequence (D1∆n(iωn, αn))n≥N0 is uniformly bounded away from zero;
2. the sequence

(
Re
(
D1∆n(iωn, αn)−1D2∆n(iωn, αn)

))
n≥N0

is uniformly bounded away
from zero;

3. for each k = 0, 2, 3 . . ., the sequence (∆n(kiωn, αn))n≥N0 is uniformly bounded away
from zero.

Then the hypotheses of Theorem 3.4 are satisfied and the direction coefficient is given by a′20,
i.e., a20 = a′20.

Proof. Taking the limit in ∆n(iωn, αn) = 0 gives that ∆0(iω0, α0) = 0. The conditions
1, 2, and 3 ensure that D1∆0(iω0, α0) 6= 0, Re

(
(D1∆(iω0, α0))−1D2∆(iω0, α0)

)
6= 0, and

∆0(kiω0, α0) 6= 0 for k = 0, 2, 3, . . .. Moreover, as in the proof of Lemma 6.5 we find that
limn→∞ a2n = a20, which implies that a20 = a′20.

7. Systems. We formulate the relevant definitions and results for systems of DDE.
Let d ∈ N and consider the system

x′(t) = L(α)xt + g(xt, α), t ≥ 0,(7.1)

with state space X = C
(
[−1, 0],Rd

)
, α ∈ R a parameter, L(α) : X → Rd a bounded linear

operator, and g : X × R → Rd. We summarize the relevant assumptions on L and g in the
following hypothesis.

Hypothesis 7.1.
1. g : X × R→ Rd and α→ L(α) are Ck smooth for some k ≥ 3;
2. g(0, α) = 0 and D1g(0, α) = 0 for all α ∈ R.D
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Under this hypothesis, (7.1) has an equilibrium x = 0 for all α ∈ R. The linearization of
(7.1) has a solution of the form t 7→ eλtc, c ∈ Cd if and only if λ is a root of the characteristic
equation

det ∆0(λ, α) = 0,

where the operator ∆0(λ, α) : Cd → Cd is defined as

∆0(λ, α) = λId − L(α)ελ,(7.2)

where Id : Cd → Cd is the identity operator and ελ is defined as in (3.5). In (7.2), L(α)ελ
maps Cd to Cd in the following way: given v ∈ Cd, the function (ελv)(θ) = ελ(θ)v is an
element of C

(
[−1, 0],Cd

)
; then L(α) (ελv) is a vector in Cd.

If iω0 is a simple root of det ∆0(λ, α0) = 0, then ∆0(iω0, α0) has a one-dimensional kernel.
Moreover, if p, q ∈ Cd\{0} are such that ∆0(iω0, α0)p = 0, ∆0(iω0, α0)T q = 0, then q ·
D1∆0(iω0, α0)p 6= 0; see [14, Exercise IV.3.12]. In particular, we can (and will) scale p, q such
that q ·D1∆0(iω0, α0)p = 1.

Theorem 7.2 (Hopf bifurcation theorem for systems of DDE). Consider system (7.1) and
suppose that Hypothesis 7.1 is satisfied. Moreover, suppose that there exist α0 ∈ R and ω0 > 0
such that

1. iω0 is a simple root of det ∆0(λ, α0) = 0;
2. the branch of roots of det ∆0(λ, α) = 0 through iω0 at α = α0 intersects the imaginary

axis transversally, i.e., the real part of the derivative of the roots along the branch
is nonzero, and if we denote by p, q ∈ Cd\{0} the vectors such that ∆0(iω0, α0)p =
0, ∆0(iω0, α0)T q = 0, and q ·D1∆0(iω0, α0)p = 1, then this condition amounts to

Re (q ·D2∆0(iω0, α0)p) 6= 0;

3. kiω0 is not a root of det ∆0(λ, α0) for k = 0, 2, 3, . . .,
then a Hopf bifurcation occurs for α = α0. This means that there exist Ck−1-functions ε 7→
α∗(ε), ε 7→ ω∗(ε) taking values in R and ε 7→ x∗(ε) ∈ Cb

(
R,Rd

)
, all defined for ε sufficiently

small, such that for α = α∗(ε), x∗(ε) is a periodic solution of (7.1) with period 2π/ω∗(ε).
Moreover, α∗, ω∗ are even functions, α∗(0) = α0, ω

∗(0) = ω0, and if x is any small periodic
solution of (7.1) for α close to α0 and minimal period close to 2π/ω0, then x(t) = x∗(ε)(t+θ∗)
and α = α∗(ε) for some ε and some θ ∈ [0, 2π/ω∗(ε)).

Moreover, α∗ has the expansion α∗(ε) = α0 + a20ε
2 + o(ε2), with a20 given by

a20 =
Re c

Re (q ·D2∆0(iω0, α0)p)
,

where

c =
1

2
q ·D3

1g(0, α0)(φ, φ, φ)

+ q ·D2
1g(0, α0)

(
ε0∆0(0, α0)−1D2

1g(0, α0)(φ, φ), φ
)

+
1

2
q ·D2

1g(0, α0)
(
ε2iω0∆0(2iω0, α0)−1D2

1g(0, α0)(φ, φ), φ
))(7.3)

with φ := εiω0p.D
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To write down the pseudospectral approximation to (7.1), let for j = 0, . . . , n

yj(t) ∈ Rd

and denote the components of this vector as

yj(t)(k), k = 1, . . . d.

We define the interpolation operators P : Rnd → X, P0 : Rd × Rnd → X componentwise as

(Py)k (θ) :=
n∑
j=1

`j(θ)yj(k),

(P0(y0, y))k := `0(θ)y0(k) + (Py)k (θ),

where `j , j = 0, 1, . . . , n, are defined by (4.1). We approximate

xk(t+ θ) ∼
n∑
j=0

`j(θ)yj(t)(k), k = 1, . . . d,

and by collocation on the meshpoints θ1, . . . , θn we obtain

y′i(t)(k) =
n∑
j=1

Dijyj(t)(k)− y0(t)(k) [D1]i , i = 1, . . . , n,(7.4)

with D as in (4.5). To approximate the rule for extension, we supplement (7.4) with

y′0(t) = L(α)P0(y0, y) + g(P0(y0, y), α).(7.5)

Suppressing the index i in the notation we write (7.4) as

y′(t)(k) = Dy(t)(k)− y0(t)(k)D1, k = 1, . . . d,(7.6)

and next, by suppressing k, abbreviate to

y′ = Dy − y0D1,

where this expression is to be understood d-componentwise as in (7.6). With this notation,
the pseudospectral approximation to (7.1) becomes

y′0(t) = L(α)P0(y0, y) + g(P0(y0, y), α),

y′(t) = Dy(t)− y0(t)D1.
(7.7)

The linearization of (7.7) around x = 0 has a solution of the form ελ(ζ0, ζ) if and only if

λζ0 = L(α)`0ζ0 + L(α)Pζ,(7.8a)

λζ = Dζ − ζ0D1(7.8b)D
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with ζj ∈ Cd for j = 0, . . . , n. The d-componentwise nature of (7.8b) allows us to write

ζj(k) = ζ0(k)
[
(D − λI)−1D1

]
j
, j = 0, . . . , n, k = 1, . . . , d,

which we abbreviate in the compact notation

ζ = ζ0(D − λI)−1D1.(7.9)

Substituting (7.9) into (7.8a) gives that (7.8a)–(7.8b) has a nontrivial solution if and only if

det ∆n(λ, α) 6= 0

with

∆n(λ, α) = λId − L(α)
(
`0Id + P (D − λI)−1D1

)
.

If det ∆n(λ, α) = 0, then (7.8a)–(7.8b) has a nontrivial solution of the form (p∗, p∗(D −
λI)−1D1), where p∗ 6= 0 satisfies ∆n(λ, α)p∗ = 0.

Applying Theorem 3.2 to system (7.7) we obtain the following.

Theorem 7.3 (Hopf bifurcation in pseudospectral ODE). Consider system (7.1) and suppose
that Hypothesis 7.1 is satisfied. If there exist αn ∈ R and ωn > 0 such that

1. iωn is a simple root of det ∆n(λ, αn) = 0;
2. the branch of roots of det ∆n(λ, α) = 0 through iωn at α = αn intersects the imag-

inary axis transversally, i.e., the real part of the derivative of the roots along the
branch is nonzero, and if p∗, q∗ ∈ Cn\{0} are vectors such that ∆n(iωn, αn)p∗ =
0, ∆n(iωn, αn)T q∗ = 0, and q∗ ·D1∆n(iωn, αn)p∗ = 1, then this condition amounts to

Re
(
q∗ ·D2∆n(iωn, αn)p∗) 6= 0;

3. kiωn is not a root of det ∆n(λ, αn) = 0 for k = 0, 2, 3 . . .,
then a Hopf bifurcation occurs for α = αn.

Moreover, α∗ as in Theorem 3.2 has the expansion α∗(ε) = αn + a2nε
2 + o(ε2), with a2n

given by

a2n =
Recn

Re
(
q∗ ·D2∆n(iωn, αn)p∗

)
with

cn =
1

2
q∗ ·D3

1g(0, αn)
(
P0p, P0p, P0p

)
+ q∗ ·D2

1g(0, αn)

(
∆n(0, αn)−1D2

1g(0, αn)
(
P0p, P0p

)
P0

(
1
1

)
, P0p

)
+

1

2
q∗ ·D2

1g(0, αn)

(
∆n(2iωn, αn)−1D2

1g(0, αn)
(
P0p, P0p

)
P0

(
1

(D − 2iωnI)−1D1

)
, P0p

)

(7.10)

with p = (p∗, p∗(D − iωn)−1D1).D
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Regarding the approximation of the Hopf bifurcation in the pseudospectral scheme, we
have the following results (cf. Propositions 6.6 and 6.7).

Proposition 7.4. Consider system (7.1) and assume that the hypotheses of Theorem 7.2 are
satisfied. Then for n ∈ N large enough, there exist αn, ωn such that iωn is a simple root of
det ∆n(λ, αn) = 0 and there exists a C1 > 0 such that

|(αn, ωn)− (α0, ω0)| ≤ 1√
n

(
C1

n

)n
for all n ∈ N large enough.

Assume moreover that for n large enough, det ∆n(kiωn, αn) 6= 0 for k = 0, 2, 3 . . .. Then
the hypotheses of Theorem 7.3 are satisfied and limn→∞ a2n = a20. Moreover, if the nonlin-
earity g : X × R→ X is C4, then there exists a C2 > 0 such that

|a2n − a20| ≤
1√
n

(
C2

n

)n
for all n ∈ N large enough.

Proposition 7.5. Consider system (7.1) and suppose that there exists an N0 ∈ N such
that for n ∈ N, n ≥ N0, the hypotheses of Theorem 7.3 are satisfied with limn→∞ αn =
α0, limn→∞ ωn = ω0 6= 0, and limn→∞ a2n = a′20. Moreover, suppose that

1. the sequence (detD1∆n(iωn, αn))n∈N is uniformly bounded away from zero;
2. if we denote by p∗, q∗ the vectors such that ∆n(iωn, αn)p∗ = 0, ∆n(iωn, αn)T q∗ = 0,

and q∗ · D1∆n(iωn, αn)p∗ = 1, then the sequence (Re (q∗ ·D2∆n(iωn, αn)p∗))n∈N is
uniformly bounded away from zero;

3. for each k = 0, 2, . . ., the sequences (det ∆n(kiωn, αn))n∈N are uniformly bounded away
from zero.

Then the hypotheses of Theorem 7.2 are satisfied and the direction coefficient is given by a′20,
i.e., a20 = a′20.

8. Outlook. In the introduction and in section 2 we claimed that the combination of pseu-
dospectral discretization and MatCont enables a reliable bifurcation analysis without requiring
excessive computational efforts. Indeed, by using numerical bifurcation software one can push
the analysis beyond the Hopf bifurcation and approximate the branch of periodic orbits emerg-
ing from Hopf, as well as its bifurcations. The DDE (2.1), which has only one discrete point
delay, can be directly analyzed also by existing and well-established numerical software for
delay differential equations, like DDE-BIFTOOL. We indeed use DDE-BIFTOOL as a bench-
mark for validating the output of the pseudospectral discretisation. In Figure 4 we show more
detailed stability regions of (2.1) in the plane (µ, βµ), including not only the Hopf bifurcation
curve but also the curve of period doubling bifurcations, approximated with DDE-BIFTOOL
(version 3.1) and MatCont (version 7p1), running on MATLAB 2019a. At the period dou-
bling bifurcation, the branch of periodic solutions originating from the Hopf point switches
stability and becomes unstable, whereas a new stable branch of periodic solutions arises. The
stability change is observed from the approximated multipliers at the periodic orbit, with oneD
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PSEUDOSPECTRAL APPROXIMATION OF HOPF BIFURCATION 359

Figure 4. Stability diagram of (2.1) and its pseudospectral approximation for τ = 1 and h(x) = e−x. The
Hopf and period doubling bifurcation curves are approximated numerically with DDE-BIFTOOL (gray solid,
DB) and MatCont (colors, MC). The right panel focuses on the approximation of the period doubling curve
for different dimensions of the ODE system. We can observe the convergence of the approximated curve to
that obtained with DDE-BIFTOOL when increasing the dimension n (although larger dimension is required
compared to the approximation of the Hopf bifurcation).

Figure 5. Periodic solutions of (2.1), approximated with MatCont and n = 20, for µ = 7 and β = 105 (after
the period doubling bifurcation, which is detected at β ≈ 98.22). The dashed line shows the periodic solution on
the unstable branch (period T ≈ 2.24); the solid line shows the periodic solution on the stable branch emerging
from the period doubling bifurcation (period T ≈ 4.47).

multiplier exiting the unit circle and crossing −1 as β increases. Two examples of coexisting
periodic solutions are plotted in Figure 5, taken from the unstable and stable branches.

In both the package DDE-BIFTOOL and MatCont, each periodic orbit is approximated
via collocation of a boundary value problem in the period interval (see, for example, [16, 3]).
This requires the specification of a number of discretization intervals and the degree of the
collocation polynomial in each interval (we stress, however, that such mesh and polynomial
degree are different from and independent of the mesh points and polynomial degree used to
discretize the delay interval in the pseudospectral approach). In all the computations of this
section we have taken a piecewise mesh of 40 intervals in the period interval and polynomial
approximations of degree 4 in each interval. These values guarantee sufficient accuracy in the
approximation of the periodic orbits, so that the dominating errors in Figure 4 are those due
to the chosen polynomial degree of the pseudospectral approximation.D
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As a further illustration we consider the system of equations

w′(t) = 1− kw(t)w(t− 1)

2
q(t),(8.1)

q′(t) = w(t)− c(8.2)

for k, c ∈ R+. Equations (8.1)–(8.2) correspond to a fluid flow of information between sender
and receiver; w refers to the average size of the sent information packages, q refers to the
average queue length, and the total roundtrip time has been normalized to 1 [23, 28].

The stability regions in the plane (k, c) are plotted in Figure 6: the lower curve represents
the Hopf bifurcation, whereas the upper curve is a period doubling bifurcation. Two periodic
solutions are plotted in Figure 7.

Figure 6. Stability regions of system (8.1)–(8.2) and its pseudospectral approximation, approximated with
DDE-BIFTOOL (gray curve) and MatCont with n = 20 (blue dots). The lower curve corresponds to the Hopf
bifurcation, the upper curve to the period doubling bifurcation.

Figure 7. Periodic solutions of system (8.1)–(8.2), approximated with MatCont and n = 20 for c = k = 1.5
(beyond the period doubling bifurcation). The dashed line shows the periodic solution on the unstable branch
(period T ≈ 5.57); the solid line shows the periodic solution on the stable branch emerging from the period
doubling bifurcation (period T ≈ 11.15).
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Numerical software like MatCont, among their output parameters, normally return also
the value of the first Lyapunov coefficient at the Hopf bifurcation. We remark, however, that
the output of MatCont applied to the pseudospectral approximation cannot be directly taken
as approximation of the direction coefficient of the DDE, since the scaling of the left and right
eigenvectors traditionally used for ODE differs from the scaling used for DDE. For DDE,
indeed, the eigenvectors are scaled by taking the first component equal to 1, whereas for ODE
systems the eigenvector is normalized by requiring the 2-norm to be equal to 1.

So far we did not manage to treat the nonresonance condition in a completely satisfac-
tory manner, and we explicitly assumed condition (6.16). For retarded functional differential
equations, there are no roots of the characteristic equation high up the imaginary axis. So
checking the nonresonance condition is executable. One would expect that for the approximat-
ing pseudospectral ODE systems similar bounds can be found, but our initial (and somewhat
half-hearted) attempt to derive them failed. When the dimension of the ODE system in-
creases, so does the number of roots. Numerical observations (also in other contexts) suggest
that these “additional” roots have real parts moving toward minus infinity. In particular, they
do not even come close to the imaginary axis. For the “trivial” DDE y′(t) = 0, where the “spu-
rious” eigenvalues are simply the eigenvalues of the matrix D, it is indeed proved that they go
to minus infinity when the dimension increases [15, 35]. For more general DDE, one could try
to prove that the number of roots to the right of any vertical line in the complex plane is pre-
served if the dimension of the approximation is large enough (in the spirit of the preservation
of the dimension of the unstable manifold treated, for instance, in [26]). As far as we know,
there are as yet no theoretical results for the pseudospectral approximation considered here.

The (numerical) bifurcation theory of delay equations is well developed; see, for instance,
[5] and the references given there. Our analysis of the Hopf bifurcation can be seen as a proof
of principle that pseudospectral approximation yields a reliable bifurcation diagram, a reliable
“picture.” But checking the details case by case for the entire catalogue of bifurcations would,
we think, provide only negligible additional insight. An attractive alternative might be to
try to show, as a next step, that the center manifold of a delay equation is (in a sense to be
specified) approximated by the center manifold of the pseudospectral ODE system.

The technical difficulties of state-dependent delay equations disappear in the pseudospec-
tral approximation, for the very simple reason that polynomials are infinitely many times
differentiable. So while here we focused on showing that known results for delay equations are
well approximated by corresponding results for pseudospectral ODE, we might try to prove
results for state-dependent delay equations by showing that the limit of results for pseudospec-
tral ODE systems exists and provides information about (behavior of) solutions of the delay
equation. A concrete challenge would be to provide a rigorous underpinning for the results
derived in [33].

Appendix A. Stability charts for the “Nicholson’s blowflies” equation. We collect some
results concerning the DDE

N ′(t) = −µN(t) + βN(t− 1)h(N(t− 1))(A.1)

with parameters β, µ ≥ 0. We pay special attention to the case

h(x) = e−x.(A.2)D
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Equation (2.1) can be brought in the form (A.1) by scaling of time with a factor τ . This
entails the introduction of dimensionless parameters

µnew = τµold, βnew = τβold,

where “new” refers to (A.1) and “old” refers to (2.1). Note, incidentally, that βold also
incorporates the survival of the juvenile period and that one can make this explicit by putting

βold = β0e
−τµold ,

but we will not elaborate on this further. Finally, note that the case h(x) = e−σx can be
reduced to (A.2) by scaling of N with a factor σ.

In [12] it is argued that using two parameters in Hopf bifurcation studies has great advan-
tages. As (A.1) naturally has two parameters, we are in the ideal situation.

Nontrivial steady states N of (A.1) are characterized by the equation

h
(
N
)

=
µ

β
.(A.3)

Under the assumptions
• h(0) = 1,
• h is monotonically decreasing,
• limx→∞ h(x) = 0,

(A.3) has a unique positive solution for β > µ. In the parameter plane the line β = µ
corresponds to a transcritical bifurcation. For β < µ the population goes extinct. For β
slightly larger than µ, the nontrivial steady state is asymptotically stable. Our first aim is to
investigate whether or not N can lose its stability by way of a Hopf bifurcation. See also [32]
for an analysis of the occurrence of a Hopf bifurcation in system (A.1) and [36] for an analysis
of the direction of this bifurcation.

As a first step we put

N(t) = N + x(t)

and rewrite (A.1) as

x′(t) = b1x(t) + b2x(t− 1) + G(x(t− 1), µ, β),

where

b1 = −µ, b2 = β(h(N) +Nh′(N))(A.4)

and

G(x, µ, β) = βN
(
h(N + x)− h(N)− h′(N)x

)
+ β

(
h(N + x)− h(N)

)
x.(A.5)

So the characteristic equation corresponding to the linearized equation reads

λ− b1 − b2e−λ = 0.(A.6)D
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This equation is analyzed in great detail in [14, section XI.2], to which we refer for justification
of some statements below.

Substituting λ = iω into (A.6) and solving for b1 and b2 we obtain

b1 =
ω cosω

sinω
, b2 = − ω

sinω
.(A.7)

The stability region in the (b1, b2)-plane is bounded by the line

b1 + b2 = 0, b1 ≤ 1

(corresponding to λ = 0 being a root of (A.6)) and the curve defined by (A.7) with

0 ≤ ω < π.(A.8)

Note that the curve and the line intersect at (b1, b2) = (1,−1) corresponding to λ = 0 being
a double root of (A.6). The root λ = iω is simple for ω > 0.

If one follows a one-parameter path in the (b1, b2)-plane that crosses the curve defined by
(A.7), (A.8) transversally, the root of (A.6) crosses the imaginary axis transversally.

There are no roots on the imaginary axis if (b1, b2) is not of the form (A.7). By adjusting
the domain of definition of ω, one obtains via (A.7) countably many curves in the (b1, b2)-
plane such that (A.6) has a root on the imaginary axis. These curves do not intersect the
curve corresponding to (A.8) nor each other. We conclude that the nonresonance condition is
satisfied. We refer to [14, Figure XI.1, p. 306] for a graphical summary.

The next step is to translate the results from the (b1, b2)-plane to the (µ, β)-plane or, for
that matter, the (µ, β/µ)-plane. Here it becomes useful to adopt (A.2) since in that case (A.4)
amounts to

b1 = −µ, b2 = µ

(
1− ln

(
β

µ

))
with inverse

µ = −b1, β = −b1e
1+

b2
b1 .(A.9)

By combining (A.7), (A.8), and (A.9) we obtain the curve depicted in Figure 1, albeit in the
(µ, β/µ)-plane. Note, however, that the interpretation requires µ ≥ 0 and that accordingly
we should restrict to π/2 ≤ ω ≤ π.

The conclusion is that if we follow a one-parameter path in the (µ, β)- or (µ, β/µ)-plane
that crosses the stability boundary transversally, all assumptions of Theorem 3.4 are satisfied.

We now compute the stability boundaries for the pseudospectral approximation to (A.1).
The pseudospectral approximation to (A.1) reads

y′0(t) = −µy0(t) + βyn(t)h(yn(t)),

y′(t) = Dy(t)−D1y0(t),
(A.10)

where we have written (y0, . . . , yn) = (y0, y) ∈ Rn+1. Equilibria of (A.1) are in one-to-one
correspondence with equilibria of (A.10), so (A.10) has a nontrivial equilibrium N1 withD
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h(N) = µ/β for β > µ. We shift the nontrivial equilibrium to zero via the coordinate
transform (y0, y) = N1 + (x0, x); then (A.10) becomes

x′0(t) = b1x0(t) + b2xn(t) + G(xn(t), µ, β),

x′(t) = Dx(t)−D1x0(t)
(A.11)

with b1, b2, and G defined in (A.4)–(A.5). The characteristic equation corresponding to the
linearization of (A.11) becomes (cf. (4.20))

λ− b1 − b2
[
(D − λI)−1D1

]
n

= 0.(A.12)

We compute the stability boundary by setting λ = iω and solving for b1, b2:

b1 = −
ωRe

[
(D − iωI)−1D1

]
n

Im [(D − iωI)−1D1]n
, b2 =

ω

Im [(D − iωI)−1D1]n
.(A.13)

Note that the expressions for b1, b2 have singularities but at different values than the expres-
sions for b1, b2 in (A.7). By defining h0(x) = − sin(x) and hn(x) = Im

[
(D − ix)−1D1

]
n

and applying Lemma 6.3, we see that the singularities of b1, b2 defined in (A.13) approximate
the singularities of b1, b2 defined in (A.7). Moreover, the expressions (A.13) converge to the
expressions (A.7) for n→∞ and for ω in compact intervals; see Figure 10.

We now want to determine whether the root iω crosses the imaginary axis transversely if
we cross the curves (A.13) transversely. For ease of computation we restrict to varying b2. If
iω is a simple root of (A.12), then it lies on a branch of roots λ(b2) and the derivative along
this branch is given by

λ′(b2) =

[
(D − iωI)−1D1

]
n

1− b2 [(D − iωI)−2D1]n
(A.14)

with b2 defined in (A.13). So if the real part of the right-hand side of (A.14) is nonzero, the
root on the imaginary axis crosses transversely if we vary b2.

Note that by Lemma 5.1 and Corollary 5.4, iω is a simple zero of (A.12) for n large
enough; moreover, the expression in (A.14) is nonzero for n large enough. However, for fixed
values of n one has to check these conditions explicitly. We now do this for the case n = 2.

For n = 2, the matrices D and A2 are given by

D =

(
0 −1
4 −3

)
, A2 =

 b1 0 b2
1 0 −1
−1 4 −3

 .(A.15)

We first compute the characteristic equation for the eigenvalues of A2. With D as in (A.15),
(A.12) becomes

λ− b1 − b2
4− λ

λ2 + 3λ+ 4
= 0.(A.16)D
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As a sanity check, we compute the eigenvalues of A2 as roots of det(λI − A2) = 0. We find
that the eigenvalues are roots of the equation

(λ− b1)
(
λ2 + 3λ+ 4

)
− b2(4− λ) = 0(A.17)

and indeed we see that the roots of (A.16) are exactly the roots of (A.17).
We now compute the stability boundary. Equation (A.17) has a root λ = 0 if

b1 = −b2(A.18)

(the fact that steady states of DDE and the approximating ODE are in one-to-one correspon-
dence guarantees that steady state bifurcation conditions are too). Substituting λ = iω in
(A.16) and solving for b1, b2 (or, equivalently, computing (A.13) for D as in (A.15)) gives

b1(ω) =
7ω2 − 16

ω2 − 16
, b2(ω) = ω2 − 4 + 3 · 7ω2 − 16

ω2 − 16
.(A.19)

Note that the expressions for b1, b2 have singularities at ω = ±4; the stability region in the
(b1, b2)-plane is bounded by the line (A.18) and the curve define by (A.19) with

−4 ≤ ω ≤ 4;(A.20)

see Figure 8.
If we cross the curve (A.19), (A.20) by varying b2, we find that the derivative of the

eigenvalue along the branch is given by

λ′(ω) =
iω − 4

−3ω2 + 6iω + 4− 2iωb1(ω)− 3b1(ω) + b2(ω)

=
iω − 4

ω (−2ω + 6i− 2b1(ω)i)
.

(A.21)
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Figure 8. The curves defined by (A.18), (A.19).D
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The real part of the denominator of (A.21) is nonzero for ω 6= 0; hence the denominator
of (A.21) is nonzero for ω 6= 0, which means that ω 6= 0 is a simple zero of (A.17) for b1, b2
defined in (A.19). The real part of (A.21) becomes

Reλ′(ω) =
14− 2b1(ω)

4ω2 + (6− 2b1(ω))2
.

On the interval (−4, 4) the expression for b1 in (A.19) attains its maximum b1 = 1 for ω = 0.
Therefore Reλ′(ω) 6= 0 along the curve (A.19)–(A.20). Moreover, since A2 has exactly three
eigenvalues (counting multiplicity), the nonresonance condition is in this case easy to check.
A resonance between eigenvalues iω and kiω, k > 0, would require four eigenvalues and can
therefore not happen. A resonance between iω, ω > 0 and 0 can also not happen because the
curve defined by (A.19) with ω 6= 0 does not intersect the curve b1 = −b2. So the conclusion
is that if we cross the stability boundary (A.19) transversally, a Hopf bifurcation of system
(A.10) with n = 2 occurs.

For higher values of n, we can also explicitly compute the stability boundary (b1, b2) as
defined in (A.13). For n = 3, the characteristic equation becomes

λ− b1 − b2
3λ2 − 32λ+ 96

3λ3 + 19λ2 + 64λ+ 96
= 0

and the stability boundary as defined in (A.13) becomes

b1(ω) = 17 +
2048

(
7ω2 − 72

)
9ω4 − 1088ω2 + 9216

, b2(ω) = −9ω6 − 23ω4 + 448ω2 + 9216

9ω4 − 1088ω2 + 9216
.(A.22)

For n ≥ 4, the formulas can still be computed explicitly in terms of the mesh points θj but
become rather long. Furthermore, for n ≥ 4, we need numerical approximations for θj to plot
the parametric curves.

We have plotted the stability boundary (A.22) together with (A.18) in Figure 9. Note that
the curves defined by (A.22) and (A.18) do not self intersect and do not intersect each other,
so there is never a resonance between two roots on the imaginary axis. Moreover, we see that
Figure 9 has an extra curve compared to Figure 8. So it seems that the infinite number of
curves defined by (A.7) get approximated one by one as we increase the discretization index n.

In Figure 10 we have plotted the graphs of the functions defined by (A.13) for n = 3, 4, 5.
We see that for n = 3, 4, there are two curves within the depicted window. We see that as n
increases, the curves within the depicted window lie closer together. For n = 5 a third curve
appears in the window.

For the case where h is given as in (A.2), we analyze the Lyapunov coefficient along the
stability boundary for the DDE (A.1). For π/2 < ω < π, define the functions

B10(ω) =
e−iω

1 + b2(ω)e−iω
, B20(ω) =

e−2iω

2iω − b1(ω)− b2(ω)e−2iω
B10(ω)

with b1(ω), b2(ω) as defined in (A.7). Then c0 as defined in (3.6) becomes

c0 =
1

2
D3

1G(0, µ, β)B10(ω)− (D2
1G(0, µ, β))2

b1 + b2
B10(ω) +

1

2
(D2

1G(0, µ, β))2B20(ω)(A.23)
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Figure 9. The curves defined by (A.18), (A.22).

Figure 10. Parametric plot of the graphs of the functions defined by (A.13) for different values of n in the
(b1, b2)-plane: n = 3 (brown, light, see expression (A.22)), n = 4 (green), and n = 5 (brown, dark). The blue
line corresponds to the line defined by (A.18).

with

D2
1G(0, µ, β) = µ ln

(
β

µ

)
− 2µ, D3

1G(0, µ, β) = −µ ln

(
β

µ

)
+ 3µ.(A.24)

For π/2 < ω < π, Re c0 is plotted in Figure 11. Note in particular that Re c0 is always negative
along the stability boundary (A.7)–(A.8).

To compute the Lyapunov coefficient of the system (A.11) when h is given by (A.2), define
the functionsD
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Figure 11. The Lyapunov coefficient (A.23) (blue line), and the Lyapunov coefficient (A.25) for n = 2
(orange dashed line) and n = 3 (yellow crosses).

B1n(ω) =

(
((D − iωI)−1D1)n

)2 (
(D + iωI)−1D1

)
n

1− b2(ω) ((D − iωI)−2D1)n
,

B2n(ω) =

(
(D − 2iωI)−1D1

)
n

2iω − b1 − b2 ((D − iωI)−1D1)n
B1n(ω)

with b1(ω), b2(ω) defined in (A.13). Then cn defined in (4.27) becomes

cn =
1

2
D3

1G(0, µ, β)B1n(ω)− (D2
1G(0, µ, β))2

b1 + b2
B1n(ω) +

1

2
(D2

1G(0, µ, β))2B2n(ω)(A.25)

with D2
1G(0, µ, β), D3

1G(0, µ, β) defined in (A.24). For n = 1, 2, we have plotted Re cn in
Figure 11. We note that both for n = 2 and n = 3 the Lyapunov coefficient is negative. This
reinforces our earlier conclusions that already for low values of n, we find good qualitative
agreement between the behavior of the DDE and the pseudospectral ODE.
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