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ITÔ ISOMORPHISMS FOR Lp-VALUED POISSON
STOCHASTIC INTEGRALS1

BY SJOERD DIRKSEN

University of Bonn

Motivated by the study of existence, uniqueness and regularity of so-
lutions to stochastic partial differential equations driven by jump noise, we
prove Itô isomorphisms for Lp-valued stochastic integrals with respect to
a compensated Poisson random measure. The principal ingredients for the
proof are novel Rosenthal type inequalities for independent random variables
taking values in a (noncommutative) Lp-space, which may be of independent
interest. As a by-product of our proof, we observe some moment estimates
for the operator norm of a sum of independent random matrices.

1. Introduction. In the functional analytic approaches to stochastic partial
differential equations (SPDEs), one studies an SPDE by reformulating it as a
stochastic ordinary differential equation in a suitable infinite-dimensional state
space X. A particularly popular method, known as the semigroup approach, has
proven very effective in obtaining existence, uniqueness and regularity results for
large classes of SPDEs with Gaussian noise. A demonstration of this approach for
SPDEs driven by Gaussian noise in Hilbert spaces can be found in the monograph
of Da Prato and Zabczyk [6]. In the last decade, there has been increased interest
in SPDEs driven by Poisson-type noise; see, for instance, [2, 10, 23, 24] and the
recent monograph [29]. To obtain existence, uniqueness and regularity results for
such equations, one requires as a basic tool Lp-estimates for vector-valued Poisson
stochastic integrals. Concretely, one needs to answer the following fundamental
question. Suppose that we are given a compensated Poisson random measure Ñ

on R+ × J , where J is a σ -finite measure space, and a simple, adapted X-valued
process F . Can one find a suitable Banach space Ip,X such that

cp,X|||F |||Ip,X
≤

(
E

∥∥∥∥
∫
R+×J

F dÑ

∥∥∥∥
p

X

)1/p

≤ Cp,X|||F |||Ip,X
(1.1)

for constants cp,X,Cp,X depending only on p and X? In the SPDE literature,
the right-hand side inequality is often referred to as a Bichteler–Jacod inequal-
ity. This estimate allows one to define an Itô-type stochastic integral, sometimes
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called a strong or Lp-stochastic integral in the literature [1, 35], for all elements
in the closure of the simple adapted processes in Ip,X . If both inequalities in (1.1)
hold simultaneously, then we shall speak of an Itô isomorphism. In this situation,
the choice of the space Ip,X is optimal and therefore Ip,X provides the proper
framework to study well-posedness and regularity questions. We will call the cor-
responding Bichteler–Jacod inequality optimal in this case, even though the con-
stants cp,X,Cp,X in (1.1) are not required to be optimal. In the case of Gaussian
noise, Itô isomorphisms in UMD Banach spaces were obtained in [28]. The op-
timality of these estimates proved crucial in obtaining maximal regularity results
for stochastic parabolic evolution equations driven by Gaussian noise [27]. One
can expect optimal Bichteler–Jacod inequalities to be similarly useful in the inves-
tigation of maximal regularity for equations driven by Poisson or, more generally,
Lévy noise.

Although Bichteler–Jacod inequalities are fundamental to the study of SPDEs
driven by jump noise and have been investigated by many authors (see [1, 2, 11, 23,
24, 29, 35] and the references therein), a general Itô isomorphism as available in
the Gaussian case is still missing. In fact, it seems that the optimality of Bichteler–
Jacod inequalities has not yet been investigated, not even in the scalar-valued case.
The main aim of this paper is to provide optimal estimates of the form (1.1) in the
important case where X is an Lq -space. On the one hand, this result can serve as
a stepping stone in the development of Itô isomorphisms in more general Banach
spaces needed in the study of SPDEs. On the other hand, our estimates are in itself
valuable for existence, uniqueness and regularity questions that can be addressed
in the setting of Lq -spaces; see, for example, [24] for interesting examples.

With some additional effort, our estimates can be extended to the situation
where X is a noncommutative Lq -space associated with a semifinite von Neumann
algebra M, for any 1 < q < ∞. To keep our exposition accessible to readers who
have little familiarity with noncommutative analysis, we choose to focus on classi-
cal Lq -spaces and only later indicate the modifications needed to prove our results
in full generality.

To formulate our main result for classical Lq -spaces, Theorem 1.1, we introduce
the following spaces. Let (S,�,σ) be any measure space. We consider the com-
pletions Sp

q , Dp
q,q and Dp

p,q of the space of all simple functions in the respective
norms

‖F‖Sp
q

=
(
E

∥∥∥∥
(∫

R+×J
|F |2 dt × dν

)1/2∥∥∥∥
p

Lq(S)

)1/p

,

‖F‖Dp
q,q

=
(
E

(∫
R+×J

‖F‖q
Lq(S) dt × dν

)p/q)1/p

,(1.2)

‖F‖Dp
p,q

=
(∫

R+×J
E‖F‖p

Lq(S) dt × dν

)1/p

.



ITÔ ISOMORPHISMS Lp-VALUED POISSON STOCHASTIC INTEGRALS 2597

We use the following notation. If A,B are quantities depending on a parameter α,
then we write A �α B if there is a constant cα > 0 depending only on α such that
A ≤ cαB . We write A �α B if both A�α B and B �α A hold. Also, we use χA to
denote the indicator function of a set A. Finally, to avoid ambiguity, let us mention
that we always take the notation a < p,q < b to mean that both a < p < b and
a < q < b hold.

THEOREM 1.1 (Itô isomorphism). Let 1 < p,q < ∞. For any B ∈ J , any
t > 0 and any simple, adapted Lq(S)-valued process F ,(

E sup
0<s≤t

∥∥∥∥
∫
(0,s]×B

F dÑ

∥∥∥∥p

Lq(S)

)1/p

�p,q ‖Fχ(0,t]×B‖Ip,q ,(1.3)

where Ip,q is given by

Sp
q ∩Dp

q,q ∩Dp
p,q if 2 ≤ q ≤ p < ∞,

Sp
q ∩ (

Dp
q,q +Dp

p,q

)
if 2 ≤ p ≤ q < ∞,(

Sp
q ∩Dp

q,q

) +Dp
p,q if 1 < p < 2 ≤ q < ∞,(

Sp
q +Dp

q,q

) ∩Dp
p,q if 1 < q < 2 ≤ p < ∞,

Sp
q + (

Dp
q,q ∩Dp

p,q

)
if 1 < q ≤ p ≤ 2,

Sp
q +Dp

q,q +Dp
p,q if 1 < p ≤ q ≤ 2.

Moreover, the estimate �p,q in (1.3) remains valid if q = 1.

To understand the estimates in (1.3), recall that if X and Y are two Banach
spaces which are continuously embedded in some Hausdorff topological vector
space, then their intersection X ∩ Y and sum X + Y are Banach spaces under the
norms

‖z‖X∩Y = max
{‖z‖X,‖z‖Y

}
and

‖z‖X+Y = inf
{‖x‖X + ‖y‖Y : z = x + y, x ∈ X,y ∈ Y

}
.

So, for example, if 2 ≤ p ≤ q < ∞ then ‖Fχ(0,t]×B‖Ip,q is equal to

max
[(

E

∥∥∥∥
(∫

(0,t]×B
|F |2 dt × dν

)1/2∥∥∥∥
p

Lq(S)

)1/p

,

inf
{(

E

(∫
(0,t]×B

‖F1‖q
Lq(S) dt × dν

)p/q)1/p

+
(∫

(0,t]×B
E‖F2‖p

Lq(S) dt × dν

)1/p}]
,
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where the infimum is taken over all decompositions F = F1 + F2 with F1 ∈ Dp
q,q

and F2 ∈ Dp
p,q .

In comparison, recall that if W is a Gaussian random measure on R+ × J , then
for any 1 < p,q < ∞,

(
E sup

0<s≤t

∥∥∥∥
∫
(0,s]×B

F dW

∥∥∥∥
p

Lq(S)

)1/p

�p,q ‖Fχ(0,t]×B‖Sp
q
.

In the proof of the latter inequalities, as well as the more general results in [28],
crucial use is made of the fact that any mean-zero, real-valued Gaussian random
variable has a standard normal distribution once we divide it by its standard devia-
tion. It is the lack of this type of stability of Poisson random variables that accounts
for the more involved isomorphisms in Theorem 1.1.

The result in Theorem 1.1 improves and extends all the known estimates for Lq -
valued Poisson stochastic integrals. In fact, it seems that only the estimate “�p,q”
in (1.3) was obtained earlier in [11] for q = 2, p = 2n for some n ∈N (see also [23]
for a near-optimal estimate for q = 2, 2 ≤ p < ∞). As it turns out, this estimate is
optimal. In all other cases, our optimal estimates improve the results in the litera-
ture. We make a detailed comparison with existing results at the end of Section 7.

The proof of Theorem 1.1 relies on the following decoupling inequalities. Let
Ñc be a copy of Ñ defined on a different probability space (�c,Fc,Pc), so that
Ñc is independent of both Ñ and the simple, adapted process F . If X is a UMD
Banach space, then for any 1 < p < ∞,

(
E

∥∥∥∥
∫
(0,t]×B

F dÑ

∥∥∥∥
p

X

)1/p

�p,X

(
EEc

∥∥∥∥
∫
(0,t]×B

F dÑc

∥∥∥∥
p

X

)1/p

.(1.4)

These inequalities are a special case of the decoupling inequalities for martin-
gale difference sequences in UMD Banach spaces due to McConnell [25] and
Hitczenko [12]. A relatively simple direct proof of (1.4) can be found in, for ex-
ample [38], Theorem 2.4.1. For completeness, we reproduce this argument in Ap-
pendix A. Observe that for a simple process F , the decoupled stochastic integral
on the right-hand side can be written as a sum of conditionally independent, mean-
zero random variables. Thus, the key to obtaining an Itô isomorphism as in (1.1)
lies in answering the following question: given 1 ≤ p < ∞ and a Banach space X,
can we find constants cp,X,Cp,X depending only on p and X such that for any
sequence of independent, mean-zero X-valued random variables (ξi)

cp,X

∣∣∣∣∣∣(ξi)
∣∣∣∣∣∣

p,X ≤
(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

X

)1/p

≤ Cp,X

∣∣∣∣∣∣(ξi)
∣∣∣∣∣∣

p,X(1.5)

for a suitable norm ||| · |||p,X which can be computed explicitly in terms of the (mo-
ments of the) individual summands ξi? These kind of inequalities can be termed
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vector-valued Rosenthal inequalities, since in the case X = C the well-known an-
swer to this question is due to Rosenthal [34]: For 2 ≤ p < ∞, there exists an
absolute constant c such that(

E

∣∣∣∣∑
i

ξi

∣∣∣∣
p)1/p

≤ c
p

logp
max

{(∑
i

E|ξi |p
)1/p

,

(∑
i

E|ξi |2
)1/2}

,

(1.6) (
E

∣∣∣∣∑
i

ξi

∣∣∣∣
p)1/p

≥ 1

2
max

{(∑
i

E|ξi |p
)1/p

,

(∑
i

E|ξi |2
)1/2}

.

A version of (1.6) for noncommutative random variables, as well as a version
for 1 < p ≤ 2, was recently obtained by Junge and Xu [16]. Their main results
yield two-sided bounds of the form (1.5) if X is a (noncommutative) Lq -space and
p = q . Various upper bounds for the moments of a martingale with values in a
uniformly 2-smooth Banach space were obtained by Pinelis [30]. However, these
results lead to a two-sided estimate of the form (1.5) only if X is a Hilbert space
(see [30], Theorem 5.2).

Our main result in this direction provides Rosenthal-type inequalities for inde-
pendent random variables taking values in a noncommutative Lq -space. We state
the version for classical Lq -spaces. We consider the following norms on the lin-
ear space of all finite sequences (fi) of random variables in L∞(�;Lq(S)). For
1 ≤ p,q < ∞, we set

∥∥(fi)
∥∥
Sq

=
∥∥∥∥
(∑

i

E|fi |2
)1/2∥∥∥∥

Lq(S)

,

(1.7) ∥∥(fi)
∥∥
Dp,q

=
(∑

i

E‖fi‖p
Lq(S)

)1/p

.

THEOREM 1.2. Let 1 < p,q < ∞ and let (S,�,σ) be a measure space. If
(ξi) is a sequence of independent, mean-zero random variables taking values in
Lq(S), then (

E

∥∥∥∥∑
i

ξi

∥∥∥∥p

Lq(S)

)1/p

�p,q

∥∥(ξi)
∥∥
sp,q

,(1.8)

where sp,q is given by

Sq ∩ Dq,q ∩ Dp,q if 2 ≤ q ≤ p < ∞,

Sq ∩ (Dq,q + Dp,q) if 2 ≤ p ≤ q < ∞,

(Sq ∩ Dq,q) + Dp,q if 1 < p < 2 ≤ q < ∞,

(Sq + Dq,q) ∩ Dp,q if 1 < q < 2 ≤ p < ∞,

Sq + (Dq,q ∩ Dp,q) if 1 < q ≤ p ≤ 2,

Sq + Dq,q + Dp,q if 1 < p ≤ q ≤ 2.
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Moreover, the estimate �p,q in (1.8) remains valid if p = 1, q = 1 or both.

The notational similarity between the spaces introduced in (1.2) and (1.7) is in-
tentional. Indeed, when applying Theorem 1.2 to the decoupled Poisson stochastic
integral on the right-hand side of (1.4), the spaces Sq , Dq,q , and Dp,q give rise to
Sp

q , Dp
q,q and Dp

p,q , respectively.
If p = q , then the result in Theorem 1.2 (as well as its generalization in The-

orem 5.1) is a special case of the noncommutative Rosenthal inequalities in [16]
and the only novelty here is a new proof. However, in applications of Theorem 1.1,
and hence of Theorem 1.2, one is typically also interested in the case p 	= q .

As said before, we can even prove an extension of the Itô isomorphism in Theo-
rem 1.1 in which Lq(S) is replaced by a general noncommutative Lq -space as-
sociated with a semifinite von Neumann algebra M. This result is stated and
proved in Theorem 7.1 below. The proof proceeds along the same lines as the
result for classical Lq -spaces and in particular requires a version of the Rosenthal-
type inequalities stated above for random variables taking values in a noncommu-
tative Lq -space, which we prove in Theorem 5.1. As a by-product of the proof
of Theorem 5.1, we take the opportunity to observe the following estimates for
the moments of the operator norm of a sum of independent, mean-zero d1 × d2
random matrices (xi), which may be of independent interest. If 2 ≤ p < ∞ and
d = min{d1, d2}, then(

E

∥∥∥∥∑
i

xi

∥∥∥∥
p)1/p

≤ Cp,d max
{∥∥∥∥

(∑
i

E|xi |2
)1/2∥∥∥∥,

∥∥∥∥
(∑

i

E
∣∣x∗

i

∣∣2)1/2∥∥∥∥,
Cp/2,d

(
Emax

i
‖xi‖p

)1/p
}
,

where Cp,d is of order max{√p,
√

logd}. In Section 6, we compare this result to
known estimates for random matrices.

An application of Theorem 1.1 is discussed in [8].

2. Lq -valued Rosenthal inequalities. We start by proving Theorem 1.2.
Throughout, we fix a measure space (S,�,σ). Let us collect some tools that we
will use in the proof. First recall the Khintchine inequalities for Lq(S). Let (ri)

be a Rademacher sequence, that is, a sequence of independent, identically dis-
tributed random variables satisfying P(ri = 1) = P(ri = −1) = 1/2. Then, for any
0 < p,q < ∞ and any finite sequence (xi) in Lq(S) we have(

E

∥∥∥∥∑
i

rixi

∥∥∥∥
p

Lq(S)

)1/p

�p,q

∥∥∥∥
(∑

i

|xi |2
)1/2∥∥∥∥

Lq(S)

.(2.1)

We will frequently use this result in combination with the following well-known
symmetrization inequalities (see, e.g., [20], Lemma 6.3). Let 1 ≤ p < ∞, let X
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be a Banach space and (ξi) a sequence of independent, mean-zero X-valued ran-
dom variables. If (ri) is a Rademacher sequence defined on a probability space
(�r,Fr ,Pr ), then

1

2

(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

X

)1/p

≤
(
ErE

∥∥∥∥∑
i

riξi

∥∥∥∥
p

X

)1/p

≤ 2
(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

X

)1/p

.(2.2)

As a first consequence, we find the following useful estimates.

LEMMA 2.1. Suppose that 1 ≤ p,q ≤ 2. Let (ξi) be a finite sequence of inde-
pendent, mean-zero Lq(S)-valued random variables. Then(

E

∥∥∥∥∑
i

ξi

∥∥∥∥p

Lq(S)

)1/p

�p,q

∥∥∥∥
(∑

i

E|ξi |2
)1/2∥∥∥∥

Lq(S)

.

On the other hand, if 2 ≤ p,q < ∞ then∥∥∥∥
(∑

i

E|ξi |2
)1/2∥∥∥∥

Lq(S)

�p,q

(
E

∥∥∥∥∑
i

ξi

∥∥∥∥p

Lq(S)

)1/p

.

PROOF. Let 1 ≤ p,q ≤ 2. Combining (2.2) and (2.1) yields(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(S)

)1/p

�p,q

(
E

∥∥∥∥
(∑

i

|ξi |2
)1/2∥∥∥∥

p

Lq(S)

)1/p

=
(
E

∥∥∥∥∑
i

|ξi |2
∥∥∥∥
p/2

Lq/2(S)

)1/p

≤
∥∥∥∥∑

i

E|ξi |2
∥∥∥∥

1/2

Lq/2(S)

=
∥∥∥∥
(∑

i

E|ξi |2
)1/2∥∥∥∥

Lq(S)

.

Note that in the final inequality we apply Jensen’s inequality, using that p
2 ,

q
2 < 1.

If we assume 2 ≤ p,q < ∞, then this inequality is reversed. �

We recall the notions of type and cotype. A Banach space X is said to have
type s for some 1 ≤ s ≤ 2 if for any finite sequence (xi) in X(

E

∥∥∥∥∑
i

rixi

∥∥∥∥
2

X

)1/2

�s,X

(∑
i

‖xi‖s
X

)1/s

.

A Banach space X is said to have cotype s for some 2 ≤ s < ∞ if for any finite
sequence (xi) in X (∑

i

‖xi‖s
X

)1/s

�s,X

(
E

∥∥∥∥∑
i

rixi

∥∥∥∥
2

X

)1/2

.
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It is well known that any Lq -space with 1 ≤ q < ∞ has type min{q,2} and cotype
max{q,2}. The following observation is well known, we include a proof for the
convenience of the reader. The main ingredients are Kahane’s inequalities (see,
e.g., [20], Theorem 4.7): for any 0 < p,q < ∞ there exists a constant κp,q such
that for any Banach space X and x1, . . . , xn ∈ X,(

E

∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
p

X

)1/p

≤ κp,q

(
E

∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
q

X

)1/q

.(2.3)

LEMMA 2.2. Fix 1 ≤ p < ∞. Let X be a Banach space and (ξi) be a finite
sequence of independent, mean-zero X-valued random variables. If X has type
1 ≤ s ≤ 2, then (

E

∥∥∥∥∑
i

ξi

∥∥∥∥p

X

)1/p

�p,s,X

(
E

(∑
i

‖ξi‖s
X

)p/s)1/p

.

On the other hand, if X has cotype 2 ≤ s < ∞, then(
E

(∑
i

‖ξi‖s
X

)p/s)1/p

�p,s,X

(
E

∥∥∥∥∑
i

ξi

∥∥∥∥p

X

)1/p

.

PROOF. Suppose X has type s. By symmetrization, Kahane’s inequalities and
the type s inequality we obtain(

E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

X

)1/p

�
(
EEr

∥∥∥∥∑
i

riξi

∥∥∥∥
p

X

)1/p

�p

(
E

(
Er

∥∥∥∥∑
i

riξi

∥∥∥∥
2

X

)p/2)1/p

�s,X

(
E

(∑
i

‖ξi‖s
X

)p/s)1/p

.

The second assertion is proved similarly. �

The following result is the key to the Rosenthal-type inequalities in the cases
where 2 ≤ p,q < ∞.

THEOREM 2.3. Suppose that 2 ≤ p,q < ∞. If (ξi) is a finite sequence of
independent, mean-zero Lq(S)-valued random variables, then(

E

∥∥∥∥∑
i

ξi

∥∥∥∥p

Lq(S)

)1/p

(2.4)

�p,q max
{∥∥∥∥

(∑
i

E|ξi |2
)1/2∥∥∥∥

Lq(S)

,

(
E

(∑
i

‖ξi‖q
Lq(S)

)p/q)1/p}
.
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PROOF. We first prove the estimate �p,q . By Lemma 2.1,∥∥∥∥
(∑

i

E|ξi |2
)1/2∥∥∥∥

Lq(S)

�p,q

(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(S)

)1/p

.

Moreover, since Lq(S) has cotype q Lemma 2.2 implies(
E

(∑
i

‖ξi‖q
Lq(S)

)p/q)1/p

�p,q

(
E

∥∥∥∥∑
i ξi

∥∥∥∥
p

Lq(S)

)1/p

.

We now prove the reverse inequality in (2.4). By symmetrization and the Khint-
chine inequalities (2.1),(

E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(S)

)1/p

�p,q

(
E

∥∥∥∥
(∑

i

|ξi |2
)1/2∥∥∥∥

p

Lq(S)

)1/p

.(2.5)

By the triangle inequality, we obtain(
E

∥∥∥∥
(∑

i

|ξi |2
)1/2∥∥∥∥

p

Lq(S)

)1/p

=
(
E

∥∥∥∥∑
i

|ξi |2
∥∥∥∥
p/2

Lq/2(S)

)1/p

(2.6)

≤
((

E

∥∥∥∥∑
i

|ξi |2 −E|ξi |2
∥∥∥∥
p/2

Lq/2(S)

)2/p

+
∥∥∥∥∑

i

E|ξi |2
∥∥∥∥
Lq/2(S)

)1/2

.

Suppose first that q ≤ 4. Then Lq/2(S) has type q
2 , so by Lemma 2.2,(

E

∥∥∥∥∑
i

|ξi |2 −E|ξi |2
∥∥∥∥
p/2

Lq/2(S)

)2/p

�p,q

(
E

(∑
i

∥∥|ξi |2 −E|ξi |2
∥∥q/2
Lq/2(S)

)p/q)2/p

≤
(
E

(∑
i

‖ξi‖q
Lq(S)

)p/q)2/p

+
(∑

i

∥∥E|ξi |2
∥∥q/2
Lq/2(S)

)2/q

≤
(
E

(∑
i

‖ξi‖q
Lq(S)

)p/q)2/p

+E

(∑
i

∥∥|ξi |2
∥∥q/2
Lq/2(S)

)2/q

≤ 2
(
E

(∑
i

‖ξi‖q
Lq(S)

)p/q)2/p

,

where in the final two steps we apply Jensen’s inequality, using that the

q/2(Lq/2(S))-norm is convex, and subsequently use Hölder’s inequality.
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Suppose now that q > 4. By applying symmetrization and the Khintchine in-
equalities (2.1), we find

(
E

∥∥∥∥∑
i

|ξi |2 −E|ξi |2
∥∥∥∥
p/2

Lq/2(S)

)2/p

�p,q

(
E

∥∥∥∥
(∑

i

∣∣|ξi |2 −E|ξi |2
∣∣2)1/2∥∥∥∥

p/2

Lq/2(S)

)2/p

(2.7)

≤
(
E

∥∥∥∥
(∑

i

|ξi |4
)1/2∥∥∥∥

p/2

Lq/2(S)

)2/p

+
∥∥∥∥
(∑

i

∣∣E|ξi |2
∣∣2)1/2∥∥∥∥

Lq/2(S)

≤
(
E

∥∥∥∥
(∑

i

|ξi |4
)1/4∥∥∥∥

p

Lq(S)

)2/p

+
∥∥∥∥∑

i

E|ξi |2
∥∥∥∥
Lq/2(S)

.

Since q > 4, there is some 0 < θ < 1
2 such that 1

4 = θ
2 + 1−θ

q
. By applying Hölder’s

inequality three times (the second and third time with parameters 1
q

= θ
q

+ 1−θ
q

and
1
p

= θ
p

+ 1−θ
p

, resp.), we obtain

(
E

∥∥∥∥
(∑

i

|ξi |4
)1/4∥∥∥∥

p

Lq(S)

)2/p

≤
(
E

∥∥∥∥
(∑

i

|ξi |2
)θ/2(∑

i

|ξi |q
)(1−θ)/q∥∥∥∥

p

Lq(S)

)2/p

≤
(
E

(∥∥∥∥
(∑

i

|ξi |2
)θ/2∥∥∥∥

Lq/θ (S)

∥∥∥∥
(∑

i

|ξi |q
)(1−θ)/q∥∥∥∥

Lq/(1−θ)(S)

)p)2/p

(2.8)

≤
(
E

∥∥∥∥
(∑

i

|ξi |2
)θ/2∥∥∥∥

p/θ

Lq/θ (S)

)2θ/p

×
(
E

∥∥∥∥
(∑

i

|ξi |q
)(1−θ)/q∥∥∥∥

p/(1−θ)

Lq/(1−θ)(S)

)2(1−θ)/p

=
(
E

∥∥∥∥
(∑

i

|ξi |2
)1/2∥∥∥∥

p

Lq(S)

)2θ/p(
E

∥∥∥∥
(∑

i

|ξi |q
)1/q∥∥∥∥

p

Lq(S)

)2(1−θ)/p

.

Combining (2.6), (2.7) and (2.8), we arrive at the inequality

a2 �p,q a2θb2(1−θ) + c2,

where we set a = (E‖(∑i |ξi |2)1/2‖p
Lq(S))

1/p , b = (E(
∑

i ‖ξi‖q
Lq(S))

p/q)1/p and

c = ‖(∑i E|ξi |2)1/2‖Lq(S). Notice that if a ≤ b then the claim immediately follows
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from (2.5). Hence, we may assume a > b. Since 0 < 2θ < 1 we then have

a2θb2(1−θ) = b2
(

a

b

)2θ

≤ ab.

Thus, we obtain the inequality

a2 �p,q ab + c2.

Solving this quadratic inequality, we find that a �p,q max{b, c}. That is,

(
E

∥∥∥∥
(∑

i

|ξi |2
)1/2∥∥∥∥

p

Lq(S)

)1/p

�p,q max
{(

E

(∑
i

‖ξi‖q
Lq(S)

)p/q)1/p

,

∥∥∥∥
(∑

i

E|ξi |2
)1/2∥∥∥∥

Lq(S)

}
.

The result now follows from (2.5). This completes the proof. �

Recall the spaces sp,q defined in the statement of Theorem 1.2. In the proof of
this result, we shall make use of the fact that for any 1 < p,q < ∞

(sp,q)∗ = sp′,q ′,
(

1

p
+ 1

p′ = 1,
1

q
+ 1

q ′ = 1
)

(2.9)

holds isometrically. This follows from the following general principle. Suppose
that X and Y are two Banach spaces which are continuously embedded in some
Hausdorff topological vector space and assume moreover that X ∩ Y is dense in
both X and Y . Then we have

(X ∩ Y)∗ = X∗ + Y ∗, (X + Y)∗ = X∗ ∩ Y ∗(2.10)

isometrically. The duality brackets under these identifications are given by〈
x, x∗〉 = 〈

x, x∗|X∩Y

〉 (
x∗ ∈ X∗ + Y ∗)

,

where x∗|X∩Y denotes the restriction of x∗ to X ∩ Y , and〈
x, x∗〉 = 〈

y, x∗〉 + 〈
z, x∗〉 (

x∗ ∈ X∗ ∩ Y ∗, x = y + z ∈ X + Y
)
,

respectively; see, for example, [17], Theorem I.3.1. In our case of interest, the
spaces Sq , Dp,q and Dq,q have dense intersection and, therefore, the duality of
these individual spaces imply together with (2.10) that (2.9) holds, with associated
duality bracket

〈
(fi), (gi)

〉 = ∑
i

E

∫
figi dσ.
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We need two more ingredients for the proof of Theorem 1.2. The first are the
hypercontractive-type inequalities due to Hoffmann–Jørgensen [13] (see also [18,
20] for a proof yielding a constant of optimal order)(

E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

X

)1/p

� p

log 2p

(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
X

+
(
Emax

i
‖ξi‖p

X

)1/p
)
,(2.11)

valid for any 1 ≤ p < ∞ and any sequence (ξi) of independent, mean-zero random
variables taking values in a Banach space X. Finally, let us recall the Rosenthal
inequalities for a sequence (fi) of positive scalar-valued random variables: if 1 ≤
p < ∞, then (

E

∣∣∣∣∑
i

fi

∣∣∣∣
p)1/p

�p max
{(∑

i

E|fi |p
)1/p

,
∑
i

E|fi |
}
.(2.12)

We are now ready to prove our first main result.

PROOF OF THEOREM 1.2. Let us note that the inequalities “�p,q” in (1.8)
follow by duality once the reverse inequalities have been established. Indeed, if
(ηi) is a finite sequence in sp′,q ′ of norm 1, then

〈
(ξi), (ηi)

〉 = ∑
i

E

∫
(ξiηi) dσ

= ∑
i

E

∫ (
ξi

(
E(ηi |ξi) −E(ηi)

))
dσ

= ∑
i,j

E

∫ (
ξi

(
E(ηj |ξj ) −E(ηj )

))
dσ(2.13)

= E

∫ (∑
i

ξi

)(∑
j

E(ηj |ξj ) −E(ηj )

)
dσ

≤
(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(S)

)1/p(
E

∥∥∥∥∑
j

E(ηj |ξj ) −E(ηj )

∥∥∥∥
p′

Lq′
(S)

)1/p′
.

Since the elements E(ηj |ξj ) −E(ηj ) are independent and mean-zero,

〈
(ξi), (ηi)

〉
�p′,q ′

(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(S)

)1/p∥∥(
E(ηj |ξj ) −E(ηj )

)∥∥
sp′,q′

(2.14)

≤ 2
(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(S)

)1/p

.

By (2.9), the claim follows by taking the supremum over all (ηi) as above. We now
prove the estimates �p,q case by case.
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Case 2 ≤ q ≤ p < ∞: Recall that Theorem 2.3 says that(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(S)

)1/p

�p,q max
{∥∥∥∥

(∑
i

E|ξi |2
)1/2∥∥∥∥

Lq(S)

,

(
E

(∑
i

‖ξi‖q
Lq(S)

)p/q)1/p}
.

Since q ≤ p, applying (2.12) with fi = ‖ξ‖q
Lq(S) yields(

E

(∑
i

‖ξi‖q
Lq(S)

)p/q)1/p

�p,q max
{(∑

i

E‖ξi‖p
Lq(S)

)1/p

,

(∑
i

E‖ξi‖q
Lq(S)

)1/q}
.

Case 2 ≤ p ≤ q < ∞: If p ≤ q , the contractive embeddings Lq(�) ⊂ Lp(�)

and 
p ⊂ 
q imply(
E

(∑
i

‖ξi‖q
Lq(S)

)p/q)1/p

≤
(∑

i

E‖ξi‖q
Lq(S)

)1/q

(2.15)

and (
E

(∑
i

‖ξi‖q
Lq(S)

)p/q)1/p

≤
(∑

i

E‖ξi‖p
Lq(S)

)1/p

.(2.16)

By the triangle inequality,(
E

(∑
i

‖ξi‖q
Lq(S)

)p/q)1/p

≤ ∥∥(ξi)
∥∥
Dp,q+Dq,q

.

The asserted estimate now follows from Theorem 2.3.
Case 1 ≤ p ≤ q ≤ 2: Let (ηi) ∈ Sq , (θi) ∈ Dp,q and (κi) ∈ Dq,q be such that

ξi = ηi + θi + κi . Then

ξi = E(ηi |ξi) −E(ηi) +E(θi |ξi) −E(θi) +E(κi |ξi) −E(κi).

By Lemma 2.1, (
E

∥∥∥∥∑
i

E(ηi |ξi) −E(ηi)

∥∥∥∥
p

Lq(S)

)1/p

�p,q

∥∥∥∥
(∑

i

E
∣∣E(ηi |ξi) −E(ηi)

∣∣2)1/2∥∥∥∥
Lq(S)

(2.17)

≤ 2
∥∥∥∥
(∑

i

E|ηi |2
)1/2∥∥∥∥

Lq(S)

,

where the final step follows from the triangle inequality and Jensen’s inequality.
Now apply Lemma 2.2 [using that Lq(S) has type q], (2.16) and Jensen’s inequal-
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ity to find (
E

∥∥∥∥∑
i

E(θi |ξi) −E(θi)

∥∥∥∥
p

Lq(S)

)1/p

�p,q

(
E

(∑
i

∥∥E(θi |ξi) −E(θi)
∥∥q
Lq(S)

)p/q)1/p

≤
(∑

i

E
∥∥E(θi |ξi) −E(θi)

∥∥p
Lq(S)

)1/p

≤ 2
(∑

i

E‖θi‖p
Lq(S)

)1/p

.

Similarly, Lemma 2.2, (2.15) and Jensen’s inequality yield(
E

∥∥∥∥∑
i

E(κi |ξi) −E(κi)

∥∥∥∥
p

Lq(S)

)1/p

�p,q

(∑
i

E‖κi‖q
Lq(S)

)1/q

.

The asserted estimate now follows by the triangle inequality.
Case 1 ≤ q ≤ p ≤ 2: The proof is very similar to the previous case. Let (ηi) ∈ Sq

and (θi) ∈ Dp,q ∩ Dq,q be such that ξi = ηi + θi , then

ξi = E(ηi |ξi) −E(ηi) +E(θi |ξi) −E(θi).

By the same argument as in (2.17),(
E

∥∥∥∥∑
i

E(ηi |ξi) −E(ηi)

∥∥∥∥
p

Lq(S)

)1/p

�p,q

∥∥∥∥
(∑

i

E|ηi |2
)1/2∥∥∥∥

Lq(S)

.

Moreover, successively applying Lemma 2.2, the Rosenthal inequality (2.12) (us-
ing that q ≤ p) and Jensen’s inequality yields(

E

∥∥∥∥∑
i

E(θi |ξi) −E(θi)

∥∥∥∥
p

Lq(S)

)1/p

�p,q

(
E

(∑
i

∥∥E(θi |ξi) −E(θi)
∥∥q
Lq(S)

)p/q)1/p

�p,q max
{(∑

i

E
∥∥E(θi |ξi) −E(θi)

∥∥p
Lq(S)

)1/p

,

(∑
i

E
∥∥E(θi |ξi) −E(θi)

∥∥q
Lq(S)

)1/q}

≤ 2 max
{(∑

i

E‖θi‖p
Lq(S)

)1/p

,

(∑
i

E‖θi‖q
Lq(S)

)1/q}
.
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The result now follows by the triangle inequality.
Case 1 ≤ q ≤ 2 ≤ p < ∞: By Hoffmann–Jørgensen’s inequality (2.11), we

have(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(S)

)1/p

�p max
{(

E

∥∥∥∥∑
i

ξi

∥∥∥∥
q

Lq(S)

)1/q

,
(
Emax

i
‖ξi‖p

Lq(S)

)1/p
}
.

By the previous case (with p = q), we have(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
q

Lq(S)

)1/q

�p,q

∥∥(ξi)
∥∥
Sq+Dq,q

and obviously (
Emax

i
‖ξi‖p

Lq(S)

)1/p ≤
(∑

i

E‖ξi‖p
Lq(S)

)1/p

.

Case 1 ≤ p ≤ 2 ≤ q < ∞: Let ξi = ηi + θi with (ηi) ∈ Sq ∩ Dq,q and (θi) ∈
Dp,q . Then, ξi = E(ηi |ξi) −E(ηi) +E(θi |ξi) −E(θi). Since the E(ηi |ξi) −E(ηi)

are independent and mean-zero, we can subsequently use Hölder’s inequality and
the already established estimate in the case p = q ≥ 2 to find(

E

∥∥∥∥∑
i

E(ηi |ξi) −E(ηi)

∥∥∥∥
p

Lq(S)

)1/p

≤
(
E

∥∥∥∥∑
i

E(ηi |ξi) −E(ηi)

∥∥∥∥
q

Lq(S)

)1/q

�p,q max
{(∑

i

E
∥∥E(ηi |ξi) −E(ηi)

∥∥q
Lq(S)

)1/q

,

∥∥∥∥
(∑

i

E
∣∣E(ηi |ξi) −E(ηi)

∣∣2)1/2∥∥∥∥
Lq(S)

}

≤ 2 max
{(∑

i

E‖ηi‖q
Lq(S)

)1/q

,

∥∥∥∥
(∑

i

E|ηi |2
)1/2∥∥∥∥

Lq(S)

}
.

On the other hand, as Lq(S) has type 2, it has type p and therefore Lemma 2.2
implies (

E

∥∥∥∥∑
i

E(θi |ξi) −E(θi)

∥∥∥∥
p

Lq(S)

)1/p

�p,q

(∑
i

E
∥∥E(θi |ξi) −E(θi)

∥∥p
Lq(S)

)1/p

≤ 2
(∑

i

E‖θi‖p
Lq(S)

)1/p

.
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The claimed inequality now follows by the triangle inequality. This completes the
proof. �

3. Itô-isomorphisms: Classical Lq -spaces. In this section, we present a
proof of the Itô isomorphism stated in Theorem 1.1. Let us first define the Poisson
stochastic integral.

DEFINITION 3.1. Let (�,F,P) be a probability space and let (E,E,μ) be
a measure space. We say that a random measure N on E is a Poisson random
measure if the following conditions hold:

(i) For disjoint A1, . . . ,An ∈ E the random variables N(A1), . . . ,N(An) are
independent and

N

(
n⋃

i=1

Ai

)
=

n∑
i=1

N(Ai),

(ii) For any A ∈ E with μ(A) < ∞ the random variable N(A) is Poisson dis-
tributed with parameter μ(A).

Let Eμ = {A ∈ E :μ(A) < ∞}. Then the random measure Ñ on (E,Eμ,μ) defined
by

Ñ(A) := N(A) − μ(A) (A ∈ Eμ),

is called the compensated Poisson random measure associated with N .

As is well known, one can always construct a Poisson random measure on any
given σ -finite measure space (E,E,μ); see, for example, [36].

Throughout, we let (J,J , ν) be a σ -finite measure space and we fix a Poisson
random measure N on R+ × J . To arrive at a satisfactory stochastic integration
theory with respect to the associated compensated Poisson random measure, we
need to impose the following standard compatibility assumption.

ASSUMPTION 3.2. Throughout we fix a filtration (Ft )t>0 such that for any
0 ≤ s < t < ∞ and any A ∈ J the random variable Ñ((s, t]×A) is Ft -measurable
and independent of Fs .

DEFINITION 3.3. Fix a Banach space X and let F :� × R+ × J → X. We
say that F is a simple, adapted X-valued process if there is a finite partition π =
{0 = t1 < · · · < tl+1 < ∞} of R+, Fi,j,k ∈ L∞(Fti ), xi,j,k ∈ X and disjoint sets
A1, . . .Am in J satisfying ν(Aj ) < ∞ for i = 1, . . . , l, j = 1, . . . ,m and k =
1, . . . , n such that

F =
l∑

i=1

m∑
j=1

n∑
k=1

Fi,j,kχ(ti ,ti+1]χAj
xi,j,k.(3.1)
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Given t > 0 and B ∈ J , we define the (compensated) Poisson stochastic integral
of F on (0, t] × B with respect to Ñ by

∫
(0,t]×B

F dÑ =
l∑

i=1

m∑
j=1

n∑
k=1

Fi,j,kÑ
(
(ti ∧ t, ti+1 ∧ t] × (Aj ∩ B)

)
xi,j,k,

where s ∧ t := min{s, t}.

The following elementary observation will be important for our proof. The up-
per estimate in (3.2) in the case 1 ≤ p ≤ 2 was noted earlier in [2], Lemma C.3.

LEMMA 3.4. Let N be a Poisson distributed random variable with parameter
0 ≤ λ ≤ 1. Then for every 1 ≤ p < ∞ there exist constants bp, cp > 0 such that

bpλ ≤ E|N − λ|p ≤ cpλ.(3.2)

PROOF. The inequalities are trivial if λ = 0, so we may assume λ > 0. Sup-
pose first that 2 ≤ p < ∞. We begin by proving the inequality on the left-hand side
of (3.2). We have

E|N − λ|p =
∞∑

k=0

|k − λ|p λke−λ

k!
(3.3)

≥
∞∑

k=2

|k − λ|2 λke−λ

k! + |λ|pe−λ + |1 − λ|pλe−λ.

Hence,

E|N − λ|p
≥ E|N − λ|2 − |λ|2e−λ − |1 − λ|2λe−λ + |λ|pe−λ + |1 − λ|pλe−λ

(3.4)
= λ + λe−λ(−λ − (1 − λ)2 + λp−1 + (1 − λ)p

)
= λ

(
1 + e−λfp(λ)

)
,

where

fp(λ) = λp−1 − λ2 + λ − 1 + (1 − λ)p.(3.5)

One easily sees that min0≤λ≤1(1 + e−λfp(λ)) = bp > 0. Indeed,

1 + e−λfp(λ) > 1 + e−λ(−λ2 + λ − 1
) + e−λ(1 − λ)p.

Now,

1 + e−λ(−λ2 + λ − 1
) + e−λ(1 − λ)p > 0
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if and only if

(1 − λ)p > −eλ + λ2 − λ + 1 = −2λ + λ2

2
− λ3

6
− λ4

24
− · · · .

Clearly, this holds if 0 ≤ λ ≤ 1. This proves the left-hand side inequality of (3.2)
if 2 ≤ p < ∞. We now consider the right-hand side inequality. It suffices to prove
this in the case where p is an even integer n. Since the moment generating function
of N − λ is given by

E
(
et(N−λ)) = eλ(et−1−t) = exp

(
λ

∞∑
n=2

tn

n!
)
,

it is easy to see that the nth moment of N − λ can be written as λpn(λ) for some
polynomial pn with positive coefficients. Since max0≤λ≤1 |pn(λ)| ≤ cn for some
constant cn > 0, our proof for the case 2 ≤ p < ∞ is complete.

Suppose now that 1 ≤ p < 2. Then, by the Cauchy–Schwartz inequality,

λ = E|N − λ|2 = E|N − λ|p/2|N − λ|2−p/2

≤ (
E|N − λ|p)1/2(

E|N − λ|4−p)1/2
.

Since 4 − p ≥ 2, we find by the above that

λ2 ≤ E|N − λ|pE|N − λ|4−p ≤ E|N − λ|pc4−pλ.

To prove the right-hand side inequality in (3.2), note that if 1 ≤ p < 2 the inequal-
ities in (3.3) and (3.4) reverse and, therefore,

E|N − λ|p ≤ λ max
0≤λ≤1

(
1 + e−λfp(λ)

)
,

where fp is the continuous function defined in (3.5). �

REMARK 3.5. By refining the partition π in Definition 3.3 if necessary,
we can and will always assume that (ti+1 − ti)ν(Aj ) ≤ 1 for all i = 1, . . . , l,
j = 1, . . . ,m. This will allow us to apply Lemma 3.4 to the compensated Pois-
son random variables Ñ((ti ∧ t, ti+1 ∧ t] × (Aj ∩ B)).

Let us finally record the following easy observation for further reference.

LEMMA 3.6. Suppose that (E,E,μ) is a σ -finite measure space and let X

be a Banach space. Let A1, . . . ,An be disjoint sets in � satisfying μ(Ai) < ∞
and let A be the σ -algebra generated by A1, . . . ,An. Then, for any G ∈ L1(E;X)

supported on
⋃n

i=1 Ai ,

E(G|A) =
n∑

i=1

χAi
yi

for certain yi ∈ X.
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PROOF. Let An+1 be the complement of
⋃n

i=1 Ai in E. Since A1, . . . ,An+1
are disjoint, A is actually a finite algebra consisting of A1, . . . ,An+1 and all their
possible unions. Moreover, for any 1 ≤ i ≤ n,∫

Ai

Gdμ =
∫
Ai

∑
{1≤j≤n : μ(Aj ) 	=0}

(
μ(Aj )

)−1
(∫

Aj

Gdμ

)
χAj

dμ.

Since
∫
An+1

Gdμ = 0 by assumption, we conclude that

E(G|A) = ∑
{1≤j≤n : μ(Aj ) 	=0}

(
μ(Aj )

)−1
χAj

∫
Aj

Gdμ.
�

We are now ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1. Using Assumption 3.2, it is not difficult to show
that the process (

∫
(0,s]×B F dÑ)s>0 is a martingale. Therefore, the map

s �→
∥∥∥∥
∫
(0,s]×B

F dÑ

∥∥∥∥
Lq(S)

defines a positive submartingale in Lp(�) and by Doob’s maximal inequality (see,
e.g., [33], Theorem 1.7) we have for any p > 1,

(
E sup

0<s≤t

∥∥∥∥
∫
(0,s]×B

F dÑ

∥∥∥∥
p

Lq(S)

)1/p

≤ p′
(
E

∥∥∥∥
∫
(0,t]×B

F dÑ

∥∥∥∥
p

Lq(S)

)1/p

,

where 1
p

+ 1
p′ = 1. Moreover, Lq(S) has the UMD property if 1 < q < ∞, so in

view of the decoupling inequalities (1.4) it suffices to prove

(
EEc

∥∥∥∥
∫
(0,t]×B

F dÑc

∥∥∥∥
p

Lq(S)

)1/p

�p,q ‖Fχ(0,t]×B‖Ip,q ,(3.6)

where Ñc is an independent copy of Ñ on a probability space (�c,Fc,Pc). We
show this in the cases 2 ≤ q ≤ p < ∞ and 1 < p ≤ q ≤ 2 in detail. All the main
technical difficulties occur in these two cases. For the similar proof in the other
cases, we refer the reader to Appendix B. Let F be the simple adapted process
given in (3.1), taking Remark 3.5 into account. We may assume that t = tl+1 and
B = ⋃m

j=1 Aj . We write Ñc
i,j := Ñc((ti , ti+1] × Aj) for brevity.

Case 2 ≤ q ≤ p < ∞: Set yi,j = ∑n
k=1 Fi,j,kxi,j,k , then the doubly indexed

sequence di,j = yi,j Ñ
c
i,j satisfies∫

(0,t]×B
F dÑ = ∑

i,j

di,j .
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Moreover, for any fixed ω ∈ � the sequence (di,j (ω))i,j consists of independent,
mean-zero random variables. By applying Theorem 1.2 pointwise in �, we find(

Ec

∥∥∥∥∑
i,j

di,j

∥∥∥∥
p

Lq(S)

)1/p

�p,q max
{∥∥∥∥

(∑
i,j

Ec|di,j |2
)1/2∥∥∥∥

Lq(S)

,

(∑
i,j

Ec‖di,j‖q
Lq(S)

)1/q

,

(∑
i,j

Ec‖di,j‖p
Lq(S)

)1/p}

and by taking the Lp(�)-norm on both sides we arrive at(
EEc

∥∥∥∥∑
i,j

di,j

∥∥∥∥
p

Lq(S)

)1/p

�p,q max
{(

E

∥∥∥∥
(∑

i,j

Ec|di,j |2
)1/2∥∥∥∥

p

Lq(S)

)1/p

,

(
E

(∑
i,j

Ec‖di,j‖q
Lq(S)

)p/q)1/p

,

(∑
i,j

EEc‖di,j‖p
Lq(S)

)1/p}
.

Using Lemma 3.4 and Remark 3.5, we compute(
E

∥∥∥∥
(∑

i,j

Ec|di,j |2
)1/2∥∥∥∥

p

Lq(S)

)1/p

=
(
E

∥∥∥∥
(∑

i,j

|yi,j |2Ec

∣∣Ñc
i,j

∣∣2)1/2∥∥∥∥
p

Lq(S)

)1/p

(3.7)

=
(
E

∥∥∥∥
(∑

i,j

|yi,j |2(ti+1 − ti)ν(Aj )

)1/2∥∥∥∥
p

Lq(S)

)1/p

= ‖F‖Sp
q

and (
E

(∑
i,j

Ec‖di,j‖q
Lq(S)

)p/q)1/p

=
(
E

(∑
i,j

‖yi,j‖q
Lq(S)Ec

∣∣Ñc
i,j

∣∣q)p/q)1/p

(3.8)

�q

(
E

(∑
i,j

‖yi,j‖q
Lq(S)(ti+1 − ti)ν(Aj )

)p/q)1/p

= ‖F‖Dp
q,q

.
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Finally,

(∑
i,j

EEc‖di,j‖p
Lq(S)

)1/p

=
(∑

i,j

E‖yi,j‖p
Lq(S)Ec

∣∣Ñc
i,j

∣∣p)1/p

(3.9)

�p

(∑
i,j

E‖yi,j‖p
Lq(S)(ti+1 − ti)ν(Aj )

)1/p

= ‖F‖Dp
p,q

.

We conclude that (3.6) holds.
Case 1 < p ≤ q ≤ 2: Let Ielem denote the linear space of all simple functions on

�×R+×J ×S with support of finite measure. Note that Ielem is dense in Sp
q , Dp

p,q

and Dp
q,q . Hence, if we fix ε > 0, we can find a decomposition F = F1 + F2 + F3

with Fα ∈ Ielem for α = 1,2,3 such that

‖F1‖Sp
q

+ ‖F2‖Dp
p,q

+ ‖F3‖Dp
q,q

≤ ‖F‖Ip,q + ε.

Clearly, we may assume that F1,F2 and F3 have the same support in R+ ×J as F .
Let A be the sub-σ -algebra of B(R+) × J generated by the sets (ti, ti+1] × Aj .
The associated conditional expectation E(·|A) is well defined, as J is σ -finite. By
Lemma 3.6, E(Fα|A) is of the form

E(Fα|A) = ∑
i,j,k

Fi,j,k,αχ(ti ,ti+1]χAj
xi,j,k,α (α = 1,2,3).

Let yi,j,α = ∑n
k=1 Fi,j,k,αxi,j,k,α and set di,j,α = yi,j,αNc

i,j , so that di,j = yi,jN
c
i,j

satisfies

di,j = di,j,1 + di,j,2 + di,j,3.

We apply Theorem 1.2 pointwise in � to find

(
Ec

∥∥∥∥∑
i,j

di,j

∥∥∥∥
p

Lq(S)

)1/p

�p,q

∥∥∥∥
(∑

i,j

Ec|di,j,1|2
)1/2∥∥∥∥

Lq(S)

+
(∑

i,j

Ec‖di,j,2‖p
Lq(S)

)1/p

+
(∑

i,j

Ec‖di,j,3‖q
Lq(S)

)1/q

.
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By taking Lp(�)-norms on both sides and using the triangle inequality, we obtain(
EEc

∥∥∥∥∑
i,j

di,j

∥∥∥∥
p

Lq(S)

)1/p

�p,q

(
E

∥∥∥∥
(∑

i,j

Ec|di,j,1|2
)1/2∥∥∥∥

p

Lq(S)

)1/p

+
(∑

i,j

EEc‖di,j,2‖p
Lq(S)

)1/p

+
(
E

(∑
i,j

Ec‖di,j,3‖q
Lq(S)

)p/q)1/p

.

By the computations in (3.7), (3.8) and (3.9),(
E

∥∥∥∥
(∑

i,j

Ec|di,j,1|2
)1/2∥∥∥∥

p

Lq(S)

)1/p

= ∥∥E(F1|A)
∥∥
Sp

q
≤ ‖F1‖Sp

q
,

(∑
i,j

EEc‖di,j,2‖p
Lq(S)

)1/p

�p

∥∥E(F2|A)
∥∥
Dp

p,q
≤ ‖F2‖Dp

p,q
,(3.10)

(
E

(∑
i,j

Ec‖di,j,3‖q
Lq(S)

)p/q)1/p

�q

∥∥E(F3|A)
∥∥
Dp

q,q
≤ ‖F3‖Dp

q,q
.

We conclude that(
EEc

∥∥∥∥
∫
(0,t]×B

F dÑc

∥∥∥∥
p

Lq(S)

)1/p

�p,q ‖F1‖Sp
q

+ ‖F2‖Dp
p,q

+ ‖F3‖Dp
q,q

≤ ‖F‖Ip,q + ε.

We deduce the reverse inequality by duality. If p′, q ′ are the Hölder conjugates of

p and q , then (Sp
q )∗ = Sp′

q ′ , (Dp
q,q)∗ = Dp′

q ′,q ′ and (Dp
p,q)

∗ = Dp′
p′,q ′ . Therefore, it

follows from (2.10) that I∗
p,q = Ip′,q ′ . We let

〈F,G〉 =
∫
�×R+×J×S

FGdPdt dν dσ

denote the associated duality bracket. If G ∈ Ielem has the same support as F , then
E(G|A) is of the form

E(G|A) = ∑
i,j,k

Gi,j,kχ(ti ,ti+1]χAj
x∗
i,j,k,

where Gi,j,k ∈ L∞(�). Now,

〈F,G〉 = 〈
F,E(G|A)

〉
= ∑

i,j,k

E(Fi,j,kGi,j,k) dt × dν
(
(ti , ti+1] × Aj

)〈
xi,j,k, x

∗
i,j,k

〉
(3.11)
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= ∑
i,j,k

E(Fi,j,kGi,j,k) dt × dν
(
(ti, ti+1] × Aj

)〈
xi,j,k, x

∗
i,j,k

〉

= ∑
i,j,k,l,m,n

E(Fi,j,kGl,m,n)Ec

(
Ñc

i,j Ñ
c
l,m

)〈
xi,j,k, x

∗
l,m,n

〉

= ∑
i,j,k,l,m,n

EEc

(
Fi,j,kÑ

c
i,jGl,m,nÑ

c
l,m

〈
xi,j,k, x

∗
l,m,n

〉)

=
〈∑
i,j,k

Fi,j,kÑ
c
i,j xi,j,k,

∑
l,m,n

Gl,m,nÑ
c
l,mx∗

l,m,n

〉

≤
∥∥∥∥
∫
(0,t]×B

F dÑc

∥∥∥∥
Lp(�×�c;Lq(S))

×
∥∥∥∥ ∑
l,m,n

Gl,m,nÑ
c
l,mx∗

l,m,n

∥∥∥∥
Lp′

(�×�c;Lq′
(S))

.

Since 2 ≤ q ′ ≤ p′ < ∞, our previously established case implies that∥∥∥∥ ∑
l,m,n

Gl,m,nÑ
c
l,mx∗

l,m,n

∥∥∥∥
Lp′

(�×�c;Lq′
(S))

�p,q

∥∥E(G|A)
∥∥
Ip′,q′ ≤ ‖G‖Ip′,q′ .

Summarizing, we find

〈F,G〉�p,q

∥∥∥∥
∫
(0,t]×B

F dÑc

∥∥∥∥
Lp(�;Lq(S))

‖G‖Ip′,q′ .

Taking the supremum over all G ∈ Ielem yields the result.
For the proof of the final assertion, note that L1(S) is not a UMD space. How-

ever, for any 1 ≤ p < ∞, the one-sided decoupling inequality(
E

∥∥∥∥
∫
(0,t]×B

F dÑ

∥∥∥∥
p

L1(S)

)1/p

�p

(
EEc

∥∥∥∥
∫
(0,t]×B

F dÑc

∥∥∥∥
p

L1(S)

)1/p

still holds, see [5]. The remainder of the proof is the same as in the case q > 1. �

REMARK 3.7. It is clear from the proof that the inequality

E

∥∥∥∥
∫
(0,t]×B

F dÑ

∥∥∥∥
Lq(S)

�q ‖F‖I1,q

is valid if 1 ≤ q < ∞.

4. Preliminaries on noncommutative Lq -spaces. We now turn to the ex-
tension of the Itô isomorphism in Theorem 1.1 to integrands taking values in a
noncommutative Lq -space. We begin by reviewing some facts on noncommuta-
tive Lq -spaces. References for proofs of the results presented below can be found
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in the survey [32]. Let M be a von Neumann algebra acting on a complex Hilbert
space H , which is equipped with a normal, semi-finite faithful trace τ . We say
that a closed, densely defined linear operator x on H is affiliated with the von
Neumann algebra M if ux = xu for any unitary element u in the commutant M′
of M. For such an operator, we define its distribution function by

d(v;x) = τ
(
e|x|(v,∞)

)
(v ≥ 0),

where e|x| is the spectral measure of |x|. The decreasing rearrangement of x is
defined by

μt(x) = inf
{
v > 0 :d(v;x) ≤ t

}
(t ≥ 0).

We call x τ -measurable if d(v;x) < ∞ for some v > 0. We let S(τ) denote the
linear space of all τ -measurable operators. One can show that S(τ) is a metrizable,
complete topological ∗-algebra with respect to the measure topology. Moreover,
the trace τ extends to a trace (again denoted by τ ) on the set S(τ)+ of positive
τ -measurable operators by setting

τ(x) =
∫ ∞

0
μt(x) dt

(
x ∈ S(τ)+

)
.(4.1)

For 0 < q < ∞, we define

‖x‖Lq(M) = (
τ
(|x|q))1/q (

x ∈ S(τ)
)
.(4.2)

The linear space Lq(M, τ ) of all x ∈ S(τ) satisfying ‖x‖Lq(M) < ∞ is called
the noncommutative Lq -space associated with the pair (M, τ ). We usually denote
Lq(M, τ ) by Lq(M) for brevity. The map ‖ · ‖Lq(M) in (4.2) defines a norm
(or q-norm if 0 < q < 1) on the space Lq(M) under which it becomes a Banach
space (resp., quasi-Banach space). It can alternatively be viewed as the completion
of M in the (quasi-)norm ‖ · ‖Lq(M). We use the expression L∞(M) to denote
M equipped with its operator norm. By (4.1) and using that μ(|x|q) = μ(x)q , the
noncommutative Lq -(quasi-)norm can alternatively be computed as

‖x‖Lq(M) =
(∫ ∞

0
μt(x)q dt

)1/q (
x ∈ Lq(M)

)
.

If (S,�,σ) is a Maharam measure space, then M = L∞(S) is a von Neu-
mann algebra, which can be equipped with the normal, semifinite faithful trace
τ(f ) = ∫

f dσ . In this case, Lq(M) coincides with the usual Bochner space
Lq(S). Another familiar example is obtained by taking M = B(H), for a Hilbert
space H . If B(H) is equipped with its standard trace, then the associated noncom-
mutative Lq -spaces are the usual Schatten spaces.

Below we shall use the following facts. First, recall Hölder’s inequality: if
0 < q, r, s ≤ ∞ are such that 1

q
= 1

r
+ 1

s
and x ∈ Lr(M), y ∈ Ls(M), then

xy ∈ Lq(M) and

‖xy‖Lq(M) ≤ ‖x‖Lr(M)‖y‖Ls(M).(4.3)
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For 1 ≤ q < ∞ and 1
q

+ 1
q ′ = 1, the familiar duality Lq(M)∗ = Lq ′

(M) holds iso-
metrically, with the duality bracket given by 〈x, y〉 = τ(xy). In particular, Lq(M)

is reflexive if and only if 1 < q < ∞ and L1(M) = M∗ isometrically, where M∗
is the predual of M. We recall that Lq(M) is a UMD Banach space if and only if
1 < q < ∞. If 1 ≤ q < ∞, then Lq(M) has type min{q,2} and cotype max{q,2}.

We conclude this section by describing the column and row spaces and their
conditional versions. Let 1 ≤ q < ∞. For a finite sequence (xi) in Lq(M), we
define

∥∥(xi)
∥∥
Lq(M;
2

c)
=

∥∥∥∥
(∑

i

x∗
i xi

)1/2∥∥∥∥
Lq(M)

,

(4.4) ∥∥(xi)
∥∥
Lq(M;
2

r )
=

∥∥∥∥
(∑

i

xix
∗
i

)1/2∥∥∥∥
Lq(M)

.

Given x1, . . . , xn, we let diag(xi), row(xi) and col(xi) denote the matrix with the
xi on its diagonal, first row and first column, respectively, and zeroes elsewhere.
Let M ⊗ B(
2) be the von Neumann tensor product equipped with its product
trace τ ⊗ Tr. By noting that∥∥∥∥∥

(
n∑

i=1

x∗
i xi

)1/2∥∥∥∥∥
Lq(M)

= ∥∥col(xi)
∥∥
Lq(M⊗B(
2)),

∥∥∥∥∥
(

n∑
i=1

xix
∗
i

)1/2∥∥∥∥∥
Lq(M)

= ∥∥row(xi)
∥∥
Lq(M⊗B(
2)),

one sees that the expressions in (4.4) define two norms on the linear space of
all finitely nonzero sequences in Lq(M). The completions of this space in these
norms are called the column and row space, respectively.

We shall need a conditional version of these two spaces. Suppose that N is a
von Neumann algebra equipped with a normal, semifinite faithful trace σ and let
K be a von Neumann subalgebra such that σ |K is again semifinite. Let E :N → K
be the conditional expectation with respect to K. For a finite sequence (xi) in N ,
we define

∥∥(xi)
∥∥
Lq(N ;E,
2

c)
=

∥∥∥∥
(∑

i

E |xi |2
)1/2∥∥∥∥

Lq(N )

,

(4.5) ∥∥(xi)
∥∥
Lq(N ;E,
2

r )
=

∥∥∥∥
(∑

i

E
∣∣x∗

i

∣∣2)1/2∥∥∥∥
Lq(N )

.

Using techniques from Hilbert C∗-modules, it was shown by M. Junge [14] that{
(xi)

n
i=1 :xi ∈ N , n ≥ 1,

∥∥(xi)
∥∥
Lq(N ;E,
2

c)
< ∞}

and{
(xi)

n
i=1 :xi ∈ N , n ≥ 1,

∥∥(xi)
∥∥
Lq(N ;E,
2

r )
< ∞}
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are normed linear spaces. By taking the completion of these spaces, we obtain the
conditional column and row space, respectively. Moreover, one can identify these
spaces with complemented subspaces of Lq(K;
2

c) and Lq(K;
2
r ) and in this way

show that for any 1 < q < ∞ and 1
q

+ 1
q ′ = 1

(
Lq(

N ;E, 
2
c

))∗ = Lq ′(N ;E, 
2
r

)
,

(
Lq(

N ;E, 
2
r

))∗ = Lq ′(N ;E, 
2
c

)
,(4.6)

isometrically, with duality bracket given by〈
(xi), (yi)

〉 = ∑
i

τ (xiyi).

We refer to Section 2 of [14] for more information.

5. Lq -valued Rosenthal inequalities: Noncommutative case. In this sec-
tion, we prove an extension of Theorem 1.2 for random variables taking values
in a noncommutative Lq -space. To state our main result, we introduce the fol-
lowing norms on the linear space of all finite sequences (fi) of random variables
in L∞(�;Lq(M)), which serve as substitutes for the norms considered in (1.7).
First, for 1 ≤ p,q < ∞ we define

∥∥(fi)
∥∥
Dp,q

=
(∑

i

E‖fi‖p
Lq(M)

)1/p

(5.1)

and we consider a column and row version of the space Sq in considered earlier,
that is, we set

∥∥(fi)
∥∥
Sq,c

=
∥∥∥∥
(∑

i

E|fi |2
)1/2∥∥∥∥

Lq(M)

,

(5.2) ∥∥(fi)
∥∥
Sq,r

=
∥∥∥∥
(∑

i

E
∣∣f ∗

i

∣∣2)1/2∥∥∥∥
Lq(M)

.

Here, f ∗
i denotes the (pointwise) adjoint of fi . To see that the latter two expres-

sions define two norms, we identify them with a particular instance of the condi-
tional row and column norms in (4.5). We let N be the tensor product von Neu-
mann algebra L∞(�) ⊗M, equipped with the tensor product trace E⊗ τ . Let us
recall that, for any 1 ≤ q < ∞, the map defined on simple functions in the Bochner
space Lq(�;Lq(M)) by

Iq

(∑
i

χAi
xi

)
= ∑

i

χAi
⊗ xi

extends to an isometric isomorphism

Lq(
�;Lq(M)

) = Lq(
L∞(�) ⊗M

)
.(5.3)
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Let K be the von Neumann subalgebra of N given by K = C1 ⊗ M and let E
be the associated conditional expectation. Under the identification (5.3), the ele-
ment E(f ) coincides with the Bochner integral E(f ), whenever f ∈ Lq(N ). In
particular, for any finite sequence (fi) in N ,∥∥(fi)

∥∥
Lq(N ;E,
2

c)
= ∥∥(fi)

∥∥
Sq,c

,
∥∥(fi)

∥∥
Lq(N ;E,
2

r )
= ∥∥(fi)

∥∥
Sq,r

.

We denote by Dp,q , Sq,c and Sq,r the completion of the linear space of all finite
sequences (fi) of random variables in L∞(�;Lq(M)) with respect to the norms
in (5.1) and (5.2). By (4.6), we have the duality

(Sq,c)
∗ = Sq ′,r , (Sq,r )

∗ = Sq ′,c

(
1 < q < ∞,

1

q
+ 1

q ′ = 1
)
.

We are now ready to state the extension of Theorem 1.2.

THEOREM 5.1. Let 1 < p,q < ∞. If (ξi) is a finite sequence of independent,
mean-zero Lq(M)-valued random variables, then(

E

∥∥∥∥∑
i

ξi

∥∥∥∥p

Lq(M)

)1/p

�p,q

∥∥(ξi)
∥∥
sp,q

,(5.4)

where sp,q is given by

Sq,c ∩ Sq,r ∩ Dq,q ∩ Dp,q if 2 ≤ q ≤ p < ∞,

Sq,c ∩ Sq,r ∩ (Dq,q + Dp,q) if 2 ≤ p ≤ q < ∞,

(Sq,c ∩ Sq,r ∩ Dq,q) + Dp,q if 1 < p < 2 ≤ q < ∞,

(Sq,c + Sq,r + Dq,q) ∩ Dp,q if 1 < q < 2 ≤ p < ∞,

Sq,c + Sq,r + (Dq,q ∩ Dp,q) if 1 < q ≤ p ≤ 2,

Sq,c + Sq,r + Dq,q + Dp,q if 1 < p ≤ q ≤ 2.

To prove Theorem 5.1, we shall need to generalize Lemma 2.1 and Theorem 2.3.
Let us first recall the noncommutative version of Khintchine’s inequalities (2.1).

THEOREM 5.2 (Noncommutative Khintchine inequalities). Let (ri) be a
Rademacher sequence and fix 1 ≤ p < ∞. If 2 ≤ q < ∞, then, for any finite se-
quence (xi) in Lq(M),(

E

∥∥∥∥∑
i

rixi

∥∥∥∥p

Lq(M)

)1/p

(5.5)

≤ Kp,q max
{∥∥∥∥

(∑
i

|xi |2
)1/2∥∥∥∥

Lq(M)

,

∥∥∥∥
(∑

i

∣∣x∗
i

∣∣2)1/2∥∥∥∥
Lq(M)

}
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and(
E

∥∥∥∥∑
i

rixi

∥∥∥∥2

Lq(M)

)1/2

≥ max
{∥∥∥∥

(∑
i

|xi |2
)1/2∥∥∥∥

Lq(M)

,

∥∥∥∥
(∑

i

∣∣x∗
i

∣∣2)1/2∥∥∥∥
Lq(M)

}
.

On the other hand, if 1 ≤ q ≤ 2, then(
E

∥∥∥∥∑
i

rixi

∥∥∥∥2

Lq(M)

)1/2

≤ inf
{∥∥∥∥

(∑
i

|yi |2
)1/2∥∥∥∥

Lq(M)

+
∥∥∥∥
(∑

i

∣∣z∗
i

∣∣2)1/2∥∥∥∥
Lq(M)

}

and (
E

∥∥∥∥∑
i

rixi

∥∥∥∥q

Lq(M)

)1/q

�p,q inf
{∥∥∥∥

(∑
i

|yi |2
)1/2∥∥∥∥

Lq(M)

+
∥∥∥∥
(∑

i

∣∣z∗
i

∣∣2)1/2∥∥∥∥
Lq(M)

}
,

where the infimum is taken over all decompositions xi = yi + zi in Lq(M).

REMARK 5.3. Theorem 5.2 was proved for p = q in [21, 22]. The general
case immediately follows by applying Kahane’s inequalities (2.3). It is known that
the constant κp,q in (2.3) satisfies κp,q ≤ (p − 1)1/2/(q − 1)1/2 if 1 < q < p < ∞
(see, e.g., [7], Theorem 3.1). It was proved by Buchholz that K2n

2n = (2n)!/(2nn!)
if n ∈ N ([3], Theorem 5 and the remark following it). From this, it follows that
Kq,q <

√
q if q ≥ 2. Summarizing, if 2 ≤ q < p < ∞, then

Kp,q ≤ κp,qKq,q ≤ (p − 1)1/2/(q − 1)1/2q1/2 ≤ √
2
√

p − 1

and if 2 ≤ p ≤ q < ∞, then Kp,q ≤ Kq,q <
√

q .

In the proof of the next result, we use for 0 < q ≤ 1 and ξ ∈ L1(�;Lq(M)+),

E‖ξ‖Lq(M) ≤ ‖Eξ‖Lq(M).(5.6)

This follows by approximation by step functions using the inequality

‖x + y‖Lq(M) ≥ ‖x‖Lq(M) + ‖y‖Lq(M)

(
x, y ∈ Lq(M)+

)
.

LEMMA 5.4. Let (ξi) be a finite sequence of independent, mean-zero Lq(M)-
valued random variables. If 1 ≤ p,q < 2, then(

E

∥∥∥∥∑
i

ξi

∥∥∥∥p

Lq(M)

)1/p

≤ 4 inf
{∥∥∥∥

(∑
i

E|ηi |2
)1/2∥∥∥∥

Lq(M)

+
∥∥∥∥
(∑

i

E
∣∣θ∗

i

∣∣2)1/2∥∥∥∥
Lq(M)

}
,
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where the infimum is taken over all sequences (ηi) ∈ Sq,c and (θi) ∈ Sq,r such that
ξi = ηi + θi . On the other hand, if 2 ≤ p,q < ∞, then

2
(
E

∥∥∥∥∑
i

ξi

∥∥∥∥p

Lq(M)

)1/p

≥ max
{∥∥∥∥

(∑
i

E|ξi |2
)1/2∥∥∥∥

Lq(M)

,

∥∥∥∥
(∑

i

E
∣∣ξ∗

i

∣∣2)1/2∥∥∥∥
Lq(M)

}
.

PROOF. Suppose 1 ≤ p,q < 2. Let (αi) be a finite sequence in Sq,c of in-
dependent, mean-zero Lq(M)-valued random variables. By symmetrization (2.2)
and Theorem 5.2,(

E

∥∥∥∥∑
i

αi

∥∥∥∥
p

Lq(M)

)1/p

≤ 2
(
EEr

∥∥∥∥∑
i

riαi

∥∥∥∥
p

Lq(M)

)1/p

≤ 2
(
E

∥∥∥∥
(∑

i

|αi |2
)1/2∥∥∥∥

p

Lq(M)

)1/p

= 2
(
E

∥∥∥∥∑
i

|αi |2
∥∥∥∥
p/2

Lq/2(M)

)1/p

≤ 2
(
E

∥∥∥∥∑
i

|αi |2
∥∥∥∥
Lq/2(M)

)1/2

≤ 2
∥∥∥∥∑

i

E|αi |2
∥∥∥∥

1/2

Lq/2(M)

= 2
∥∥∥∥
(∑

i

E|αi |2
)1/2∥∥∥∥

Lq(M)

.

Note that in the final two inequalities we apply Jensen’s inequality and (5.6), re-
spectively, using that p

2 ,
q
2 < 1. Applying this for (α∗

i ) yields

(
E

∥∥∥∥∑
i

αi

∥∥∥∥
p

Lq(M)

)1/p

≤
∥∥∥∥
(∑

i

E
∣∣α∗

i

∣∣2)1/2∥∥∥∥
Lq(M)

.

Let (ηi) and (θi) be finite sequences in Sq,c and Sq,r , respectively, such that ξi =
ηi + θi , then ξi = E(ηi |ξi) − E(ηi) + E(θi |ξi) − E(θi). Since (E(ηi |ξi) − E(ηi))

and (E(θi |ξi)−E(θi)) are sequences of independent, mean-zero random variables,
we obtain by the triangle inequality and the above,(

E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(M)

)1/p

≤ 2
∥∥∥∥
(∑

i

E
∣∣E(ηi |ξi) −E(ηi)

∣∣2)1/2∥∥∥∥
Lq(M)

+ 2
∥∥∥∥
(∑

i

E
∣∣E(

θ∗
i

∣∣ξi

) −E
(
θ∗
i

)∣∣2)1/2∥∥∥∥
Lq(M)

.
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Therefore, by the triangle inequality in Sq,c and Sq,r we find

(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(M)

)1/p

≤ 2
(∥∥∥∥

(∑
i

E
∣∣E(ηi |ξi)

∣∣2)1/2∥∥∥∥
Lq(M)

+
∥∥∥∥
(∑

i

E
∣∣E(ηi)

∣∣2)1/2∥∥∥∥
Lq(M)

+
∥∥∥∥
(∑

i

E
∣∣E(

θ∗
i

∣∣ξi

)∣∣2)1/2∥∥∥∥
Lq(M)

+
∥∥∥∥
(∑

i

E
∣∣E(

θ∗
i

)∣∣2)1/2∥∥∥∥
Lq(M)

)

≤ 4
(∥∥∥∥

(∑
i

E|ηi |2
)1/2∥∥∥∥

Lq(M)

+
∥∥∥∥
(∑

i

E
∣∣θ∗

i

∣∣2)1/2∥∥∥∥
Lq(M)

)
.

Note that the final step follows directly from Kadison’s inequality for (noncommu-
tative) conditional expectations if ηi, θi are, in addition, in L∞ ⊗M. For general
ηi and θi as above, the asserted inequality then follows by a density argument. This
proves the first statement.

Suppose now that 2 ≤ p,q < ∞. By symmetrization (2.2) and Theorem 5.2,

2
(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(M)

)1/p

≥
(
EEr

∥∥∥∥∑
i

riξi

∥∥∥∥
p

Lq(M)

)1/p

≥ max
{(

E

∥∥∥∥
(∑

i

|ξi |2
)1/2∥∥∥∥

p

Lq(M)

)1/p

,

(
E

∥∥∥∥
(∑

i

∣∣ξ∗
i

∣∣2)1/2∥∥∥∥
p

Lq(M)

)1/p}

= max
{(

E

∥∥∥∥∑
i

|ξi |2
∥∥∥∥
p/2

Lq/2(M)

)1/p

,

(
E

∥∥∥∥∑
i

∣∣ξ∗
i

∣∣2∥∥∥∥
p/2

Lq/2(M)

)1/p}

≥ max
{∥∥∥∥∑

i

E|ξi |2
∥∥∥∥

1/2

Lq/2(M)

,

∥∥∥∥∑
i

E
∣∣ξ∗

i

∣∣2∥∥∥∥
1/2

Lq/2(M)

}

= max
{∥∥∥∥

(∑
i

E|ξi |2
)1/2∥∥∥∥

Lq(M)

,

∥∥∥∥
(∑

i

E
∣∣ξ∗

i

∣∣2)1/2∥∥∥∥
Lq(M)

}
.

This completes the proof. �

For our discussion in Section 6, we will keep track of the dependence of the
constants on p and q in the inequalities (5.7) and (5.8) below.
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THEOREM 5.5. Suppose that 2 ≤ p,q < ∞. If (ξi) is a finite sequence of
independent, mean-zero Lq(M)-valued random variables, then(

E

∥∥∥∥∑
i

ξi

∥∥∥∥p

Lq(M)

)1/p

≤ Cp,q(1 + √
2)max

{∥∥∥∥
(∑

i

E|ξi |2
)1/2∥∥∥∥

Lq(M)

,

∥∥∥∥
(∑

i

E
∣∣ξ∗

i

∣∣2)1/2∥∥∥∥
Lq(M)

,(5.7)

Cp/2,q/2

(
E

(∑
i

‖ξi‖q
Lq(M)

)p/q)1/p}
,

where Cp,q = 2Kp,q < max{2√
2
√

p − 1,2
√

q} and Kp,q is the constant in (5.5).
Moreover, if κp,q is the constant in (2.3) then(

E

∥∥∥∥∑
i

ξi

∥∥∥∥p

Lq(M)

)1/p

≥ 1

2
max

{
(κq,p)−1

(
E

(∑
i

‖ξi‖q
Lq(M)

)p/q)1/p

,(5.8)

∥∥∥∥
(∑

i

E|ξi |2
)1/2∥∥∥∥

Lq(M)

,

∥∥∥∥
(∑

i

E
∣∣ξ∗

i

∣∣2)1/2∥∥∥∥
Lq(M)

}
.

PROOF. We first prove (5.8). By Lemma 5.4,

max
{∥∥∥∥

(∑
i

E|ξi |2
)1/2∥∥∥∥

Lq(M)

,

∥∥∥∥
(∑

i

E
∣∣ξ∗

i

∣∣2)1/2∥∥∥∥
Lq(M)

}

≤ 2
(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(M)

)1/p

.

By successively applying the cotype q inequality for Lq(M), Kahane’s inequali-
ties (2.3) and (2.2), we see that(

E

(∑
i

‖ξi‖q
Lq(M)

)p/q)1/p

≤
(
E

(
Er

∥∥∥∥∑
i

riξi

∥∥∥∥
q

Lq(M)

)p/q)1/p

(5.9)

≤ κq,p

(
EEr

∥∥∥∥∑
i

riξi

∥∥∥∥
p

Lq(M)

)1/p

≤ 2κq,p

(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(M)

)1/p

.
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We refer to [9] for a proof that (5.9) holds with constant 1.
We now prove (5.7). By (2.2) and Theorem 5.2, we have(

E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

Lq(M)

)1/p

≤ 2Kp,q max
{(

E

∥∥∥∥
(∑

i

|ξi |2
)1/2∥∥∥∥

p

Lq(M)

)1/p

,(5.10)

(
E

∥∥∥∥
(∑

i

∣∣ξ∗
i

∣∣2)1/2∥∥∥∥
p

Lq(M)

)1/p}
.

By the triangle inequality in Lp/2(�;Lq/2(M)), it follows that(
E

∥∥∥∥
(∑

i

|ξi |2
)1/2∥∥∥∥

p

Lq(M)

)1/p

=
(
E

∥∥∥∥∑
i

|ξi |2
∥∥∥∥
p/2

Lq/2(M)

)1/p

(5.11)

≤
((

E

∥∥∥∥∑
i

|ξi |2 −E|ξi |2
∥∥∥∥
p/2

Lq/2(M)

)2/p

+
∥∥∥∥∑

i

E|ξi |2
∥∥∥∥
Lq/2(M)

)1/2

.

We now estimate the first term on the far right-hand side. By applying (2.2) and
Theorem 5.2 once again, we obtain(

E

∥∥∥∥∑
i

|ξi |2 −E|ξi |2
∥∥∥∥
p/2

Lq/2(M)

)2/p

≤ 2Kp/2,q/2

(
E

∥∥∥∥
(∑

i

∣∣|ξi |2 −E|ξi |2
∣∣2)1/2∥∥∥∥

p/2

Lq/2(M)

)2/p

(5.12)

≤ Cp/2,q/2

((
E

∥∥∥∥
(∑

i

|ξi |4
)1/2∥∥∥∥

p/2

Lq/2(M)

)2/p

+
∥∥∥∥
(∑

i

∣∣E|ξi |2
∣∣2)1/2∥∥∥∥

Lq/2(M)

)
,

where the final inequality is a consequence of the triangle inequality in Lp/2(�;
Lq/2(M;
2

c)). Note that the second term on the right-hand side is smaller than the
first one. Indeed, ∥∥∥∥

(∑
i

∣∣E|ξi |2
∣∣2)1/2∥∥∥∥

Lq/2(M)

= ∥∥col
(
E|ξi |2)∥∥

Lq/2(M⊗B(
2))(5.13)
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= ∥∥E(
col

(|ξi |2))∥∥
Lq/2(M⊗B(
2))

≤ E
∥∥col

(|ξi |2)∥∥
Lq/2(M⊗B(
2))

≤ (
E

∥∥col
(|ξi |2)∥∥p/2

Lq/2(M⊗B(
2))

)2/p

=
(
E

∥∥∥∥
(∑

i

|ξi |4
)1/2∥∥∥∥

p/2

Lq/2(M)

)2/p

.

Write x = col(|ξi |) and y = diag(|ξi |) for the matrices with the |ξi | in their first
column and diagonal, respectively, and zeroes elsewhere. By the noncommutative
Hölder inequality (4.3),(

E

∥∥∥∥
(∑

i

|ξi |4
)1/2∥∥∥∥

p/2

Lq/2(M)

)2/p

= (
E

∥∥(
x∗y∗yx

)1/2∥∥p/2
Lq/2(M⊗B(
2))

)2/p

= (
E‖yx‖p/2

Lq/2(M⊗B(
2))

)2/p

(5.14)
≤ (

E
∣∣‖y‖Lq(M⊗B(
2))‖x‖Lq(M⊗B(
2))

∣∣p/2)2/p

≤ (
E‖y‖p

Lq(M⊗B(
2))

)1/p(
E‖x‖p

Lq(M⊗B(
2))

)1/p

=
(
E

(∑
i

‖ξi‖q
Lq(M)

)p/q)1/p(
E

∥∥∥∥
(∑

i

|ξi |2
)1/2∥∥∥∥

p

Lq(M)

)1/p

.

Collecting our estimates (5.11), (5.12), (5.13) and (5.14), we find the quadratic
inequality

a2 ≤ (2Cp/2,q/2)ab + c2,

where we set a = (E‖(∑i |ξi |2)1/2‖p
Lq(M))

1/p , b = (E(
∑

i ‖ξi‖q
Lq(M))

p/q)1/p and

c = ‖(∑i E|ξi |2)1/2‖Lq(M). Solving this quadratic inequality, we obtain

a ≤ 1
2

(
2Cp/2,q/2b + (

(2Cp/2,q/2b)2 + 4c2)1/2) ≤ 1+√
2

2 max{2Cp/2,q/2b,2c},
that is, (

E

∥∥∥∥
(∑

i

|ξi |2
)1/2∥∥∥∥

p

Lq(M)

)1/p

≤ (1 + √
2)max

{∥∥∥∥
(∑

i

E|ξi |2
)1/2∥∥∥∥

Lq(M)

,

Cp/2,q/2

(
E

(∑
i

‖ξi‖q
Lq(M)

)p/q)1/p}
.
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Applying this to the sequence (ξ∗
i ), we obtain(

E

∥∥∥∥
(∑

i

∣∣ξ∗
i

∣∣2)1/2∥∥∥∥
p

Lq(M)

)1/p

≤ (1 + √
2)max

{∥∥∥∥
(∑

i

E
∣∣ξ∗

i

∣∣2)1/2∥∥∥∥
Lq(M)

,

Cp/2,q/2

(
E

(∑
i

‖ξi‖q
Lq(M)

)p/q)1/p}
.

Inequality (5.7) now follows from (5.10). �

Note that even if M is commutative, the proof of Theorem 5.5 is different from
the one presented for Theorem 2.3. We are now ready to prove Theorem 5.1.

PROOF OF THEOREM 5.1. Observe that the spaces Sq,c, Sq,r , Dp,q and Dq,q

have dense intersection and, therefore, the duality of these individual spaces imply
together with (2.10) that

(sp,q)∗ = sp′,q ′,
1

p
+ 1

p′ = 1,
1

q
+ 1

q ′ = 1,

with associated duality bracket〈
(fi), (gi)

〉 = ∑
i

Eτ(figi).

Thus, the lower estimates �p,q in (5.4) can be deduced from the upper ones using
the duality argument presented in (2.13) and (2.14).

The upper estimates �p,q follow essentially as in the proof of Theorem 1.2
once we replace the use of Lemma 2.1 and Theorem 2.3 by their noncommutative
versions Lemma 5.4 and Theorem 5.5, respectively. The straightforward modifica-
tions are left to the reader. �

Before deducing Itô isomorphisms for Poisson stochastic integrals taking val-
ues in a noncommutative Lq -space from Theorem 5.1, we take the opportunity to
observe some moment estimates for the norm of a sum of random matrices.

6. Intermezzo on random matrices. Let us recall the following noncommu-
tative Khintchine inequality for the operator norm of a Rademacher sum of ma-
trices. Let d1, d2 ∈ N and set d = min{d1, d2}. If x1, . . . , xn are d1 × d2 random
matrices, then there is a constant Cp,d depending only on p and d such that(

E

∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
p)1/p

≤ Cp,d max

{∥∥∥∥∥
(

n∑
i=1

|xi |2
)1/2∥∥∥∥∥,

∥∥∥∥∥
(

n∑
i=1

∣∣x∗
i

∣∣2)1/2∥∥∥∥∥
}
.(6.1)
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Indeed, this inequality can readily be deduced from the noncommutative Khint-
chine inequalities for Schatten spaces. Since ‖x‖logd ≤ e‖x‖ ≤ e‖x‖logd for any
d1 × d2 matrix x,(

E

∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
p)1/p

≤
(
E

∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
p

logd

)1/p

≤ Kp,logd max

{∥∥∥∥∥
(

n∑
i=1

|xi |2
)1/2∥∥∥∥∥

logd

,

∥∥∥∥∥
(

n∑
i=1

∣∣x∗
i

∣∣2)1/2∥∥∥∥∥
logd

}

≤ eKp,logd max

{∥∥∥∥∥
(

n∑
i=1

|xi |2
)1/2∥∥∥∥∥,

∥∥∥∥∥
(

n∑
i=1

∣∣x∗
i

∣∣2)1/2∥∥∥∥∥
}
.

By the remark following Theorem 5.2, if 2 ≤ logd ≤ p then

Cp,d ≤ eKp,logd ≤ e
√

2
√

p − 1

and Cp,d ≤ e
√

logd if 2 ≤ p ≤ logd .

REMARK 6.1. The Khintchine inequality (6.1) cannot hold with a constant
independent of the dimensions d1, d2. Indeed, it was shown by Seginer ([37], The-
orem 3.1) that there is an absolute constant C such that for any aij , i = 1, . . . , d1
j = 1, . . . , d2 in C and any 1 ≤ p ≤ 2 log max{d1, d2} the rank one matrices
xij = aij ⊗ eij satisfy(

E

∥∥∥∥∑
i,j

rij xij

∥∥∥∥
p)1/p

(6.2)

≤ C(logd)1/4 max
{∥∥∥∥

(∑
i,j

|xij |2
)1/2∥∥∥∥,

∥∥∥∥
(∑

i,j

∣∣x∗
ij

∣∣2)1/2∥∥∥∥
}
.

Moreover, the order of growth (logd)1/4 in (6.2) is optimal ([37], Theorem 3.2).

THEOREM 6.2. Let 2 ≤ p < ∞. If (ξi) is a finite sequence of independent,
mean-zero d1 × d2 random matrices, then(

E

∥∥∥∥∑
i

ξi

∥∥∥∥p)1/p

≤ 2(1 + √
2)Cp,d max

{∥∥∥∥
(∑

i

E|ξi |2
)1/2∥∥∥∥,

∥∥∥∥
(∑

i

E
∣∣ξ∗

i

∣∣2)1/2∥∥∥∥,
2Cp/2,d

(
Emax

i
‖ξi‖p

)1/p
}
,
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where d = min{d1, d2}. The reverse inequality holds with constant 21+1/p .

PROOF. By repeating the proof of Theorem 5.5 using (6.1) instead of the non-
commutative Khintchine inequality (5.5), we find(

E

∥∥∥∥∑
i

ξi

∥∥∥∥
p)1/p

≤ 2(1 + √
2)Cp,d max

{∥∥∥∥
(∑

i

E|ξi |2
)1/2∥∥∥∥,

∥∥∥∥
(∑

i

E
∣∣ξ∗

i

∣∣2)1/2∥∥∥∥,
2Cp/2,d

(
E

∥∥diag(ξi)
∥∥p)1/p

}
.

Clearly, ‖diag(ξi)‖ = maxi ‖ξi‖, so the first assertion holds.
For the second assertion, let (ri) be a Rademacher sequence on a probability

space (�r,Fr ,Pr ). Then(
Emax

i
‖ξi‖p

X

)1/p =
(
EEr max

i
‖riξi‖p

X

)1/p

≤ 21/p

(
EEr

∥∥∥∥∑
i

riξi

∥∥∥∥
p

X

)1/p

≤ 21+1/p

(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p

X

)1/p

,

where the first inequality follows by the Lévy–Octaviani inequality in [18], Propo-
sition 1.1.1. Moreover,∥∥∥∥

(∑
i

E|ξi |2
)1/2∥∥∥∥ =

∥∥∥∥EEr

∑
i,j

rirj ξ
∗
i ξj

∥∥∥∥
1/2

≤
(
EEr

∥∥∥∥∑
i,j

rirj ξ
∗
i ξj

∥∥∥∥
)1/2

=
(
EEr

∥∥∥∥∑
i

riξi

∥∥∥∥
2)1/2

≤ 2
(
E

∥∥∥∥∑
i

ξi

∥∥∥∥
p)1/p

,

where the final inequality follows from (2.2). �

As a consequence, we find the following moment inequalities for the norm of a
random matrix with independent, mean-zero entries.

COROLLARY 6.3. Let 2 ≤ p < ∞. Suppose that xij , i = 1, . . . , d1, j =
1, . . . , d2 are independent, mean-zero random variables in Lp(�). If x is the
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d1 × d2 random matrix (xij ), then(
E‖x‖p)1/p

≤ 2(1 + √
2)Cp,d max

{
max

j=1,...,d2

(
d1∑

i=1

Ex2
ij

)1/2

, max
i=1,...,d1

(
d2∑

j=1

Ex2
ij

)1/2

,(6.3)

2Cp/2,d

(
Emax

i,j
|xij |p

)1/p
}
,

with Cp,d < e max{√logd,
√

2
√

p − 1} as in Theorem 6.2.

PROOF. Let eij be the d1 × d2 matrix having 1 in entry (i, j) and zeroes else-
where. Set yij = xij ⊗ eij , then (yij ) is a doubly indexed sequence of independent,
mean-zero random matrices and x = ∑

i,j yij . Notice that

y∗
ij yij = x2

ij ⊗ ejieij = x2
ij ⊗ ejj ,

so ∥∥∥∥
(∑

i,j

E|yij |2
)1/2∥∥∥∥ =

∥∥∥∥∑
j

(∑
i

Ex2
ij

)1/2

⊗ ejj

∥∥∥∥ = max
j

(∑
i

Ex2
ij

)1/2

.

Moreover,

yij y
∗
ij = x2

ij ⊗ eij eji = x2
ij ⊗ eii

and, therefore,∥∥∥∥
(∑

i,j

E
∣∣y∗

ij

∣∣2)1/2∥∥∥∥ =
∥∥∥∥∑

i

(∑
j

Ex2
ij

)1/2

⊗ eii

∥∥∥∥ = max
i

(∑
j

Ex2
ij

)1/2

.

Finally, it is clear that(
Emax

i,j
‖yij‖p

)1/p =
(
Emax

i,j
|xij |p

)1/p
.

The result now follows from Theorem 6.2. �

In [19], Latała showed that there is a universal constant C > 0 such that

E‖x‖ ≤ C

(
max

i=1,...,d1

(
d2∑

j=1

Ex2
ij

)1/2

+ max
j=1,...,d2

(
d1∑

i=1

Ex2
ij

)1/2

(6.4)

+
(∑

i,j

Ex4
ij

)1/4
)
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for any random matrix x = (xij ) with independent, mean-zero entries in L4(�). To
compare this result to Corollary 6.3, observe that (6.4) implies together with (2.11)
that there is a universal constant C > 0 such that for all 1 ≤ p < ∞,

(
E‖x‖p)1/p ≤ C

p

logp

(
max

i=1,...,d1

(
d2∑

j=1

Ex2
ij

)1/2

+ max
j=1,...,d2

(
d1∑

i=1

Ex2
ij

)1/2

(6.5)

+
(∑

i,j

Ex4
ij

)1/4

+
(
Emax

i,j
|xij |p

)1/p
)
.

The upper bound in Corollary 6.3 exhibits different growth behavior in p and does
not contain the factor (

∑
i,j Ex4

ij )
1/4. In particular, the bound (6.3) is applicable

to random matrices having entries with infinite fourth moment. On the other hand,
note that the bound in (6.5) is of order

√
d for matrices with uniformly bounded

entries, which is optimal for d → ∞ (see the discussion in [19]). Through the
use of the noncommutative Khintchine inequality in our proof, we incur an extra
factor of order

√
logd . As the order (logd)1/4 of the constant in (6.2) is optimal,

this additional factor is an inevitable product of our method.

7. Itô-isomorphisms: Noncommutative Lq -spaces. We now present an ex-
tension of Theorem 1.1 for integrands taking values in a noncommutative Lq -
space. In the statement of our main result, we will use the following noncommu-
tative L2-valued Lq -spaces, which were introduced by Pisier in [31] and treated
in more detail in [15]. For any simple function on a measure space (E,E,μ) with
values in Lq(M), F = ∑

i χEi
xi say, we set

‖F‖Lq(M;L2(R+×J )c)
=

∥∥∥∥
(∑

i

|xi |2μ(Ei)

)1/2∥∥∥∥
Lq(M)

,

‖F‖Lq(M;L2(R+×J )r )
=

∥∥∥∥
(∑

i

∣∣x∗
i

∣∣2μ(Ei)

)1/2∥∥∥∥
Lq(M)

.

It can be shown that these expression define two norms on the simple functions,
and we let Lq(M;L2(E)c) and Lq(M;L2(E)r) denote the respective comple-
tions in these norms. Alternatively, one can describe these spaces as comple-
mented subspaces of Lq(M ⊗ B(L2(E))) and in this way one can show that for
1 < q,q ′ < ∞ with 1

q
+ 1

q ′ = 1,

(
Lq(

M;L2(E)c
))∗ = Lq ′(M;L2(E)r

)
,

(7.1) (
Lq(

M;L2(E)r
))∗ = Lq ′(M;L2(E)c

)
.

We refer to Chapter 2 of [15] for details. Now, for any 1 ≤ p,q < ∞ we set

Sp
q,c = Lp(

�;Lq(
M;L2(R+ ×J )c

))
, Sp

q,r = Lp(
�;Lq(

M;L2(R+ ×J )r
))

.
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Since Lq(M;L2(R+ × J )c) and Lq(M;L2(R+ × J )r) can be identified with
closed subspaces of Lq(M ⊗ B(L2(R+ × J ))), they are reflexive if 1 < q < ∞.
Therefore, it follows from (7.1) that for any 1 < p,q < ∞,

(
Sp

q,c

)∗ = Sp′
q ′,r ,

(
Sp

q,r

)∗ = Sp′
q ′,c,

(
1

p
+ 1

p′ = 1,
1

q
+ 1

q ′ = 1
)
.(7.2)

If M is commutative, then Sp
q,c and Sp

q,r coincide and are equal to the Bochner
space S

p
q = Lp(�;Lq(S;L2(R+ × J ))) considered earlier.

We are now ready to prove our main theorem.

THEOREM 7.1. Let 1 < p,q < ∞. For any B ∈ J , any t > 0 and any simple,
adapted Lq(M)-valued process F ,(

E sup
0<s≤t

∥∥∥∥
∫
(0,s]×B

F dÑ

∥∥∥∥p

Lq(M)

)1/p

�p,q ‖Fχ(0,t]×B‖Ip,q ,(7.3)

where Ip,q is given by

Sp
q,c ∩ Sp

q,r ∩Dp
q,q ∩Dp

p,q if 2 ≤ q ≤ p < ∞,

Sp
q,c ∩ Sp

q,r ∩ (
Dp

q,q +Dp
p,q

)
if 2 ≤ p ≤ q < ∞,(

Sp
q,c ∩ Sp

q,r ∩Dp
q,q

) +Dp
p,q if 1 < p < 2 ≤ q < ∞,(

Sp
q,c + Sp

q,r +Dp
q,q

) ∩Dp
p,q if 1 < q < 2 ≤ p < ∞,

Sp
q,c + Sp

q,r + (
Dp

q,q ∩Dp
p,q

)
if 1 < q ≤ p ≤ 2,

Sp
q,c + Sp

q,r +Dp
q,q +Dp

p,q if 1 < p ≤ q ≤ 2.

PROOF. The proof is similar to the one for Theorem 1.1, we sketch the main
differences in the cases 2 ≤ q ≤ p < ∞ and 1 < p ≤ q ≤ 2. Since Lq(M) is a
UMD space if 1 < q < ∞, by the decoupling inequality (1.4) and Doob’s maximal
inequality it suffices to show that

(
EEc

∥∥∥∥
∫
(0,t]×B

F dÑc

∥∥∥∥
p

Lq(M)

)1/p

�p,q ‖Fχ(0,t]×B‖Ip,q .

Let F be the simple adapted process given in (3.1), taking Remark 3.5 into account.
We may assume that t = tl+1 and B = ⋃m

j=1 Aj . We write Ñc
i,j := Ñc((ti, ti+1] ×

Aj) for brevity.
Case 2 ≤ q ≤ p < ∞: Set yi,j = ∑n

k=1 Fi,j,kxi,j,k and di,j = yi,j Ñ
c
i,j , then

clearly ∫
(0,t]×B

F dÑc = ∑
i,j

di,j .(7.4)
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Moreover, for every fixed ω ∈ � the random variables di,j (ω) are independent and
mean-zero. Therefore, we can apply Theorem 5.1 pointwise in � and subsequently
take the Lp(�)-norm on both sides to obtain(

EEc

∥∥∥∥∑
i,j

di,j

∥∥∥∥
p

Lq(M)

)1/p

�p,q max
{(

E

∥∥∥∥
(∑

i,j

Ec|di,j |2
)1/2∥∥∥∥

p

Lq(M)

)1/p

,

(
E

∥∥∥∥
(∑

i,j

Ec

∣∣d∗
i,j

∣∣2)1/2∥∥∥∥
p

Lq(M)

)1/p

,

(
E

(∑
i,j

Ec‖di,j‖q
Lq(M)

)p/q)1/p

,

(∑
i,j

EEc‖di,j‖p
Lq(M)

)1/p}

�p,q max
{‖F‖Sp

q,c
,‖F‖Sp

q,r
,‖F‖Dp

q,q
,‖F‖Dp

p,q

}
,

where the final step follows by calculations analogous to (3.7), (3.8) and (3.9).
Case 1 < p ≤ q ≤ 2: Let Ielem denote the algebraic tensor product

Ielem = L∞(�) ⊗ L∞(R+) ⊗ (
L1 ∩ L∞)

(J ) ⊗ (
L1 ∩ L∞)

(M).

Since this linear space is dense in Sp
q,c, Sp

q,r , Dp
p,q and Dp

q,q , we can find, for any
fixed ε > 0, a decomposition F = F1 + F2 + F3 + F4 with Fα ∈ Ielem such that

‖F1‖Sp
q,c

+ ‖F2‖Sp
q,r

+ ‖F3‖Dp
p,q

+ ‖F4‖Dp
q,q

≤ ‖F‖Ip,q + ε.

We may assume that the Fα have the same support in R+ × J as F . Let A be the
sub-σ -algebra of B(R+) ×J generated by the sets (ti, ti+1] × Aj . By Lemma 3.6
E(Fα|A) is of the form

E(Fα|A) = ∑
i,j,k

Fi,j,k,αχ(ti ,ti+1]χAj
xi,j,k,α (α = 1,2,3,4).

Let yi,j,α = ∑n
k=1 Fi,j,k,αxi,j,k,α and set di,j,α = yi,j,αÑc

i,j , then (7.4) holds and

di,j = di,j,1 + di,j,2 + di,j,3 + di,j,4.

By computations similar to (3.7), (3.8) and (3.9),∥∥(di,j,1)
∥∥
S

p
q,c

= ∥∥E(F1|A)
∥∥
Sp

q,c
≤ ‖F1‖Sp

q,c
,∥∥(di,j,2)

∥∥
S

p
q,r

= ∥∥E(F2|A)
∥∥
Sp

q,r
≤ ‖F2‖Sp

q,r
,∥∥(di,j,3)

∥∥
D

p
p,q

�p

∥∥E(F3|A)
∥∥
Dp

p,q
≤ ‖F3‖Dp

p,q
,∥∥(di,j,4)

∥∥
D

p
q,q

�q

∥∥E(F4|A)
∥∥
Dp

q,q
≤ ‖F4‖Dp

q,q
.
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By applying Theorem 5.1 pointwise in � and subsequently taking Lp(�)-norms
on both sides, we conclude that(

EEc

∥∥∥∥
∫
(0,t]×B

F dÑc

∥∥∥∥
p

Lq(M)

)1/p

�p,q ‖F1‖Sp
q,c

+ ‖F2‖Sp
q,r

+ ‖F3‖Dp
p,q

+ ‖F4‖Dp
q,q

≤ ‖F‖Ip,q + ε.

For the reverse estimate, observe that if p′, q ′ are the Hölder conjugates of p and q ,
then in view of (7.2) and (2.10), we have I∗

p,q = Ip′,q ′ , with associated duality
bracket

〈F,G〉 =
∫
�×R+×J

τ (FG)dPdt dν.

The reverse inequality can therefore be deduced using the duality argument (3.11)
explained in the proof of Theorem 1.1. �

Let us make a detailed comparison of our main result with the existing results in
the literature. We restrict our attention to [2, 11, 23, 24] and refer to the references
in these papers for earlier achievements. In [23], Marinelli, Prévôt and Röckner
showed using Itô’s formula that if H is a Hilbert space and 2 ≤ p < ∞, then(

E sup
0<s≤t

∥∥∥∥
∫
(0,s]×B

F dÑ

∥∥∥∥
p

H

)1/p

(7.5)

�p,t

(
E

∫
(0,t]

(∫
B

‖F‖2
H dν

)p/2

dt

)1/p

+
(
E

∫
(0,t]×B

‖F‖p
H dt dν

)1/p

.

Due to the first term on the right-hand side, this estimate is only near-optimal.
Indeed, since(
E

(∫
(0,t]×B

‖F‖2
H dν

)p/2

dt

)1/p

≤ t1/2−1/p

(
E

∫
(0,t]

(∫
B

‖F‖2
H dν

)p/2

dt

)1/p

,

Theorem 7.1 implies (7.5) but not vice versa. In [24], Marinelli and Röckner
proved the bound(

E sup
0<s≤t

∥∥∥∥
∫
(0,s]×B

F dÑ

∥∥∥∥
p

Lp(S)

)1/p

�p,t

(
E

∫
(0,t]

(∫
B

‖F‖2
Lp(S) dν

)p/2

dt

)1/p

(7.6)

+
(
E

∫
(0,t]×B

‖F‖p
Lp(S) dt dν

)1/p

,

valid for any 2 ≤ p < ∞. This result is deduced by a Fubini-type argument from
the estimate (7.5) for H = R. Of course, such an argument can only work if
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p = q (in our notation). Observe that the optimal bound in Theorem 7.1 improves
upon (7.6). Also note that the constants in (7.3) do not depend on t , in contrast
to (7.5) and (7.6). Finally, let us recall the following bounds valid for a Banach
space X with martingale type 1 < q ≤ 2. Brzeźniak and Hausenblas showed ([2],
Corollary B.6) that if 1 < p ≤ q then(

E sup
0<s≤t

∥∥∥∥
∫
(0,s]×B

F dÑ

∥∥∥∥
p

X

)1/p

�p,q,X

(
E

(∫
(0,t]×B

‖F‖q
X dt dν

)p/q)1/p

.(7.7)

Moreover, Hausenblas proved ([11], Proposition 2.14) that if p = qn for some
n ∈ N, then(

E sup
0<s≤t

∥∥∥∥
∫
(0,s]×B

F dÑ

∥∥∥∥
p

X

)1/p

(7.8)
�p,q,X

(
E

(∫
(0,t]×B

‖F‖q
X dt dν

)p/q)1/p

+
(
E

∫
(0,t]×B

‖F‖p
X dt dν

)1/p

.

If X = L2(M), so that q = 2, and p = 2n then (7.8) reproduces the optimal up-
per bound in Theorem 7.1. In all other cases, however, both (7.7) and (7.8) yield
suboptimal bounds for Lq -spaces.

APPENDIX A: DECOUPLING

In this appendix, we give a proof of the decoupling inequality (1.4). Recall that a
Banach space X is called a UMD space if for some (then, every) 1 < p < ∞ there
is a constant Cp,X ≥ 0 such that for any X-valued martingale difference sequence
(dn)n≥1, any sequence of signs (εn)n≥1 and any N ≥ 1 one has(

E

∥∥∥∥∥
N∑

n=1

εndn

∥∥∥∥∥
p

X

)1/p

≤ Cp,X

(
E

∥∥∥∥∥
N∑

n=1

dn

∥∥∥∥∥
p

X

)1/p

.(A.1)

It is well known that any Lq -space, classical or noncommutative, is a UMD space
if and only if 1 < q < ∞. We refer to [4] for more information on UMD spaces.

The decoupling inequality (1.4) is a direct consequence of the following ob-
servation. For the convenience of the reader, we reproduce its short proof, which
appeared in [38], Theorem 2.4.1 (see also [26], Theorem 13.1).

LEMMA A.1. Let 1 < p < ∞ and let X be a UMD Banach space. Consider
a filtration (Gi )

n
i=0 in (�,F,P). Suppose that for every 1 ≤ i ≤ n we are given a

Gi-measurable, mean-zero, real-valued random variable Mi which is independent
of Gi−1 and, moreover, a Gi−1-measurable, X-valued random variable Gi . Let
(Mc

i )
n
i=1 be an independent copy of (Mi)

n
i=1 on a probability space (�c,Fc,Pc).

Then (
E

∥∥∥∥∥
n∑

i=1

GiMi

∥∥∥∥∥
p

X

)1/p

≤ Cp,X

(
EEc

∥∥∥∥∥
n∑

i=1

GiM
c
i

∥∥∥∥∥
p

X

)1/p

.(A.2)
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PROOF. For i = 1, . . . , n let Gc
i be the sub-σ -algebra generated by (Mc

j )ij=1.
Define

d2i = 1
2Gi

(
Mi − Mc

i

)
, d2i−1 = 1

2Gi

(
Mi + Mc

i

)
.

We claim that (di)
2n
i=1 is a martingale difference sequence on � × �c with respect

to the filtration (Fi )
2n
i=1 defined by

F2i = σ
(
Gi ,Gc

i

)
, F2i−1 = σ

(
Gi−1,Gc

i−1,Mi + Mc
i

)
(i = 1, . . . , n).

The result immediately follows from this claim and the UMD-property, since

2n∑
i=1

di =
n∑

i=1

GiMi,

2n∑
i=1

(−1)i+1di =
n∑

i=1

GiM
c
i .

To prove the claim, note that (di)
2n
i=1 is adapted. Moreover, by our assumptions on

the Gi and Mi ,

E(d2i−1|F2i−2) = 1
2GiE

(
Mi + Mc

i |Gi−1,Gc
i−1

) = 0

and

E(d2i |F2i−1) = 1
2GiE

(
Mi − Mc

i |Gi−1,Gc
i−1,Mi + Mc

i

)
= 1

2GiE
(
Mi − Mc

i |Mi + Mc
i

) = 0,

where the final step follows from a direct computation, using that Mi and Mc
i are

independent and identically distributed. �

LEMMA A.2. Let 1 < p < ∞ and let X be a UMD Banach space. Let N be
a Poisson random measure on R+ × J and let Nc be an independent copy of N .
Fix a filtration (Ft )t>0 in � satisfying Assumption 3.2. If F is a simple, adapted
X-valued process, then for all t > 0 and B ∈ J ,(

E

∥∥∥∥
∫
(0,t]×B

F dÑ

∥∥∥∥p

X

)1/p

≤ Cp,X

(
EEc

∥∥∥∥
∫
(0,t]×B

F dÑc

∥∥∥∥p

X

)1/p

,(A.3)

where Cp,X is the constant in (A.1).

PROOF. Let F be the simple adapted process in (3.1). We may assume that
t = tl+1 and B = ⋃m

j=1 Aj . For every 1 ≤ i ≤ l and 1 ≤ j ≤ m, we set

G(i,j) =
n∑

k=1

Fi,j,kxi,j,k, M(i,j) = Ñ
(
(ti , ti+1] × Aj

)
,

Mc
(i,j) = Ñc((ti, ti+1] × Aj

)
.
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Under Assumption 3.2, the subalgebras defined for i = 1, . . . , l and j = 1, . . . ,m

by
G(i,j) = σ

(
Fti , Ñ

(
(ti, ti+1] × Ak

)
, k = 1, . . . , j

)
if 1 ≤ j ≤ m − 1,

G(i,m) = Fti+1

form a filtration if we equip the pairs (i, j) with the lexicographic ordering. More-
over, the sequences (G(i,j))(i,j), (M(i,j))(i,j), and (Mc

(i,j))(i,j) satisfy the condi-
tions of Lemma A.1 and inequality (A.3) exactly corresponds to the estimate (A.2).

�

APPENDIX B: PROOF OF THEOREM 1.1: REMAINING CASES

For completeness, we give a proof here of the remaining cases of Theorem 1.1.
We continue to use the same notation, in particular Ielem is the space of all simple
functions on � × R+ × J × S with support of finite measure and A denotes the
sub-σ -algebra of B(R+)×J generated by the sets (ti, ti+1]×Aj . Let us note that
it suffices to prove the upper estimates �p,q in (1.3). The reverse estimates then
follow by the duality argument presented in the case 1 < p ≤ q ≤ 2.

Case 2 ≤ p ≤ q ≤ 2: Fix ε > 0. By density of Ielem in Dp
p,q and Dp

q,q , we can
find a decomposition F = F1 + F2 with Fα ∈ Ielem for α = 1,2 such that

‖F1‖Dp
p,q

+ ‖F2‖Dp
q,q

≤ ‖F‖Dp
p,q+Dp

q,q
+ ε.

We may assume that F1 and F2 have the same support in R+ × J as F . By
Lemma 3.6 E(Fα|A) is of the form

E(Fα|A) = ∑
i,j,k

Fi,j,k,αχ(ti ,ti+1]χAj
xi,j,k,α (α = 1,2).(B.1)

Let yi,j,α = ∑n
k=1 Fi,j,k,αxi,j,k,α and set di,j,α = yi,j,αNc

i,j , so that

di,j = di,j,1 + di,j,2.

If we apply Theorem 1.2 pointwise in � and subsequently take Lp(�)-norms on
both sides, we find(

EEc

∥∥∥∥
∫
(0,t]×B

F dÑc

∥∥∥∥
p

Lq(S)

)1/p

=
(
EEc

∥∥∥∥∑
i,j

di,j

∥∥∥∥
p

Lq(S)

)1/p

�p,q max
{(

E

∥∥∥∥
(∑

i,j

Ec|di,j |2
)1/2∥∥∥∥

p

Lq(S)

)1/p

,

(∑
i,j

EEc‖di,j,1‖p
Lq(S)

)1/p

+
(
E

(∑
i,j

Ec‖di,j,2‖q
Lq(S)

)p/q)1/p}

�p,q max
{‖F‖Sp

q
,‖F1‖Dp

p,q
+ ‖F2‖Dp

q,q

} ≤ ‖F‖Ip,q + ε,
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where the penultimate inequality follows by the computations in (3.10).
Case 1 < p < 2 ≤ q < ∞: Fix ε > 0. By density of Ielem in Dp

p,q and Sp
q ∩Dp

q,q ,
we can find a decomposition F = F1 + F2 with Fα ∈ Ielem for α = 1,2 such that

‖F1‖Dp
p,q

+ ‖F2‖Sp
q ∩Dp

q,q
≤ ‖F‖Ip,q + ε.

We may assume that F1 and F2 have the same support in R+ × J as F . By
Lemma 3.6, E(Fα|A) is of the form (B.1). Let yi,j,α = ∑n

k=1 Fi,j,k,αxi,j,k,α and
set di,j,α = yi,j,αNc

i,j , so that

di,j = di,j,1 + di,j,2.

We apply Theorem 1.2 pointwise in � and subsequently take Lp(�)-norms on
both sides to find

(
EEc

∥∥∥∥
∫
(0,t]×B

F dÑc

∥∥∥∥
p

Lq(S)

)1/p

=
(
EEc

∥∥∥∥∑
i,j

di,j

∥∥∥∥
p

Lq(S)

)1/p

�p,q

(∑
i,j

EEc‖di,j,1‖p
Lq(S)

)1/p

+ max
{(

E

∥∥∥∥
(∑

i,j

Ec|di,j,2|2
)1/2∥∥∥∥

p

Lq(S)

)1/p

,

(
E

(∑
i,j

Ec‖di,j,2‖q
Lq(S)

)p/q)1/p}

�p,q ‖F1‖Dp
p,q

+ max
{‖F2‖Sp

q
,‖F2‖Dp

q,q

} ≤ ‖F‖Ip,q + ε,

where the penultimate inequality follows by (3.10).
Case 1 < q < 2 ≤ p < ∞: Let ε > 0. By density of Ielem in Sp

q and Dp
q,q , we

can find a decomposition F = F1 + F2 with Fα ∈ Ielem for α = 1,2 such that

‖F1‖Sp
q

+ ‖F2‖Dp
q,q

≤ ‖F‖Sp
q +Dp

q,q
+ ε.

We may assume that F1 and F2 have the same support in R+ × J as F . By
Lemma 3.6 E(Fα|A) is of the form (B.1). Let yi,j,α = ∑n

k=1 Fi,j,k,αxi,j,k,α and
set di,j,α = yi,j,αNc

i,j , so that

di,j = di,j,1 + di,j,2.
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We apply Theorem 1.2 pointwise in � and subsequently take Lp(�)-norms on
both sides to obtain(

EEc

∥∥∥∥
∫
(0,t]×B

F dÑc

∥∥∥∥
p

Lq(S)

)1/p

=
(
EEc

∥∥∥∥∑
i,j

di,j

∥∥∥∥
p

Lq(S)

)1/p

�p,q max
{(∑

i,j

EEc‖di,j‖p
Lq(S)

)1/p

,

(
E

∥∥∥∥
(∑

i,j

Ec|di,j,1|2
)1/2∥∥∥∥

p

Lq(S)

)1/p

+
(
E

(∑
i,j

Ec‖di,j,2‖q
Lq(S)

)p/q)1/p}

�p,q max
{‖F‖Dp

p,q
,‖F1‖Sp

q
+ ‖F2‖Dp

q,q

} ≤ ‖F‖Ip,q + ε,

where the penultimate inequality follows by the computations in (3.10).
Case 1 < q ≤ p ≤ 2: Fix ε > 0. By density of Ielem in Sp

q and Dp
q,q ∩Dp

p,q , we
can find a decomposition F = F1 + F2 with Fα ∈ Ielem for α = 1,2 such that

‖F1‖Sp
q

+ ‖F2‖Dp
q,q∩Dp

p,q
≤ ‖F‖Ip,q + ε.

We may assume that F1 and F2 have the same support in R+ × J as F . By
Lemma 3.6, E(Fα|A) is of the form (B.1). Let yi,j,α = ∑n

k=1 Fi,j,k,αxi,j,k,α and
set di,j,α = yi,j,αNc

i,j , so that

di,j = di,j,1 + di,j,2.

We apply Theorem 1.2 pointwise in � and subsequently take Lp(�)-norms on
both sides to find(

EEc

∥∥∥∥
∫
(0,t]×B

F dÑc

∥∥∥∥
p

Lq(S)

)1/p

=
(
EEc

∥∥∥∥∑
i,j

di,j

∥∥∥∥
p

Lq(S)

)1/p

�p,q

(
E

∥∥∥∥
(∑

i,j

Ec|di,j,1|2
)1/2∥∥∥∥

p

Lq(S)

)1/p

+ max
{(

E

(∑
i,j

Ec‖di,j,2‖q
Lq(S)

)p/q)1/p

,
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(
E

∥∥∥∥
(∑

i,j

Ec|di,j,2|2
)1/2∥∥∥∥

p

Lq(S)

)1/p}

�p,q ‖F1‖Sp
q

+ max
{‖F2‖Dp

q,q
,‖F2‖Dp

p,q

} ≤ ‖F‖Ip,q + ε,

where the penultimate inequality follows as in (3.10). This completes the proof.
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