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ABSTRACT: Current statistical postprocessing methods for probabilistic weather forecasting are not capable of using full

spatial patterns from the numerical weather prediction (NWP) model. In this paper, we incorporate spatial wind speed

information by using convolutional neural networks (CNNs) and obtain probabilistic wind speed forecasts in the

Netherlands for 48 h ahead, based on KNMI’s deterministic HARMONIE-AROME NWP model. The probabilistic

forecasts from the CNNs are shown to have higher Brier skill scores for medium to higher wind speeds, as well as a better

continuous ranked probability score (CRPS) and logarithmic score, than the forecasts from fully connected neural networks

and quantile regression forests. As a secondary result, we have compared the CNNs using three different density estimation

methods [quantized softmax (QS), kernel mixture networks, and fitting a truncated normal distribution], and found the

probabilistic forecasts based on the QS method to be best.

KEYWORDS: Forecast verification/skill; Probability forecasts/models/distribution;Model output statistics; Deep learning;

Machine learning; Neural networks

1. Introduction

Accurate and reliable weather forecasts are important in

many branches of society. Decision-making in, for example,

agriculture, aviation, and renewable energy production are

all dependent on skillful weather forecasts (e.g., Wilczak

et al. 2015). Furthermore, extreme weather can be danger-

ous for life and property, and it is therefore important

to give reliable warnings when dangerous weather can

be expected. Extreme winds have a large impact in the

Netherlands. Two western European wind storms caused

one insurance group to pay an estimated V100 million

(EUR) due to damages to individuals, businesses, and the

agricultural sector (https://news.achmea.nl/achmea-pays-out-

over-eur-100-million-to-customers-hit-by-january-storms/).

KNMI issued eight code orange weather warnings in 2018,

of which at least three were associated with extreme wind

speeds, including the two winter storms that caused the

damage noted above [https://www.knmi.nl/kennis-en-datacentrum/

uitleg/archief-code-oranje-rood-in-2018 (in Dutch)].

Forecasts are generally produced by numerical weather

prediction (NWP)models, such as theHARMONIE-AROME

model (Bengtsson et al. 2017) of the Royal Netherlands

Meteorological Institute (KNMI). To make computation of

NWP models feasible it is necessary to make simplifying

assumptions, but the resulting parameterization of the

subgrid-scale processes can introduce errors in the forecast. In

addition, a perfect initialization of these models is not possible.

As the atmosphere is a famously chaotic system (Lorenz 1963),

every forecast is therefore inherently uncertain. A single

forecast given by an NWP model does not provide an estimate

of this uncertainty, even though such an estimate is important

for decision-makers.

Forecast uncertainty is usually estimated from an ensemble

of predictions where each member is the outcome of an NWP

model run with a perturbed initial state and/or perturbed

physical parameterizations. This approach is, however, com-

putationally expensive and the results are often still biased and

underdispersed (Gneiting and Raftery 2005).

To correct biases and systematic errors in the ensemble

spread, and to make probabilistic forecasts from deterministic

NWP forecasts, one can use statistical postprocessing, based on

past observations. A popular framework for statistical post-

processing is model output statistics (MOS; Glahn and Lowry

1972). In MOS a statistical relationship is derived between the

forecasts provided by the NWP model and the corresponding

observed measurements. In this way we can correct the bias

and estimate the uncertainty in the forecast, based on deter-

ministic or ensemble NWP model output and potentially some

additional variables, such as the time of the year.

It is common practice in statistical postprocessing to fit a

parametric distribution based on measurements and a set of

potential predictors. These predictors can come from an

ensemble forecast, as is the case in ensemble model output

statistics (EMOS; Gneiting and Raftery 2005), or the pre-

dictors can come from a deterministic forecast in an MOS

application (e.g., Whan and Schmeits 2018; Bakker et al.

2019). In our study we have used predictors from deter-

ministic HARMONIE-AROME model output as a long

HARMONIE-AROME ensemble dataset was not yet avail-

able. The quality of the fit is measured in terms of skill scores

associated with scoring rules such as the continuous ranked

probability score (CRPS; Matheson and Winkler 1976;

Hersbach 2000; Gneiting and Raftery 2007). Wind speed has

been modeled with a parametric distribution in an EMOS

framework in Scheuerer andMöller (2015), Thorarinsdottir and
Gneiting (2010), and Baran and Lerch (2016), where they used

truncated normal and lognormal distributions. Furthermore in

Lerch and Thorarinsdottir (2013) a mixture of truncated normal
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and the generalized extreme value distribution was used with

success. Ioannidis et al. (2018) tested a variety of distributions

for wind speed in Denmark and found that the truncated normal

distribution was the most skillful.

Parametric methods (i.e., EMOS) have been compared to

quantile regression forests [QRF; Meinshausen (2006), a

nonparametric technique based on random forests] for both

wind speed and temperature forecasts in Taillardat et al.

(2016), where QRF was found to be more skillful. QRF was

also used in Whan and Schmeits (2018) for postprocessing of

precipitation forecasts, and Rasp and Lerch (2018) for post-

processing 2m temperature forecasts. Rasp and Lerch (2018)

also used fully connected neural networks (NNs) to determine

the parameters of a normal distribution. This approach was

shown to be more skillful than fitting a normal distribution in

an EMOS framework for the statistical postprocessing of

temperature forecasts. In contrast to MOS/EMOS, QRF and

neural networks are both capable of learning nonlinear rela-

tionships, while for MOS/EMOS nonlinear dependencies must

be specifically coded.

The aforementioned methods (MOS/EMOS, QRF, and

fully connected neural networks) are not well suited to use

high-dimensional structured spatial data, although they can use

spatial information in a crude way, for example, by taking

statistics of the predictor in an area around the station location

(van der Plas et al. 2017). As weather forecasts are spatial in

nature, it could be beneficial to use postprocessing methods

that are capable of dealing with this spatial information. In the

recent literature on machine learning, convolutional neural

networks (CNNs) have strongly advanced the state-of-the-art

on learning tasks involving this type of information, e.g., in

image classification and time series analysis (see, e.g., LeCun

et al. 2015; Krizhevsky et al. 2012). CNNs can potentially be of

great benefit in the geosciences (Reichstein et al. 2019) and

have already been applied in in the meteorological domain.

For example, Liu et al. (2016) used CNNs to detect extreme

weather events in climate datasets, and Shi et al. (2017)

used a mix between a convolutional and a recurrent network

for nowcasting precipitation. Additionally, CNNs have been

used tomake statistical forecasts of frontal systems (Lagerquist

et al. 2019), 500 hPa geopotential height anomalies (Weyn

et al. 2019), the probability of large hail using features from

an NWP model (Gagne II et al. 2019), and to estimate the

uncertainty in weather forecasts based on the state of the

atmosphere in the initialization of an NWP model (Scher

and Messori 2018).

The above studies demonstrate the wide variety of prob-

lems for which CNNs have been used. However, to the best of

our knowledge, CNNs have not yet been used for probabi-

listic forecasting of wind speed using statistical postprocess-

ing. We expect that the capability of CNNs to analyze spatial

information of weather forecasts could make them a very

beneficial new tool for this purpose. Independently of our

work, Scheuerer et al. (2020) very recently investigated CNNs

for probabilistic forecasting of precipitation on the sub-

seasonal time scale in California and found them to improve

over state-of-the-art postprocessing methods, and Dupuy

et al. (2020) demonstrated that CNNs are more skillful than

traditional methods (QRF and logistic regression) in post-

processing cloud cover forecasts.

In this study we apply convolutional neural networks for the

postprocessing of 148 h deterministic wind speed forecasts in

the Netherlands. We compare three different methods for

fitting a (conditional) probability distribution using CNNs:

quantized softmax (Oord et al. 2016), kernel mixture networks

(Ambrogioni et al. 2017), and fitting a truncated normal dis-

tribution (e.g., Thorarinsdottir and Gneiting 2010) whose pa-

rameters are determined by the network. Furthermore, we

examine whether convolutional neural networks are more

skillful than fully connected neural networks and QRF.

This paper is structured as follows. In section 2 we give a

description of the data that has been used in this study and in

section 3 we give a short description of quantile regressions

forests and (convolutional) neural networks and detail the

models used in this study. Section 4 contains the results and,

finally, section 5 contains the conclusions and discussion.

2. Data

The input data are provided by HARMONIE-AROME

cycle 40 (HA40) used by KNMI. HA40 is a nonhydrostatic

model that is run on a 2.5 km 3 2.5 km grid. We use deter-

ministic HA40 forecasts that are initialized at 0000 UTC and

are valid at a lead time of 48 h. The predictand data are the

10-min-average wind speed observations in the extended

winter period (mid-October to mid-April), at 10m above the

ground, from 46 weather stations in the Netherlands, which are

shown in Table 1. Thesemeasurements are provided as rounded

to the nearest full meter per second. The data from all the sta-

tions are pooled in the training dataset, meaning that the model

is trained for all stations at once, without providing station-

specific information other than HA40 surface roughness.

Reforecast data for HA40 is available from 2015 to 2017 and

operational HA40 forecasts from winter 2018–19 are also

available. These data are split into two sets, as shown in

Table 2. The first set (2015–17) is used for model selection and

training. We use a threefold cross validation on this model

selection set. The second set (2018–19) is an independent

dataset used for testing the selected models.

In threefold cross validation we train every model three

times on themodel selection set, each time with a different fold

left out. The latter is then used to make predictions in order to

validate the model. The sets are chosen in this way to ensure

that there is at least 6 months between the training, validation,

and test sets. This is necessary to avoid temporal correlations

between the different datasets.

In this study we use two sets of predictors. The first set

contains the HA40 forecasts of a number of variables in the

neighborhood of the station, see Table 3. The second set con-

tains the wind speed forecast from HA40 for a larger area

around this station, the exact size of which has been deter-

mined in the hyperparameter search. The first set is used in all

the methods described. The second set is only used for con-

volutional neural networks (in combination with the first set).

The set with the neighborhood predictors we use in this

study is based on previous research on postprocessing of wind
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speed forecasts by Ioannidis et al. (2018) and Taillardat et al.

(2016). Based on their results we take the variables shown in

Table 3 as the set of potential predictors.

The grid point closest to the station is used for the sur-

face roughness. For the other variables we pick a number of

grid boxes around the station and determine the mean

value, maximal value, and minimal value of each predictor

in this region, so that the method receives some informa-

tion about the spatial uncertainty in the weather forecast.

For the surface roughness only the closest grid point has

been taken since it should reflect the conditions in the direct

neighborhood of the station as closely as possible. Which pre-

dictors we will use, the number of grid boxes used, and whether

to take the mean, maximum, minimum or a combination of

them is decided for every method independently in the

hyperparameter search, which is described in section 3e.

3. Methods

Three differentmethods are compared in this study: quantile

regression forests, fully connected neural networks, and con-

volutional neural networks. We also compare three different

methods for conditional density estimation using convolutional

neural networks. Some of the models are trained by using the

errors of linear regression as target variables instead of the

observed measurements. We will motivate this choice for

the various models below.

a. Quantile regression forests

Quantile regression forests (Meinshausen 2006) is a non-

parametric method for estimating quantiles and, more

generally, a conditional cumulative distribution function. The

algorithm is based on random forests (Breiman 2001).

Whereas a trained random forest outputs a point prediction by

taking the average of the terminal nodes, QRF returns an es-

timate of the cumulative distribution function. This algorithm

was shown to outperform EMOS methods for postprocessing

of both wind speed and temperature forecasts by Taillardat

et al. (2016) and for precipitation by Whan and Schmeits

(2018), and will therefore be used as a benchmark in this

research.

We use the Python package Scikit-garden to implement

quantile regression forests. Within this package there is no

option to obtain a full cumulative distribution function.

Therefore an alternative prediction function is used which

outputs the average of the empirical cumulative distribution

functions of the leaves of every tree in the random forest.

For quantile regression forests the most important hyper-

parameters are the minimum leaf size of the trees and the

amount of randomization. We can control the amount of ran-

domization in the random forest by varying the size of the

random subset of predictors that is used for splitting at every

step. Other hyperparameters that are explored are the choice

of the impurity function and the number of trees.

We train quantile regression forests using either the obser-

vations or the residuals of linear regression. The second ap-

proach could be beneficial for two reasons. First, quantile

regression forests cannot extrapolate outside the range of the

TABLE 1. Location of weather stations in the Netherlands.

Station

No.

Longitude

(8E)
Latitude

(8N) Name

209 4.518 52.465 IJMOND

215 4.437 52.141 VOORSCHOTEN

225 4.555 52.463 IJMUIDEN

235 4.781 52.928 DE KOOY

240 4.790 52.318 SCHIPHOL

242 4.921 53.241 VLIELAND

248 5.174 52.634 WIJDENES

249 4.979 52.644 BERKHOUT

251 5.346 53.392 HOORN

(TERSCHELLING)

258 5.401 52.649 HOUTRIBDIJK

260 5.180 52.100 DE BILT

267 5.384 52.898 STAVOREN

269 5.520 52.458 LELYSTAD

270 5.752 53.224 LEEUWARDEN

273 5.888 52.703 MARKNESSE

275 5.873 52.056 DEELEN

277 6.200 53.413 LAUWERSOOG

278 6.259 52.435 HEINO

279 6.574 52.750 HOOGEVEEN

280 6.585 53.125 EELDE

283 6.657 52.069 HUPSEL

285 6.399 53.575 HUIBERTGAT

286 7.150 53.196 NIEUW BEERTA

290 6.891 52.274 TWENTHE

308 3.379 51.381 CADZAND

310 3.596 51.442 VLISSINGEN

312 3.622 51.768 OOSTERSCHELDE

313 3.242 51.505 VLAKTE V.D. RAAN

315 3.998 51.447 HANSWEERT

316 3.694 51.657 SCHAAR

319 3.861 51.226 WESTDORPE

323 3.884 51.527 WILHELMINADORP

324 4.006 51.596 STAVENISSE

330 4.122 51.992 HOEKVANHOLLAND

331 4.193 51.480 THOLEN

340 4.342 51.449 WOENSDRECHT

343 4.313 51.893 R’DAM-GEULHAVEN

344 4.447 51.962 ROTTERDAM

348 4.926 51.970 CABAUW

350 4.936 51.566 GILZE-RIJEN

356 5.146 51.859 HERWIJNEN

370 5.377 51.451 EINDHOVEN

375 5.707 51.659 VOLKEL

377 5.763 51.198 ELL

380 5.762 50.906 MAASTRICHT

391 6.197 51.498 ARCEN

TABLE 2. Definition of the different subsets used in cross validation

and testing.

Model selection Fold 1 Oct–Dec 2015 and Jan–Mar 2016

Fold 2 Oct–Dec 2016 and Jan–Mar 2017

Fold 3 Oct–Dec 2017 and Jan–Mar 2015

Test set Nov–Dec 2018, Jan–Mar 2019, and

Oct–Nov 2019
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training data. As linear regression is able to extrapolate, we

may be able to obtain a better model for higher wind speeds by

combining QRF and linear regression. Second, random forests

split the data into boxes based on which split minimizes the

total impurity. If the relationship between the response vari-

able and a single predictor is linear, then it may take random

forests many splits to represent this relationship. Splits based

on other variables are as a result made with limited informa-

tion. Fitting to the residuals of a linear model can reduce

this effect.

b. Conditional density estimation using neural networks

In this work we consider three different methods for con-

ditional density estimation using convolutional neural net-

works. These methods are quantized softmax, kernel mixture

networks with Gaussian kernels, and parametric density esti-

mation with a truncated normal distribution. The first method

adds an additional quantized softmax output layer to the

neural network to create an estimate of the conditional prob-

ability density function by a histogram with predefined bins.

This method is also used for conditional density estimation

using fully connected neural networks. The second method

fits a mixture of normal distributions, where the mean of every

Gaussian is fixed but the weights in the mixture and the stan-

dard deviations of the Gaussians are learned by the network.

The means of the Gaussians are taken to lie on a regularly

spaced grid between215 and 15m s21, i.e., the set of means of

the residuals is given by {215,2151 30/N, . . .,2151 30(N2
1)/N}. The number of kernelsN is used as a hyperparameter in

this study. The third method fits a truncated normal distribu-

tion. In this case the network learns the two parameters of the

distribution. In case the network is trained directly on obser-

vations, the normal distribution is truncated at zero. If the

network instead trains on residuals, then the distribution is

truncated at minus the forecast of the linear regression in order

to ensure that negative wind speeds cannot be predicted. In the

appendix a more detailed description of the three methods

is given.

We train the neural networks by empirical loss minimiza-

tion. As potential loss functions, we consider the continuous

ranked probability score (CRPS) and the negative log-likelihood.

The CRPS of a given conditional cumulative distribution

function estimate F̂ (associated with a conditional proba-

bility density function estimate) and a training datum (x, y)

is defined by

CRPS[F̂ , (x, y)]5

ð‘
2‘

[F̂(cjx)21
[y,‘)

(c)]2 dc.

The log(arithmic) score is defined as the negative log-

likelihood of a given conditional density function estimate

p̂ and training datum (x, y), and is given by

L[ p̂, (x, y)]52log[ p̂(yjx)] .

c. Fully connected neural networks

In this section we give a concise description of the fully

connected neural networks used in this work. For a general

introduction to neural networks and the standard terminology

used in this work we refer to Goodfellow et al. (2016). We

explore networks whose first part is a stack of n blocks, each of

which contains a dense layer of size m followed by a ReLU

activation function and a dropout layer. We have also explored

architectures with batch normalization layers, as are used in

the convolutional neural networks (see section 3d), but found

that these did not increase the performance.

For the fully connected neural networks we use the quan-

tized softmax method for conditional density estimation. We

minimize the empirical loss associated with either the CRPS or

the negative log-likelihood using adaptive moment estimation

(Adam; Kingma and Ba 2014), a variant of stochastic gradient

descent that is very popular in deep learning. We use early

stopping to determine the number of epochs (the number of

times the training data are used during training).

The neural networks used in this research were programmed

using Keras (Chollet et al. 2015), with TensorFlow as backend

(Abadi et al. 2015). Adamwas employed using default options for

all parameters other than the learning rate decay parameter.

As in the case of QRF, the fully connected neural network is

trained using either the observations or the residuals of linear

regression. For neural networks applying linear regression is

hypothesized to give better results due to the fact that lower

wind speeds are much more prevalent in the training dataset.

Output neurons that are related to high wind speeds therefore

need to be activated in only a very small sample of the data. In

case of direct training, we use a softmax layer with 30 output

bins, where every bin (of size 1m s21) represents a different

wind speed ranging from 0 to 30m s21. For the neural network

that is trained on the residuals of linear regression as target

variables, we use 300 identically sized output bins. In this case,

every bin represents a different value of the residual ranging

between 215 and 15m s21. In the linear regression case we

use a higher resolution as the errors of linear regression can

take on any value, whereas the actual measurements are

rounded to the nearest full meter per second.When training on

the residuals, we add Gaussian noise with mean zero and

variance s2 to the target variables to smoothen the results. This

is necessary as the number of bins is rather large compared to

the number of values in the training dataset.

TABLE 3. Predictors considered in our hyperparameter search.

The predictors that gave the most skillful forecasts in cross vali-

dation are indicated in boldface.

No. Predictor

1 Sine and cosine of the wind direction at a height of 10m

2 Wind speed at a height of 10m

3 Surface roughness
4 Meridional/zonal wind components at 925 hPa

5 Mean sea level pressure

6 Total kinetic energy

7 Humidity at surface level

8 Geopotential height 500 hPa

9 Temperature at surface level

10 Meridional and zonal wind components at 850 hPa

11 Day of the year
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The hyperparameter search is performed on the number of

blocks n and layer size m, dropout rate, ‘1-regularization

strength, learning rate, batch size and, in case we use linear

regression, the label noise variance s2. Moreover, we investigate

the effect of using the CRPS and the negative log-likelihood

during training. We furthermore check the same potential

predictor variables as for QRF (Table 3). Finally, we used the

learning rate decay parameter of Adam as a hyperparameter.

d. Convolutional neural networks

When applying neural networks to high-dimensional input

data, such as images, the number of trainable parameters be-

comes very large. Convolutional neural networks are neural

networks that are specialized in analyzing images, by limiting

the number of parameters in the network based on the struc-

ture of the task at hand. This is achieved using two techniques.

The first technique is parameter sharing: a number of param-

eters are assigned the same value to ensure that the same

transformation is applied everywhere in the input image. In

object detection tasks, this ensures that it is irrelevant where

the object we want to detect is located in the image. The second

technique is local connectivity, i.e., only connecting neurons

that are related to pixels from an input image, which are close

to each other. This is based on the assumption that the relation

between pixels that are close to each other is important.

For the same reason as for fully connected neural networks,

we investigate training of CNNs on the residuals of linear re-

gression. An additional motivation, which is more specific to

CNNs, is that we can use local information for linear regression.

The strength of a CNN is based on the translation invariance of

the spatial patterns that it needs to learn. The wind speed at a

particular weather station is, however, expected to be strongly

dependent on the wind speed forecast of the NWPmodel at that

station. The translation invariance of the convolutional layers is

therefore not suited for predictions at a specific weather station.

Features in the forecast that correlate to the bias and the forecast

uncertainty are expected to be less local in nature and should

therefore be better suited for analysis using CNNs.

The CNNs all receive two different inputs. The first input is

the full spatial forecast of the wind speed for a certain region

around the weather station, which provides the corresponding

observation. This is the input that is received by the convolu-

tional part of the network. The second input contains the other

variables, obtained from the nearest grid boxes around the

station, similar to what is used for QRF and the fully connected

neural networks.

The final architecture of the network is shown in Fig. 1. The

convolutional part of the network consists of nconv layers with

mconv filters, where the same number of filters is used in every

layer. Each of these convolutional layers is followed by a Relu

activation function, a batch normalization layer and a max

pooling layer, where we use a step size of 2 3 2 for the Max

Pooling layer and a filter size of 3 3 3 for the convolutional

layer. For the fully connected part of the network every dense

layer was followed by a Relu activation function, a batch

normalization layer and a dropout layer.

For the convolutional neural network we compare all three

methods for conditional density estimation that were discussed

in section 3b, i.e., quantized softmax, kernel mixture net-

works, and fitting a truncated normal distribution. We again

train the networks by minimizing the empirical loss associ-

ated with either the CRPS or the negative log-likelihood

using Adam.

The size of the output layer of the convolutional neural

networks depends on which conditional density estimation

method is used. For quantized softmax, from here on referred

to as CNN_LR, the output layer has size 300, as is also used for

NN_LR. For fitting a truncated normal, fromhere on referred to

as CNN_LR_N0, we ruse two output neurons (corresponding to

the two parameters of the distribution) and for the kernel mix-

ture network, from here on referred to as CNN_LR_KMN, we

need two output neurons for every kernel that we use.

e. Predictor and hyperparameter selection

Due to the large number of different parameters and po-

tential predictor variables, it is computationally infeasible to

select variables and hyperparameters using a full grid search.

To select predictors, model architectures, and hyperparameters

we use a random search through a large range of options for

both the neural networks and the random forests. Based on the

results of a large sample of models we narrow down the range

for hyperparameters that are most important and repeat the

procedure. In this way we can search through a large space of

possible models with limited computational resources. The

initial range of the hyperparameters is selected large enough to

ensure that models with parameter values on the high and low

end of the range perform clearly worse than models with in-

termediate parameter values. In this, we enlarge the chances

that good parameter values are contained in the initial range.

The only exception to this rule is the selection of the batch size

for the CNNs: in this case we checked batch sizes that are

powers of 2 and select the largest batch size that is computa-

tionally feasible for the computer used.

4. Results

a. Variable selection and hyperparameter tuning

As has been explained above, some models have been

trained on the errors of linear regression instead of on the

FIG. 1. Final convolutional neural network architectures, where

the size of the fully connected layers and convolutional layers are as

given in Table 5. The output layer is a fully connected layer where

the size and activation functions depend on the method used.
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measurements directly. In these cases, linear regression was

fitted on the mean values of 10m wind speed, surface rough-

ness and 925 hPa meridional and zonal wind components

(predictor variables 2, 3, and 4 as defined in Table 3) on an

area of 12.5 km 3 12.5 km around the stations. These vari-

ables were selected through forward stepwise selection, a

greedy algorithm that adds predictors successively based on

which predictors reduce the mean squared error (MSE) the

most. As the MSE did not improve significantly after these

predictors had been selected, all other candidate variables

have been left out. However, all candidate predictor variables

have been used in the nonlinear methods, as they improved

results in all cases.

The best QRF models, as determined by the hyper-

parameter search, have the following characteristics. The

predictor data contain the maximum, minimum and mean

value of the predictors that are marked in bold in Table 3. The

best results were obtained by using this full set of predictors for

splitting at every step, so that decorrelation between the trees

only occurs through bootstrapping on the training set. For the

impurity function we compared the mean squared error to the

mean absolute error, and found the former to give the best

results. For the random forest trained on the wind speed

measurements, hereafter referred to as QRF, we have used a

minimum leaf size of 30. For the random forest trained on the

residuals of linear regression (QRF_LR), we have used a

minimum leaf size of 42. Oversampling the data, such that

training samples corresponding to high wind speed days are

shown to the random forest more often during the training

phase, was tried, but this appeared to have a negative impact on

the results. This may be due to the fact that this leads to a large

number of copies of outliers in the training set, which do not

generalize well. Furthermore, oversampling based on obser-

vations gives a bias for higher wind speed values, and therefore

oversampling based on HA40 wind speed forecasts would

probably have been a better choice. Less naive oversampling

methods with data augmentations might be more useful still,

but were not tried. We used 100 trees during the first hyper-

parameter search and 500 trees for the final model.

The neural network trained on the wind speed mea-

surements themselves, hereafter referred to as NN, appears

to give the best results if it uses the maximum and mean

value of the sine and cosine of 10 m wind direction, 10 m

wind speed, and surface roughness (predictor variables 1, 2,

and 3 from Table 3). The neural network trained on the

residuals, hereafter referred to as NN_LR, gives the best

results when trained on the means of the bold predictor

variables shown in Table 3 and the maximum and minimum

value of the wind speed. The ‘1-regularization did not ap-

pear to improve the results and was left out completely for

both methods. The values of the other hyperparameters are

shown in Table 4.

The convolutional networks have all been trained on the

residuals of linear regression. Convolutional neural networks

trained on the observations were found to be not skillful in

preliminary testing. This was partly due to the fact that net-

works trained on the observations directly took longer to

converge and converged to poor values more often than

models trained on the residuals. This resulted in a signifi-

cantly slower hyperparameter search. No real difference

in performance is observed between the CRPS and log-

likelihood as loss functions, neither in training time nor in

the final result. The log-likelihood is, however, more sensi-

tive to the initialization, since a poor initial estimate leads to

exploding gradients. This is less of an issue when using the

CRPS, since for a deterministic forecast the CRPS is equal

to the mean absolute error, for which the derivative is

piecewise constant. This results in a more stable behavior

during the training phase.

The hyperparameters used in the hyperparameter search

and the selected values of each of these hyperparameters are

shown in Table 5.

TABLE 4. Hyperparameters for the selected models.

Hyperparameter NN NN_LR

No. of layers 2 3

Layer size 106 106

Batch size 256 256

Learning rate 3.47 3 1023 1.57 3 1023

Dropout rate 0.030 0.188

Loss function log-likelihood log-likelihood

Decay parameter 5.0 3 106 8.4 3 104

s2 noise 0 0.315

TABLE 5. Hyperparameters of CNNs.

Hyperparameter CNN_LR_N0 CNN_LR_KMN CNN_LR

Input grid size 100 3 100 60 3 60 60 3 60

Variables 1, 2, 3, 4, 5 1, 2, 3, 4, 5 1, 2, 3, 4, 5

Layer size 60 80 80

Size of convolutional layers 16 16 16

Batch size 128 128 128

Learning rate 0.0013 0.000 53 0.000 728 3

Loss function CRPS CRPS Log-likelihood

Dropout rate 0.1028 0.072 0.0888

Decay parameter 2.633 3 1026 4.098 3 1025 4.10 3 1027

Noise 0.315 0.26218 0.322

No. of kernels — 60 —
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b. Verification results for models trained on two-thirds
of the training data

The CRPS results for the three different cross-validation

folds for the best models of all methods are shown in Table 6.

These results show that convolutional neural networks out-

perform QRF and NN on all threefolds in cross validation.

Hyperparameters were selected based on these results, however,

and therefore we have also checked the CRPS on the indepen-

dent test set (Table 7). On the latter set, three different forecasts

were verified using everymethod.Eachof these forecasts is based

on the model trained on a different training set as used in the

cross validation, in order to obtain an estimate of the variation in

the results when different training data are used. A downside of

this procedure is that it may favor neural networks over quantile

regression forests, due to the fact that we use early stopping based

on the validation set in training the neural networks. Therefore a

final comparison ismade between theCNNs andQRFwhen they

are trained on the full training dataset (section 4c).

In Table 7 the results are shown for the root-mean-square

error, the mean absolute error, the CRPS, and the log score

based on the independent test set. These results show that

adding spatial information through convolutions reduces the

error of both the deterministic forecast (i.e., the mean and the

median of the probabilistic forecast for the RMSE and MAE,

respectively) and the probabilistic forecast. Furthermore we

can see that applying linear regression improves the scores of

the fully connected neural networks. However, it does not

improve the scores of QRF, except for the RMSE. In Figs. 2a–c

the Brier skill score relative to QRF is shown for the three

different training sets. From this figure it is clear that con-

volutional neural networks are more skillful than the other

methods at higher wind speeds. For wind speeds above

18m s21 their performance becomes worse again; however, in

this range there is not enough data to draw any conclusions.

Figure 2 also shows that learning the residuals of linear re-

gression mainly helps to improve forecasts for higher wind

speeds, while for low wind speeds the results become worse for

both neural networks and random forests.

Figure 2d shows the probability integral transform (PIT)

diagram of all the methods. In this figure we can see a clear

difference between the models trained on the wind speed ob-

servations and models trained on the residuals of linear re-

gression forQRF and the fully connected neural networks. The

methods trained on the residuals lie closer to the diagonal,

implying that on average they make a better estimate of the

probabilities. It is surprising, however, that this does not hold

for the CNNs that are trained on residuals. For QRF and the

CNNs we see that the PIT curve lies under the diagonal, which

means that for these methods observations fall in the higher

quantiles of the estimated distribution more often than ex-

pected. This implies that the probability of higher wind speeds

is underestimated by these methods.

c. Verification results for models trained on the full
training dataset

We make a final comparison of QRF and the CNNs by

training the models on the entire training dataset; fully con-

nected neural networks are omitted since they showed poorer

performance in the results of the previous subsection. For the

convolutional neural networks the number of epochs was chosen

to be 2/3 of the average number of epochs that gave the best

results in cross validation, i.e., 6, 12, and 16 for CNN_LR_N0,

CNN_LR_KMN and CNN_LR, respectively. This choice en-

sures that the number of training steps is the same as in

section 4b. The results obtained for the CNNs are comparable,

in terms of CRPS (Table 8), to the case where they were

trained on only part of the training data (Table 7). We see in

Table 8 that the CNNs still outperform QRF. The BSS of the

CNNs, compared to QRF, is slightly lower, however, for wind

speeds between 12 and 16m s21 (cf. Figs. 3 and 2a–c).

Figure 3 shows the Brier skill scores of the models trained on

the full dataset with respect to both the station climatology

(left panel) and QRF (right panel). In this figure we include a

TABLE 6. Continuous ranked probability score of different

methods in cross validation, with boldface values indicating the

best scores. Fold 1, Fold 2, and Fold 3 refer to the verification fold

in cross validation (Table 2).

Method Fold 3 Fold 1 Fold 2

NN 0.824 0.898 0.914

NN_LR 0.828 0.865 0.889

QRF 0.814 0.861 0.888

QRF_LR 0.819 0.871 0.900

CNN_LR_KMN 0.794 0.830 0.861

CNN_LR_N0 0.772 0.806 0.848

CNN_LR 0.769 0.810 0.839

TABLE 7. Results on the independent test set with boldface values indicating the best scores. Fold1, Fold2, and Fold3 refer to the fold that

is left out of the training data (Table 2). The standard deviation in the CRPS was estimated by block bootstrapping 1000 times.

RMSE MAE CRPS Log score

Fold3 Fold1 Fold2 Fold3 Fold1 Fold2 Fold3 Fold1 Fold2 Fold3 Fold1 Fold2

NN 2.457 2.331 2.391 1.144 1.117 1.124 0.820 6 0.012 0.799 6 0.011 0.809 6 0.011 4.42 4.36 4.37

NN_LR 2.204 2.126 2.176 1.113 1.089 1.100 0.793 6 0.012 0.779 6 0.011 0.786 6 0.012 3.99 3.98 3.98

QRF 2.244 2.220 2.245 1.080 1.076 1.085 0.782 6 0.012 0.776 6 0.012 0.779 6 0.012 4.03 4.02 4.02

QRF_LR 2.157 2.151 2.154 1.089 1.090 1.087 0.780 6 0.012 0.781 6 0.012 0.780 6 0.012 4.05 4.04 4.04

CNN_LR_KMN 1.968 1.886 1.922 1.056 1.046 1.053 0.752 6 0.011 0.744 6 0.011 0.748 6 0.011 3.96 3.97 3.95

CNN_LR_N0 1.818 1.861 2.117 1.012 1.029 1.088 0.722 6 0.011 0.732 6 0.011 0.770 6 0.013 3.90 3.92 3.96

CNN_LR 1.851 1.814 1.889 1.014 1.004 1.032 0.724 6 0.011 0.718 6 0.011 0.733 6 0.011 3.91 3.91 3.92
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bootstrap estimate of the standard deviation, obtained by

block bootstrapping 1000 times, i.e., by drawing data from all

stations of a single date at once because of spatial correlation.

From this figure it is clear that the CNNs perform better than

QRF for higher wind speeds (;11–15m s21). Furthermore, it is

clear that for wind speeds above 15m s21 the uncertainty in the

Brier skill scores is much larger than the difference in Brier

skill scores between the methods.

Figure 4 shows reliability diagrams for thresholds of 5, 10,

and 15m s21. Here we can see that for 5m s21 the forecasts of

QRF are better calibrated, but both the CNNs and QRF_LR

forecasts are somewhat sharper. For 10m s21 the QRF fore-

casts are still better calibrated, but they give less often a high

probability of exceeding this threshold and are slightly less

sharp. Finally, for 15m s21 we can see that QRF is significantly

worse at predicting these events when they are likely; both the

calibration and sharpness are worse than for CNNs.

d. Geographic differences in CRPSS

Figure 5 shows the difference in continuous ranked proba-

bility skill score (CRPSS), with respect to the climatology,

between QRF and the CNNs for the different stations. This

shows that CNN is the most skillful method for almost all

stations, although the CRPSS difference between the methods

is relatively small for most stations.

By visualizing the activations of the convolutional layers for

the CNNs one can observe that this method is able to detect the

Dutch coastline [see Veldkamp (2020) for details]. Based on this

observation,we could hypothesize that theCNNsaremore skillful

for higher wind speeds due to a higher skill for coastal stations.

Figure 6 shows the CRPSS of CNN_LRwith respect toQRF on a

map of the Netherlands. We cannot see a clear indication of

higher CRPSS values of CNN_LR for coastal stations, so that the

higher skill of the CNNs is not fully explained by its ability to

differentiate between coastal and noncoastal stations.

5. Conclusions and discussion

We have shown that for 148 h wind speed forecasts con-

volutional neural networks can be of added value for statistical

FIG. 2. (a)–(c) Brier skill scores of the different methods relative to QRF, for predictions trained on three

different training sets (see Table 2). (d) PIT diagram for the forecasts of the different methods for the three cross-

validation sets combined.

TABLE 8. The root-mean-square error, mean absolute error,

continuous ranked probability score, and log score of different

methods for the independent test set, trained on the full training

dataset (Table 2) with boldface values indicating the best scores.

Method RMSE MAE CRPS Log score

Climatology 2.676 2.033 1.445 ‘
Linear Regression 2.399 1.170 — —

QRF 2.217 1.077 0.776 4.02

QRF_LR 2.124 1.081 0.774 4.03

CNN_LR_KMN 1.905 1.034 0.740 3.96

CNN_LR_N0 1.891 1.037 0.735 3.91

CNN_LR 1.889 1.033 0.731 3.93
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postprocessing. Convolutional neural networks outperform

quantile regression forests and fully connected neural net-

works, in terms of CRPS, in all the three cross-validation sets,

and in terms of CRPS, log score, MAE and RMSE in the final

independent test set. Besides, we have compared the CNNs

using three different density estimation methods [quantized

softmax (QS), kernel mixture networks, and fitting a truncated

normal distribution], and found the probabilistic forecasts

based on the QS method to be best.

The Brier skill score shows that CNNs outperform QRF for

higher wind speeds that are more important in weather fore-

casting because of their potential impact on society. In con-

trast, for wind speeds up to ;10m s21 QRF has both a better

Brier skill score and is better calibrated. The poor performance

of the CNNs with respect to QRF in the lower wind speed

range could be explained as an effect of using ordinary least

squares regression. The latter assumes errors that are sym-

metrically distributed around zero and therefore does not

perform well for low wind speeds, as this method implicitly

assumes that negative wind speeds are possible. This could be

mitigated by performing a variant of ordinary least squares that

excludes this possibility. For wind speeds above 15m s21 the

uncertainty in the Brier skill score grows very fast and con-

clusions for this range can therefore not be drawn. This is

mainly caused by a lack of cases with high wind speeds in the

available dataset. The test set, for example, only includes a

single measurement above 19m s21. An obvious solution for

this would be to obtain more data by obtaining reforecast data

for more years, assuming these years contain more climato-

logically extreme wind speeds. A less costly solution to this

FIG. 3. Brier skill scores relative to the (left) station climatology and (right) QRF, for models trained on the full

training dataset. The error bars represent the estimates of the standard deviation obtained by block bootstrapping

the test data 1000 times. Block bootstrapping was used to ensure that spatial correlation between stations is ac-

counted for.

FIG. 4. Reliability diagram for the CNNs and QRF, trained on the full training dataset, for thresholds of (left) 5, (center) 10, and (right)

15m s21. The exceedance frequencies for these thresholds in our test dataset are 49.2%, 9.3%, and 1.0%, respectively.
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problem could be to reforecast days in the past with more ex-

treme weather, such as days on which weather warnings were

issued, instead of reforecasting full years only, as is cur-

rently done.

Although convolutional neural networks proved to be most

skillful in our study, a drawback of this method is that it is

difficult to interpret for a meteorologist. In the appendix of

Veldkamp (2020) one can find a few figures showing the acti-

vations in the convolutional layers of the network for a number

of days. These do not give a clear indication of which input

features are important, although the coast line can be clearly

seen. In future research it would be a good addition to use

explainability methods, such as layer-wise relevance propaga-

tion (Bach et al. 2015), to visualize which parts of an input

image are most relevant for the prediction made by a con-

volutional neural network. This could be especially useful

when fitting a truncated normal distribution, as in this case it

may be possible to distinguish between features that are rele-

vant in correcting the bias and features that are relevant in

predicting the spread. In an ideal case, identifying features that

are able to correct a large bias or reduce the spread might even

help in identifying shortcomings in the NWP model.

Another drawback of convolutional neural networks is the

fact that they require a large amount of training data and are

therefore probably less suited for local (i.e., for each station

separately) postprocessing. In this study we focused on training

global models (i.e., for all stations at once) without using sta-

tion specific information apart from model surface roughness.

This has the benefit that there is more training data available

and that the resulting models can be used to postprocess the

weather forecast for all grid cells instead of only for specific

stations. For countries with mountainous areas topographical

predictors should be added in such a global model framework

(e.g., Rasp and Lerch 2018).

At the time this study was conducted not enough data was

available from the KNMI HARMONIE-AROME ensemble

forecasts. As many current statistical postprocessing studies

are based on ensemble output, an important next step would

therefore be to investigate if convolutional neural networks

also add skill when potential predictors are taken from en-

semble forecasts.
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APPENDIX

Conditional Density Estimation

In this appendix we briefly discuss the three methods that

have been used to estimate the conditional probability density

function of the neural networks.

a. Quantized softmax

Quantized softmax (Oord et al. 2016) is a simple method to

obtain an estimate for the conditional density using neural

networks. The goal of the method is to approximate the con-

ditional density by a histogram with m predetermined bins

A1, . . . , Am. For this purpose we construct a neural network

(with a linear output layer) with m output neurons and apply

the softmax function:

Softmax(z)
i
5

ezi

�
m

j51

ezj
, i5 1, . . . ,m

FIG. 5. CRPSS with respect to station climatology of different

methods based on the models trained on the full training dataset.

Station numbers are explained in Table 1.
FIG. 6. CRPSS of CNN_LR with respect to QRF. Here positive

values imply that CNN_LR is more skillful than QRF.
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to the output of the last layer. We can turn the resulting output

w(x) (associated with an input datum x) into an estimate p̂(yjx)
for the conditional probability density function by setting:

p̂(yjx)5�
m

i51

1

Vol(A
i
)
1
Ai
(y)w(x)

i
,

where Vol(Ai) is the size of bin Ai. The set of probability

densities that can be approximated well by this procedure is

controlled by the choice of the bins Ai.

b. Kernel mixture networks

The second method used in this paper for conditional

density estimation is the kernel mixture network (KMN;

Ambrogioni et al. 2017). We describe here directly the variant

of KMNwithGaussian kernels, which is used in our study. This

variant is very similar to a mixture density network (Bishop

1994). The kernel mixture network estimates the conditional

density by a mixture of Gaussians in which the means are fixed

and the weights and variances are learned by a neural network.

Let Y 5 {y1,. . . , ym} be a subset of the label space containing

the kernel centers. Let f(y)5 (1/
ffiffiffiffiffiffi
2p

p
)e2y2/2 denote the stan-

dard Gaussian density. We construct a neural network (with a

linear output layer) with 2m output neurons. To the first m

outputs we apply the softmax function and denote the resulting

output for a given input datum x by w(x). The entries of w(x)

are the weights in the mixture of Gaussians. To each of the last

m outputs of the network we apply the softplus function:

Softplus(t)5 log(11 et)

and let s(x) denote resulting output. The entries of s(x) are the

standard deviations in the mixture of Gaussians. The softplus

function ensures that the entries of s(x) are positive and pre-

vents them from becoming too small, which could cause nu-

merical instability. Together, w(x) and s(x) yield an estimate

of the conditional probability density function given by

p̂(yjx)5 �
m

i51

w(x)
i

s(x)
i

f

�
y2 y

i

s(x)
i

�
.

In the above we could also learn the centers of the network: this

procedure is exactly a mixture density network Bishop (1994),

which has not been tested in this study. In Ambrogioni et al.

(2017), the negative log-likelihood is used for training the

network. It is also possible to use the CRPS for training, as a

closed form expression is known for the CRPS of a mixture of

Gaussians (Grimit et al. 2006): if F is the cumulative distribution

function of a mixture of m Gaussians with weights w1, . . . , wm,

means m1, . . . , mm, and variances s2
1, . . . , s

2
m, then

CRPS(F , y)5�
m

i51

w
i
A(y2m

i
,s2

i )

2
1

2
�
m

i51
�
m

j51

w
i
w

j
A(m

i
2m

j
,s2

i 1s2
j ),

where

A(m,s2)5m
h
2F
�m
s

�
21
i
1 2sf

�m
s

�

and F is the cumulative distribution function of a standard

Gaussian. To our knowledge the CRPS has not been used

before for kernel mixture networks or quantized softmax. It

has, however, been applied with success to train mixture den-

sity networks in D’Isanto and Polsterer (2018) and Rasp and

Lerch (2018).

c. Fitting a truncated normal distribution

The third method considered in this study uses a neural

network to learn the parameters of the normal distribution that

has been truncated at zero. As was discussed in the introduc-

tion, this distribution has been successfully used for post-

processing of wind speed forecasts. As the basis for the method

we construct a neural network with two output neurons. Let

m(x) denote the first output and let s(x) be the result of

applying the softplus function to the second output. The

corresponding estimate of the conditional probability den-

sity function is then given by

p̂(yjx)5
1

s(x)
f

y2m(x)

s(x)

� �

12F 2
m(x)

s(x)

� � , if y. 0,

and p̂(yjx)5 0 else. We can again use the log-likelihood and

CRPS for training. If F denotes the cumulative distribution

function of a normal distribution truncated at zero, then the

CRPS is given by

CRPS(F , y)5
s

p2

"
sp(2F(s)1p2 2)12pf(s)2

1ffiffiffiffi
p

p F

 
m
ffiffiffi
2

p

s

!#
,

where p 5 F(m/s) and s 5 (y 2 m)/s (Thorarinsdottir and

Gneiting 2010).
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