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WEAK-TYPE INTERPOLATION FOR NONCOMMUTATIVE

MAXIMAL OPERATORS

SJOERD DIRKSEN

Abstract. We prove a Boyd-type interpolation result for noncommutative
maximal operators of restricted weak type. Our result positively answers an
open question in [1]. As a special case, we find a restricted weak type version of
the noncommutative Marcinkiewicz interpolation theorem, due to Junge and
Xu, with interpolation constant of optimal order.

1. Introduction

To any sequence (Tn)n≥1 of sublinear operators on a space of measurable func-
tions one can associate the operator

Tf(t) =
(

sup
n≥1

Tn

)

(f)(t) := sup
n≥1

|Tnf(t)|.

A function of the form Tf is usually called a maximal function. We shall refer
to T as the maximal operator of the sequence (Tn)n≥1. These operators occur
naturally in many situations in harmonic analysis and probability theory. One
is often interested to show that a maximal operator defines a bounded sublinear
operator on an Lp-space or, more generally, on a Banach function space. For
instance, the celebrated Doob maximal inequality states that for any increasing
sequence of conditional expectations and any 1 < p ≤ ∞,

(1)
∥

∥

∥
sup
n≥1

En(f)
∥

∥

∥

Lp
≤ cp‖f‖Lp.

A fruitful strategy to prove maximal inequalities with sharp constants is to first
prove weak type estimates for the maximal operator. Let (A,Σ, ν) be a σ-finite
measure space. Recall that a sublinear operator T is of Marcinkiewicz weak type
(or M-weak type) (p, p) if for any f ∈ Lp(A),

(2) [ν(|Tf | > v)]
1
p ≤ Cv−1‖f‖Lp(A) (v > 0),

If T is bounded in Lp then T is said to be of strong type (p, p). To prove (1) one
may first show that supn≥1 En is of M-weak type (1, 1) and strong type (∞,∞)
and then apply Marcinkiewicz’ interpolation theorem. This yields a constant cp of
optimal order O((p− 1)−1) as p ↓ 1. More generally, Boyd’s interpolation theorem
implies that supn≥1 En is bounded on any symmetric Banach function space with
lower Boyd index pE > 1. Weak type interpolation has proven effective for a host
of maximal inequalities (see e.g. [2, 15] for examples).

In this paper we deal with interpolation questions for maximal operators of
weak type which correspond to a sequence (Tn)n≥1 of positive, sublinear operators
on noncommutative symmetric spaces associated with a semi-finite von Neumann
algebra M. In this setting, the maximal operator supn≥1 Tn is a fictitious object:
for example, if x ∈ Lp(M)+ then supn≥1 Tn(x) may not exist in terms of the
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standard ordering of Lp(M)+. Indeed, even for two positive semi-definite n × n
matrices x, y there may not be a matrix z satisfying

〈zξ, ξ〉 = max{〈xξ, ξ〉, 〈yξ, ξ〉} (ξ ∈ C
n).

Even though supn≥1 Tn(x) is not well-defined as an operator, one can still make
sense of the quantity ‘‖ supn≥1 Tn(x)‖p’ by viewing the sequence (Tn(x))n≥1 as
an element of the noncommutative vector-valued space Lp(M; l∞), as introduced
by Pisier [14]. With this point of view, Junge [10] showed that one can obtain a
noncommutative extension of (1). He proved that for any increasing sequence of
conditional expectations in M and 1 < p ≤ ∞,

(3) ‖(En(x))n≥1‖Lp(M;l∞) ≤ Cp‖x‖Lp(M).

More recently, Junge and Xu [12] proved a Marcinkiewicz interpolation theorem for
noncommutative maximal operators (see Theorem 3.3 below). This result allows
one to prove (3) elegantly by interpolating between the M-weak type (1, 1)-maximal
inequality for conditional expectations obtained by Cuculescu [5] and the trivial
case p = ∞. This approach yields a constant Cp of order O((p − 1)−2) when
p ↓ 1, which is known to be optimal [11]. The difference between the optimal order
of the constants in the classical and noncommutative Doob maximal inequalities
underlines the fact that, in general, the extension of maximal inequalities to the
noncommutative setting requires nontrivial new ideas.

The purpose of the present paper is to prove interpolation results for noncommu-
tative maximal operators of restricted weak type. In the classical case, this means
that (2) is only required to hold for indicator functions f = χA, where A is any set
of finite measure. Stein and Weiss [16] showed that Marcinkiewicz’ interpolation
theorem remains valid under this relaxed notion of weak type. This extension has
proven especially useful for interpolation problems in harmonic analysis, where the
weak-type condition (2) is typically hard to verify (see e.g. [2, 16]). We expect
that the results proved in this paper will be similarly useful in a noncommutative
context.

The main result of this paper is the following Boyd-type interpolation theorem,
see also Theorem 5.2 for a slightly more precise statement. Any unexplained ter-
minology can be found in Sections 2 and 3.

Theorem 1.1. Let 1 ≤ p < q ≤ ∞, let M,N be semi-finite von Neumann algebras
and let E be a fully symmetric Banach function space on R+ with Boyd indices
pE ≤ qE . Suppose that (Tα)α∈A is a net of order preserving, sublinear maps which is
of restricted weak types (p, p) and (q, q). If p < p′ < pE and either qE < q′ < q < ∞
or q = ∞, then for any x ∈ E(M)+,

(4) ‖(Tα(x))α∈A‖E(N ;l∞) ≤ Cp,p′,q,q′‖Sp′,q′‖E→E ‖x‖E(M),

where Sp′,q′ is Calderón’s operator and Cp,p′,q,q′ is of order O((p′ − p)−1) as p′ ↓ p
and of order O((q − q′)−1) as q′ ↑ q.

Theorem 1.1 unifies and extends two main interpolation results for noncommu-
tative maximal operators in the literature. Firstly, Bekjan, Chen and Osȩkowski [1]
proved a special case of our result for maximal operators of M-weak type (p, p) and
strong type (∞,∞), with a larger, suboptimal interpolation constant. Secondly,
specialized to E = Lr for p < r < q, our result extends the earlier mentioned
interpolation theorem in [12] to noncommutative maximal operators of restricted
weak type, see the discussion following Corollary 5.3 for a detailed comparison. In
this case, the constant in (4) is of order O((r − p)−2) as r ↓ p and O((q − r)−2) as
r ↑ q. In particular, if p = 1 and q = ∞ then Theorem 1.1 implies (3) with constant
of the best possible order. In this sense, the constant in (4) is optimal.
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In Section 5 we illustrate the use of Theorem 1.1 by proving Doob’s maximal
inequality in noncommutative symmetric Banach function spaces under minimal
conditions on the underlying function space, see Corollary 5.4. In addition, we
provide an interpolation result for the generalized moments of noncommutative
maximal operators (Theorem 5.5), which resolves an open question in [1].

2. Preliminaries

We start by briefly recalling some relevant terminology. Let S(R+) be the linear
space of all measurable, a.e. finite functions g on R+ which satisfy λ(|g| > v) < ∞
for some v > 0, where λ is Lebesgue measure on R+. For any g ∈ S(R+) let µ(g)
denote its decreasing rearrangement

µt(g) = inf{v > 0 : λ(|g| > v) ≤ t} (t ≥ 0).

A normed linear subspace E of S(R+) is called a symmetric Banach function space
if it is complete and if for any g ∈ S(R+) and h ∈ E satisfying µ(g) ≤ µ(h), we
have g ∈ E and ‖g‖E ≤ ‖h‖E. Let H be the Hardy-Littlewood operator

Hg(t) =
1

t

∫ t

0

µt(g) dt (g ∈ S(R+)).

For g, h ∈ S(R+) we write g ≺≺ h if Hg ≤ Hh. We say that a symmetric Banach
function space E is fully symmetric if for any g ∈ S(R+) and h ∈ E satisfying
g ≺≺ h, we have g ∈ E and ‖g‖E ≤ ‖h‖E.

Fix a von Neumann algebra M acting on a Hilbert space (H, 〈·, ·〉), which is
equipped with a normal, semi-finite, faithful trace τ . Let S(τ) denote the linear
space of all τ -measurable operators and let S(τ)+ be its positive cone. For any
x ∈ S(τ) its decreasing rearrangement is defined by

µt(x) = inf{v > 0 : τ(λ(v,∞)(x)) ≤ t} (t ≥ 0),

where λ(x) denotes the spectral measure of |x|. Suppose that a =
∑n

i=1 αiei, with
α1 > α2 > . . . > αn > 0 and e1, . . . , en projections in M satisfying eiej = 0 for
i 6= j and τ(ei) < ∞ for 1 ≤ i ≤ n. As in the commutative case (see [2]), it is
elementary to show that

(5) µ(a) =

n
∑

j=1

αjχ[ρj−1,ρj),

where ρ0 = 0, ρj =
∑j

i=1 τ(pi), j = 1, . . . , n. We will also use the submajorization
inequality (see [8], Theorem 4.4)

(6) µ(x+ y) ≺≺ µ(x) + µ(y) (x, y ∈ S(τ)).

If E is a symmetric Banach function space on R+, then we define the associated
noncommutative symmetric space

E(M) := {x ∈ S(τ) : ‖µ(x)‖E < ∞}.

The space E(M) is a Banach space under the norm ‖x‖E(M) := ‖µ(x)‖E . For
E = Lp this construction yields the usual noncommutative Lp-spaces.

For any directed set A we let E(M; l∞(A))+ denote the set of all nets x =
(xα)α∈A in E(M)+ for which there exists an a ∈ E(M)+ such that xα ≤ a for all
α ∈ A. For these elements we set

‖x‖E(M;l∞) := inf{‖a‖E(M) : xα ≤ a for all α ∈ A}.

One may show that, up to a constant depending only on E, this expression coin-
cides with the norm of the noncommutative symmetric l∞-valued space E(M; l∞)
introduced in [6].
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Let us finally fix the following notation. For any set A we let χA be its indicator.
Also, we write u .α v if u ≤ cαv for some constant cα depending only on α.

3. Three flavors of weak type

Before defining the different types of maximal operators, let us recall the classical
notions of weak type and restricted weak type for a sublinear operator T on S(R+).
For 0 < p, q ≤ ∞ let Lp,q denote the Lorentz spaces on R+, i.e., the subspace of all
g in S(R+) such that

‖g‖Lp,q =

{

(
∫∞

0
t
q

p
−1µt(g)

q dt)
1
q (0 < q < ∞),

sup0<t<∞ t
1
pµt(g) (q = ∞),

is finite. Given 0 < p < ∞, we say that T is of weak type (p, p) if there is a constant
Cp > 0 such that for any g ∈ Lp,1(R+),

(7) λ(|Tg| > v)
1
p ≤ Cpv

−1‖g‖Lp,1(R+).

An operator T is of restricted weak type (p, p) (as introduced by Stein and Weiss
in [16]) if (7) holds only for indicators g = χA, where A is any measurable set of
finite measure. As is well known, for a given 0 < p < ∞,

strong type ⇒ M−weak type ⇒ weak type ⇒ restricted weak type

and the reverse implications do not hold in general.
For our discussion below we recall the following characterization of weak type

operators due to Calderón. For 0 < p < q < ∞ we define Calderón’s operator Sp,q

as the linear operator

Sp,qg(t) =
1
p t

− 1
p

∫ t

0

s
1
p g(s)

ds

s
+ 1

q t
− 1

q

∫ ∞

t

s
1
q g(s)

ds

s
(t > 0, g ∈ S(R+))

and for 0 < p < ∞ we set

Sp,∞g(t) = 1
p t

− 1
p

∫ t

0

s
1
p g(s)

ds

s
(t > 0, g ∈ S(R+)).

In [4] Calderón proved that a sublinear operator T on S(R+) is simultaneously of
weak types (p, p) and (q, q) if and only if it satisfies

(8) µt(Tg) .p,q

(

Sp,qµ(g)
)

(t) (for all g ∈ S(R+)).

In fact, Calderón’s proof shows that T is of restricted weak types (p, p) and (q, q)
if and only if it satisfies

(9) µt(TχA) .p,q

(

Sp,qµ(χA)
)

(t),

for any measurable set A of finite measure.
We now extend these definitions to noncommutative maximal operators. Through-

out, let M and N be von Neumann algebras equipped with normal, semi-finite,
faithful traces τ and σ, respectively. For any projection e we set e⊥ := 1− e. Also,
if f is another projection, then we let e ∨ f and e ∧ f denote the supremum and
infimum, respectively, of e and f .

Definition 3.1. For any 0 < r < ∞ we say that a net (Tα)α∈A of maps Tα :
Lr(M)+ → S(σ)+ is of M-weak type (r, r) if there is a constant Cr > 0 such that

for any x ∈ Lr(M)+ and any θ > 0, there exists a projection e(θ) = e
(θ)
x satisfying

(10) σ((e(θ))⊥) ≤ (Crθ
−1)r‖x‖rLr(M) and e(θ)Tα(x)e

(θ) ≤ θ, for all α ∈ A.
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A net (Tα)α∈A of maps Tα : Lr,1(M)+ → S(σ)+ is of restricted weak type (r, r) if
there is a constant Cr > 0 such that for any projection f in Lr,1(M)+ and any

θ > 0, there is a projection e(θ) = e
(θ)
f such that

(11) σ((e(θ))⊥) ≤ (Crθ
−1)rτ(f) and e(θ)Tα(f)e

(θ) ≤ θ, for all α ∈ A.

A net (Tα)α∈A of maps Tα : M+ → N+ is of restricted weak type (∞,∞) if there
is a constant C∞ > 0 such that for any projection f in M,

sup
α∈A

‖Tα(f)‖∞ ≤ C∞.

A net (Tα)α∈A of maps Tα : Lr(M)+ → S(σ)+ is of strong type (r, r) if

‖(Tα(x))α∈A‖Lr(N ;l∞) ≤ Cr‖x‖Lr(M).

In the commutative case, a sequence (Tn)n≥1 is of restricted weak type (r, r)
in the sense of Definition 3.1 if supn≥1 Tn is of restricted weak type (r, r) in the

classical sense. Indeed, in this case one may take e(θ) = χ[0,θ](supn≥1 Tn(f)). Thus,
loosely speaking, (11) states that the fictitious noncommutative maximal operator
‘supα Tα’ is of restricted weak type (r, r).

Remark 3.2. In the noncommutative literature (e.g. in [1, 12]), it has become
customary to refer to property (10) as weak type, instead of M-weak type. The
terminology used here is in accordance with the classical literature on interpolation
theory.

We will often assume that the maps Tα satisfy additional properties. We call a
map T : S(τ)+ → S(σ)+ sublinear if

T (cx+ dy) ≤ cT (x) + dT (y) (c, d ∈ R+, x, y ∈ S(τ)+)

and order preserving if T (x) ≤ T (y) whenever x ≤ y in S(τ)+.
Using real interpolation and duality techniques Junge and Xu proved the follow-

ing version of Marcinkiewicz’ interpolation theorem for noncommutative maximal
operators.

Theorem 3.3. ([12], Theorem 3.1) Let 1 ≤ p < q ≤ ∞. If a net (Tα)α∈A of
positive, subadditive maps (Tα) is of M-weak type (p, p) and strong type (q, q), then
for any p < r < q,

(12) ‖(Tα(x))α∈A‖Lr(N ;l∞) . C1−θ
p Cθ

q

( rp

r − p

)2

‖x‖Lr(M),

where θ is chosen such that 1/r = (1− θ)/p+ θ/q.

In Corollary 5.3 below we will obtain an extension of this result to maximal
operators of restricted weak types (p, p) and (q, q).

4. A Calderón-type bound for maximal operators of weak type

Our starting point for the proof of Theorem 1.1 is the characterization (9). A
first thought is to attempt to establish the following direct generalization: if (Tα)
is of restricted weak types (p, p) and (q, q) then one may try to find, for every
projection f , a positive measurable operator a satisfying Tα(f) ≤ a for all α and

µt(a) .p,q

(

Sp,qµ(f)
)

(t) (t > 0).

Unfortunately, if N is noncommutative then this assertion is in general false. In-
deed, it would imply that the noncommutative Doob maximal inequality (3) holds
with constant of order O((p − 1)−1) for p ↓ 1, whereas the order O((p − 1)−2) is
known to be optimal [11]. However, we can find a bound of the form

µt(a) ≤ Cp,p′,q,q′
(

Sp′,q′µ(f)
)

(t),
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where p < p′ < q′ < q and Cp,p′,q,q′ is singular as p
′ ↓ p and q′ ↑ q.

For 0 < p, q < ∞ we introduce the constants

κp,q = 2
1
p max{Cp(1− 2−p)−

1
p , Cq(1− 2−q)−

1
q },

κp,∞ = max{Cp(1− 2−p)−
1
p , C∞},

(13)

where Cp and Cq are the restricted weak type (p, p) and (q, q) constants in (11).
If p, q ≥ 1 then κp,q ≤ 4max{Cp, Cq} and κp,∞ ≤ 2max{Cp, C∞}. Also, for
p < p′ < q′ < q < ∞ we set

γp,p′ =
∑

k≤0

2
(k−1)(1− p

p′
)
, δq,q′ =

∑

k>0

2
(k−1)(1− q

q′
)
.

Note that

γp,p′ = O((p′ − p)−1) as p′ ↓ p, δq,q′ = O((q − q′)−1) as q′ ↑ q.

Lemma 4.1. Fix 0 < p < q ≤ ∞. Let (Tα)α∈A be a net of positive maps which is
of restricted weak types (p, p) and (q, q). Let p < p′ < q′ < q. If q < ∞ and f is a
projection in Lp,1(M)+ + Lq,1(M)+, then there exists a constant Kp,p′,q,q′ and an
a ∈ S(σ)+ such that

(14) Tα(f) ≤ a (α ∈ A)

and

(15) µt(a) ≤ κp,qKp,p′,q,q′ Sp′,q′µ(f)(t) (t > 0).

Moreover, the constant Kp,p′,q,q′ satisfies

Kp,p′,q,q′ ≤ 4max{γp,p′ , δq,q′}.(16)

If q = ∞, then for every projection f ∈ M+ there exists a constant Kp,p′,∞,∞ ≤
4γp,p′ and an a ∈ N+ satisfying (14) and

(17) µt(a) ≤ κp,∞Kp,p′,∞,∞ Sp′,∞µ(f)(t) (t > 0).

Proof. We use the functions θp,q : R+ → R+, which for 0 < p, q ≤ ∞ are defined
by

θp,q(t) = t−
1
pχ[1,∞)(t) + t−

1
q χ(0,1)(t) (t > 0)

and for 0 < p < ∞ given by

θp,∞(t) = t−
1
pχ[1,∞)(t) + χ(0,1)(t) (t > 0).

We first prove the result for q < ∞. In this case τ(f) < ∞. Using the change of
variable s = t

u , we find

Sp,qµ(f)(t) =

∫ 1

0

µ t
u
(f)1qu

−1− 1
q du+

∫ ∞

1

µ t
u
(f) 1pu

−1− 1
p du(18)

=

∫ ∞

0

χ(0,τ(f)]

( t

u

)

(−θ′p,q(u))du

= θp,q

( t

τ(f)

)

.

Thus, we need to find an a ∈ S(σ)+ satisfying (14) and

(19) µt(a) ≤ κp,qKp,p′,q,q′θp′,q′

( t

τ(f)

)

(t > 0).



WEAK-TYPE INTERPOLATION FOR NONCOMMUTATIVE MAXIMAL OPERATORS 7

Let us first assume that κp,q ≤ 1. For any θ > 1 fix a projection e
(θ)
q satisfying (11)

for r = q and for 0 < θ ≤ 1 we pick e
(θ)
p such that (11) holds for r = p. For every

k ∈ Z we define

ek =
(

∧

l≥k

e(2
l)

q

)

(k > 0), ek =
(

∧

0≥l≥k

e(2
l)

p

)

∧
(

∧

l≥0

e(2
l)

q

)

(k ≤ 0)

and we set

dk = ek − ek−1.

Observe that (ek)k∈Z is increasing, and therefore dkdl = 0 for k 6= l and d2k = dk.

Note that ek ≤ e
(2k)
q for k > 0 and ek ≤ e

(2k)
p for k ≤ 0, hence ekTα(x)ek ≤ 2k for

all k. If k > 0 then, using κp,q ≤ 1,

σ(e⊥k ) ≤
∑

l≥k

σ((e(2
l)

q )⊥)(20)

≤
∑

l≥k

Cq
q 2

−lqτ(f) ≤ 2−kqCq
q

1

1− 2−q
τ(f) ≤ 2−kqτ(f),

and in particular it follows that ek ↑ 1 for k → ∞. Moreover, if k ≤ 0, then again
using κp,q ≤ 1,

σ(e⊥k ) ≤
∑

0≥l≥k

σ((e(2
l)

p )⊥) +
∑

l≥0

σ((e(2
l)

q )⊥)(21)

≤ 2−kp(Cp
p (1 − 2−p)−1 + Cq

q (1− 2−q)−1)τ(f) ≤ 2−kpτ(f).

Finally, we set e−∞ := ∧k≤0 ek. Since ek ↑ 1,

(22) e0 =
∑

k≤0

dk + e−∞, e⊥0 =
∑

k>0

dk.

Set Kp,p′,q,q′ = 4max{γp,p′ , δq,q′} and let (aN )N≥1 be the sequence in M+ given
by

aN = Kp,p′,q,q′

(

∑

−∞<k≤0

2(k−1)p/p′

dk +
∑

0<k≤N

2(k−1)q/q′dk

)

.

As our candidate for the sought operator a ∈ S(σ)+ we would like to define a :=
limN→∞ aN . To show that this limit exists in S(σ), we will first show that the
estimate (19) is satisfied for a = aN , uniformly in N . Since the coefficients of the
dk are increasing, we find using (5) that

µ(aN ) = Kp,p′,q,q′

(

∑

k≤0

2(k−1)p/p′

χ[σ(eN−ek),σ(eN−ek−1))

+
∑

0<k≤N−1

2(k−1)q/q′χ[σ(eN−ek),σ(eN−ek−1)) + 2(N−1)q/q′χ[0,σ(eN−eN−1))

)

≤ Kp,p′,q,q′

(

∑

k≤0

2(k−1)p/p′

χ[σ(1−ek),σ(1−ek−1))

+
∑

0<k≤N−1

2(k−1)q/q′χ[σ(1−ek),σ(1−ek−1)) + 2(N−1)q/q′χ[0,σ(1−eN−1))

)

and by applying (20) and (21) it follows that

µ(aN ) ≤ Kp,p′,q,q′

(

∑

k≤0

2(k−1)p/p′

χ[2−kpτ(f),2−(k−1)pτ(f))

+
∑

0<k<N

2(k−1)q/q′χ[2−kqτ(f),2−(k−1)qτ(f)) + 2(N−1)q/q′χ[0,2−(N−1)qτ(f))

)

.
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If k ≤ 0 and 2−kpτ(f) ≤ t < 2−(k−1)pτ(f), then

2k−1 <
( t

τ(f)

)− 1
p

and therefore

2(k−1)p/p′

<
( t

τ(f)

)− 1
p′

For all k > 0 and 2−kqτ(f) ≤ t < 2−(k−1)qτ(f) we find

2k−1 <
( t

τ(f)

)− 1
q

and so

2(k−1)q/q′ <
( t

τ(f)

)− 1
q′

.

We conclude that for any t > 0,

µt(aN ) ≤ Kp,p′,q,q′

(( t

τ(f)

)− 1
p′

χ[τ(f),∞)(t) +
( t

τ(f)

)− 1
q′

χ(0,τ(f))(t)
)

≤ Kp,p′,q,q′θp′,q′

( t

τ(f)

)

.

Since this inequality holds uniformly in N , we conclude that (aN )N≥1 is an increas-
ing sequence which is bounded in measure. Hence, by [13], Theorem 5.10, there
exists an a ∈ S(σ)+ such that aN ↑ a in S(σ)+. We claim that a has the asserted
properties. Since µ(aN ) ↑ µ(a) ([13], Proposition 6.5) it is clear that (19) holds.
Since Tα(f) ≥ 0, we know that (see e.g. [6], Lemma 5.9)

Tα(f) ≤ 2e0Tα(f)e0 + 2e⊥0 Tα(f)e
⊥
0 .

For any ξ in the domain D(a
1
2 ) of a

1
2 we have

‖a
1
2 ξ‖2 = lim

N→∞
〈aN ξ, ξ〉 = Kp,p′,q,q′

(

∑

k≤0

2(k−1)p/p′

〈dkξ, ξ〉+
∑

k>0

2(k−1)q/q′〈dkξ, ξ〉
)

.

Notice that e−∞Tα(f)e−∞ = e−∞ekTα(f)eke−∞ ≤ 2ke−∞ for all k ≤ 0 and there-
fore e−∞Tα(f)e−∞ = 0. Moreover,

‖e0Tα(f)e−∞‖∞ ≤ ‖e0Tα(f)e0‖
1
2
∞‖e−∞Tα(f)e−∞‖

1
2
∞ = 0.

Together with (22) this implies that any ξ ∈ D(a
1
2 ) satisfies

〈e0Tα(f)e0ξ, ξ〉 =
〈(

∑

k≤0

dk

)

Tα(f)
(

∑

l≤0

dk

)

ξ, ξ
〉

≤
∑

k,l≤0

‖dkTα(f)dl‖∞ ‖dkξ‖ ‖dlξ‖

≤
∑

k,l≤0

‖dkTα(f)dk‖
1
2
∞ ‖dlTα(f)dl‖

1
2
∞ ‖dkξ‖ ‖dlξ‖

=
(

∑

k≤0

‖dkTα(f)dk‖
1
2
∞ ‖dkξ‖

)2

.(23)

Since

‖dkTα(f)dk‖
1
2
∞ ≤ 2

k
2 = 21/22(k−1)p/2p′

2
(k−1)(1− p

p′
)/2

we find by applying the Cauchy-Schwarz inequality in (23),

〈e0Tα(f)e0ξ, ξ〉 ≤ 2γp,p′

∑

k≤0

2(k−1)p/p′

‖dkξ‖
2 =

〈

∑

k≤0

2γp,p′2(k−1)p/p′

dkξ, ξ
〉

.
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By similar reasoning,

〈e⊥0 Tα(f)e
⊥
0 ξ, ξ〉 ≤

〈

∑

k>0

2δq,q′2
(k−1)q/q′dkξ, ξ

〉

.

Putting these estimates together we conclude that ξ ∈ D(Tα(f)
1
2 ) and

〈Tα(f)ξ, ξ〉 ≤
∑

k≤0

4γp,p′2(k−1)p/p′

〈dkξ, ξ〉+
∑

k>0

4δq,q′2
(k−1)q/q′ 〈dkξ, ξ〉 ≤ 〈aξ, ξ〉,

which establishes (14) (cf. [13], Proposition 4.5). This completes the proof in the
case q < ∞ under the additional assumption κp,q ≤ 1.

In the general case, define T̃α(f) = κ−1
p,qTα(f). If e(θ) satisfies (11), then ẽ(θ) :=

e(κp,qθ) satisfies, for r = p, q,

τ((ẽ(θ))⊥) ≤ (Crκ
−1
p,qθ

−1)rτ(f) and ẽ(θ)T̃α(f)ẽ
(θ) ≤ θ, for all α ∈ A.

Therefore, κ̃p,q ≤ 1 and by the above we find an ã ∈ S(σ)+ such that T̃α(f) ≤ ã
for all α ∈ A and

µt(ã) ≤ Kp,p′,q,q′Sp,qµ(f)(t) (t > 0).

The operator a := κp,q ã has the desired properties.
Suppose now that q = ∞. Let us first note that if τ(f) = ∞, then µ(f) = χ[0,∞)

and we can take a = C∞1. If τ(f) < ∞, then we may assume that κp,∞ ≤ 1. For
k ≤ 0 we set

ek =
(

∧

0≥l≥k

e(2
l)

p

)

and let dk = ek − ek−1 as before. We define a ∈ N+ to be the operator

a = 2e⊥0 +
∑

k≤0

4γp,p′2(k−1)p/p′

dk.

By following the argument presented above one shows that a satisfies (14) and (15).
The details are left to the reader. �

Remark 4.2. If N is commutative, then one can show using essentially the same
arguments that a ∈ S(σ)+ defined by

a =
∑

k∈Z

2k+1dk

satisfies (14) and

µt(a) ≤ 4κp,qSp,qµ(f)(t) (t > 0).

In this case one uses that dkTα(f)dl = 0 whenever k 6= l.

In order to obtain interpolation results for noncommutative maximal operators,
we need to extend Lemma 4.1 from projections to arbitrary measurable operators.
We achieve this by representing a given measurable operator x as a series of weighted
projections and applying Lemma 4.1 term-wise.

Theorem 4.3. Fix 1 ≤ p < q ≤ ∞. Let (Tα)α∈A be a net of order preserving,
sublinear operators which is of restricted weak types (p, p) and (q, q). Let p < p′

and, if q < ∞, we fix q′ < q. Then for any x ∈ Lp′,1(M)++Lq′,1(M)+ there exists
an a ∈ S(σ)+ such that Tα(x) ≤ a for all α ∈ A and

(24) µ(a) ≺≺ 4κp,qKp,p′,q,q′ Sp′,q′µ(x).

If q = ∞, then for any x ∈ Lp′,1(M)+ +M+ there exists an a ∈ S(σ)+ satisfying
(24) with q′ = ∞ and Tα(x) ≤ a for all α ∈ A.
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Proof. Suppose first that x ∈ Lp′,1(M). Let λ(x) be the spectral measure of x.
For any k ∈ Z, define fk = λ(2k,∞)(x) and consider the dyadic discretization x̂ =
∑

j∈Z
2j+1λ(2j ,2j+1](x). Clearly, x ≤ x̂ ≤ 2x. By summation by parts,

x̂ =
∑

j∈Z

∑

k≤j

2kλ(2j ,2j+1](x) =
∑

k∈Z

∑

j≥k

2kλ(2j ,2j+1](x) =
∑

k∈Z

2kfk.

Also, by (5) and summation by parts

µ(x̂) =
∑

j∈Z

2j+1χ[τ(fj+1),τ(fj))

=
∑

j∈Z

∑

k≤j

(2k+1 − 2k)χ[τ(fj+1),τ(fj)) =
∑

k∈Z

2kχ[0,τ(fk)) =
∑

k∈Z

2kµ(fk).(25)

Let âk ∈ S(σ)+ be the operator obtained by applying Lemma 4.1 to fk. For N ≥ 1

define x̂N =
∑N

k=−N 2kfk and set aN =
∑N

k=−N 2kâk. By sublinearity of Tα,

Tα(x̂N ) ≤
N
∑

k=−N

2kTα(fk) ≤ aN .

By (6),

µ(aN ) ≺≺
N
∑

k=−N

2kµ(âk).

Using lemma 4.1, linearity of Sp′,q′ and (25) we find for any t > 0

N
∑

k=−N

2kµt(âk) ≤ κp,qKp,p′,q,q′

N
∑

k=−N

2kSp′,q′µ(fk)(t)

≤ κp,qKp,p′,q,q′ Sp′,q′µ(x̂)(t)

≤ 2κp,qKp,p′,q,q′ Sp′,q′µ(x)(t).

This shows in particular that (aN )N≥1 is increasing and bounded in measure.
Therefore, by [13], Theorem 5.10 there exists an a ∈ S(σ)+ such that aN ↑ a
in S(σ)+. Since µ(aN ) ↑ µ(a), we conclude by monotone convergence that (24)
holds. It is clear that Tα(x̂N ) ≤ a for all N ≥ 1. Note that Tα is of M-weak type
(p′, p′), with M-weak type constant bounded by Cp(p

′−1)−1, by the same argument
as in the commutative case ([2], Theorem 5.3). Therefore,

‖Tα(x̂)− Tα(x̂N )‖p′,∞ ≤ ‖Tα(x̂− x̂N )‖p′,∞ .p,p′ ‖x̂− x̂N‖p′,1 → 0,

as N → ∞ by dominated convergence. In particular, Tα(x̂N ) → Tα(x̂) in measure.
Since Tα is order preserving, we conclude that

(26) Tα(x) ≤ Tα(x̂) ≤ a.

The result follows analogously if x ∈ Lq′,1(M) if q′ < q < ∞.
Suppose now that x ∈ M+ and q = ∞. Let N∗ be such that 2N

∗

≤ ‖x‖∞ ≤
2N

∗+1 and define for all N ≥ 1 the operator aN =
∑

−N≤k≤N∗ 2kâk in N+. By the

argument above, the operator a = limN→∞ aN is well-defined in S(σ)+ and

µ(a) ≺≺ 2κp,∞Kp,p′,∞,∞ Sp′,∞µ(x)

Since Tα is sublinear and order preserving, we have for any N ≥ 1,

Tα(x̂) ≤ Tα

(

∑

k≤−N

2kfk

)

+

N∗

∑

k=−N+1

2kTα(fk)

≤ 2−N+1Tα(λ(0,∞)(x)) +
∑

k∈Z

2kTα(fk) ≤ 2−N+1C∞1+ a.



WEAK-TYPE INTERPOLATION FOR NONCOMMUTATIVE MAXIMAL OPERATORS 11

As this holds for all N ≥ 1, we conclude that again (26) holds.

Finally, let x = x1 + x2 with x1 ∈ Lp′,1(M)+ and x2 ∈ Lq′,1(M)+ (or x2 ∈ M+

if q = ∞) and let a1, a2 ∈ S(σ)+ be two operators verifying the asserted properties
for x1, x2. Set a = a1 + a2, then Tα(x) ≤ a and moreover,

µ(a) ≺≺ µ(a1) + µ(a2)

≺≺ 2κp,qKp,p′,q,q′ Sp′,q′(µ(x1) + µ(x2)) ≤ 4κp,qKp,p′,q,q′ Sp′,q′(µ(x)).

This concludes the proof. �

Remark 4.4. One cannot replace (24) in Theorem 4.3 by the stronger assertion

µ(a) ≤ 4κp,qKp,p′,q,q′ Sp′,q′µ(x).

Indeed, if N is commutative this would mean that

µ(a) .p,q Sp,qµ(x),

as Kp,p′,q,q′ is not singular for p′ ↓ p or q′ ↑ q in this case. In particular, by
Calderón’s characterization (8) this would imply that every maximal operator of
restricted weak types (1, 1) and (∞,∞) is in fact of weak types (1, 1) and (∞,∞).
However, this is not true (see e.g. [9] for a counterexample).

5. Interpolation of noncommutative maximal inequalities

To extract interpolation results from Theorem 4.3 we recall the fundamental
connection, due to Boyd [3], between Boyd’s indices and Calderón’s operators. The
Boyd indices of a symmetric Banach function space E on R+ are defined by

pE = lim
s→∞

log s

log ‖D1/s‖
and qE = lim

s↓0

log s

log ‖D1/s‖
,

where D1/s is the dilation operator (D1/sg)(t) = g(t/s), t ∈ R+.

Theorem 5.1. [3] If E is a symmetric Banach function space on R+, then the
following hold.

(a) If 1 ≤ p < q < ∞, then Sp,q is bounded on E if and only if p < pE ≤ qE < q.
(b) If 1 ≤ p < ∞, then Sp,∞ is bounded on E if and only if p < pE.

By combining Theorems 4.3 and 5.1 we obtain the following interpolation the-
orem, which extends [1], Theorem 5.4, as well as [6], Theorem 6.5, to a larger
class of noncommutative maximal operators. More importantly, we find a better
interpolation constant.

Theorem 5.2. Let 1 ≤ p < q ≤ ∞ and let E be a fully symmetric Banach
function space. Let (Tα)α∈A be a net of order preserving, sublinear maps which
is of restricted weak types (p, p) and (q, q). Let κp,q be the constant in (13) and
Kp,p′,q,q′ be the constant in (16). If p < p′ < pE and either qE < q′ < q < ∞ or
q = ∞, then for any x ∈ E(M)+,

(27) ‖(Tα(x))α∈A‖E(N ;l∞) ≤ 4κp,qKp,p′,q,q′‖Sp′,q′‖E→E ‖x‖E(M).

Proof. If x ∈ E(M)+ then x ∈ Lp′,1(M)+ + Lq′,1(M)+ if q < ∞ and x ∈

Lp′,1(M)+ + M+ if q = ∞ by the assumptions on pE and qE . Let a ∈ S(σ)+
be the operator given by Theorem 4.3. Since E is fully symmetric, it follows from
(24) and Theorem 5.1 that a ∈ E(M)+ and

‖a‖E(M) ≤ 4κp,qKp,p′,q,q′‖Sp′,q′µ(x)‖E ≤ 4κp,qKp,p′,q,q′‖Sp′,q′‖E→E ‖x‖E(M).

Thus, (Tα(x))α∈A is in E(N ; l∞) and (27) holds. �

The following Marcinkiewicz-type interpolation theorem for noncommutative
maximal operators is a special case of Theorem 5.2.
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Corollary 5.3. Fix 1 ≤ p < p′ < r < q′ < q ≤ ∞. If (Tα)α∈A is a net of order
preserving, sublinear maps which is simultaneously of restricted weak types (p, p)
and (q, q) with constants Cp and Cq, then for any x ∈ Lr(M)+,

‖(Tα(x))α∈A‖Lr(N ;l∞) . max{Cp, Cq}
( p′

p′ − p
+

q′

q − q′

)( r

r − p′
+

r

q′ − r

)

‖x‖Lr(M).

In particular,

(28) ‖(Tα(x))α∈A‖Lr(N ;l∞) . max{Cp, Cq}
( rp

r − p
+

rq

q − r

)2

‖x‖Lr(M).

Proof. Using Hardy’s inequalities (see e.g. [2], Lemma III.3.9) one readily shows
that

(29) ‖Sp′,q′‖Lr→Lr ≤
( r

r − p′
+

r

q′ − r

)

.

Since pLr = qLr = r, the first assertion is now immediate from Theorem 5.2. Taking
p′ = p/2 + r/2 and q′ = r/2 + q/2 yields (28). �

Let us compare this result to Theorem 3.3. Thanks to the strong type assumption
on the right endpoint, the interpolation constant in (12) does not depend on q.
Also the dependence on the constants Cp and Cq is better than in (28). On the
other hand, Corollary 5.3 requires only a restricted weak type assumption on both
endpoints, which is easier to verify in practice, and the interpolation constant is
of the right order under these conditions. Also, it is clear that the interpolation
result for more general noncommutative symmetric spaces in Theorem 5.2 cannot
be obtained using the real interpolation techniques used in [12].

As an illustration of our interpolation results, we deduce Doob’s maximal in-
equality. This result was obtained in [10, 12] for E = Lp and, using a different
argument using duality, for more general symmetric Banach function spaces in [6].
The proof here removes some unnecessary assumptions on E from [6], Theorem 6.7.
Note that the assumption pE > 1 cannot be removed, as Doob’s maximal inequality
fails if E = L1.

Corollary 5.4. Let M be a semi-finite von Neumann algebra and let (En)n≥1 be an
increasing sequence of conditional expectations in M. If E is a symmetric Banach
function space on R+ with pE > 1, then there is a constant CE depending only on
E such that

‖(En(x))n≥1‖E(M;l∞) ≤ CE‖x‖E(M) (x ∈ E(M)).

If p > 1 then CLp is of optimal order O((p − 1)−2) as p ↓ 1.

Proof. If pE > 1, then E is fully symmetric up to a constant, i.e., if g ∈ S(R+) and
h ∈ E satisfy g ≺≺ h, then g ∈ E and ‖g‖E .E ‖h‖E (see the proof of Lemma 3.6
in [7]). Since (En)n≥1 is of M-weak type (1, 1) (cf. [5]) and strong type (∞,∞), the
result now follows from Theorem 5.2 and Corollary 5.3. �

To conclude this paper, we deduce an interpolation theorem for the generalized
moments of noncommutative maximal operators from Theorem 4.3. Recall the
following definitions. Let Φ : [0,∞) → [0,∞] be a convex Orlicz function, i.e., a
continuous, convex and increasing function satisfying Φ(0) = 0 and limt→∞ Φ(t) =
∞. The Orlicz space LΦ is the subspace of all f in S(R+) such that for some k > 0,

∫ ∞

0

Φ
( |f(t)|

k

)

dt < ∞.

We may equip LΦ with the Luxemburg norm

‖f‖LΦ = inf
{

k > 0 :

∫ ∞

0

Φ
( |f(t)|

k

)

dt ≤ 1
}

.
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Under this norm LΦ is a symmetric Banach function space [2]. We define the indices
of Φ by

pΦ = sup
{

p > 0 :

∫ t

0

s−pΦ(s)
ds

s
≃p t−pΦ(t) for all t > 0

}

,

qΦ = inf
{

q > 0 :

∫ ∞

t

s−qΦ(s)
ds

s
≃q t−qΦ(t) for all t > 0

}

.

We say that Φ satisfies the global ∆2-condition if for some constant C > 0,

(30) Φ(2t) ≤ CΦ(t) (t ≥ 0).

It is known that pΦ and qΦ coincide with the Boyd indices of LΦ. Moreover, one
may show that (30) holds if and only if qΦ < ∞. For more details we refer to the
discussion in [6].

Theorem 5.5. Let 1 ≤ p < q ≤ ∞ and let Φ be an Orlicz function satisfying the
global ∆2-condition. Let (Tα)α∈A be a net of order preserving, sublinear maps which
is of restricted weak types (p, p) and (q, q). If p < pΦ and either qΦ < q < ∞ or
q = ∞, then for any x ∈ LΦ(M)+ there exists an a ∈ LΦ(N )+ such that Tα(x) ≤ a
for all α ∈ A and

σ(Φ(a)) .p,q,Φ τ(Φ(x)).

Proof. Suppose that q < ∞. Fix p < p′ < p̃ < pΦ ≤ qΦ < q̃ < q′ < q. Let
x ∈ LΦ(M)+ and let a ∈ S(σ)+ be the operator provided by Theorem 4.3. We
know that

µ(a) ≤ Hµ(a) .p,p′,q,q′ HSp′,q′µ(x).

By (29), Sp′,q′ and H = S1,∞ are bounded on Lp̃(R+) and Lq̃(R+). By [17],
Theorem 2 (see also [6], Theorem 4.4), we can now conclude that a ∈ LΦ(N )+ and

σ(Φ(a)) .p,p′,q,q′,Φ

∫ ∞

0

Φ(HSp′,q′µ(x)(t))dt .p′,p̃,q′,q̃,Φ

∫ ∞

0

Φ(µt(x))dt = τ(Φ(x)).

The proof in the case q = ∞ is similar. �

In the special case that (Tα) is of M-weak type (p, p) and strong type (∞,∞),
the above result was obtained in [1], Theorem 3.2. The general case proved here
affirmatively answers an open question in this paper ([1], Remark 3.3 (2)).
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